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ABSTRACT: 36 

Characterization of the genetic regulation of proteins is essential for understanding disease etiology 37 

and developing therapies. We identified 10,674 genetic associations for 3,892 plasma proteins to 38 

create a cis-anchored gene-protein-disease map of 1,859 connections that highlights strong cross-39 

disease biological convergence. This proteo-genomic map provides a framework to 1) connect 40 

etiologically related diseases, 2) provide biological context for emerging disorders, and 3) integrate 41 

different biological domains to establish mechanisms for known gene-disease link. Our results 42 

establish the value of cis-protein variants for annotation of likely causal disease genes at GWAS loci, 43 

addressing a major barrier for experimental validation and clinical translation of genetic discoveries, 44 

and identify proteo-genomic connections within and between diseases.   45 

 46 

One Sentence summary: A genetically anchored map of protein – disease links identifies shared 47 

etiology across diverse diseases and possible therapeutic directions. 48 

 49 

 50 

  51 
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MAIN TEXT 52 

Proteins are the central layer of information transfer from the genome to the phenome and 53 

recent studies have started to elucidate how natural sequence variation in the human genome impacts 54 

on protein concentrations measured from readily available biofluids such as blood (1–6). Investigation 55 

of the clinical consequences of these so-called protein-quantitative trait loci (pQTLs) can help to better 56 

understand disease mechanisms and provide insights into the shared genetic architecture across 57 

diseases within a translational framework that puts humans as the model organisms at the center (2, 58 

4). This is now pursued at scale by pharmaceutical companies for the discovery of drug targets or 59 

repurposing opportunities (7, 8). Earlier studies have started to characterize the genetic architecture 60 

of proteins using bespoke panels (3, 6, 9) or larger proteomic platforms (1, 2, 4, 5), and have 61 

demonstrated how this can provide insight into the pathogenesis of specific diseases. There has been 62 

less attention on: a) providing a framework to assess the protein specificity of genetic variation 63 

residing outside (trans) the protein encoding gene, b) understanding the clinical relevance of pQTLs 64 

for proteins detected in plasma but known to not be actively secreted (7), c) classifying thousands of 65 

proteins based on their genetic architecture as explained by merely cis variants, specific trans variants, 66 

or unspecific trans variants, d) demonstrating the specific utility of pQTLs for the prioritization of 67 

candidate genes at established risk loci, and e) systematically mapping shared gene-protein-disease 68 

signals to uncover connections among thousands of considered diseases and phenotypes. 69 

Profiling thousands of proteins circulating in blood at population-scale is currently only possible using 70 

large libraries of affinity reagents, namely antibodies or alternatively short oligonucleotides, called 71 

aptamers, since gold standard methods such as mass spectrometry lack throughput. We have 72 

previously provided a detailed comparison of 871 overlapping proteins measured in 485 individuals 73 

(10) of the two most comprehensive platforms, the aptamer-based SomaScan v4 assay and the 74 

antibody-based Olink proximity extension assay. We demonstrated that the majority of pQTLs are 75 

consistent across platforms (64%), in line with smaller scale efforts (4), but highlighted the need to 76 

triangulate pQTLs with gene expression and phenotypic information to derive tangible biological 77 

hypotheses. Here we present a genome-proteome-wide association study targeting 4,775 distinct 78 

proteins measured from plasma samples of 10,708 generally healthy European-descent individuals 79 

who were participants in the Fenland study (Table S1) (11). We identified 10,674 variant – protein 80 

associations and developed a framework to systematically identify protein- and pathway-specific 81 

pQTLs augmenting current ontology-based classifications in a data-driven manner. We show that half 82 

of all pQTLs close to the protein-encoding gene, cis-pQTLs, colocalize with gene expression or splicing 83 

QTLs in various tissues allowing to derive functional insights within tissues by integrating genetics with 84 
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plasma proteomics. We demonstrate the specific ability of cis-pQTLs to prioritize candidate causal 85 

genes at established genetic risk loci. By means of phenome-wide colocalization screens we generate 86 

a proteo-genomic map of human health covering 1,859 gene-protein-trait triplets providing insights 87 

into the shared etiology across diseases and the identification of pathophysiological pathways through 88 

cross-domain integration.  89 

RESULTS 90 

Genetic associations for protein targets 91 

We performed a genome-proteome-wide association analysis by testing 10.2 million 92 

genotyped or imputed autosomal and X-chromosomal genetic variants with a minor allele frequency 93 

(MAF) >1% among 10,708 participants in the Fenland study targeting 4,775 distinct proteins (12). We 94 

identified 2,584 genomic regions (1,543 within ±500 kb of the protein-encoding genes, cis) associated 95 

with at least one of 3,892 protein targets at p<1.004x10-11
. 1,097 of these regions covered variants 96 

that have not been reported to be associated with plasma proteins so far (1–6, 9) (r²<0.1), of which 97 

64% (867 out of 1,356 pQTLs) available in (4) replicated (p<0.05, directionally consistent). Further, 61% 98 

(488 out of 797, Table S2) of pQTLs replicated using the complementary Olink technique (12), with a 99 

higher proportion for variants in cis (81.2%) compared to trans (44.2%). Most regions (79.3%, n=2,050) 100 

were associated with a single protein target, but we observed substantial pleiotropy (≥2 protein 101 

targets) at the remaining regions, including up to five (16.1%, n=418), 6-20 (3.4%, n=88), or 21-50 102 

(0.7%, n=19) associated protein targets, and with eight regions (CFH, ARF4-ARHGEF3, C4A-CFB, BCHE, 103 

VTN, CFD, ABO, GCKR) associated with 59 to 1,539 protein targets (Fig. 1). The 194 pleiotropic regions 104 

harboring a cis-pQTL identified master regulators of the plasma proteome, including 105 

glycosyltransferases such as the histo-blood group ABO system transferase (ABO), key metabolic 106 

enzymes like glucokinase regulatory protein (GCKR), or lipid mediators such as apolipoprotein E, 107 

establishing a network-like structure of the circulating proteome (1). 108 

Out of the 3,892 protein targets, 26.8% (n=1,046) had pQTLs in cis and trans, 13.4% (n=523) in cis only, 109 

and 59.6% (n=2,323) in trans only, among a total of 8,328 sentinel variant-protein target associations 110 

(Fig. 1 and Tables S2 and S3). We identified another 2,346 secondary pQTLs at those loci using an 111 

adapted stepwise conditional analysis (median: 1, range:  1 - 13) indicating widespread allelic 112 

heterogeneity in cis (68.8%) and trans (31.2%). The majority of the 5,442 distinct variants were located 113 

in introns (~44%) or were in high LD (r²>0.6) with a missense variant (~21%), with similar distributions 114 

across cis- and trans-pQTLs (Fig. S1). We observed 663 cis-pQTLs with direct consequences for the 115 

structure of the protein target (protein-altering variants, PAVs), including important substructures, 116 

such as disulfide bonds (4.2%), α-helices (3.1%), and β-strands (2.6%) (Fig. S1). Such variants are 117 
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predicted to affect correct folding of protein targets, including diminished secretion or reduced half-118 

life in the bloodstream, rather than expression of the protein-encoding gene (13). For example, we 119 

observed an enrichment of PAVs among actively secreted proteins (14) (39.6% vs 33.7%, p=0.04, X²-120 

test) possibly indicating modulation of common posttranslational modifications, such as glycosylation.  121 

An integrated classification system for pathway-specific pQTLs 122 

We integrated a data-driven protein network with ontology mapping (GO terms, Fig. 2A-B and 123 

S2) to distinguish pathway-specific pQTLs from those exerting effects on multiple unrelated targets 124 

(12, 15). We successfully assigned 40.8% (n=1,790 in cis, n=423 in trans) of the 5,442 genetic variants 125 

as protein-specific and 5.9% (n=236 in cis, n=86 in trans) as pathway-specific based on converging 126 

evidence from the network and ontology mapping, and another 16.5% (n=498 in cis, n=402 in trans) 127 

to be likely pathway-specific based on either source. In total, 1,802 protein targets had at least one 128 

(likely) specific pQTL in cis (n=1,385) or trans (n=417). We classified 648 variants that would have been 129 

missed by ontology mapping as protein community-specific through our data-driven network 130 

approach. One example is rs738408 (PNPLA3), a non-alcoholic fatty liver disease variant (16) which 131 

was associated with 22 out of 70 aptamers from the same protein community (Fig. 2C). PNPLA3 132 

encodes patatin-like phospholipase domain-containing protein 3 (PNPLA3), and rs738408 tags the 133 

missense variant rs738409 (I148M) rendering PNPLA3 resistant to ubiquitylation-mediated 134 

degradation and resulting in subsequent accumulation on hepatic lipid droplets causing fatty liver 135 

disease (17). The associated protein targets included multiple metabolic and detoxification enzymes 136 

highly expressed in the liver, such as alcohol dehydrogenases, arginosuccinate lyase, bile salt 137 

sulfotransferase, or aminoacylase-1. Our results support the hypothesis that those might only appear 138 

in plasma of otherwise healthy individuals as a result of lipid overload-induced lysis of hepatocytes. 139 

The putative liver damage-specific effect, anchored on the PNPLA3 trans-pQTL, makes those protein 140 

targets potential biomarker candidates compared to tissue unspecific proteins currently used to 141 

identify fatty liver disease or liver injury in the clinic (18).  142 

Contribution of cis and trans genetic architecture 143 

We observed three major categories of protein targets based on the contribution of genetic 144 

variation to plasma concentrations (Fig. 2D and S3, and Table S3). For about a third (n=1,249) of the 145 

protein targets, genetic variance was mainly explained by one or more cis-pQTLs, whereas for 7.2% 146 

(n=282) protein- or pathway-specific trans-pQTLs accounted for most of the genetic variation, leaving 147 

two-thirds (n=2,361) mainly explained by unspecific trans-pQTLs (12). Overall, we observed a median 148 

genetic contribution of 2.7% (IQR: 1.0% - 7.6%) reaching values above 70% for proteins like vitronectin 149 

(rs704, MAF=47.3%) or sialic acid-binding Ig-like lectin 9 (rs2075803, MAF=44.1%) which were often 150 
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driven by only a single common cis-pQTL. PAVs, affecting the binding epitope of the protein target, 151 

are the likely explanation for such strong and isolated genetic effects. While more than two-thirds of 152 

the protein targets with at least one cis-pQTL were unrelated to PAVs, we provide evidence that 158 153 

(32.9%) of the protein targets linked to a PAV (r²>0.6) shared a genetic signal with at least one disease 154 

or risk factor (see below). This suggests that conformation and hence function of the protein target, 155 

rather than plasma abundance of the protein target, might be more relevant as mediators of 156 

downstream phenotypic consequences and that aptamers are able to detect such probably 157 

dysfunctional proteins.  158 

Our approach to identify protein-/pathway-specific trans-pQTLs allowed us to uncover biological 159 

relevant information, which was otherwise hidden by strong and unspecific trans-pQTLs that possibly 160 

interfere with the measurement technique rather than the biology of the protein target. For example, 161 

rs704, a missense variant within VTN associated with a higher fraction of single chain vitronectin with 162 

altered binding properties (19, 20), explained 72% of the variance in MICOS complex subunit MIC10 163 

(MOS1), far outperforming the contribution of the specific trans-pQTL rs398041972 (0.7%). 164 

Rs398041972 resides about 1 Mb upstream of TMEM11, encoding transmembrane protein 11, a 165 

physical interaction partner of MOS1 as part of the MICOS complex (21). In general, we observed that 166 

the median contribution of specific trans-pQTLs to the variance in plasma concentrations was 1.1% 167 

(IQR: 0.6%-2.6%) across 687 protein targets, reaching values as high as 38.3% for catenin β-1 via two 168 

trans-pQTLs (rs1392446 and rs35024584) within the same region for which we prioritized CDH6 as a 169 

candidate causal gene. CDH6 encodes cadherin 6, which physically interacts with catenin β-1 (22). We 170 

systematically tested for an enrichment of putative protein interaction partners among the 20 closest 171 

genes at each specific trans locus and observed a 1.53-fold enrichment (Chi-square test p-172 

value=1.8x10-10) of first- and second-degree neighbors from the STRING network (23), highlighting the 173 

ability of our classification system to identify biologically meaningful trans-pQTLs. 174 

Shared genetic architecture with gene expression and splicing 175 

We integrated plasma pQTL results with both gene expression and splicing QTL data (eQTL 176 

and sQTL) from the GTEx version 8 release (24) using statistical colocalization (posterior probability 177 

(PP) > 80%) for all 1,584 protein targets with at least one cis-pQTL (12). There was strong evidence 178 

that half (50.1%) of these had a shared signal with gene expression in at least one and a median of 4.5 179 

tissues (IQR: 2-12; Fig. 3A), vastly expanding previous knowledge of gene expression contribution 180 

across tissues (4, 9). The majority of cis-pQTLs (n=584, 73.4%) showed plasma protein and gene 181 

expression effects in the same direction in all tissues (Fig. 3A), but 26.6% (n=212) showed evidence of 182 

at least one pair with opposite effects, including 108 where the protein effect was opposite of the 183 



 7 

direction observed for gene expression across all tissues with evidence for colocalization. For example, 184 

the A-allele of the lead cis-pQTL rs2295621 for immunoglobulin superfamily member 8 (IGSF8) was 185 

inversely associated with plasma abundance of the protein target (beta=-0.19, p<1.65x10-32) but 186 

positively associated with expression of the corresponding mRNA across 33 tissues (Table S4). 187 

Uncoupling of gene and protein expression, even within the same cell, is a frequently described 188 

phenomenon, and possible mechanisms include differential translation, protein degradation, 189 

contextual confounders, such as time and developmental state, or protein-level buffering (25). For 190 

145 protein targets, we identified strong evidence of a tissue-specific contribution to plasma 191 

abundances based on a single tissue strongly outweighing all others (Fig. 3A and Table S4). These 192 

included known tissue-specific examples such as protein C in liver tissue, but also less obvious ones, 193 

such as hepatitis A virus cellular receptor 1 (or TIM-1), an entry receptor for multiple human viruses, 194 

for which the cis-pQTL and cis-eQTL specifically colocalized in tissue from the transverse colon. To 195 

maximize power for the most closely aligned tissue compartment, whole blood, we integrated gene 196 

expression data from the eQTLGen consortium (26), which confirmed 140 cis-eQTL/pQTL pairs and 197 

revealed another 38 cis-eQTL/pQTL pairs not seen in the GTEx resource, including immune cell-specific 198 

mediators of the inflammatory response such as leukocyte immunoglobulin-like receptor subfamily A 199 

member 3 (Table S4). 200 

To obtain insights beyond the average readout across all transcript species, we examined alternative 201 

splicing as a source of protein target variation (12). One-fifth (20.1%) of cis-signals were shared with a 202 

cis-sQTL in at least one tissue (median: 6 tissues, IQR: 2-15) (Fig. 3B), and 84 of these were not seen 203 

with eQTL data, suggesting that the pQTL-relevant transcript isoform was masked from the bulk of 204 

assayed transcripts. In contrast to the eQTL colocalization, we did not observe an overall pattern of 205 

aligning effect directions (Fig. 3B). This might be best explained by the intron-usage quantification of 206 

splicing events within GTEx version 8, which does not allow straightforward mapping of the eventually 207 

transcribed isoforms, and the expression of an alternative protein isoform with less affinity to the 208 

SOMAmer reagent. The latter may have accounted for the 90 protein target examples where the 209 

colocalizing cis-sQTL explained more than 10% of the variance in plasma concentrations (Table S4) and 210 

emphasizes the ability of splicing QTLs to determine the underlying sources of variation in plasma 211 

abundances of protein targets. In summary, our results demonstrate that proteins measured in plasma 212 

can be used as proxies for tissue processes when anchored on a shared genetic variation with tissue-213 

specific gene expression or alternative splicing data.   214 

cis-pQTLs enable identification of candidate causal genes at GWAS loci 215 

We used the inherent biological specificity of cis-pQTLs to systematically identify candidate 216 

causal genes for genome-wide significant variants reported in the GWAS catalog (p<5x10-8; download: 217 
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25/01/2021) by assessing 558 cis-regions for which the pQTL was in strong LD (r2>0.8) with at least 218 

one variant for 537 collated traits and diseases (Fig. 4 and Table S5) (12). For a quarter of these 219 

(24.6%), we annotated a gene different from the reported or mapped gene, and for another 79 cis-220 

regions (14.2%), our predicted causal gene was reported as part of a longer list of potential causal 221 

genes. 222 

Among the genes we identified are candidates with strong biological plausibility, such as AGRP, 223 

encoding Agouti-related protein, a neuropeptide involved in appetite regulation (27), suggesting a 224 

possible mechanism for measures of body fat distribution associated at this locus. Another example 225 

was NSF, encoding N-ethylmaleimide-sensitive factor (NSF), which may be involved in the fusion of 226 

vesicles with membranes, enabling the release of neurotransmitters into the extracellular space (28); 227 

a locus that was identified for Parkinson’s disease (Table S5).  228 

We further assigned PRSS8 as a candidate causal gene at the KAT8 locus for Alzheimer’s disease (AD), 229 

supported by strong LD (r²=0.96) and a high posterior probability of a shared genetic signal (98%) 230 

between the lead cis-pQTL (rs368991827, MAF=27.8%) and the common KAT8 intronic variant 231 

(rs59735493) that has been reported for AD (Fig. S4). PRSS8 codes for prostasin, and we estimated a 232 

13% reduction in AD risk (odds ratio: 0.87; 95%-CI: 0.82-0.91, p=3.8x10-8) for each 1 s.d. higher 233 

normalized plasma abundance of prostasin. The locus has been identified by multiple GWAS efforts 234 

(29), yet prioritization strategies have failed to provide conclusive evidence (30). Prostasin is a serine 235 

protease highly expressed in epithelial tissue, which regulates sodium channels (31) and represses 236 

TLR4-mediated inflammation in human and mouse models of inflammatory bowel disease (32), a 237 

mechanism which might also be relevant to TLR4-mediated neuroinflammation in AD (33).     238 

We observed multiple examples in which our cis-pQTL mapping identified biologically plausible 239 

candidates that were not implicated by cis-eQTL mapping (Fig. 4). For example, we assigned RSPO1 as 240 

a candidate causal gene at the eQTL-supported CDCA8 locus for endometrial cancer (34). The 241 

intergenic variant rs113998067 is the lead signal for endometrial cancer and was a secondary cis-pQTL 242 

for R-spondin-1, encoded by RSPO1. Statistical colocalization confirmed a highly likely shared signal 243 

(PP=98.2%) (Fig. S5). Accordingly, we estimated a 91% increased risk for endometrial cancer per 1 s.d. 244 

higher plasma abundance of R-spondin-1 (odds ratio: 1.91, 95%-CI: (1.52-2.41), p-value=3.6x10-8). R-245 

spondin-1 is a secreted activator protein which acts as an agonist for the canonical Wnt signaling 246 

pathway (35), playing a regulatory role as an adult stem cell growth factor. Work in mouse models 247 

(36), however, suggests that R-spondin-1 upregulates estrogen receptor alpha independent of Wnt/β-248 

catenin signaling and might therefore amplify estrogen-mediated endometrial cancer risk (36). We 249 

note that the effect estimate for rs113998067 did not differ by sex (p=0.12), and knockout models in 250 
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male and female mice have shown abnormal development of testis and ovary, respectively (37, 38), 251 

possibly indicating a wider impact on diseases of reproductive tissues.  252 

A map of proteo-genomic connections across the phenome 253 

We systematically assessed sharedness of gene-protein-disease triplets through phenome-254 

wide colocalization of cis-pQTL regions (12) to identify and create a genetically anchored map of 255 

proteins involved in the etiology of common complex diseases, which could represent potential 256 

druggable targets. We identified 1,859 gene-protein-trait triplets (network edges, Fig. 5 and S6) 257 

comprising 412 protein targets and 506 curated traits (Fig. S7 and Table S6). The mapping of these 258 

shared gene-protein-phenome connections highlights a large number of insights, as discussed below, 259 

while confirming previously established connections for known pleiotropic loci (for example GCKR 260 

(n=197 traits), alpha-1-antitrypsin (n=79 traits), or apolipoprotein A-V (n=64 traits)) and established 261 

disease genes (for example roto-oncogene tyrosine protein kinase receptor RET (RET) and 262 

Hirschsprung’s disease (39) or C-C motif chemokine 21 (CCL21) and rheumatoid arthritis (40)).  263 

The map highlights ten diseases for which we identified five or more colocalizing cis-pQTLs, including 264 

coronary artery disease (n=12), hyperlipidemia indicated by lipid-lowering medication (n=8), 265 

ulcerative colitis (n=7), Alzheimer’s disease (n=6), and type 2 diabetes (n=5). Statistical power was 266 

greatest for the detection of shared genetic architecture for traits for which measures were available 267 

in the largest number of people, in line with a median of 2 colocalizing cis-pQTLs (IQR: 2 - 4, maximum 268 

32 for mean platelet volume) for blood cell parameters and biomarkers available in large-scale 269 

biobanks. For 104 out of 191 curated phenotypes with at least 3 colocalizing protein targets, we 270 

observed significant enrichment of pathways (false discovery rate (q-value) < 5%; Table S7). These 271 

reflected known biology of the corresponding clinical entities, such as ‘wound healing’ for platelet 272 

count, ‘skeletal system development’ for height, ‘cholesterol metabolism’ for coronary artery disease, 273 

or ‘response to virus’ for Crohn’s disease, as well as yet less understood ones such as ‘toll-like receptor 274 

signaling’ for hypothyroidism, for which two of the genes (IRF3 and TLR3) have already been shown to 275 

confer virus-induced disease onset in mouse models (41).  276 

The proteo-genomic map provides a new framework to 1) connect etiologically related diseases, 2) 277 

provide biological context for new or emerging disorders, such as COVID-19, and 3) integrate 278 

information from different biological domains to establish mechanisms for known gene-disease links. 279 

For each of these scenarios, we provide selected examples below to highlight the scientific 280 

opportunities arising from this map and the related open resource platform (www.omicscience.org). 281 

 282 

http://www.omicscience.org/
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Potential candidate genes for COVID-19 outcomes 283 

We integrated GWAS summary statistics in our map for four different outcome definitions 284 

related to COVID-19 (42), that differed substantially in the number of included cases (5,101 – 38,984), 285 

and observed that results were sensitive to the choice of outcome. We replicated ABO and OAS1 as 286 

two candidate causal genes (43) (Fig. S8) with both showing consistent evidence across outcomes, 287 

ranging from susceptibility to COVID-19 to severe cases requiring hospitalization. The lead cis-pQTL 288 

for BGAT (rs576125, MAF=33.5%, within ABO) also colocalized with pulmonary embolism (Fig. 5), a 289 

common complication of severe COVID-19 (44), which might be attributable to altered abundances of 290 

proteins involved in the coagulation cascade (15). We further observed suggestive evidence for NSF 291 

(for the risk of COVID-19 hospitalization) and BCAT2 (for severe COVID-19) which each shared a genetic 292 

signal with only one of these four outcomes, and therefore requiring external validation of their 293 

possible role in COVID-19 or associated pathologies.  294 

Integrating multiple OMICs layers elucidates a disease mechanism for gallstones 295 

We identified a shared signal at SULT2A1, a known gallstone locus (45), between bile salt 296 

sulfotransferase (SULT2A1) and risk of cholelithiasis (odds ratio per 1 s.d. higher normalized protein 297 

abundances: 2.12, 95%-CI: 1.66 – 2.70, p-value=2.1x10-37) and cholecystectomy (odds ratio: 2.09, 95%-298 

CI: 1.86 – 2.34, p-value=7.8x10-38). We next used multi-trait colocalization (46) and further identified 299 

that mRNA expression of SULT2A1 in the liver, plasma concentrations of multiple sulfated steroids 300 

(47), including sulfate conjugates of androgen and pregnenolone metabolites, and bile acids shared 301 

the same signal with high posterior probability (PP=99%) largely explained (63%) by rs212100, a 302 

variant in high LD (r2 = 0.90) with the lead cis-pQTL at this locus (Fig. 6A and Fig. S9). The consistent 303 

positive effect directions across all physiological entities, and in particular sulfated steroids and 304 

primary bile acid metabolites, clearly favor higher SULT2A1 activity as a mode of action. The 305 

concurrent inverse association with lower plasma concentrations of the secondary bile acid 306 

glycholithocholate indicates diminished formation of lithocholic acid, an essential detergent to 307 

solubilize fats, including cholesterol (48). Our vertical integration of diverse biology entities indicates 308 

a supersaturated bile that promotes cholesterol crystallization and gallstone formation as a causal 309 

mechanism at a locus for which the mode of action has only been vaguely hypothesized (45).  310 

Convergence of soft tissue disorders through FBLN3  311 

A protein target connected to a very large number (n=37) of diseases and phenotypes was 312 

FBLN3 (extracellular matrix glycoprotein encoded by EFEMP1), showing gene-protein convergence of 313 

diverse connective tissue disorders as well as gene expression of EFEMP1 in subcutaneous adipose 314 

tissue, with high confidence in the lead cis-pQTL (rs3791679, MAF=33.6%) being the causal variant in 315 
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multi-trait colocalization (Fig. 6B and Fig. S10). The locus has previously been reported but not 316 

connected across separate GWASs conducted for height (49), optic disc area (50), carpal tunnel 317 

syndrome (51), inguinal hernia (52), and lung function (53). Efemp1 knock-out mice display abnormal 318 

elastic fiber morphology, develop different types of hernias, and have smaller body size and lower 319 

body fat (54), in line with the human spectrum of clinical features. FBLN3 is part of the extracellular 320 

matrix and widely expressed but its function is incompletely understood (55). We provide insights 321 

about its role in the etiology of a large number of connective tissue disorders, including a potential 322 

explanation for the established link between carpal tunnel syndrome and shorter stature (51). 323 

Mutations in EFEMP1 cause a rare eye disease called Doyne honeycomb retinal dystrophy (DHRD) (56), 324 

characterized by visual disturbances and drusenoid deposits due to accumulating intracellular FBLN3. 325 

We observed sharedness of the common signal at this protein locus with vision-related phenotypes, 326 

including use of contact lenses (myopia) and decreased optic disc area, a risk factor for open-angle 327 

glaucoma (50), with lower protein concentrations associated with greater risk, as also observed in 328 

patients with DHRD. 329 

Differences of cis-pQTLs by sex and age 330 

 We systematically tested differences in the genetic associations of all protein targets included 331 

in the proteogenomic map (N=412) by age or sex. We identified a total of 14 protein targets that 332 

showed evidence for significant (p<5.9x10-5) effect modification of the cis-pQTL by sex (N=10) or age 333 

(N=8), including four common to both (Table S8).  This included biological plausible candidates, such 334 

as annexin II, where the cis-pQTL showed a stronger effect in women, albeit with a strong significant 335 

effect in either sex (women: beta=-0.86, p-value<1.7x10-467; men: beta=-0.64, p-value<2.5x10-231). This 336 

finding is in line with evidence of isoform expression of the protein-encoding gene ANXA2 in male and 337 

female reproductive tissues, including prostate (PP=81.9%) and vagina (PP=87.4%) and a possible role 338 

of the locus in puberty timing (57, 58).  339 

We noted that most of the identified cis-pQTLs showed age- and sex-differential and not dimorphic 340 

effects (59) and were linked to missense variation (inhibin C, vitronectin, Siglec 9, GCKR, SOD3, CPA4, 341 

and PILRA) or alternative splicing events (annexin II, BGAT, and CO8G) with very strong overall effects, 342 

enabling the detection of even small effect differences between strata more easily (60). In general, 343 

our results are concordant with the few sex-specific effects of molecular QTLs reported so far (61, 62) 344 

and show that systematic efforts for both molecular QTLs and disease GWAS are needed to better 345 

understand the mechanisms underlying such differences. Crucially, investigating the relevance of 346 

these genetic differences for phenotypic expression depends on the availability of sex-specific GWAS 347 

results across the human phenome.   348 
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Druggable targets and repurposing opportunities 349 

We systematically identified druggable proteins in the proteo-genomic map by linking the 350 

protein-encoding gene to the druggable genome (63) and identified 60 protein targets linked to at 351 

least one phenotype, including 22 protein targets linked to a disease (Table S9). We replicate 352 

established examples, such as the IL-6 receptor for rheumatoid arthritis or thrombin for deep venous 353 

thrombosis (Fig. 5). We also identified 31 candidates with potential repurposing opportunities for 1 to 354 

8 diseases (total of 32 different indications), following a search and prioritization strategy in Open 355 

targets (64).  356 

Webserver 357 

To enable customized and in-depth exploration of high-priority protein targets, that is, those 358 

with at least one cis-pQTL, we created an interactive online resource 359 

(www.omiscience.org/apps/pgwas). The webserver provides intuitive representations of genetic 360 

findings and enables the look-up of summary statistics for individual SNPs, genes, and whole genomic 361 

regions across all protein targets. To interactively assess specificity and identify pleotropic cis-pQTLs 362 

that present strong trans-like association profiles, we generated an interactive heatmap of genetic 363 

associations of all cis-pQTLs across all high-priority candidate proteins. We further provided detailed 364 

annotations of the protein targets, including links to external databases, such as UniProt or Reactome, 365 

information on currently available drugs, characterization of associated SNPs, as well as results from 366 

our colocalization analysis with eQTLs, sQTLs, and disease phenotypes. An interactive version of the 367 

proteo-genomic map allows a deep dive into proteins or phenotypes of particular interest to explore 368 

cross-disease connections within subnetworks.  369 

DISCUSSION 370 

The promise of proteomic technologies and their integration with genomic data lies in their 371 

application to rare and common human diseases. While previous studies started to exploit the 372 

phenotypic consequences of pQTLs, they have mainly focused on identifying and describing the 373 

genetic architecture of proteins measured by specific platforms (1–6, 9). We performed a systematic 374 

integration of the phenome and created a proteo-genomic map of human health that identifies many 375 

potential causal disease genes and highlights genetically driven connections across diverse human 376 

conditions. The traditional classification of diseases relies on the aggregation of symptoms commonly 377 

presenting together and, with the exception of Mendelian disorders, is rarely based on shared etiology 378 

(65). Our network anchors the convergence of diseases in their shared genetic etiology, as shown for 379 

FBLN3, providing mechanistic understanding and a starting point for the identification of treatment 380 

strategies targeting underlying genetic causes.  381 
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Uncertainty in assigning causal genes and variants remains a major limitation for experimental 382 

validation and clinical translation of results from the plethora of hypothesis-free genetic association 383 

studies. We show how cis-pQTLs identify causal candidate genes at established disease risk loci, 384 

including COVID-19, providing immediate hypotheses for experimental follow-up for a large number 385 

of disease genes. 386 

The uncertain specificity of genetic variation affecting protein content outside of the protein-encoding 387 

region, trans-pQTLs, restricts the discovery of de novo biological insights in protein regulation and 388 

instrumentation of such variants for genetic prediction, such as with polygenic scores. We show how 389 

data-driven network clustering augments ontology-based classification approaches and identifies 390 

biologically plausible examples, such as for PNLPA3 and a community of liver-derived protein targets.   391 

Genetic variation found for proteins circulating in blood raises the question of transferability to 392 

disease-relevant tissue processes. We demonstrate that for about half of the protein targets with a 393 

cis-pQTL, this can be linked to gene expression in various tissues and provide examples, such as for 394 

SULT2A1, that illustrate how multi-domain integration can identify tissue-specific mechanism. In its 395 

most simple form such cis-pQTLs determine the basal rate of protein production within cells and are 396 

more or less constantly released into plasma due to natural cell turnover (66). Integration of genetic 397 

information allowed us to separate out such enclosed effects from other mechanisms leading to 398 

higher cell turn over or leakage, such as for SULT2A1 and the liver-specific effect of the PNPLA3 variant. 399 

While this provides a tangible strategy to point to relevant tissues, overlapping data for tissue-specific 400 

gene and protein expression is required to quantify the contribution of various tissues to the plasma 401 

proteome. 402 

To accelerate use and translational potential of our findings, we generated an open access interactive 403 

web resource that enables the scientific community to easily and rapidly capitalize on these results 404 

for future research across clinical specialties. We demonstrate for multiple examples how this 405 

resource can be used to put gene-phenotype findings into a systems biological context. 406 

While our study is distinguished by its comprehensive discovery and characterization of pQTLs in cis 407 

and trans along with a systematic integration of the phenome, it does have limitations. Firstly, the 408 

nature of the technology used to measure protein concentrations is designed to maximize discovery 409 

by generating a large library of affinity reagents, which rely on a preserved shape of the target protein 410 

and hence might miss genetic effects specific to a particular isoform of the protein (10). The semi-411 

quantitative nature of the assay makes risk estimates based on Mendelian randomization studies 412 

challenging. A thorough discussion of assay differences can be found in our previous work, and we 413 

observed consistent cis-pQTLs for examples highlighted, including RSPO1, SULT2A1, and FBLN3, as 414 
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measured with Olink. Secondly, our study cohort consisted of predominantly healthy middle-aged 415 

participants of European-decent and replication of our results in ethnically diverse populations is 416 

warranted, in particular for the discovery of drug targets. Further work would also be required to 417 

investigate possible modifying effects of phenotypic characteristics on gene – protein associations, 418 

such as by sex, age, or behavioral factors. Thirdly, our study concentrated on the common spectrum 419 

of variation in the genome. Investigation of rare variation is likely to identify pQTLs with larger effect 420 

sizes and possibly more severe phenotypic consequences. Finally, our proteo-genomic map is limited 421 

to publicly available GWAS summary statistics and inclusion of further data for additional phenotypes, 422 

in particular cancers, and understudied diseases, will provide additional insights.     423 

  424 
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MATERIALS and METHODS 425 

Detailed materials and methods are provided in the supplementary materials (12). We performed a 426 

genome-proteome-wide association study among 10,708 participants of European-decent in the 427 

Fenland study (Table S1) on 10.2 million genetic variants and plasma abundances of 4,775 distinct 428 

protein targets measured in plasma using established workflows (15). Protein targets were measured 429 

using the SomaScan v4 assay employing 4,979 single-stranded oligonucleotides (aptamers) with 430 

specific binding affinities to 4,775 unique protein targets (67, 68). We used the term ‘protein target’ 431 

to refer to proteins targeted by at least one aptamer. We define significant genetic variant – protein 432 

target associations (pQTLs) at a stringent Bonferroni-threshold (p<1.004x10-11) and performed 433 

approximate conditional analysis to detect secondary signals for each genomic region identified by 434 

distance-based clumping of association statistics. We defined cross-aptamer regions using a combined 435 

approach of multi-trait colocalization (46) and LD-clumping. We classified pQTLs as protein- or 436 

pathway-specific by assessing pQTL-specificity across the entire proteome (p<5x10-8) while testing 437 

whether associated protein targets were captured by a common GO term or a protein community in 438 

a data-driven protein network. We computed the variance explained in plasma abundances of protein 439 

targets by cis- (within ±500kb of the protein-encoding gene) or trans-pQTLs according to different 440 

specificity categories using linear regression models. We used statistical colocalization (69) to test for 441 

a shared genetic signal between expression or alternative splicing of the protein-encoding gene and 442 

the cis-pQTL in one out of at least 49 tissues of the GTEx v8 project (24). We systematically cross-443 

referenced established genetic risk loci for common complex diseases and phenotypes with pQTLs by 444 

identifying cis-pQTLs or strong proxies (r²>0.8) in the GWAS catalog (https://www.ebi.ac.uk/gwas/). 445 

We finally performed phenome-wide colocalization screens at 1,548 protein-encoding loci using 446 

publicly available (70) as well as in-house curated genome-wide association statistics for thousands of 447 

phenotypes. We applied stringent priors and conservative filters to derive high confidence protein – 448 

phenotype links. We used basic functions of R (v.3.6.0), the R package igraph, and the BioRender web 449 

application (https://biorender.com/) to create figures. The Fenland study was approved by the 450 

National Health Service (NHS) Health Research Authority Research Ethics Committee (NRES 451 

Committee – East of England Cambridge Central, ref. 04/Q0108/19), and all participants provided 452 

written informed consent. 453 

  454 
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FIGURE LEGENDS 1022 

 1023 

Fig. 1 Regional sentinel genetic variants associated (p<1.004x10-11) with at least one protein target 1024 

in up to 10,708 participants in the Fenland Study. The lower panel maps the genomic locations of the 1025 

genetic variants against the genomic locations of the protein-encoding genes. Genetic variants in close 1026 

proximity to the protein-encoding gene (±500 kb) are highlighted in pink (cis-pQTLs) and all others are 1027 

shown in blue. Darker colors indicate lower p-values. The upper panel shows the number of associated 1028 

protein targets for each genomic region, with dot sizes on top giving the number of approximately 1029 

independent genetic variants (r²<0.1), such that larger dots refer to more genetic variants in the 1030 

region. 1031 

 1032 

Fig. 2 Classification of protein quantitative trait loci (pQTLs, cis and trans) and subsequent partition 1033 

of the explained variance in plasma abundances of protein targets A) Bar chart of pQTL classification 1034 

based on GO term mapping (blue) or community mapping in a protein network derived by Gaussian 1035 

graphical modeling (GGM; orange) of associated protein targets. Darker colors indicate cis-pQTLs and 1036 

lighter colors trans-pQTLs. B) Data-driven protein network colored according to 191 identified protein 1037 

communities. (C) a community-specific pQTL (PNPLA3) that was not captured by GO term mapping. 1038 

Gene annotation as reported in the Materials and Methods. D) Absolute (upper panel) and relative 1039 

(lower panel) explained variance in plasma abundances of protein targets by identified pQTLs. Coloring 1040 

indicates contribution of the lead cis-pQTL (dark purple), secondary cis-pQTLs (purple), protein- or 1041 

pathway-specific trans-pQTLs (pink), and unspecific trans-pQTLs (yellow). The inset displays the overall 1042 

distribution of explained variance by each of the four categories. The variance explained was 1043 

computed using linear regression models. A graphical display of effect size distributions can be found 1044 

in Fig. S3. 1045 

 1046 

Fig. 3 Integration of gene and splicing quantitative trait loci (eQTLs and sQTLs). A) Protein targets 1047 

ordered by the number of tissues for which at least one of the cis-pQTLs was also a cis-eQTL as 1048 

determined by statistical colocalization (posterior probability>80% for a shared signal). Protein targets 1049 

for which the eQTL showed evidence for a tissue-specific effect are indicated with black lines 1050 

underneath. B) Same as A) but considering cis-sQTLs. 1051 

 1052 

Fig. 4 Causal gene assignment for associations reported in the GWAS catalog using identified cis-1053 

pQTLs. Each panel displays the number of loci that have been reported in the GWAS catalog for a 1054 

curated trait and were identified as protein quantitative trait in close proximity (±500 kb) to the 1055 

protein-encoding gene (cis-pQTL) in the current study. Mapping of GWAS loci and cis-pQTLs was done 1056 

by linkage disequilibrium of reported variants (r²>0.8). The upper panel displays the number of GWAS 1057 

loci for which cis-pQTLs provided candidate causal genes. The middle panel displays the number of 1058 

GWAS loci for which cis-pQLTs refined the list of candidate causal genes at the locus. The lower panel 1059 

displays the number of GWAS loci with confirmative evidence from cis-pQTLs for already assigned 1060 

candidate causal genes. Examples where gene prioritization was facilitated through pQTL but not gene 1061 

expression QTL evidence are highlighted by a border around the box. Colors represent broad trait 1062 

categories.          1063 
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 1064 

Fig. 5 Network representation of phenome-wide colocalization analysis for protein-encoding loci. 1065 

The entire network is composed of 412 protein targets (squares) and 506 phenotypes (circles) as 1066 

nodes, which are connected (n=1,859 edges) if there is evidence of a shared genetic signal (posterior 1067 

probability >80%) and is shown in Fig. S6. This figure is restricted to connections between proteins and 1068 

binary endpoints, mainly diseases, to increase visibility and show shared etiology among the clinical 1069 

most relevant outcomes. Only protein targets and phenotypes with at least one connection are 1070 

included. Effect directions are indicated by the line type aligned with the allele associated with higher 1071 

amounts of the protein target (solid – positive, dashed – inverse association with the phenotype). 1072 

Colors indicate categories of phenotypes. An interactive version of the figure can be found at 1073 

www.omicscience.org/apps/pgwas.  1074 

 1075 

Fig. 6 Selected phenotypic examples from the proteogenomic map. A Plot visualizing convergence of 1076 

genetic variants at the SULT2A1 locus in relation to the LD with the candidate gene variant identified 1077 

by multi-trait colocalization. Z-scores from GWAS for each annotated trait have been scaled by the 1078 

absolute maximum, and dot size is proportional to the LD. Colors indicate the direction of effect 1079 

aligned to the protein-increasing allele (red – positive, blue - inverse) The scheme on the right depicts 1080 

the suggest mode of action by which higher SULT2A1 activity translates to higher risk of gallstones. B 1081 

Same as A but for phenotypes colocalizing at the EFEMP1 locus. The scheme on the right depicts a 1082 

proposed mechanisms by which altered secretion of FBLN3 leads to the observed phenotypes. Stacked 1083 

regional association plots for A and B can be found in Figs. S9 and S10.    1084 
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Figure 4 1098 
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Materials and Methods 1136 

 1137 

Study participants 1138 

The Fenland study is a population-based cohort of 12,435 participants of predominantly white-1139 

European ancestry born between 1950 and 1975 who underwent detailed phenotyping at the 1140 

baseline visit from 2005-2015. Participants were recruited from general practice surgeries in 1141 

the Cambridgeshire region in the UK. Exclusion criteria were: physician diagnosis of diabetes 1142 

mellitus, inability to walk unaided, terminal illness, clinically diagnosed psychotic disorder, 1143 

pregnancy, or lactation. The study was approved by the Cambridge Local Research Ethics 1144 

Committee (NRES Committee – East of England Cambridge Central, ref. 04/Q0108/19), and 1145 

all participants provided written informed consent. Use of human biological samples was in 1146 

accord with the terms of the informed consents under an IRB/EC approved protocol.  1147 

Genotyping and imputation  1148 

Fenland participants were genotyped using three genotyping arrays: the Affymetrix UK 1149 

Biobank Axiom array (OMICs, n=8994), Illumina Infinium Core Exome 24v1 (Core-Exome, 1150 

n=1060) and Affymetrix SNP5.0 (GWAS, n=1402). Samples were excluded for the following 1151 

reasons: 1) failed channel contrast (DishQC <0.82); 2) low call rate (<95%); 3) mismatch 1152 

between reported and genetic sex; 4) heterozygosity outlier; 5) unusually high number of 1153 

singleton genotypes; or 6) impossible identity-by-descent values. Single nucleotide 1154 

polymorphisms (SNPs) were removed if: 1) call rate < 95%; 2) clusters failed Affymetrix 1155 

SNPolisher standard tests and thresholds; 3) MAF was affected by plate; 4) SNP was a 1156 

duplicate based on chromosome, position, and alleles (selecting the best probeset according 1157 

to Affymetrix SNPolisher); 5) Hardy-Weinberg equilibrium p<10-6; 6) did not match the 1158 

reference; or 7) MAF=0. 1159 

Autosomes for the OMICS and GWAS subsets were imputed to the HRC (r1) panel using 1160 

IMPUTE448, and the Core-Exome subset and the X-chromosome (for all subsets) were 1161 

imputed to HRC.r1.1 using the Sanger imputation server (71). All three array subsets were 1162 

also imputed to the UK10K+1000Gphase3 (72) panel using the Sanger imputation server to 1163 

obtain additional variants that do not exist in the HRC reference panel. Variants with MAF < 1164 

0.001, imputation quality (info) < 0.4, or Hardy Weinberg Equilibrium p < 10-7 in any of the 1165 

genotyping subsets were excluded from further analyses. 1166 

Proteomic measurements 1167 

Proteomic profiling of fasted EDTA plasma samples from 12,084 Fenland Study participants 1168 

collected at baseline was performed by SomaLogic Inc. using an aptamer-based technology 1169 

(SOMAscan proteomic assay). Relative protein abundances of 4,775 human protein targets 1170 



 40 

were evaluated by 4,979 aptamers (SomaLogic V4), and a detailed description can be found 1171 

elsewhere (67). Briefly, the SOMAscan assay uses a library of short single-stranded DNA 1172 

molecules, which are chemically modified to specifically bind to protein targets, and the relative 1173 

amount of aptamers binding to protein targets is determined using DNA microarrays. To 1174 

account for variation in hybridization within runs, hybridization control probes are used to 1175 

generate a hybridization scale factor for each sample. To control for total signal differences 1176 

between samples due to variation in overall protein concentration or technical factors such as 1177 

reagent concentration, pipetting, or assay timing, a ratio between each aptamer's measured 1178 

value and a reference value was computed, and the median of these ratios was computed for 1179 

each of the three dilution sets (20%, 0.5%, and 0.005%) and applied to each dilution set. 1180 

Samples were removed if they were deemed by SomaLogic to have failed or did not meet our 1181 

acceptance criteria of 0.25-4 for all scaling factors. In addition to passing SomaLogic QC, only 1182 

human protein targets were taken forward for subsequent analysis (4,979 out of the 5,284 1183 

aptamers). Aptamers’ target annotation and mapping to UniProt accession numbers as well 1184 

as Entrez gene identifiers were provided by SomaLogic, and we used those to obtain genomic 1185 

positions of protein-encoding genes. 1186 

GWAS and meta-analysis 1187 

After excluding ancestry outliers and related individuals, 10,708 Fenland participants had both 1188 

phenotypes and genetic data for the GWAS (OMICS=8,350, Core-Exome=1,026, 1189 

GWAS=1,332). Within each genotyping subset, aptamer abundances were transformed to 1190 

follow a normal distribution using the rank-based inverse normal transformation. Transformed 1191 

aptamer abundances were then adjusted for age, sex, sample collection site, and 10 genetic 1192 

principal components and the residuals used as input for the genetic association analyses. 1193 

Genome-wide association was performed under an additive model using BGENIE (v1.3) (73). 1194 

Results for the three genotyping arrays were combined in a fixed-effects meta-analysis in 1195 

METAL (74). Following the meta-analysis up to 10.2 million genetic variants also present in 1196 

the largest subset of the Fenland data (Fenland-OMICS) with overall MAF≥1% were taken 1197 

forward for further analysis. 1198 

Conditional analysis 1199 

To identify conditionally independent signals in a genomic region associated with an aptamer, 1200 

we performed conditional analysis as implemented in GCTA (75) using the --slct option, with 1201 

a collinear cut-off of 0.1 and a p-value threshold of 1.004x10-11. As a quality control step, we 1202 

fitted a final model including all identified variants for a given genomic region using individual-1203 

level data in the largest available data set (‘Fenland-OMICs’) and discarded all variants no 1204 

longer meeting genome-wide significance. 1205 
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We performed a forward stepwise selection procedure to identify secondary signals at each 1206 

locus on the X-chromosome using SNPTEST v.2.5.2 to compute conditional association 1207 

statistics based on individual-level data in the largest subset. Briefly, we defined conditionally 1208 

independent signals as those emerging after conditioning on all previously selected signals in 1209 

the locus until no signal was significant genome-wide. 1210 

Variant annotation 1211 

For each identified pQTL we first obtained all SNPs in at least moderate LD (r²>0.1) using 1212 

PLINK (version 2.0) and queried comprehensive annotations using the Variant Effect Predictor 1213 

software (76) (version 98.3) with the --pick option. For each cis-pQTL we checked whether 1214 

either the variant itself or a proxy in the encoding gene (r²>0.6) was predicted to induce a 1215 

change in the amino acid sequence of the associated protein, so-called protein-altering 1216 

variants (PAVs). We further obtained domain information for each protein target via UniProt 1217 

and tested whether the predicted amino acid exchange falls into any protein domain.  1218 

Locus definition 1219 

For each aptamer, we used a genome-wide significance threshold of 1.004x10-11 and defined 1220 

non-overlapping regions by merging overlapping or adjoining 1 Mb intervals around all 1221 

genome-wide significant variants (500 kb on either side), treating the extended MHC region 1222 

(chr6:25.5–34.0 Mb) as one region. For each region we defined a regional sentinel variant as 1223 

the most significant variant in the region. We defined genomic regions shared across aptamers 1224 

based on a combination of multi-trait colocalization and LD-clumping (r2>0.8). To this end, we 1225 

first collapsed overlapping regions across all aptamers and divided those into approximately 1226 

LD-independent regions (77). For each of the 776 regions we performed multi-trait 1227 

colocalization as implemented in the R package hyprcoloc (46) to obtain clusters of aptamers 1228 

sharing a common causal variant defined by a regional probability >80% and a posterior 1229 

probability of at least 50%. However, some clusters included protein targets for which the lead 1230 

cis-pQTL was not in LD with the variant prioritized by HyPrColoc, most likely due to violation 1231 

of the one causal variant assumption. We then subdivided those clusters manually and 1232 

clumped signals based on a strong LD (r²>0.8). This procedure resulted in 2,548 genomic 1233 

regions with at least one cis-pQTL. Genetic variants from conditional analysis were assigned 1234 

to the same locus as the sentinel signal. We classified pQTLs as cis-acting instruments if the 1235 

variant was less than 500 kb away from the gene body of the protein-encoding gene.   1236 

Replication using the Olink PEA technology 1237 

To test for replication of pQTLs identified using the SomaScan platform with a complementary 1238 

technique, we used in-house GWAS results for 1,069 proteins measured using Proximity 1239 

Extension Assays provided by Olink in a subset of 485 individuals of the Fenland study. A 1240 
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detailed description of the GWAS can be found elsewhere (10) but largely followed the same 1241 

protocol as described for SomaScan in the present paper. We first established which pQTLs 1242 

were expected to replicate in the smaller sample size measured with both technologies by 1243 

rerunning SNP – protein associations in the smaller subset. We identified 797 pQTLs that a) 1244 

mapped to proteins covered on the Olink platform (N=543) and b) were significant at p-1245 

value<0.01. For each of the 797 SNP -protein pairs we repeated the same analysis but now 1246 

instead of using SomaScan protein targets using the corresponding Olink protein as outcome. 1247 

We considered associations to be replicated if they were directionally concordant and at least 1248 

nominally significant at p-value<0.05 in this analysis.  1249 

 Data-driven protein target network 1250 

We constructed a data-driven protein network using Gaussian graphical modeling similar to 1251 

previous work (2). First, for each pair of highly correlated aptamers targeting the same protein 1252 

(Pearson correlation>0.5), we dropped one at random to avoid artificial null results in the 1253 

network, leaving 4,929 aptamers. We next computed residual plasma abundances by 1254 

accounting for the effects of age, sex, test site, and the first three proteomic principal 1255 

components using linear regression models. We finally used the R implementation 1256 

ggm.estimate.pcor from the package GeneNet to estimate full-order partial correlations among 1257 

residual aptamer abundances and only kept edges meeting a stringent Bonferroni cut-off 1258 

(p<2.05x10-9). The final network consisted of 2,936 aptamers and 4,669 edges. We performed 1259 

community detection using the Girvan-Newman algorithm as implemented in the R package 1260 

igraph and obtained 191 distinct protein communities in the network.  1261 

Classification of pQTLs 1262 

We classified the specificity of pQTLs based on two complementary approaches. We first 1263 

derived the set of associated aptamers at a nominal GWAS-threshold of significance (p<5x10-1264 

8) for each of the 5,442 uniquely identified variants. Next, we tested whether all aptamers 1) 1265 

belonged to the same protein target (including complexes), 2) could be assigned to a common 1266 

GO term (as previously described (15)), or 3) belonged to the same protein community in the 1267 

data-driven protein network. We classified variants fulfilling 1) as protein-specific, variants 1268 

fulfilling 2) and 3) as pathway-specific, variants fulfilling either 2) or 3) as suggestive pathway-1269 

specific, and any other variant as non-specific.    1270 

Variance explained 1271 

We estimated the variance explained by pQTLs for plasma levels of each aptamer with at least 1272 

one associated pQTL using different sets of genetic instruments. To this end, we successively 1273 

included 1) the lead cis-pQTL, 2) secondary cis-pQTLs, 3) specific trans-pQTLs, and 4) all 1274 

trans-pQTLs in a linear regression model using residual aptamer abundances as outlined in 1275 
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the GWAS section. We used the R² of the entire model as an estimate for variance explained. 1276 

We did this analysis in the largest set of Fenland participants genotyped on a single array.    1277 

Candidate causal gene assignment 1278 

We integrated functional assignments with protein-protein interaction network data to assign 1279 

putative causal genes for each variant - aptamer pair. Briefly, for each variant close to the 1280 

protein-encoding gene (±500 kb) we assigned this gene as candidate causal gene. For pQTLs 1281 

in trans we used a scoring system by integrating 1) search for functional variants (VEP score 1282 

1-12 and R2>0.6), 2) LD with an eQTL (R2>0.8), 3) distance of the gene products from the 20 1283 

closest genes to the protein target associated with the pQTL in the STRING protein-protein 1284 

interaction, and 4) the closest gene. We assigned a score of two for 1) - 3) and a score of one 1285 

for the closest gene and retained the gene(s) with the highest score(s) as (a) possible 1286 

candidate(s). In a second step, we aligned gene assignments across all aptamers based on 1287 

the definition of genomic loci, that is, for each locus shared across multiple aptamers we 1288 

repeated the scoring system taking into account all possible candidate genes using a score of 1289 

three for cis assignments. This procedure allowed us to refine assignment at otherwise poorly 1290 

defined trans loci and to obtain higher confidence scores at each locus.       1291 

Incorporation of gene expression data 1292 

We incorporated gene expression and splicing QTL data by cross-referencing all cis-pQTLs 1293 

with cis-eQTL/sQTLs identified in the GTEx version 8 release across 49 distinct tissues using 1294 

an LD threshold of r2>0.8 to identify likely similar signals (24). If at least on cis-pQTL mapped 1295 

to a corresponding cis-eQTL or cis-sQTL for the protein-encoding gene, we used statistical 1296 

colocalization (69) to test for a shared genetic signal between protein abundance measured 1297 

in plasma and expression of the respective gene across all available tissues. We considered 1298 

a PP>80% as evidence for a highly likely shared signal. We used a 500 kb window around the 1299 

cis-pQTL for colocalization analysis.  To identify cis-pQTL/cis-eQTL pairings which are likely 1300 

to be tissue-specific, we obtained Z-scores for the candidate variant across all tissues and 1301 

divided by the square root of the respective tissue sample size to normalize across tissues. 1302 

We defined such pairings as tissue-specific if the normalized Z-score was more than ±5 times 1303 

the median absolute deviation (MAD) away from the median normalized Z-score, which 1304 

represents a robust measure of outlier detection. For transcripts expressed in fewer than five 1305 

tissues, we considered the number of colocalizing tissues as a threshold for tissue specificity. 1306 

To account for possible measurement artefacts, we repeated this process for 277 protein 1307 

targets with evidence that a secondary signal was in LD with a cis-eQTL/sQTL using summary 1308 

statistics conditioned on the lead pQTL in the region for colocalization. All GTEx variant-gene 1309 

cis-eQTL and cis-sQTL associations from each tissue were downloaded in January 2020 from 1310 
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https://console.cloud.google.com/storage/browser/gtex-resources. We further tested for 1311 

colocalization with gene expression determined from whole blood using data from the 1312 

eQTLGen consortium (26), which included data on more than 30,000 participants. 1313 

Annotation of GWAS catalog loci 1314 

We downloaded genome-wide significant summary statistics from the GWAS catalog (date 1315 

25/01/2021) and tested whether any of the identified pQTLs or proxies (r²>0.8) have been 1316 

reported to be associated with any non-proteomic trait, that is omitting any results that related 1317 

to multiplex proteomic assays. Out of 227,631 entries, 113,618 entries passed this and 1318 

additional filtering steps (missing effect estimates, missing risk allele, and not passing 1319 

genome-wide significance). We next assessed whether for 3,139 lead and secondary pQTLs 1320 

in cis, linkage by LD (r2>0.8) to findings reported in the GWAS catalog may help to prioritize 1321 

potential causal genes for the phenotypic trait. We compared the reported or mapped gene 1322 

(closest gene assigned by the GWAS catalog) to the protein-encoding gene at the locus. This 1323 

left us with 4,133 entries, including 590 cis-regions and 556 mapped GWAS traits. We collated 1324 

loci into single entries to account for the variety of entries at pleiotropic loci and further dropped 1325 

32 cis-regions for which more than one protein target mapped to the signals in the region, 1326 

resulting in 3,868 entries. 1327 

Phenome-wide scans at protein-encoding loci 1328 

We performed phenome-wide scans using statistical colocalization for 1,584 protein targets 1329 

where we had evidence for at least one cis-pQTL. Briefly, we queried the Open GWAS 1330 

database (78) as well as an in-house database of curated GWAS summary statistics hosted 1331 

by GSK using a defined region (±500 kb) around the protein-encoding gene body and tested 1332 

whether any of the traits in the databases showed a high posterior probability (PP) of shared 1333 

genetic signal with plasma concentrations of the encoded protein target using statistical 1334 

colocalization (69). We chose a cut-off of PP>80% to declare that a protein target and a 1335 

phenotypic trait are highly likely to share a genetic signal at a locus. We used a conservative 1336 

prior setting, prior probability of 1x10-6 that both traits have a common genetic signal, along 1337 

with a check that the regional lead signals for the protein and the trait are in strong LD (r²>0.8) 1338 

to declare colocalization. We repeated this analysis using conditional statistics for the protein 1339 

target accounting for a possible binding artefact introduced by the lead signal at the locus. We 1340 

manually curated common trait names to reduce redundancy of phenotypes across both 1341 

databases and kept the association with the largest PP for each mapped trait for a shared 1342 

signal when all other definitions supported colocalization. Finally, we collapsed all pairs of 1343 

protein targets and phenotypic traits with high evidence for colocalization into a protein-1344 

disease network by drawing an edge between a protein target and a phenotypic trait if there 1345 

https://console.cloud.google.com/storage/browser/gtex-resources
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was a high PP (>80%) for a shared signal. We used the lead signal at the locus aligned to the 1346 

protein-increasing allele to indicate effect directions and visualized the network using the 1347 

igraph R package. We report Mendelian Randomization estimates for binary outcomes derived 1348 

from the UK Biobank as odds ratios, by transforming β-effect estimates according to the 1349 

following formula: log(odds ratio) = β / (µ * (1 - µ)), where µ = case fraction, since analysis 1350 

were performed using a linear regression frame work for computational efficacy. 1351 

COVID-19 summary statistics 1352 

We downloaded genome-wide summary statistics for four different outcome definitions of 1353 

COVID-19 from the Human Genetics Initiative (https://www.covid19hg.org/). These included 1354 

A2 (very severe respiratory confirmed COVID-19 vs. population), B1 (hospitalized COVID-19 1355 

vs. not hospitalized COVID-19), B2 (hospitalized COVID-19 vs. population), C2 (COVID-19 1356 

vs. population). To map the LD panel for colocalization analysis, we restricted those statistics 1357 

to participants of European ancestry and excluded results contributed by 23&me.   1358 

Metabolite GWAS results for SULT2A1 1359 

We extracted summary statistics for 69 metabolites associated with the lead cis-pQTL 1360 

(p<1x10-6) for SULT2A1 from an in-house metabolome-wide GWAS based on the EPIC-1361 

Norfolk cohort, methods of which have been described previously(79).  1362 

Pathway enrichment analysis 1363 

We performed GO term enrichment as implemented in the R package clusterProfiler (80) 1364 

separately for each mapped trait in the protein-phenotype network that had at least three 1365 

colocalizing protein targets. We used all three GO term categories for this purpose and 1366 

retained only pathways that met statistical significance after correction for multiple testing 1367 

using the Benjamini-Hochberg procedure controlling the false-discovery rate at 5%.  1368 

Testing for effect modification by age and sex 1369 

We included an interaction term between the cis-pQTL and age (continuous) or sex in a linear 1370 

regression model with the same adjustments as in the main analysis to test for potential 1371 

differences of the 417 cis-pQTLs included in the proteogenomic map by age or sex. For 1372 

interactions significant below the Bonferroni-corrected significance level of 0.05/(2*417), we 1373 

estimated group-specific estimates, dichotomizing age at the median age of 49 years, by 1374 

running linear regression models within each stratum using the largest set of individuals with 1375 

the same genotype platform (N=8350).  1376 

Mapping of druggable targets      1377 

https://www.covid19hg.org/
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To annotate druggable targets we merged the list of proteins targeted by the SomaScan V4 1378 

platform with an updated list of druggable genes from Finan et al. (63) based on common gene 1379 

entries. We deprioritized drugs with multiple reported side effects in ongoing or completed 1380 

clinical trials, missing efficacy, discordant effect directions between the estimated effect of life-1381 

long higher protein concentrations mediated by genetic variants and action of the drug, a lack 1382 

of clinical data, or having been withdrawn from major markets. 1383 

  1384 



 47 

 1385 

Fig. S1. Functional annotation of genetic variants associated with at least one protein 1386 

target. Left. Bar chart of the distribution of annotations of 4,976 genetic variants associated 1387 

with at least one protein target based on the Variant Effect Predictor tool. Colors indicate 1388 

protein quantitative trait loci (pQTLs) either in close proximity to the protein-encoding gene 1389 

(cis-pQTL, pink) or elsewhere in the genome (trans-pQTL, blue). Categories significantly 1390 

enriched for cis-pQTLs are indicated with an asterisk (Fisher’s-exact test, p-value < 0.003). 1391 

The list of all 5,442 sentinel and secondary signals representing distinct variants was collapsed 1392 

based on the identification of functional variants in strong LD (R²>0.6). Right. Fraction of cis-1393 

pQTLs (N=3,139) harboring a protein-altering variant (PAV) and further split based on the 1394 

location of the PAV in any common protein domain. 1395 
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 1397 

Fig. S2. Flowchart for pQTL classification. For each of the 5,442 distinct genetic variants 1398 

we identified the set of significantly associated aptamers (p<5x10-8) across the entire data. In 1399 

the next step we tested whether all of the targeted proteins fall within a GO term and/or belong 1400 

to the same community of protein targets in a data-driven protein network.  1401 
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 1403 

Fig. S3. Distribution of absolute effect sizes for identified protein quantitative trait loci 1404 

(pQTLs). pQTLs are separated by specificity across the proteome and absolute effect sizes are 1405 

plotted against the minor allele frequency.  1406 

 1407 

1408 
Fig. S4. Locusplot comparing association statistics for prostasin and Alzheimer’s disease. 1409 

The left panel displays a comparison of -log10-transformed p-values from GWAS summary 1410 

statistics for genetic variants in a 500 kb region around the lead signal on chromosome 16. 1411 

Coloring was done based on linkage disequilibrium with the lead variant for the protein. The 1412 

right panel is a stacked locuszoom plot with annotation of protein-encoding genes underneath. 1413 

Location of the lead variant is indicated by a red line. 1414 
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 1416 

Fig. S5. Locusplot comparing association statistics for RSPO1 and endometrial cancer. 1417 

The left panel displays a comparison of -log10-transformed p-values from GWAS summary 1418 

statistics for genetic variants in a 500 kb region around the lead signal on chromosome 1. 1419 

Coloring was done based on linkage disequilibrium with the lead variant for the protein. The 1420 

right panel is a stacked locuszoom plot with annotation of protein-encoding genes underneath. 1421 

Location of the lead variant is indicated by a red line. 1422 
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 1424 

Fig. S6 Proteo-genomic map of human health. The network is composed of 412 protein 1425 

targets (squares) and 506 phenotypes (circles) as nodes, which are connected (n=1,859 edges) 1426 

if there is evidence of a shared genetic signal (posterior probability >80%). Only protein targets 1427 

and phenotypes with at least one connection are included. Effect directions are indicated by the 1428 

line type aligned with the allele associated with higher amounts of the protein target (solid – 1429 

positive, dashed – inverse association with the phenotype). Colors indicate categories of 1430 

phenotypes. The inset represents the entire network, including continuous and binary 1431 

phenotypes, whereas the larger figure is restricted to binary phenotypes. An interactive version 1432 

of the figure can be found at www.omicscience.org/apps/pgwas.  1433 
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 1435 

Fig. S7 Summary of cis-region-based phenome-wide colocalization analysis. The left panel 1436 

represents the number of colocalizing protein targets (posterior probability >80% for a shared 1437 

genetic signal) for each binary outcome, whereas the panel in the middle does the same for 1438 

continuous traits. Traits were ordered by the number of colocalizing protein targets, and top 1439 

traits are annotated. The right panel displays the number of colocalizing phenotypes for each 1440 

protein target, and stacked bar charts were used to indicate diversity of phenotypes based on 1441 

the categories indicated above the plots. 1442 
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 1444 
Fig. S8 Protein targets related to COVID-19. Odds ratios and 95%-CIs for the genetically 1445 

predicted effect of protein levels on four different outcome definitions and control populations 1446 

for COVID-19 (left), including protein targets with strong evidence for statistical 1447 

colocalization for at least one definition (right). The column in the middle reports p-values. 1448 
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 1450 

Fig. S9 Stacked regional association plots for phenotypes colocalizing with bile salt 1451 

sulfotransferase (SULT2A1). Phenotypes are annotated and coloring is based on effect 1452 

directions aligned to the protein-increasing allele for rs212100 (red-positively, blue-inversely). 1453 

Darker colors indicate higher linkage disequilibrium with rs212100, and gray dots are below 1454 

0.1. Posterior and regional probabilities from multi-trait colocalization are given at the top of 1455 

the plot. 1456 
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 1458 

Fig. S10 Stacked regional association plots for phenotypes colocalizing with FBLN3. 1459 

Phenotypes are annotated and coloring is based on effect directions aligned to the protein-1460 

increasing allele for rs3791679 (red-positively, blue-inversely). Darker colors indicated higher 1461 

linkage disequilibrium with rs3791679, and gray dots are below 0.1. Posterior and regional 1462 

probabilities from multi-trait colocalization are given at the top of the plot. 1463 
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Table titles and legends 1465 

 1466 

 1467 

Table S1. Demographics of the Fenland study population.  1468 

Table S2. Summary of variant – protein target associations. The table includes all lead and 1469 

secondary signals across all 2,584 identified genomic regions, including summary statistics, 1470 

functional annotations, variant classification, and gene assignments. 1471 

Table S3. Explained variance for 4,030 distinct aptamers targeting 3,892 proteins with 1472 

at least one pQTL. The table includes the amount of variance explained in protein 1473 

abundances separately for each of the three classification criteria of pQTLs and contains 1474 

further information on possible druggable targets. 1475 

Table S4. Integration of gene and splicing QTLs from the GTEx version 8 release. For 1476 

each protein target the strongest eQTL and/or sQTL are listed along with colocalization 1477 

priority and possible tissue specificity is indicated. 1478 

Table S5. Summary of pQTL mapping to known GWAS loci. For each mapping cis-pQTL 1479 

– GWAS variant pair all curated traits are listed, and a column indicates whether the protein-1480 

encoding genes has been reported at this locus.  1481 

Table S6. Protein target – phenotype connections with strong evidence of colocalization 1482 

at the protein encoding locus. The table contains all protein – phenotype connections as 1483 

shown in Figure 5 with further information on association statistics for the lead cis-pQTL. 1484 

Table S7. Results from pathway enrichment analysis. For each curated phenotype with at 1485 

least three associated proteins in the proteo-genomic map GO term enrichment was performed 1486 

and results are presented collapsing pathways with the same gene set into one entry.  1487 

Table S8. Results from age- and sex-interaction analysis for cis-pQTLs. The table lists for 1488 

14 identified cis-pQTLs with a potential age- or sex-differential effect results from interaction 1489 

testing and results within each stratum, that is, for each sex separately as well as for middle age 1490 

and older individuals.  1491 

Table S9. Summary on identified druggable targets with potential for repurposing.  1492 
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