
 

 

Fast sparse recovery and coherence factor weighting in optoacoustic 
tomography 

 
Hailong Hea,b,†, Jaya Prakasha,b, †, Andreas Buehlera,b, and Vasilis Ntziachristos*a,b 

aInstitute for Biological and Medical Imaging, Helmholtz Zentrum München, 
Ingoldstädter Landstraße 1, 85764 Neuherberg, Germany  

bChair for Biological Imaging, Technische Universität München, Ismaninger Str. 22, 
81675 München, Germany 

ABSTRACT  

Sparse recovery algorithms have shown great potential to reconstruct images with limited view datasets in optoacoustic 
tomography, with a disadvantage of being computational expensive. In this paper, we improve the fast convergent Split 
Augmented Lagrangian Shrinkage Algorithm (SALSA) method based on least square QR (LSQR) formulation for 
performing accelerated reconstructions. Further, coherence factor is calculated to weight the final reconstruction result, 
which can further reduce artifacts arising in limited-view scenarios and acoustically heterogeneous mediums. Several 
phantom and biological experiments indicate that the accelerated SALSA method with coherence factor (ASALSA-CF) 
can provide improved reconstructions and much faster convergence compared to existing sparse recovery methods. 
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1. INTRODUCTION  
Optoacoustic (photoacoustic) imaging combines the advantages of two imaging modalities, i.e. the rich contrast of 
optical imaging and the high resolution of ultrasonic imaging [1-3]. Optoacoustic imaging technique enables multiscale 
visualization of absorption chromophores having high spatial resolution in the range of micrometer to millimeter at 
different imaging depths. The unique capabilities of optoacoustic imaging are in providing anatomical, physiological and 
molecular information for different biological and preclinical applications [1, 2, 4].  
Biological samples are typically irradiated with nanosecond laser pulses. Absorption of the light energy generates 
broadband ultrasonic waves via thermoelastic expansion; these waves have frequencies ranging from hundreds of 
kilohertz to many tens of megahertz [3, 5]. The recorded optoacoustic signals are used to reconstruct an image using 
analytical or model-based algorithms [6, 7]. Analytical inversion scheme, such as spherical radon transform, is widely 
used due to its simple implementation and high efficiency. In contrary, model-based approaches are capable of 
incorporating information regarding detection geometry, acoustic attenuation, and transducer properties in the 
reconstruction process [8], which results in more accurate reconstructions. However, large numbers of repeated sparse 
matrix-vectors multiplications are needed in the iterative inversion scheme of model-based process, which results in 
significant computational cost [9, 10]. 
Accelerated model-based methods were developed to reduce the computation cost [10-12]. For example, the angular 
discretization method was used to generate the model matrix, which effectively reduced the computational cost and 
saved memory [10, 11]. Besides, the spatial-temporal information along with low-rank constraint was used in the mode-
based process for performing faster computation [15]. Other approaches tried to simplify the calculation of the model-
matrix and then perform inversion on parallelization platforms like graphics processing unit (GPU), which enabled real-
time model-based reconstruction [12].  
A particular challenge in optoacoustic tomography is limited-view datasets. In many applications, the object of interest 
has limited accessibility due to physical constraints and only a limited-view dataset can be acquired. For example, when 
imaging a mouse brain in vivo it is typically only possible to acquire photoacoustic signals from one side because the 
mouse head cannot be completely immersed in water. Such limited-view scenarios impose significant inversion 
challenges, artifacts may arise and compromise reconstruction accuracy [9]. 
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Sparsity based algorithms were shown to perform significantly more accurate reconstructions on limited view datasets 
[9]. However, a fundamental problem with sparsity based schemes is the high computational cost, as a huge sparse 
matrix is involved in the optimization procedure. Moreover, sparse recovery based methods may amplify noise in 
limited-data scenarios, as sparsity constraint is not differentiable at origin (as the function becomes discontinuous) [13]. 
Therefore weak signal (of the order of noise) will get amplified. Hence, it is necessary to improve the sparse recovery 
methods for enabling faster reconstruction with improved accuracy. 
  In this work, we propose an improved sparse recovery scheme for optoacoustic tomography reconstruction. In order to 
accelerate the reconstruction process, the sparse method is implemented by using the SALSA approach based on least 
square QR (LSQR) formulation. Furthermore, coherence factor weighting method is integrated with the reconstruction 
procedure for suppressing noise and artifacts. The accelerated SALSA method with coherence factor weighting achieves 
better reconstructions and takes much less computation resource compared to conventional sparse recovery algorithms. 
 

2. MATERIALS AND METHODS  
2.1 Acoustic forward problem 

Model-based methods are based on numerically modeling the forward optoacoustic problem and using that model in an 
optimization algorithm [9, 14]. A model of optoacoustic signal propagation is built on a grid. This model can then be 
inverted and multiplied with the measured signals to form an optoacoustic image. The integral in Eq. (2.5) is discretized 
to form a model matrix using an interpolated model matrix method to result in the following matrix equation, 

Ax b=                                                                                        (1) 
Where b is the recorded data and x is the reconstruction image. A is obtained by linear interpolation of the heating 
function over the image grid. Efficient inversion of Eq. (1) requires regularization. We selected conventional Tikhonov 
regularization with parameter (λ), and assuming an initial pressure rise distribution is smoothly varying. The objective 
function to be minimized in this case is given as, 
 

2 2

2 2
Ax b xλΩ = − +                                 (2) 

 
whereby 

2

2
represents the L2 norm. The above objective function can be solved using normal equations [15], i.e., 

1( )T T
tikhx A A I A bλ −= +                            (3) 

 
However, Eq. (3) is computationally expensive due to the time-consuming matrix inversion. Alternatively, the LSQR 
approach can be employed [16], i.e. 
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where Bk represents a bi-diagonal matrix, Vk is the right orthogonal matrix resulting from Lanczos bidiagonalization 

[16, 17] and 0β  is defined as
2

12
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L . Eq. (4) can be inverted in a faster fashion compared to Eq. (3) since it 

involves inverting the diagonal matrix, which is computationally efficient.  
 

2.2 Proposed SALSA acceleration with coherence factor 

The proposed method is based on applying a sparsity constraint and accelerating the reconstruction with the help of 
bidiagonal matrices. The accelerated Split Augmented Lagrangian Shrinkage Algorithm (ASALSA) is proposed herein 
as an improved version of SALSA minimization implemented using Krylov subspace optimization.  In this case, the 
objective function to be minimized is, 

Proc. of SPIE Vol. 10064  100642N-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/06/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

 

 

  
2

2 1
Ax b xλΩ = − +       (5) 

Sparsity optimization schemes are expected to offer better performance over conventional Tikhonov regularization for 
limited projection data [18, 19].  Eq. (2) assumes a smooth solution and hence results in large number of unknowns and 
resulting in smoothening of edges. Eq. (5) assumes the number of unknowns to be sparse (by considering only non-zero 
entries) and is known to perform well in limited data scenarios. Eq. (5) is minimized using SALSA scheme, which has 
demonstrated the fastest convergence among existing sparsity norm based optimization schemes [20].  In this scheme, 
we utilize a variable splitting approach, wherein a new variable is introduced in the optimization procedure. The above 
objective function is now split into two quadratic minimizations with the help of the temporary variable (v) given as, 
 

  
2 2

2 2kAx b x v dω α= − + − −              (6) 

   
2

11 22 k kx x v dαω λ += + − −           (7) 

 
where α represents the regularization parameter (depends on the noise). Eq. (6) is solved using a maximum a posteriori 
(MAP) based algorithm to obtain an estimate for initial pressure rise (x). Eq. (7) is minimized to obtain an estimate for v, 
using a soft thresholding operation (which acts as a derivative for sparsity minimization). The update for the alternated 
direction method of multiplier (ADMM) parameter is given as 1 1 1( )k k k kd d x v+ + += − − . The minimization in Eq. (6) 
and (7) and the ADMM parameter update is repeated until convergence.  

The original SALSA algorithm involved inversion of a large matrix during the optimization procedure [20]. To 
accelerate inversion, we recast the SALSA algorithm, as indicated in Table I, by using the LSQR solver. Faster 
computations are achieved by using LSQR iterative inversion schemes for enabling accelerated SALSA (termed as 
ASALSA) reconstruction using the L1-norm based approach. It can be seen that Eq. (2) applies a smoothness constraint 
(

2
x ); hence noise will be smoothed out during reconstruction. Conversely, since Eq. (5) applies sparsity constraint, it 

may amplify weak signal and noise [13]. To suppress noise amplification and artifacts arising due to limited view data 
and sparsity constraint, we introduce herein an additional operation using a coherence factor (CF), defined as the ratio 
between the energy of the coherent sum of optoacoustic signals to the total incoherent energy, i.e.  
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where N represent the total number of pixels in the reconstructed domain. reconx  is the reconstructed image obtained 

using ASALSA and backx  is the backprojection reconstruction. The numerator in Eq. (8) represents the energy of the 
coherent sum of the signals, and the denominator is the total energy sum. The CF values can be interpreted as a focusing 
quality index estimated from the measured optoacoustic data, ranging from 0 to 1. It is maximal when all signals emitted 
by an optoacoustic absorber at position r' arrive in same phase at the different detector positions r. After being projected, 
real signals will constructively superimpose on their point of origin. In this way, good focusing properties can be 
achieved and consequently a sharp reconstruction. Conversely, incoherent signals will not superimpose on their point of 
origin after summation, but rather smear out, overall resulting into degradation of image quality. Weighting the 
amplitude of each image pixel with the corresponding CF can therefore suppress contributions from incoherent signals, 
which enables identification of noise/artifacts in the reconstructed image and consequently thresholding them. Therefore, 
the CF is further used for weighting the reconstructed image given as, 
 

.recon reconx CF x= ∗                      (9) 
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2.3 Simulation and phantom measurement 
In order to test the performance of the proposed method, a printed paper (USAF resolution target, standard inkjet printer 
with black ink) embedded in a 1.9 cm diameter diffuse agar cylinder (6% by volume Intralipid in the agar solution) was 
imaged. The absorbing features of the phantom are shown in Fig. 1(a). The phantom consisted of several groups of line 
elements of different sizes, which can be used for resolution and image quality characterization at different levels. In 
order to mimic limited-view scenarios, we assumed a down-sampled dataset, employing 128 positions over 135° 
coverage angle. Furthermore, a mouse kidney was imaged ex-vivo to examine the performance of the proposed method 
with biological tissue. The kidney sample was extracted post-mortem (non-perfused) according to institutional 
regulations regarding animal handling protocols and subsequently embedded in a diffuse agar block (6% by volume 
intralipid in the agar solution) for ensuring uniform illumination of the sample. The phantom and tissue experiments 
were conducted using a commercial small animal multispectral optoacoustic tomography (MSOT) scanner (Model: 
MSOT256-TF, iThera Medical GmbH, Munich, Germany) [21, 22]. 
The performance of reconstructions based on different reconstruction methods was compared using the experimental 
measurements collected from phantoms and mouse kidneys. Prior to reconstruction, the OA signals were band-pass 
filtered with cut-off frequencies between 0.2 and 7 MHz in order to remove low frequency off-sets and high frequency 
noise. A uniform speed of sound of 1510 m/s was used for all the reconstructions. For all phantom measurements, 
images were reconstructed with a pixel size of 100 µm (200x100 pixels2), and in the case of tissue data a pixel size of 
100 µm (200x180 pixels2) was used. The regularization parameter for the L2-norm based scheme was obtained using an 
L-curve approach while in case of ASALSA algorithm, it was chosen heuristically. The parameters α  and λ  were set 
as 100 and 1500 for the ASALSA algorithm. Note that in case of ASALSA algorithm, we have multiple parameters 
(α andλ )  which are sensitive to noise, therefore they can be adjusted based on the image quality of the reconstructed 
image.  

3. RESULTS 
The reconstruction results corresponding to the printed-paper USAF-resolution phantom using 256 detector elements 
over 270° are depicted in Fig. 1. Fig. 1(a) shows the structure of the paper phantom. Fig. 1(b) is the image reconstructed 
by L2-norm scheme whereas Fig. 1(c) indicates the reconstructed image obtained by ASALSA method. Both 
reconstructions result in similar initial pressure rise distribution. In contrast, the proposed ASALSA-CF method achieves 
sharper structure and lesser background artifacts compared to the other results. The artifact reduction is apparent from 
the zoomed in areas shown in the insets of Fig. 1(b)-(d), the zoomed region is indicated by red rectangle in Fig. 1(a). 
Even though the image intensity of line features (label 1 marked in (b)) is partially distorted, the line profiles along the 
red dash line indicated in Fig. 1(b) (shown in Fig. 1(e) and (d)), suggest that line features are better resolved in the image 
reconstructed by the proposed method.  
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Fig. 1. (a) Reference USAF phantom printed on white paper with black ink, which was embedded in scattering agar. (b) The reconstructed image by 
L2-norm. (c) ASALSA method and (d) the proposed method. The subsects in (b-d) are the zoom-in of region marked in red rectangle of (a) 
respectively. The line profiles in the horizontal and vertical directions marked in panel (b) are represented in (e) and (f) respectively.   
 
 
Underdamped data with limited-view condition (128 transducer positions over 135 degrees) are reconstructed and the 
corresponding results are shown in Fig. 2. The L2-norm based reconstruction is fully distorted and blurred. Line features 
(labels 1 and 2) in Fig 2(a) cannot be identified. In contrast, the ASALSA method shows better performance in resolving 
the line pattern. Clearly, both images contain artifacts and blurry regions. However, Fig. 2(c) shows fewer artifacts and 
line features are much better distinguishable compared to the other reconstruction results indicating the superiority of the 
proposed scheme. Line profiles and zoomed images present similar resolution improvement as in previous cases. 
Meanwhile, the CNR values of line features (yellow labels 1, 2, 3 and 4) are calculated and displayed in Table 1. It can 
be seen that the ASALSA-CF method achieve better image contrast than the other methods. 

 
 
 
 
 
 

TABLE 1 
CONTRAST (CNR) COMPARISON  

Methods OBJECT 1      OBJECT 2       OBJECT 3     OBJECT 4    
 

          L2-norm               0.1(Da)         0.4(D)          0.2(D)          1.4 
 

 

          SALSA                 0.9                 0.7             1.2                2.1 
 

 

        ASALSA-CF         1.2                 1.4             2.4                3.7  
Da: Distorted     
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Fig. 2. Images reconstructed using 128 transducer positions over 135 degrees. (a) The reconstructed image by L2-norm. (b) 
ASALSA and (d) the proposed method. The subsects in (a-c) are the zoom-in of region marked in red rectangle of Fig. 1(a) 
respectively. The line profiles in the horizontal and vertical directions marked in panel Fig. 1(a) are represented in (d) and 
(e) respectively.

The results pertaining to the ex-vivo kidney experiment reconstructed from 256 elements over 270 degrees are presented 
in Fig. 3. Fig. 3(a) and (b) shows images obtained with the L2-norm and ASALSA method. In analogy to the paper 
phantom, these two images display similar image quality. However, the CF method further improves the reconstruction 
performance of the SALSA scheme, as illustrated in Fig. 3(c) showing improved reconstruction quality. Specifically, 
blood vessel structures marked with the box indicated on Fig. 3(a) are better distinguishable and less blurry with the 
ASALSA-CF approach compared to other scheme (insets of Figs. 3(a-c)). The visual evaluation is further corroborated 
by the line profile drawn over a given image segment [indicated by the dash line in Fig. 3(a)], which indicates that blood 
vessels marked by the red line are better resolved in the ASALSA-CF reconstructions. 

Fig. 3. Reconstructed images of the mouse kidney from 256 transducer positions over 270 degrees. (a) the reconstructed 
image by L2-norm. (b) ASALSA method and (d) the proposed method. The subsects in (a-c) are the zoom-in of region 
marked in red rectangle of Fig. 3(a) respectively. The line profiles marked by the red line in panel Fig. 3(a) is 
represented in (d).   
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The comparison of different reconstruction schemes with respect to the computational time and memory requirements is 
presented in Table 2. We calculated the reconstruction time and memory usage for Fig. 1 and Fig. 2 using a normal PC 
(Intel Core i5-3470 @2.3GHz and 16 GB memory). It can be seen from Table-II that the proposed method takes more 
time and memory compared to the L2-norm approach. However, the conventional SALSA method cannot reconstruct the 
256 signals because of computer memory limitation. For 128 signals, the original SALSA method is over 20 times 
slower and takes 7 times more memory compared to the proposed method. 

4. CONCLUSION
In this work, we proposed a fast sparse recovery method along with coherence factor weighting for optoacoustic 
tomographic image reconstruction. The interpolated model matrix method employs a sparse matrix; hence it is beneficial 
to utilize mathematical tools pertaining to sparse algebra. Therefore the original Basis Pursuit (solved using Augmented 
Lagrangian method) is rewritten using iterative Krylov subspace solvers (LSQR inversion), which tends to converge in 
fewer iterations. It has been proved that the accelerated SALSA approach can save enormous memory and significantly 
accelerate the computation time compared to the original SALSA approach. 
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