
Shared genetic pathways contribute to risk of hypertrophic and 
dilated cardiomyopathies with opposite directions of effect

A full list of authors and affiliations appears at the end of the article.
# These authors contributed equally to this work.

Abstract

The heart muscle diseases hypertrophic (HCM) and dilated (DCM) cardiomyopathies are leading 

causes of sudden death and heart failure in young otherwise healthy individuals. We conducted 

genome-wide association studies (GWAS) and multi-trait analyses in HCM (1,733 cases), DCM 

(5,521 cases), and nine left ventricular (LV) traits in 19,260 UK Biobank participants with 

structurally normal hearts. We identified 16 loci associated with HCM, 13 with DCM, and 23 with 

LV traits. We show strong genetic correlations between LV traits and cardiomyopathies, with 

opposing effects in HCM and DCM. Two-sample Mendelian randomization supports a causal 

association linking increased contractility with HCM risk. A polygenic risk score (PRS) explains a 

significant portion of phenotypic variability in carriers of HCM-causing rare variants. Our findings 

thus provide evidence that PRS may account for variability in Mendelian diseases. More broadly, 

we provide insights into how genetic pathways may lead to distinct disorders through opposing 

genetic effects.
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Cardiomyopathies are heritable heterogenous diseases characterized by changes in 

myocardial structure and function. We sought to better understand the genetic underpinnings 

of HCM and DCM as well as their relation to myocardial traits in the general population 

(Fig. 1). HCM has a prevalence of 0.2%1 and has been classically considered a Mendelian 

disease. However, genetic testing identifies a causal rare variant in less than half of cases2, 

and data from both families and population cohorts support reduced penetrance and variable 

expressivity3, suggesting a complex genetic architecture. Here, we performed a meta-

analysis of three new GWAS comprising 1,733 unrelated HCM cases and 6,628 controls of 

European ancestry from the Netherlands, United Kingdom and Canada (Supplementary 

Table 1). Of the cases, 641 (37%) carried pathogenic or likely pathogenic variants in 

established HCM disease genes (Supplementary Table 2). Analysis of SNP-based 

heritability (h 2 SNP) using GREML4 demonstrated that a significant portion of HCM 

liability is attributed to common genetic variation (Supplementary Table 3), with h 2 SNP 

estimates in meta-analyses ranging from 0.12 (GREML, fixed-effects; P = 8 × 10-6) to 0.29 

(GREML-LDMS5, random-effects; P = 9 × 10-3). The GWAS summary meta-analysis 

results of 6,530,233 variants with a minor allele frequency (MAF) ≥ 0.01 are shown as 

Manhattan and quantile-quantile (QQ) plots in Figure 2a. The wide association signal 

observed on chromosome 11 tagging recurrent MYBPC3 founder variants disappeared when 

restricting the analysis to the 1,445 HCM cases without such variants (Supplementary Fig. 

1). Using a conservative threshold of P < 1 × 10-8 to account for multiple testing, a total of 

six loci were significantly associated with HCM (Table 1, Supplementary Table 4 and 

Supplementary Fig. 2), of which five are new and one, on chromosome 18 near FHOD3, has 

been previously published6. Importantly, two of the new HCM loci (chromosome 1 near 

HSPB7 and chromosome 10 near BAG3) have been previously associated with DCM at 

genome-wide statistical significance, but with an opposite direction of effect7–10. 

Specifically, the published DCM lead risk alleles at both loci (rs10927875-C and rs2234962-

T)10 were protective for HCM in the present study (odds ratio, OR (95% confidence interval, 

CI), 0.80 (0.74-0.87) and 0.71 (0.64-0.77), respectively). Recently, both loci were also found 

to be associated with left ventricular ejection fraction (LVEF, a volume-based assessment of 

LV contractility) in the general population11, for whom DCM risk alleles decrease LVEF 

(contractility), while HCM risk alleles increase LVEF (contractility). This indicates that 

genetic loci underlying variability of LV function in the general population may be 

differentially involved in susceptibility to HCM and DCM.

The observation that two loci with opposite directions of effects in HCM and DCM are also 

associated with LVEF in the general population motivated us to further explore such 

relationships between HCM, DCM, and LV traits in the general population. We performed a 

meta-analysis of three published DCM case-control genetic association studies7–9 totaling 

5,521 cases and 397,323 controls (Supplementary Table 5), as well as GWAS of nine LV 

traits derived from cardiac magnetic resonance (CMR) imaging in a cohort of 19,260 

participants in UK Biobank without structural heart disease (Supplementary Table 6 and 

Supplementary Figs. 3-5). Compared to published GWAS on LV traits11, our analysis adds 

new phenotypes including mean LV wall thickness (meanWT) and measures of myocardial 

deformation (i.e. strain), which are proposed as more direct markers of contractility than 

volumetric assessments (LVEF)12. Many LV trait pairs were correlated phenotypically 
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(Supplementary Fig. 6). The Manhattan and QQ plots of the DCM meta-analysis and nine 

LV traits GWAS are presented in panel a of Extended Data Figures 1-10. A total of three 

loci in the DCM (all previously published7,8; Supplementary Table 7 and Supplementary 

Fig. 7) and 17 loci in any of the nine LV traits meta-analyses reached a P-value threshold of 

1 × 10-8 (Supplementary Table 8).

Genetic correlations between LV traits in the general population, HCM and DCM were 

assessed using LD score regression13, 14 (Supplementary Table 9). The results highlight the 

divergent relationships of LV traits with DCM and HCM (Fig. 3). HCM showed a positive 

genetic correlation with mean LV wall thickness (meanWT; r g = 0.51, P = 9 × 10-6), while 

DCM was positively correlated with LV end-diastolic (LVEDV) and end-systolic (LVESV) 

volumes (r g = 0.43, P = 2 × 10-4 and r g = 0.46, P = 1 × 10-4, respectively). Decreased LV 

contractility is a hallmark of DCM, and we observed a negative genetic correlation between 

DCM and LV contractility, whether assessed using a volumetric measure, LVEF (r g = -0.35, 

P = 9 × 10-3), or using global LV strain measured in any direction: circumferential (-

straincirc; r g = -0.48, P = 2 × 10-4), radial (strainrad; r g = -0.42, P = 3 × 10-3) and 

longitudinal (-strainlong; r g = -0.27, P = 0.05) (note that for strainlong and straincirc, 

increasingly negative values reflect higher strain/contractility). Remarkably, all four of these 

contractility parameters were positively correlated with HCM; increases in contractility are 

correlated with increased HCM risk (r g ranging from 0.27 for -strainlong (P = 0.03) to 0.62 

for -straincirc (P = 1 × 10-7)).

We then performed multi-trait analysis of GWAS summary statistics (MTAG)15 to increase 

power for discovery of novel loci. Two analyses were performed: (i) MTAG of nine LV traits 

(referred to as MTAG9) to uncover novel loci associated with LV traits, and (ii) MTAG of 

HCM, DCM and nine LV traits (henceforth MTAG11) to uncover loci associated with DCM 

and HCM. The corresponding Manhattan and QQ plots appear as panel b in Figure 2 and 

Extended Data Figures 1-10. MTAG9 uncovered 6 additional genetic loci associated with 

LV traits (Supplementary Table 8). MTAG11 uncovered an additional 10 HCM (Table 1, 

Supplementary Table 4 and Supplementary Fig. 2) and 10 DCM loci (Supplementary Table 

7 and Supplementary Fig. 7). Supplementary Tables 4, 7, and 8 tabulate relationships for all 

traits with all HCM, DCM and LV trait lead SNPs, respectively, highlighting the cross-trait 

single SNP level correlation. In particular, 8 of the 16 HCM-associated loci also showed 

significant association with DCM using a Benjamini-Hochberg false discovery rate (FDR) < 

0.05, where all 8 lead SNPs showed opposite directions of effect in HCM vs. DCM 

(Supplementary Table 4). Similarly, all 13 DCM loci were also associated with HCM at an 

FDR < 0.05 (Supplementary Table 7), with all loci showing an opposite effect in HCM vs. 

DCM except locus DCM4 near TTN. At this locus, the DCM risk allele also increases risk 

for HCM. We hypothesize that this unique concordant HCM/DCM effect may be attributable 

to pleiotropic effects of that locus on LV structure/function, where the HCM and DCM risk 

increasing allele reduces LV contractility parameters but also increases LV hypertrophy (LV 

mass and meanWT; Supplementary Table 7). Figure 4 displays a heatmap representation of 

the direction and strength of effect of all 16 HCM risk alleles and 13 DCM risk alleles in all 

nine LV traits, HCM and DCM. Many HCM risk alleles are also associated with reduced 
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risk of DCM, and, in the general population, increased LV contractility (LVEF and strain) 

and decreased LV volumes.

Replication of HCM loci was tested in an independent dataset16 comprised of 2,694 cases 

with HCM included from the Hypertrophic Cardiomyopathy Registry (HCMR)17 or the 

NIHR Bioresource for Rare Disease (BRRD)18, and 47,486 controls without HCM included 

from the UK Biobank or BRRD. Of the 16 HCM loci, 15 (all except HCM4) were replicated 

at P < 0.003 (Table 1 and Supplementary Table 10).

The correlation between increased contractility and HCM risk led us to test the hypothesis 

that increased contractility is causally associated with HCM. We tested such potential 

causality between increased LV contractility and HCM using two-sample Mendelian 

randomization (MR), where the exposure variables were LV contractility measures (-

straincirc, strainrad, -strainlong and LVEF; all strongly correlated, with overlap in associated 

loci) and the outcome was HCM. Genetic instruments for the exposures were selected using 

two approaches: (i) independent SNPs reaching P < 5 × 10-8 in the single trait analysis, and 

(ii) those reaching P < 5 × 10-8 in MTAG9 analysis (Supplementary Table 11). The results of 

the primary inverse-variance weighted (IVW) analysis and sensitivity analyses including 

leave-one-out analyses are presented in Supplementary Table 12 and Supplementary Figures 

8 and 9. Although heterogeneity and the limited number of SNPs in the exposure-outcome 

effects are limitations, the findings of the main (IVW) and sensitivity analyses support a 

causal relation between increased LV contractility and increased HCM risk. Both SNP 

selection approaches demonstrate a significant effect of -straincirc on the odds of HCM (OR 

1.89 (1.32-2.70), P = 5 × 10-4 and OR 1.94 (1.43-2.63), P = 2 × 10-5, for approaches i and ii, 

respectively), while the effect of strainrad and LVEF on HCM risk was only significant using 

the latter more SNP inclusive approach (ii) in the IVW model (OR 1.38 (1.18-1.62), P = 8 × 

10-5 and OR 1.37 (1.10-1.69), P = 4 × 10-3, for strainrad and LVEF, respectively). The effect 

of strainlong on HCM was not significant. Notably, the magnitude of HCM risk increase with 

increased contractility is important, e.g., each unit (1%) increase in LVEF and -straincirc 

increases the risk of HCM by 37% and 89%, respectively (Supplementary Table 12). To 

place this in context, the standard deviations of LVEF and straincirc in the UK Biobank are 

5.5% and 3.1%, respectively.

We performed MAGMA19 gene-based analyses using the HCM and DCM MTAG11 

summary statistics. Not surprisingly, gene property analysis for tissue specificity identified 

muscle (heart and skeletal) as significantly associated with both HCM and DCM 

(Supplementary Fig. 10). Similarly, MAGMA gene-set analysis identified significantly 

associated gene sets related to muscle contraction for cellular components (e.g. I Band, 

contractile fibre), biological processes (e.g. myofibril assembly, sarcomere organization) and 

molecular functions (actin binding) (Supplementary Tables 13 and 14). Individual HCM, 

DCM and LV traits loci were annotated with proxy coding variants, significant expression 

(eQTL) and splice (sQTL) quantitative trait loci in skeletal and heart muscle, and chromatin 

interactions using Hi-C data obtained in left ventricular tissue (Supplementary Tables 

15-18). The established Mendelian cardiomyopathy genes BAG3 (in loci HCM3, DCM3, 

LV10), ALPK3 (HCM14, DCM10, LV13), FHOD3 (HCM6, DCM12), TTN (DCM4, LV4), 

FLNC (HCM11, DCM2) and PLN (HCM2, LV8), which directly overlap associated loci 
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(defined with r 2 > 0.6 from the lead SNP), are highly plausible candidates for the functional 

effects of variation at the corresponding loci. The involvement of FHOD3 and FLNC is 

further supported by eQTL effects, and involvement of PLN, ALPK3 and TTN is supported 

by evidence for Hi-C chromatin interactions between the association loci and the gene 

promoter. Notably, two loci overlap genes that play key roles in cardiomyocyte calcium 

handling related with muscle contraction (PLN and CASQ2; each supported by eQTL 

effects). Other candidate genes that emerge based on annotation and prior knowledge 

include GATA4 (DCM7, LV19)20, PRKCA (HCM15, DCM11)21, HSPB7 (HCM1, DCM1, 

LV1)22 and TMEM43 (DCM5)23. In aggregate, candidate genes at associated loci suggest 

susceptibility mechanisms involving regulation of sarcomere assembly, homeostasis, and 

calcium handling in cardiomyocytes.

HCM attributed to rare disease-causing sarcomeric variants is characterized by variable 

disease severity. We investigated whether common variants could explain such phenotypic 

variability. We first derived a polygenic risk score (PRSHCM; Supplementary Table 19) from 

an HCM GWAS meta-analysis excluding a hold-out cohort of cases with sarcomeric variants 

from a single (Dutch) centre. We then assessed the association of PRSHCM with HCM 

expression and severity in the hold-out cohort and their family members (368 carriers of 

pathogenic or likely pathogenic sarcomeric variants, Supplementary Table 20). The results 

are shown in Supplementary Table 21. PRSHCM was associated with maximal left 

ventricular wall thickness (maxLVWT) indexed to body surface area (BSA), where each 

standard deviation (SD) increase in the PRSHCM is associated with a 0.7 mm/m2 increase in 

maxLVWT (P = 1 × 10-4), corresponding to a clinically relevant 1.4 mm absolute increase in 

maxLVWT for an average BSA of 1.95 m2 (cohort mean, Dutch population). PRSHCM was 

also associated with adverse clinical events (a composite of septal reduction therapy, cardiac 

transplantation, sustained ventricular arrhythmia, sudden cardiac death, appropriate 

defibrillator therapy, or atrial fibrillation/flutter), where each SD increase in PRSHCM was 

associated with a 28% relative risk increase in adverse clinical events (hazard ratio 1.28, 

95% CI 1.06-1.54; P = 9 × 10-3). Figure 5 shows the event-free survival in sarcomeric 

variant carriers stratified by PRSHCM above vs. below the median.

Several novel observations emerge from this work: (i) by conducting the first well-powered 

GWAS in HCM and the largest GWAS meta-analysis in DCM, we identified 15 novel loci 

associated with HCM, of which 14 replicate in an independent cohort, and 7 novel loci for 

DCM, bringing the total number of loci to 16 and 13, respectively; (ii) we identified a total 

of 23 loci for LV traits and extended the study of these traits to include LV strain (13 loci) 

and mean LV wall thickness (6 loci); (iii) we demonstrate for the first time a direct genetic 

correlation between LV traits and susceptibility to HCM and DCM with opposing direction 

of effect, indicating shared pathways for these disorders; (iv) by using MR, we demonstrate 

that increased cardiac contractility plays an etiologic role in HCM. The demonstration of 

causal common variant effects on HCM through increased contractility broadens the 

applicability of therapeutic strategies targeting contractility as has been proposed for rare 

variants in sarcomere genes24; and; (v) we provide the first evidence that a polygenic score 

based on common HCM susceptibility variants may explain inter-individual differences in 

HCM disease severity among carriers of rare disease-causing variants. This work constitutes 

a proof-of-principle for potential use of polygenic risk scores in HCM risk stratification, to 
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be assessed in future purposely designed and adequately powered studies. More broadly, this 

work demonstrates that the same genetic pathways may lead to distinct disorders through 

opposing genetic effects.

Methods

The overall study design and flowchart are shown in Figure 1 and described in detail below 

and in the Supplementary Note. All human subjects provided written informed consent, and 

all studies had received approval from the appropriate ethical review boards (see Reporting 
Summary).

GWAS of hypertrophic cardiomyopathy

Case inclusion—Unrelated cases with hypertrophic cardiomyopathy (HCM) were 

included from cardiovascular genetics referral centres (Supplementary Table 1). Cases were 

included if they had a clinical diagnosis of HCM according to current diagnostic criteria3: 

left ventricular (LV) wall thickness (LVWT) of ≥ 15 mm, ≥ 13 mm in presence of family 

history of HCM, or Z-score > 2 in children, where LV hypertrophy is not solely explained by 

loading conditions. Cases were excluded if they had syndromic HCM (e.g. Noonan 

syndrome spectrum), metabolic disease (e.g. Fabry) or had > 1 sarcomeric pathogenic or 

likely pathogenic variants (homozygous, compound heterozygous or digenic). The maximal 

LVWT was collected from chart review of cases using the most recent cardiac imaging 

report available, prior to septal reduction therapy or cardiac transplantation, if performed. 

Because cases were referred from multiple centres for cardiogenetic evaluation, imaging 

data were not available for standardized re-measurements in most cases. Cases underwent 

targeted sequencing of genes associated with HCM, as per local practice at the time of 

analysis. Rare variants detected through sequencing in each of the contributing cohorts of 

this study were centrally assessed for pathogenicity according to the American College of 

Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/

AMP) guidelines25, using an adapted version of the CardioClassifier resource26 (details 

provided in the Supplementary Note, and classification results in Supplementary Table 2).

GWAS analysis design—Quality control (QC) and case-control association analysis 

were performed in three strata (Netherlands, NL; Royal Brompton & Harefield Hospitals, 

RBH; and Canada, CAN) followed by meta-analysis. See Supplementary Note for details 

regarding each stratum, including enrolling centres, DNA genotyping, QC and imputation.

Association analysis—The association of alternate allele dosage with HCM was 

performed for each of the three strata using a frequentist test in an additive model 

implemented in SNPTEST (v2.5.2 for the CAN and NL strata, v2.5.4 for the RBH stratum), 

correcting for the first three genotypic principal components. The results of the three strata 

were then combined using an inverse variance weighted fixed-effect meta-analysis, 

performing meta-analysis heterogeneity analysis, implemented in METAL27 (version 

released on 2011-03-25). SNPs that were missing in any of the three strata, as well as those 

with a heterogeneity test P < 0.05, were excluded. The stringent exclusion P value threshold 

for meta-analysis heterogeneity test was necessary to exclude most common SNPs that tag 
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one of the population-specific founder HCM-causing pathogenic variants (e.g. 

NM_000256.3[MYBPC3]: c.2373dup [p.Trp792fs] in Dutch; NM_000364.4[TNNT2]: 

c.881G>A [p.Trp294Ter] in French Canadians). A subgroup analysis restricted to HCM 

cases without founder variants in MYBPC3 was performed. For the sake of this analysis, a 

founder variant was defined as a rare variant classified as pathogenic or likely pathogenic 

that was observed at least 10 times in the case cohort combining all strata. Using this 

definition, HCM cases carrying the following MYBPC3 variants (ENST00000545968) were 

excluded from this analysis: c.2373dupG, c.2827C>T, c.2864_2865delCT, c.3776delA, 

c.481C>T, c.551dupT, c.927-2A>G. Variant c.551dupT is a French Canadian founder while 

all other are Dutch founders. The summary results of this sub-analysis are shown in 

Supplementary Figure 1. The results of the main HCM case-control meta-analysis are shown 

in Figure 2, Table 1 and Supplementary Table 4. QQ plots of each stratum and forest plots 

for lead SNPs at all significant loci are shown in Supplementary Figure 2.

Analysis of heritability attributable to common variants—We used the generalized 

restricted maximum likelihood (GREML) approach of GCTA (version 1.92.4 beta)4,28 to 

estimate how much of the variance in HCM susceptibility could be attributed to common 

genetic variants (SNP-based heritability, h 2 SNP). The analysis was performed by stratum 

(NL, RBH, CAN), followed by a fixed-effects and random-effects meta-analysis using the 

meta package (v.4.9-9) in R version 3.6.0. Prior to heritability analyses, we performed 

additional stringent post-imputation QC as suggested29, using hard call genotypes (genotype 

probability, GP > 0.9) and excluding SNPs with missing rate > 0.01, minor allele frequency 

(MAF) < 0.05, Hardy-Weinberg test P < 0.05 and phenotype biased missingness P < 0.05, as 

well as samples with missing rate > 0.01, and excluded regions in the genome that tag 

founder HCM-causing rare variants in HCM (chr11:42008264-65380094 [MYBPC3] in NL 

and CAN, and chr1: 196816127-204926893 [TNNT2] in CAN). We then generated a genetic 

relationship matrix (GRM) and excluded distantly related individuals (proportion identity by 

descent, IBD > 0.05). We estimated h 2 SNP on the liability scale assuming a prevalence of 

0.2%3 with the first 10 genotypic principal components and sex as covariates. In addition to 

standard GREML, we also performed GREML with linkage disequilibrium and MAF 

stratification (GREML-LDMS)5 with 200-kb segmentation, stratification of SNPs in four 

sets by LD scores of individual SNPs in R followed by GRM estimation per SNP stratum 

and REML analysis with multiple GRMs. To estimate the h 2 SNP specific to the previously 

published locus (near FHOD3), the 15 novel loci and the rest of the genome, we also 

performed partitioned heritability analysis using GREML, using the same QC and 

prevalence described for overall h 2 SNP. The genome was partitioned into three segments 

(FHOD3 locus, 15 novel loci, and rest of genome). Loci were defined based on the lead SNP 

± 500 kb. Analysis was also performed by stratum, followed by an inverse variance weighted 

meta-analysis using a fixed-effects and random-effects models. The results of h 2 SNP 

estimation are shown in Supplementary Table 3.

HCM GWAS replication dataset—Replication of HCM loci reaching the significance 

threshold was tested in an independent dataset comprised of 2,694 cases with HCM included 

from the Hypertrophic Cardiomyopathy Registry (HCMR)17 or the NIHR Bioresource for 

Rare Disease (BRRD)18, and 47,486 controls without HCM included from the UK Biobank 
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or BRRD. The detailed methodology is described in Harper et al.16 Of the 2,780 HCM 

cases included in Harper et al.16, 86 are overlapping with the present discovery dataset and 

have been excluded from the replication dataset. The results of this replication analysis and a 

fixed effects model meta-analysis combining the discovery and replication results are shown 

in Supplementary Table 10.

Meta-analysis of association studies in dilated cardiomyopathy

A meta-analysis of three published case-control association studies7–9 of dilated 

cardiomyopathy (DCM) was performed. The included studies are described in the 

Supplementary Note and in Supplementary Table 5. A fixed-effects meta-analysis was 

performed using METAL27 (version released on 2011-03-25). Study weighting was 

performed using the case sample size. The results of the DCM meta-analysis are shown in 

Extended Data Figure 1 and Supplementary Table 7. QQ plots for each study and forest plots 

for the lead SNPs at all significant loci are shown in Supplementary Figure 7.

GWAS of cardiac magnetic resonance-derived left ventricular traits

UK Biobank (UKBB) study population—The UKBB is an open-access population 

cohort resource that has recruited half a million participants in its initial recruitment phase, 

from 2006-2010. At the time of analysis, robust cardiac magnetic resonance (CMR) imaging 

data was available from 26,523 individuals in the imaging substudy. The UKBB CMR 

acquisition protocol has been described previously30. In brief, images were acquired 

according to a basic cardiac imaging protocol using clinical 1.5 Tesla wide bore scanners 

(MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthcare, Erlangen, Germany) in 

three separate imaging centers. Extensive clinical and questionnaire data and genotype are 

available for these individuals. Clinical data were obtained at the time of the imaging visit. 

These included sex (31), age (21,003), weight (21,002), height (50), SBP (4,080), DBP 

(4,079), self-reported non-cancer illness code (20,002), and ICD10 codes (41,270). The 

mean age at the time of CMR was 63 ± 8 (range 45-80), and 46% of participants were male. 

Cohort anthropometrics, demographics and comorbidities are reported in Supplementary 

Table 6. Exclusion criteria for the UKBB imaging substudy included childhood disease, 

pregnancy and contraindications to MRI scanning. For the current analysis, we also 

excluded, by ICD-10 code and/or self-reported diagnoses, any subjects with heart failure, 

cardiomyopathy, a previous myocardial infarction, or structural heart disease. We also 

excluded those with uncontrolled hypertension (defined by systolic or diastolic blood 

pressure > 180 mmHg or > 110 mmHg, respectively, at time of imaging visit) or with 

extremes of body mass index (BMI < 16 or > 40). We restricted our analysis to Caucasians, 

defined by genotype as described (http://www.ukbiobank.ac.uk/wp-content/uploads/

2014/04/UKBiobank_genotyping_QC_documentation-web.pdf). After phenotyping, we also 

excluded subjects with mean wall thickness > 13 mm in any of the 16 American Heart 

Association (AHA) left ventricular (LV) segments31, and subjects with outlying (>3 SD 

from mean) LV mass, LV volumes or LV ejection fraction. The UKBB received National 

Research Ethics Approval (REC reference 11/NW/0382). All participants provided informed 

consent (https://biobank.ctsu.ox.ac.uk/crystal/docs/Consent.pdf). The present study was 

conducted under terms of UKBB access approval 18545.
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LV trait phenotyping—A description of CMR image analysis appears in the 

Supplementary Note and Supplementary Figure 3. We included nine LV phenotypes for 

GWAS analyses: end-diastolic volume (LVEDV), end-systolic volume (LVESV), ejection 

fraction (LVEF), mass (LVM), concentricity (LVconc = LVM/LVEDV), mean wall thickness 

(meanWT), as well as global peak strain in radial (strainrad), longitudinal (strainlong) and 

circumferential (straincirc) directions. The mean and SD of all nine LV phenotypes overall 

and stratified by sex are shown in Supplementary Table 6. The distributions of raw measures 

of these nine phenotypes are shown in Supplementary Figure 4. Despite non-normal 

distribution of some of the raw LV phenotypes, the residuals from our regression model 

including covariates (as defined below) approximated to normal distributions for all 

phenotypes (Supplementary Fig. 5). Therefore, the primary analysis was conducted using 

raw, non-normalized phenotypes.

LV trait genome-wide association analyses—A description of genotyping, 

imputation and QC appears in the Supplementary Note. The GWAS model included age, 

sex, height, weight, and mean arterial pressure (MAP) as covariates. We performed a meta-

analysis comprised of two strata. Subjects recruited and imaged in the North of England 

(Cheadle, Newcastle) were treated as the first stratum (n = 15,215 after exclusions) and 

those recruited in the South of England (Reading) comprised the second stratum (n = 4,045). 

For each stratum, BOLT-LMM32 (v2.3.2) was used to construct mixed models for 

association with around 9.5 million directly genotyped and imputed SNPs. A high-quality 

set of directly genotyped model SNPs was selected to account for random effects in the 

genetic association analyses. These were selected by MAF (> 0.001), and LD-pruned (r 2 < 

0.8) to create an optimum SNP set size of around 500,000. The model was then applied to 

the > 9.8 million imputed SNPs passing quality control and filtering. Inverse-variance 

weighted meta-analysis was carried out with summary statistics from both strata using 

METAL27 (version released on 2011-03-25). The results of the LV traits GWAS are shown 

in Supplementary Table 8 and Extended Data Figures 2–10.

GWAS statistical significance threshold

We accounted for multiple testing to define the P value threshold for genome-wide statistical 

significance in the HCM, DCM, and LV traits GWAS. As expected, LV trait pairs are 

phenotypically correlated (Supplementary Table 9). Supplementary Figure 6 displays a 

phenotypic correlation heatmap using absolute values with dendrograms constructed using 

Euclidean distance and complete hierarchical clustering. Cutting the dendrogram at a height 

of 1.5 results in three LV phenotype clusters (Supplementary Fig. 6): (i) a contractility 

cluster comprising strainlong, straincirc, strainrad and LVEF; (ii) a LV volume cluster 

comprising LVEDV and LVESV; and (iii) a LV hypertrophy cluster comprising LVM, 

meanWT and LVconc. The genome-wide significance threshold for the GWAS of LV traits, 

HCM and DCM was therefore set to P < 1 × 10-8 (5 × 10-8/5; accounting for three LV 

clusters + DCM + HCM).

Pairwise genetic correlation

We performed pairwise genetic correlation between HCM, DCM and the nine LV traits 

using LDSC (Version 1.0.1)13,14. For each GWAS, we first reformatted summary statistics 
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using the “munge_sumstats.py” command, filtering for the HapMap3 SNPs with 

corresponding alleles using the “--merge-alleles w_hm3.snplist” flag, as recommended. The 

HapMap3 SNPs were downloaded from “https://data.broadinstitute.org/alkesgroup/

LDSCORE/w_hm3.snplist.bz2”. We then assessed genetic correlation for each of the 55 

pairs (HCM, DCM and nine LV traits) using the “ldsc.py –rg” command and pre-computed 

LD scores from the European 1000 Genomes Project dataset which were downloaded from 

“https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2”. We did not 

constrain the single-trait and cross-trait LD score regression intercepts. The results of the 

genetic correlation analyses are shown in Figure 3 and Supplementary Table 9.

Multi-trait analysis of GWAS

We performed multi-trait analysis of GWAS summary statistics using MTAG (version 

1.0.8)15 to increase power for discovery of genetic loci associated with HCM, DCM and LV 

traits. MTAG uncovers genetic loci associated with a phenotype when the standard single-

trait GWAS is underpowered. By definition, it will uncover new genetic loci whenever these 

are associated with the other phenotypes included. It may theoretically fail to identify 

phenotype-specific loci. Two MTAG analyses were performed, one only including the 

summary statistics of the nine LV traits (referred to as “MTAG9”), and another one 

including the summary statistics of the nine LV traits, HCM and DCM (referred to as 

“MTAG11”). Specifically, MTAG9 was used for additional locus discovery for the nine LV 

traits, and MTAG11 was used for additional locus discovery for HCM and DCM. Only SNPs 

included in all meta-analyses (i.e. HCM, DCM and LV traits) were used in MTAG. The 

coded/non-coded alleles were aligned for all 11 studies prior to MTAG, and multi-allelic 

SNPs were removed. All summary statistics refer to the positive strand of GRCh37 and, as 

such, ambiguous/palindromic SNPs (having alleles A/T or C/G) were not excluded. 

Regression coefficients (beta) and their standard errors were used for MTAG9, and Z-scores 

were used for MTAG11 (since regression coefficients and standard errors were not directly 

available in all included DCM studies). The results of the multi-trait analyses are shown as 

panel b in Figure 2 and Extended Data Figures 1–10, as well as Supplementary Tables 4, 7, 

and 8.

Two sample Mendelian randomization

We assessed whether increased contractility is causally linked to increased HCM risk using 

two sample Mendelian randomization (MR) using LV contractility parameters as exposure 

variables and HCM as an outcome. Two sample MR was performed using the 

TwoSampleMR (MRbase) package33 (version 0.4.25) in R version 3.6.0. Four exposure 

variables corresponding to measures of LV contractility were used separately: LVEF as a 

volumetric marker of contractility, and global strain (circumferential (straincirc), radial 

(strainrad) and longitudinal (strainlong)) as contractility markers based on myocardial tissue 

deformation. We used two approaches for instrument SNP selection: (i) P < 5 × 10-8 in the 

single LV trait analysis; and (ii) P < 5 × 10-8 in the MTAG9 analysis (i.e. excluding HCM 

and DCM). Only independent SNPs (using r 2 < 0.01 in the European 1000 Genomes 

population) were included. The outcome summary statistics were those of the single trait 

HCM case-control meta-analysis. Insertions/deletions and palindromic SNPs with 

intermediate allele frequencies (MAF > 0.42) were excluded, and other SNPs in the same 
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locus were included only if reaching the P value threshold for instrument SNP selection. The 

SNPs included in MR analyses and their effects in the exposure and outcome studies are 

shown in Supplementary Table 11. Inverse variance weighting (IVW) was used as a primary 

analysis. We used three additional methods as sensitivity analyses: Weighted median34, 

weighted mode35 and robust adjusted profile score (RAPS)36. RAPS was used with the 

default parameters (over.dispersion = TRUE and loss.function = “tukey”). MR Egger37 was 

not used given the limited number of SNP instruments. Cochran’s Q statistics were 

calculated to investigate heterogeneity between SNP causal effects using IVW. Evidence of 

directional pleiotropy was also assessed using the MR-Egger intercept. Mean F-statistics 

were calculated to assess the strength of the genetic instruments used. Leave-one-out 

analysis was also performed to ensure the SNP causal effects are not driven by a particular 

SNP. We also performed a secondary analysis using the generalized summary-data-based 

Mendelian randomization (GSMR) implemented in GCTA (version 1.92.4 beta)38. LD 

estimation was performed using the European samples from the 1000 Genomes Project 

reference dataset. As for the analysis using TwoSampleMR, instrument SNPs were selected 

using two approaches (see i and ii above). The default parameters were used, with the 

following exceptions: the r 2 clumping threshold was changed to 0.01, and the minimum 

number of SNPs required was changed to 5. Removal of pleiotropic SNPs was performed as 

suggested using the GSMR-implemented HEIDI outlier algorithm with default 

parameters38. The results of the MR are shown in Supplementary Table 12, with effect plots 

and leave-one-out analyses shown in Supplementary Figures 8 and 9, respectively.

Genome-wide visualization and annotation

Summary statistics for all single-trait and multi-trait analyses were uploaded to FUMA 

(Functional Mapping and Annotation of GWAS, v1.3.5)39 for visualization and genome-

wide analyses. Manhattan and quantile-quantile plots were constructed. Gene-set and tissue 

expression analyses were performed using MAGMA19 v1.07, as implemented in FUMA. 

We used Gene Ontology (GO) gene sets from the Molecular Signatures Database (MSigDB, 

v6.2)40 for the gene-set analysis, and the Genotype-Tissue Expression project (GTEx41, 

version 8) for the tissue specificity analysis. The results of MAGMA analyses using the 

HCM and DCM MTAG summary statistics are shown in Supplementary Tables 13 and 14 

(gene-set analyses) and Supplementary Figure 10 (tissue specificity analyses).

Locus annotation

All loci associated with HCM, DCM and LV traits in the single trait or multi-trait analyses 

were annotated using lookup for: (i) proxy coding variants (Supplementary Table 15), (ii) 

cis-expression quantitative trait loci (eQTL, Supplementary Table 16), (iii) cis-splice 

quantitative trait loci (sQTL, Supplementary Table 17), and (iv) contact with gene promoters 

using Hi-C (Supplementary Table 18). We also assessed whether GWAS loci co-localize 

with genes associated with Mendelian cardiomyopathy and performed cross-traits lookups 

for all HCM, DCM and LV traits loci (Fig. 4 and Supplementary Tables 4, 7, and 8). See 

Supplementary Note for methodological details.
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Association of an HCM polygenic risk score (PRSHCM) with phenotypic manifestation in 
sarcomeric variant carriers

We sought to assess whether a common variant polygenic risk score derived from the HCM 

case-control GWAS (PRSHCM) accounts for phenotypic variability and severity in 

pathogenic or likely pathogenic variant carriers.

Study population—In this analysis, we included probands and family members that carry 

pathogenic or likely pathogenic variants associated with HCM from the Erasmus Medical 

Center (EMC). All variants were centrally curated as described in the Supplementary Note, 

and only subjects that carry (likely) pathogenic variants were included (see list in 

Supplementary Table 2). Homozygous carriers and those carrying multiple pathogenic or 

likely pathogenic variants were excluded. Clinical data including maximal left ventricular 

wall thickness on cardiac imaging and time of clinical events were retrieved from an 

ongoing registry42,43, including all HCM patients and their relatives at the EMC. Missing 

data were collected from chart review. The baseline characteristics of the study population 

are shown in Supplementary Table 20.

Derivation of an HCM polygenic risk score (PRSHCM)—The PRSHCM was derived 

from an independent GWAS, excluding HCM cases with (likely) pathogenic variants from 

EMC. This was done to ensure that the PRS is derived from an independent cohort. 

Specifically, a Dutch HCM case-control GWAS was repeated after excluding 161 cases from 

EMC cases that carry (likely) pathogenic variants, followed by a meta-analysis combined 

with the RBH HCM GWAS and the CAN HCM GWAS, followed by MTAG11 as described 

above. Lead SNPs reaching the genome-wide significance threshold (P < 5 × 10-8) were 

included in the PRSHCM. Those SNPs included in the PRSHCM and their corresponding 

weights are shown in Supplementary Table 19.

Calculation of PRSHCM —All EMC samples that carry pathogenic or likely pathogenic 

HCM variants underwent array genotyping on the Illumina GSA. Quality control (QC) was 

performed as described in the Supplementary Note for the Dutch HCM GWAS, except for 

identify by descent (IBD) analysis, where only duplicate (or twin) samples were excluded. 

No sample was excluded for relatedness, which was accounted for using a GRM as 

described in the statistical analyses paragraph below. Imputation and post-imputation QC 

were performed also as described for the GWAS in the Supplementary Note. PRSHCM was 

calculated by summing the products of each lead risk allele dosage by the corresponding 

regression coefficient in the derivation study (Supplementary Table 19) using Plink 2.0, 

followed by scaling to a mean of 0 and SD of 1.

Study endpoints—Two primary endpoints were predefined. The first primary endpoint 

was maximal left ventricular wall thickness (maxLVWT) at last available transthoracic 

echocardiogram (TTE) or CMR. MaxLVWT is routinely assessed in clinical practice as a 

measure of HCM severity and for risk stratification of life-threatening ventricular 

arrhythmias3. For subjects that had cardiac transplantation and/or septal reduction therapy to 

relieve LV obstruction, the last available CMR or TTE prior to cardiac transplantation and/or 

septal reduction therapy was used. Considering the higher accuracy of CMR to assess 
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LVWT in all LV segments, maxLVWT from CMR was used whenever available unless TTE 

was performed more than 5 years after last CMR. To account for body size, a determinant of 

LVWT in the general population44 and in HCM45, maxLVWT was indexed to body surface 

area (BSA) calculated using the DuBois formula (0.007184 x height (cm)0.725 x weight 

(kg)0.425). The second primary endpoint was time to first adverse clinical event (a composite 

of invasive septal reduction therapy, cardiac transplantation, sustained ventricular 

arrhythmia, sudden cardiac death, appropriate defibrillator therapy or atrial fibrillation/

flutter). The components of this composite endpoint were also assessed as secondary 

endpoints. As a sensitivity analysis, we also performed an analysis for the primary outcomes 

restricted to non-probands.

Statistical analyses—A GRM was estimated using GCTA (version 1.92.4 beta) and used 

to account for the between-sample relatedness. The association of PRSHCM with maxLVWT 

indexed to BSA (in mm/m2) was performed using a mixed linear model integrating the 

GRM as a random effect. Neither sex, nor rare variant type (MYBPC3 truncation vs. others) 

were associated with maxLVWT and were therefore not included as covariates. The 

association of PRSHCM with the composite primary clinical events endpoint and secondary 

endpoints were assessed using a Cox proportional hazards mixed effects model integrating 

the GRM as a random effect. Since biological male sex was significantly associated with 

increased risk for clinical events, it was added as a fixed effect covariate. Time 0 was set to 

birth in the Cox model to maximize statistical power by including events that occurred at the 

time of first medical encounter. Given the genetic nature of our exposure factor, all study 

subjects are exposed since birth. Nevertheless, there is a possibility of selection bias in our 

cohort, since study subjects have to reach the age of inclusion. Study subjects were censored 

at the time of last clinical follow-up. For analyses of secondary endpoints that do not include 

cardiac transplantation, study subjects were also censored at the time of cardiac 

transplantation. In addition to PRSHCM, we also assessed the association of a genome-wide 

score (PRSAF) derived from a large atrial fibrillation meta-analysis and validated by Khera 

et al.46 with atrial fibrillation within the study population. Mixed effects analyses of 

PRSHCM with maxLVWT was performed using the lmekin and mixed effects analyses of 

PRSHCM and PRSAF with clinical events was performed using the coxme function, both 

from the coxme package v2.2-14 in R version 3.6.0. The statistical significance threshold 

was set to P < 0.025 for the primary endpoints (0.05/2 primary endpoints) and P < 0.05 for 

hypothesis-generating secondary endpoints. The results of the primary, secondary and 

sensitivity analyses are shown in Supplementary Table 21. Kaplan-Meier curves stratified by 

PRSHCM above or below the median are shown in Figure 5.
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Extended Data

Extended Data Fig. 1. Manhattan and QQ plots of DCM GWAS and MTAG
a,b, Summary results of the dilated cardiomyopathy (DCM) GWAS meta-analysis of 5,521 

cases and 397,323 controls shown as Manhattan plots for the single trait (a) and the multi-

trait analyses (MTAG; b). Single trait analysis (a) consisted of a fixed effects meta-analysis 

of case-control GWAS using summary statistics of three previously published DCM GWAS, 

and multi-trait analysis results (b) were obtained using MTAG for DCM, including GWAS 

for hypertrophic cardiomyopathy (HCM) and nine left ventricular (LV) traits. Red dashed 

line shows the significance threshold of P = 1 × 10-8. Quantile-quantile (QQ) plots shown as 

inserts in corresponding panels. Genomic inflation (λ) = 1.028 (single-trait) and 1.049 

(MTAG). Numbering of signals as shown in Supplementary Table 7. Black numbers refer to 
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loci reaching the statistical significance threshold in single trait analysis, while red numbers 

refer to loci only reaching statistical significance in the multi-trait analysis. The low density 

of association signals in the single trait analysis (a) is attributable to the inclusion of a large 

sample size study that used a low density array (Illumina Infinium HumanExome BeadChip; 

Supplementary Table 5).

Extended Data Fig. 2. Manhattan and QQ plots of LV ejection fraction GWAS and MTAG
a,b, Summary results of the left ventricular ejection fraction (LVEF) GWAS in the UK 

Biobank (n = 19,260) shown as Manhattan plots for the single trait (a) and the multi-trait 

analyses (MTAG; b). Single trait analysis (a) consisted of a fixed effects meta-analysis of 

case-control GWAS using a linear mixed model (BOLT-LMM), and multi-trait analysis 

results (b) were obtained using MTAG including summary statistics for all nine left 
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ventricular (LV) traits. Red dashed line shows the significance threshold of P = 1 × 10-8. 

Quantile-quantile (QQ) plots shown as inserts in corresponding panels. Genomic inflation 

(λ) = 1.041 (single-trait) and 1.049 (MTAG). Numbering of loci as shown in Supplementary 

Table 8. Black numbers refer to loci reaching the statistical significance threshold in any 

single trait analysis, while red numbers refer to loci only reaching statistical significance in 

the multi-trait analysis.

Extended Data Fig. 3. Manhattan and QQ plots of LV concentricity GWAS and MTAG
a,b, Summary results of the left ventricular concentricity index (LVconc) GWAS in the UK 

Biobank (n = 19,260) shown as Manhattan plots for the single trait (a) and the multi-trait 

analyses (MTAG; b). LVconc is defined as the ratio of left ventricular mass to the left 

ventricular end-diastolic volume. Single trait analysis (a) consisted of a fixed effects meta-
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analysis of case-control GWAS using a linear mixed model (BOLT-LMM), and multi-trait 

analysis results (b) were obtained using MTAG including summary statistics for all nine left 

ventricular (LV) traits. Red dashed line shows the significance threshold of P = 1 × 10-8. 

Quantile-quantile (QQ) plots shown as inserts in corresponding panels. Genomic inflation 

(λ) = 1.06 (single-trait) and 1.084 (MTAG). Numbering of signals as shown in 

Supplementary Table 8. Black numbers refer to loci reaching the statistical significance 

threshold in any single trait analysis, while red numbers refer to loci only reaching statistical 

significance in the multi-trait analysis.

Extended Data Fig. 4. Manhattan and QQ plots of LV mass GWAS and MTAG
a,b, Summary results of the left ventricular mass (LVM) GWAS in the UK Biobank (n = 

19,260) shown as Manhattan plots for the single trait (a) and the multi-trait analyses 
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(MTAG; b). Single trait analysis (a) consisted of a fixed effects meta-analysis of case-

control GWAS using a linear mixed model (BOLT-LMM), and multi-trait analysis results (b) 

were obtained using MTAG including summary statistics for all nine left ventricular (LV) 

traits. Red dashed line shows the significance threshold of P = 1 × 10-8. Quantile-quantile 

(QQ) plots shown as inserts in corresponding panels. Genomic inflation (λ) = 1.081 (single-

trait) and 1.071 (MTAG). Numbering of signals as shown in Supplementary Table 8.

Extended Data Fig. 5. Manhattan and QQ plots of LV end-diastolic volume GWAS and MTAG
a,b, Summary results of the left ventricular end-diastolic volume (LVEDV) GWAS in the 

UK Biobank (N=19,260) shown as Manhattan plots for the single trait (a) and the multi-trait 

analyses (MTAG; b). Single trait analysis (a) consisted of a fixed effects meta-analysis of 

case-control GWAS using a linear mixed model (BOLT-LMM), and multi-trait analysis 
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results (b) were obtained using MTAG including summary statistics for all nine left 

ventricular (LV) traits. Red dashed line shows the significance threshold of P = 1 × 10-8. 

Quantile-quantile (QQ) plots shown as inserts in corresponding panels. Genomic inflation 

(λ) = 1.076 (single-trait) and 1.078 (MTAG). Numbering of signals as shown in 

Supplementary Table 8. Black numbers refer to loci reaching the statistical significance 

threshold in any single trait analysis, while red numbers refer to loci only reaching statistical 

significance in the multi-trait analysis.

Extended Data Fig. 6. Manhattan and QQ plots of LV end-systolic volume GWAS and MTAG
Summary results of the left ventricular end-systolic volume (LVESV) GWAS in the UK 

Biobank (n= 19,260) shown as Manhattan plots for the single trait (a) and the multi-trait 

analyses (MTAG; b). Single trait analysis (a) consisted of a fixed effects meta-analysis of 
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case-control GWAS using a linear mixed model (BOLT-LMM), and multi-trait analysis 

results (b) were obtained using MTAG including summary statistics for all nine left 

ventricular (LV) traits. Red dashed line shows the significance threshold of P = 1 × 10-8. 

Quantile-quantile (QQ) plots shown as inserts in corresponding panels. Genomic inflation 

(λ) = 1.069 (single-trait) and 1.081 (MTAG). Numbering of signals as shown in 

Supplementary Table 8.

Extended Data Fig. 7. Manhattan and QQ plots of LV global circumferential strain GWAS and 
MTAG
a,b, Summary results of the left ventricular global circumferential strain (straincirc) GWAS 

in the UK Biobank (N=19,260) shown as Manhattan plots for the single trait (a) and the 

multi-trait analyses (MTAG; b). Single trait analysis (a) consisted of a fixed effects meta-
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analysis of case-control GWAS using a linear mixed model (BOLT-LMM), and multi-trait 

analysis results (b) were obtained using MTAG including summary statistics for all nine left 

ventricular (LV) traits. Red dashed line shows the significance threshold of P = 1 × 10-8. 

Quantile-quantile (QQ) plots shown as inserts in corresponding panels. Genomic inflation 

(λ) = 1.046 (single-trait) and 1.061 (MTAG). Numbering of signals as shown in 

Supplementary Table 8.

Extended Data Fig. 8. Manhattan and QQ plots of LV global radial strain GWAS and MTAG
a,b, Summary results of the left ventricular global radial strain (strainrad) GWAS in the UK 

Biobank (n = 19,260) shown as Manhattan plots for the single trait (a) and the multi-trait 

analyses (MTAG; b). Single trait analysis (a) consisted of a fixed effects meta-analysis of 

case-control GWAS using a linear mixed model (BOLT-LMM), and multi-trait analysis 
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results (b) were obtained using MTAG including summary statistics for all nine left 

ventricular (LV) traits. Red dashed line shows the significance threshold of P = 1 × 10-8. 

Quantile-quantile (QQ) plots shown as inserts in corresponding panels. Genomic inflation 

(λ) = 1.049 (single-trait) and 1.057 (MTAG). Numbering of signals as shown in 

Supplementary Table 8. Black numbers refer to loci reaching the statistical significance 

threshold in any single trait analysis, while red numbers refer to loci only reaching statistical 

significance in the multi-trait analysis.

Extended Data Fig. 9. Manhattan and QQ plots of LV global longitudinal strain GWAS and 
MTAG
a,b, Summary results of the left ventricular global longitudinal strain (strainlong) GWAS in 

the UK Biobank (n = 19,260) shown as Manhattan plots for the single trait (a) and the multi-
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trait analyses (MTAG; b). Single trait analysis (a) consisted of a fixed effects meta-analysis 

of case-control GWAS using a linear mixed model (BOLT-LMM), and multi-trait analysis 

results (b) were obtained using MTAG including summary statistics for all nine left 

ventricular (LV) traits. Red dashed line shows the significance threshold of P = 1 × 10-8. 

Quantile-quantile (QQ) plots shown as inserts in corresponding panels. Genomic inflation 

(λ) = 1.040 (single-trait) and 1.059 (MTAG). Numbering of signals as shown in 

Supplementary Table 8.

Extended Data Fig. 10. Manhattan and QQ plots of LV mean wall thickness GWAS and MTAG
a,b, Summary results of the mean left ventricular wall thickness (meanWT) GWAS in the 

UK Biobank (n = 19,260) shown as Manhattan plots for the single trait (a) and the multi-

trait analyses (MTAG; b). Single trait analysis (a) consisted of a fixed effects meta-analysis 

of case-control GWAS using a linear mixed model (BOLT-LMM), and multi-trait analysis 
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results (b) were obtained using MTAG including summary statistics for all nine left 

ventricular (LV) traits. Red dashed line shows the significance threshold of P = 1 × 10-8. 

Quantile-quantile (QQ) plots shown as inserts in corresponding panels. Genomic inflation 

(λ) = 1.065 (single-trait) and 1.072 (MTAG). Numbering of signals as shown in 

Supplementary Table 8.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study flowchart.
CMR, cardiac magnetic resonance; DCM, dilated cardiomyopathy; HCM, hypertrophic 

cardiomyopathy; LV, left ventricle/ventricular; LDSC, LD score correlation; MTAG, multi-

trait analysis of GWAS.
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Figure 2. Summary results of the hypertrophic cardiomyopathy (HCM) single trait GWAS and 
multi-trait analysis.
a,b, Single trait analysis (a) consisted of a fixed effects meta-analysis of case-control GWAS 

using a frequentist test, and multi-trait analysis results (b) were obtained using MTAG for 

HCM, including GWAS for dilated cardiomyopathy (DCM) and nine left ventricular (LV) 

traits. Summary statistics shown as Manhattan plots with red dashed line showing the 

genome-wide significance threshold of P = 1 × 10-8. Quantile-quantile (QQ) plots are shown 

as inserts in corresponding panels. Genomic inflation (λ) = 1.081 (single-trait) and 1.082 

(MTAG). Six association signals were identified in single trait analysis (a), and an additional 

10 signals were identified in multi-trait analysis (b). The wide signal on chromosome 11 
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tags founder MYBPC3 pathogenic variants. Locus #4 was only significant in the single-trait 

analysis and did not replicate in an independent HCM GWAS. Numbering of signals is as 

shown in Table 1 and Supplementary Table 4, where red numbers refer to signals reaching 

genome-wide significance only in the multi-trait analysis.
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Figure 3. Genetic correlation between left ventricular traits, hypertrophic cardiomyopathy, and 
dilated cardiomyopathy.
Hypertrophic cardiomyopathy (HCM, red bars) and dilated cardiomyopathy (DCM, blue 

bars) show strong genetic correlations with quantitative cardiac left ventricular (LV) traits 

measured in the general population, but with opposite effects. Center values are the 

estimated genetic correlation (r g), and error bars indicate 95% confidence intervals. Samples 

sizes for included GWAS are as follows: 1,733 cases and 6,628 controls for HCM; 5,521 

cases and 397,323 controls for DCM; and 19,260 for LV traits. Asterisks identify significant 

genetic correlations with a Benjamini–Hochberg false discovery rate (FDR) < 0.05. Data 

shown correspond to that in Supplementary Table 9. DCM, dilated cardiomyopathy; 

straincirc, strainlong and strainrad, global circumferential, longitudinal and radial strain, 

respectively (measures of contractility based on myocardial deformation); HCM, 

hypertrophic cardiomyopathy; LV, left ventricular; LVconc, LV concentricity (defined as 

LVM/LVEDV); LVEDV, LV end-diastolic volume; LVEF, LV ejection fraction (a volumetric 

measure of contractility); LVESV, LV end-systolic volume; LVM, LV mass; meanWT; mean 

LV wall thickness. Since straincirc and strainlong are always negative values, -straincirc and -

strainlong are plotted to facilitate interpretation of effect direction.
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Figure 4. Cross-trait associations of hypertrophic and dilated cardiomyopathy loci.
Heatmap of cross-trait associations of the 16 hypertrophic cardiomyopathy (HCM, left side) 

and 13 dilated cardiomyopathy (DCM, right) risk variants in HCM, DCM and nine LV traits 

in the general population. The dbSNP ID and risk alleles are shown on the x-axis, with the 

corresponding locus number in parenthesis (corresponding to numbering in Fig. 2, Table 1 

and Supplementary Table 4 for HCM, and Extended Data Fig. 1 and Supplementary Table 7 

for DCM). Variants sorted along the x-axis using Euclidean distance and complete 

hierarchical clustering (dendrogram on top). Effect of the HCM or DCM risk alleles shown 

as a colormap of Z-scores (legend), where positive values (concordant effect) are in shades 

of blue, and negative values (discordant effect) are in shades of red. Only associations with 

FDR < 0.05 are shown. HCM and DCM loci show many and reciprocal cross-trait 

associations. Since straincirc and strainlong are negative values, we show -straincirc and -

strainlong to facilitate interpretation of effect direction. Lookup in DCM was performed 

using SNP proxies to maximize sample size, as shown in Supplementary Table 4. Note that 

the DCM risk allele rs2042995-T also increases risk of HCM, potentially through pleiotropic 

effects (decreased contractility and increased LV wall thickness). LV traits are as defined in 

the legend of Figure 3.
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Figure 5. A polygenic risk score for HCM stratifies event-free survival in carriers of disease-
causing variants in sarcomere-encoding genes.
Kaplan-Meier curves showing survival free from adverse clinical events (composite of septal 

reduction therapy, cardiac transplantation, sustained ventricular arrhythmia, sudden cardiac 

death, appropriate implantable cardioverter defibrillator [ICD] therapy or atrial fibrillation/

flutter) in sarcomeric (likely) pathogenic variant carriers stratified by polygenic score 

(PRSHCM) below (dark orange) vs. above (dark red) the median. Numbers at risk in each 

group along the time scale shown at the bottom of the plot. Ticks along the survival curves 

represent subject censoring. Two-sided log-rank test P = 0.032 (Cox proportional hazard 

analysis P = 9 × 10-3; see Supplementary Table 21).
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