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Abstract

Induced pluripotent stem cells (iPSCs) are an established cellular system to study the impact of 

genetic variants in derived cell types and developmental contexts. However, in their pluripotent 

state, the disease impact of genetic variants is less known. Here, we integrate data from 1,367 

human iPSC lines to comprehensively map common and rare regulatory variants in human 

pluripotent cells. Using this population-scale resource, we report hundreds of novel colocalization 

events for human traits specific to iPSCs, and find increased power to identify rare regulatory 

variants compared with somatic tissues. Finally, we demonstrate how iPSCs enable the 

identification of causal genes for rare diseases.

Introduction

The regulatory effects of common disease loci identified from genome-wide association 

studies (GWAS), and rare variants for rare genetic disorders, have been increasingly linked 

to expression changes using large population-scale gene expression resources. Existing 

efforts have focused on blood1–3, somatic tissues collected post-mortem4 as well as 

transformed lymphoblastoid cell lines5. However, detecting the regulatory effects of variants 

can be limited by tissue or cell accessibility. Complementary to somatic cells, human iPSCs 

combined with differentiation protocols provide powerful model systems for a growing 

range of mature cell states and types, which have been applied to study both molecular 

mechanisms of common6–9 and rare10–14 disease. Pluripotent cells themselves can provide 

unique insights into regulation of gene expression in cell states that mimic early 

development, with relevance to diseases that manifest in utero or in transient states 

throughout development15–17. However, the regulatory landscape of genetic variation in 

human pluripotent cells and its relationship to common and rare genetic remains poorly 

understood, mainly caused by the lack of appropriately powered genomic resources in 

human iPSCs.

To address this, we integrated data from five major iPSC genetic studies17–21 within the 

“Integrated iPSC QTL” (i2QTL) consortium, establishing a large-scale resource of iPSCs 

with matched genotype and RNA-seq data from a total of 1,367 lines. We characterized 

regulatory effects of common variants using expression quantitative trait locus (eQTL) 

mapping of a comprehensive set of RNA phenotypes, including gene-level abundance, exon-

level and transcript-, splicing-, alternative polyadenylation-ratio (APA). This identifies 

hundreds of novel eQTL, which are implicated in colocalization events across a broad range 

of human traits and diseases.
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We further leverage the unique opportunity posed by a large whole-genome sequencing 

resource combined with RNA-seq to probe for rare variants that are associated with gene 

expression outliers in human iPSCs. Previous work has demonstrated that aberrant gene 

expression can enable detection of rare variants when analyzed against a large reference 

cohort22; however, despite their use in rare disease research, no such reference exists for 

human pluripotent cells. We show that iPSCs provide increased power for identifying rare, 

large-effect expression variants compared to previous findings utilizing somatic tissues23, 

and improve the prioritization of rare variants implicated in a range of common traits and 

diseases. We also demonstrate the use of the i2QTL resource in modeling gene expression 

outlier effects linked to pathogenic rare variants across a range of rare diseases, including 

monogenic diabetes, Bardet-Biedl syndrome, and hereditary cerebellar ataxia. Finally, we 

present a patient case of global developmental delay, demonstrating the rapid improvement 

in resolution of candidate disease genes using a joint gene expression outlier analysis of 

blood and iPSC tissues.

Results

To generate the i2QTL resource, we collected previously published (~60%) and newly 

generated (~40%) data from human iPSC lines across five major iPSC resources 

(Supplementary Tables 1 & 2), spanning genotype and RNA-seq data from a total of 1,367 

iPSC lines, derived from 948 primarily healthy donors (65 rare disease samples). We 

included additional data from fibroblast cell lines and embryonic stem cells (ESC) from the 

HipSci cohort and Choi et al.24 (Supplementary Tables 1 & 2). We uniformly reprocessed 

genotype array, whole-genome sequencing and RNA-seq data across all samples (see 

Methods). Joint multidimensional scaling (MDS) of our data and samples from the genotype 

tissue expression (GTEx4) project (v7) revealed high homogeneity of iPSCs, within and 

between studies, compared to between-sample and tissue variations observed in GTEx (Fig. 

1a). Furthermore, iPSCs clustered together with ESCs, supporting the quality of the i2QTL 

resource (Fig. 1a).

A high-resolution map of cis-eQTL in human pluripotent cells

We mapped cis-eQTL, considering proximal common variants (gene body + 250 kb on both 

sides, MAF >1%) and paired-end stranded RNA-seq data available for 936 samples (N = 

682 donors) of European ancestry (Methods). For 18,430 genes out of 27,046 Ensembl 

genes expressed in iPSCs (Methods), we identified at least one cis-eQTL (Supplementary 

Table 3, Methods; in the following denoted eGenes). This corresponds to a 2.5-fold increase 

compared to the largest previous gene-level cis-eQTL map in human pluripotent cells17 (Fig. 

1b), while replicating previous studies (Supplementary Methods, Extended Data Fig. 1). 

Iterative eQTL mapping using stepwise regression (Methods) identified two or more 

independent effects for 39.0% of eGenes, with a maximum of 12 independent cis-eQTL for 

PTGR1 (Extended Data Fig. 2). In addition to gene-level expression, we considered further 

RNA-seq derived traits for eQTL mapping: transcript-ratio, exon-level, splicing-ratio and 

APA-ratio (Methods, Supplementary Table 4–7). In aggregate, we report genetic effects for 

21,548 genes (FDR <5%, Fig. 1c), an increase of 17% compared to gene-level eQTL alone. 

Most eQTL variants were associated with two or more RNA traits (77%, Fig. 1d).
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To identify iPSC-specific regulatory effects, we compared gene-level cis-eQTL in iPSCs 

with eQTL mapped in somatic tissues from GTEx4 (48 tissues) and BIOS3 (whole blood). 

Notably, we identified a greater number of eGenes compared to any single GTEx tissue (Fig. 

1b,e), and a comparable number as reported in the BIOS meta-analysis, despite its 

substantially larger sample size (Fig. 1b). This is in line with previous observations17,25, 

likely reflecting the transcriptional homogeneity of iPSCs20,26 (Fig. 1a). A total of 995 

eGenes detected in i2QTL iPSCs were not previously identified (Fig. 1e; 5.4% of the 

eGenes; 50 not assessed in other studies; Supplementary Table 3). These putative iPSC-

specific eGenes were enriched for cancer (COSMIC27 genes, q = 2.4 × 10−5, Fisher Exact 

Test) and embryonic development 28(q = 0.03).

To assess the tissue specificity of shared eGenes that were detected in iPSC and at least one 

GTEx tissue, we employed MASHR29 to assess the replication of lead eQTL effects for 

11,682 genes (replicated effect and consistent effect direction; Methods). Globally, this 

identified iPSCs as markedly distinct from GTEx tissues (iPSC versus GTEx on average 

68.1% vs. 88.7% within GTEx tissues replication rate, Methods, Extended Data Fig. 3a). We 

also ranked eQTL discovered in iPSCs by the number of GTEx tissues in which these effects 

are replicated, observing that eGenes with low eQTL replication in GTEx were again 

enriched for cancer (n = 3) and developmental gene sets (n = 1) (q <10%, GSEA v4.1 pre-

ranked enrichment test, Methods, Supplementary Table 8). Finally, we extended the 

MASHR analysis, including single-cell data from an iPSC differentiation study using HipSci 

lines8, which demonstrated that the observed patterns of iPSC-specific eQTL diminishes 

rapidly as cells exit a pluripotent state (Extended Data Fig. 3b).

Identification of trans-eQTL in pluripotent cells

We tested for trans (variants >2.5 Mb from gene-body) genetic effects on gene-level 

abundance using expression data from all individuals of European ancestry (samples N = 

1,123, donors N = 759, Supplementary Table 2; Methods). To mitigate the burden of 

multiple testing we tested for associations between 16,451 protein-coding genes and a 

targeted set of 115,700 variants obtained by combining iPSC cis-eQTL (N = 93,146) and 

GWAS variants (N = 23,798; NHGRI-EBI GWAS catalog30 v92).

Genome-wide, this identified 193 independent trans-eQTL affecting 191 unique genes 

(Extended Data Fig. 4a, Supplementary Tables 9 & 10, FDR <10%; permutation-based 

adjustment, Methods). Only a few trans-eQTL were associated to GWAS variants (21 

effects), whereas most effects were linked to cis-eQTL variants (186 effects, of which 9 

linked to iPSC-specific cis-eQTL). Notably, 46 of these trans-eGenes were exclusively 

linked to variants with cis-associations to transcript-ratio, exon-level, splicing-ratio or APA-

ratio and hence would be missed by common trans-eQTL analysis strategies (Extended Data 

Fig. 4b). For 121 of 186 expression-linked eQTLs we observe a significant correlation 

between the cis- and trans-eGene (FDR <5%; Supplementary Results, Methods). To 

formally assess the mediating role of the different RNA traits, we performed mediation 

analysis and identified 42 (21.7% of the trans-eQTL) instances where the effect on the trans-

eGene was mediated by an RNA trait other than gene-level (Extended Data Fig. 4c). Among 

the identified trans-eQTL, there were four hotspots that regulate five or more genes, with the 
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largest hotspot located in the vicinity of the ELF2 transcription factor (37 trans-eGenes; 

Supplementary Results, Extended Data Fig. 5).

We used held-out samples (237 lines, from 186 donors) to assess the replication of trans-

eQTL, observing evidence for 17.1% of the individual associations in the hold out fraction 

(nominal P <0.05 and same effect direction). We applied the same replication strategy using 

DNA methylation data available for a subset of lines (N = 841), replicating 26.9% of the 

effects (considering methylation probes proximal to target genes, adjusted P <0.05; 

Supplementary Methods). These replication rates exceeded the chance expectation (Exprs: 

7%, Meth: 20%; Methods), and collectively provided evidence for nominal replication of 

37.8% of the trans associations (Supplementary Table 9).

Next, to explore the tissue-specificity of trans-eQTL, we assessed evidence for tissue-

specific regulation of cis-eQTL that drive trans-eQTL (using the MASHR analysis; 

Methods). We observed that cis-eQTL with downstream trans effects were associated with a 

lower degree of tissue sharing than other cis-eQTL (median tissue sharing 7 versus 16, P = 

0.04, Wilcoxon test, Supplemental Methods). Additionally, we assessed the replication of 

trans-eQTL across a single-cell RNA-seq differentiation time course from 125 HipSci lines8. 

While in undifferentiated iPSCs, 11.9% of the trans effects were replicated (P <0.05 and 

same direction, 86.5% trans-eGenes expressed), we observed a marked decrease in 

replicated following one day of differentiation towards endoderm, and even lower replication 

rates following three days of differentiation towards definitive endoderm (4.1%; 

Supplementary Table 9). Consistent with these global statistics, we also observed reduced 

trans effects for individual targets of the trans-eQTL hotspot at ELF2 (Supplemental Results, 

Supplementary Tables 9 & 10, Extended Data Fig. 5).

iPSC analysis improves identification of rare variants associated with aberrant gene 
expression

Given the sample size of our cohort and the availability of high-quality SNP and SV calls31 

based on whole-genome sequencing data (N = 425 lines), we sought to identify rare variants 

with large effects on iPSC gene expression. Adapting strategies previously employed in 

cohorts of somatic tissues23,32,33, we classified iPSCs with outlying gene expression levels 

for each gene (under or over-expression of PEER-adjusted34 gene expression levels; Z-score 

based criterion; Methods), which identified at least one outlying iPSC line for 17,514 genes. 

Next, we computed burden scores for gene-proximal rare variants (within the gene body of ± 

10 kb around gene), comparing outlier and non-outlier lines. Notably, both SNPs and indels 

were enriched in under-expression outliers for rare (gnomAD MAF 0 < MAF ≤ 0.01%), 

highly-deleterious (CADD >25) variants (5-fold and 40-fold increase for SNP and indels, 

respectively) (Fig. 2A) (Supplementary Table 11). For structural variants (SVs), a 9-fold 

increase in rare (study MAF <1%) duplications, and 18-fold increase in rare multi-allelic 

copy number variants (mCNVs), was observed in over-expression outliers compared with 

non-outliers (Supplementary Table 11). Notably, singleton, high-CADD SNPs (CADD >25) 

were found at a 12-fold higher rate in under-expression outliers than non-outliers at a Z-

score of Z <- 2 (up to 60-fold when Z < −6).
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To place this enrichment of rare variants into context with prior studies that have linked rare 

genetic variants to outlying gene expression in somatic tissues23,35, we repeated the outlier 

analysis for singleton, high-CADD (CADD >25) SNPs using consistently processed data 

from GTEx (v7). We considered 35 tissues with at least 50 samples (after removal of 

globally outlying samples as for iPSCs; Methods) (Fig. 2B; Methods), and calculated the 

enrichment scores across 10,000 random draws of equal sample size for each tissue (N 

samples = 50). This identified iPSCs as the cell type with the largest enrichment score 

(median ~9), followed by GTEx fibroblasts (median ~7) and GTEx testis (median ~5) 

(Supplementary Table 12). Enrichments were moderately correlated with the number 

expressed genes in each tissue (Pearson r = 0.34), however the overall patterns were retained 

when controlling for this effect (Extended Data Fig. 6).

Leveraging iPSC transcriptome reference data to improve rare disease diagnostics

RNA-seq of blood and other accessible tissues has been used to prioritize putatively causal 

genes for rare diseases, by identifying genes with outlying expression patterns and 

pathogenic variants36–38. Despite the prevalence of iPSC models in rare disease research, 

such strategies have not previously been deployed to iPSCs due to lack of sufficiently large 

reference collections. To assess the potential of i2QTL for this task, we used a set of 65 

iPSC lines derived from individuals with rare genetic disorders for which the causal gene is 

clinically annotated (N = 15 unique genes, N = 3 unique diseases; Supplementary Table 1) 

that are part of the HipSci collection.

When considering known causal genes in the rare disease samples, we observed outlier 

(abs(Z-score) >2) gene expression in 12.3% of disease gene-sample pairs, compared to 

3.75% of gene-sample pairs for non-disease associated genes matched for expression level 

(N = 1,138,345) (Fisher’s exact test: odds ratio = 3.59 (CI 1.48 – 7.57); P = 0.002, Methods) 

(Fig. 2C & 2D). We performed the same analysis for splicing outliers; comparing the 

fraction of splicing outliers for rare disease cases in known causal genes compared to non-

causal genes, observing a 2-fold enrichment for splicing outliers (abs(Z-score) >2) in disease 

causal genes (Fisher’s exact test: odds ratio = 1.97 (CI 1.15 – 3.18); P = 0.01). Finally, we 

computed an integrated odds ratio by combining gene- and splicing-level outliers, observing 

an almost 5-fold enrichment known rare disease genes compared to non-disease genes 

(Fisher’s exact test: odds ratio = 4.83 (CI 1.76 – 13.43); P = 0.0009). Focusing on the rare 

disease Hereditary Cerebellar Ataxia as an example, we compared expression of the known 

disease gene (CACNA1A) in iPSCs to GTEx, finding that the gene was only expressed 

(FPKM ≥ 1) in iPSCs and GTEx tissues that are difficult to biopsy clinically (including brain 

tissues, testis, and fallopian tube) (Extended Data Fig. 7a). More generally, considering a 

broad range of curated disease genes (OMIM39), we observed a larger number of disease 

genes expressed in iPSCs compared to whole blood and other GTEx tissues (Extended Data 

Fig. 7b), highlighting the utility of iPSC transcriptomes to model the effects of pathogenic 

variants across diverse rare diseases.

We further tested whether i2QTL transcriptome data can improve the prioritization of 

putatively causal genes when combined with blood RNA-seq profiles. Briefly, we generated 

RNA-seq data from an iPSC line derived from a patient with a validated KCTD7 splicing 
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defect (Methods), for whom blood expression profiles had previously been generated22. 

Outlying gene expression patterns in blood alone (compared to RNA-seq data from 244 

reference samples in Frésard et al.22) yielded 626 candidate disease genes with at least one 

outlier splicing junction (abs(Z-score) >2). Notably, the intersection of outlying splice 

patterns in blood and iPSCs resulted in a set of only 44 genes – an approximately 14-fold 

reduction in the number of candidate disease genes for further curation, and containing the 

known causal disease gene (Fig. 2E). This highlights a generalizable approach enabled by 

i2QTL reference data to enhance outlier detection in rare disease patients.

GWAS variants from multiple diseases have molecular impacts in pluripotent cells

A major opportunity provided by eQTL maps in iPSCs is to identify colocalization events 

with GWAS loci, which could point to developmental or transient regulatory mechanisms. 

Using a combination of FINEMAP40 and eCAVIAR41 (Methods), we systematically 

assessed colocalization between eQTL for all five RNA traits and a broad range of 

previously reported genetic associations obtained from diverse GWAS studies, the Phenome 

Scanner Database V242, the NHGRI-EBI GWAS catalog30 and GWAS curated in 

LocusCompare43 for a combined total of 350 GWAS, and additionally the 1,740 traits from 

the UKBB phase 1 GWAS (http://www.nealelab.is/uk-biobank/).

In total, we identified 4,336 colocalization events (Methods), linking 608 disease- and 

phenotype loci to 10,794 cis-eQTL (Fig. 3a, Supplementary Table 13). Although gene-level 

eQTL represented the majority of colocalizations, 41% of these exclusively colocalized with 

non-gene-level eQTL (Fig. 3b). For example, 36 out of 93 GWAS loci for a coronary artery 

disease GWAS44 (CAD) had evidence for colocalization with an iPSC eQTL, involving 

different RNA traits (Extended Data Fig. 8a). Next, we assessed which diseases had the 

largest numbers of colocalization in iPSCs, relative to the total number of GWAS loci, which 

identified primary biliary cirrhosis45 (PBC) (10/12 GWAS loci), followed by triglyceride46 

(12/15 GWAS loci (TG)) levels as iPSC-linked traits. The co-localized genes for PBC were 

enriched for MAPK, NF-kappa B and TNF-R1 signaling pathways (g:Profiler P adj.: 1.1 × 

10−2, 4.9 × 10−2, 5.725 × 10−3, respectively), with known functions in the immune system 

matching the disease. Enrichment analysis for TG colocalized genes showed significant 

overlap with metabolic pathways (g:Profiler: alpha-linolenic acid metabolism, P adj.: 4.899 

× 10−3; biosynthesis of unsaturated fatty acids, P adj.: 5.729 × 10−3, fatty acid metabolism, P 
adj.: 2.585 × 10−2), again matching the known disease biology. We also observed co-

localization events for genes that were identified as trans regulators in iPSCs (Methods; 

Supplementary Results; Supplementary Table 14). For example, the most significant trans-

eQTL (P adj. = 1.08 × 10−15) associated with changes in expression of NBPF14, known to 

be frequently mutating breast cancer47, colocalized to a GWAS hit (rs11249433>A:G) for 

breast cancer.

Finally, we compared the gene-level colocalizations in iPSCs to GTEx, focusing on 452 

GWAS that were assessed in the LocusCompare study43, which has employed consistent 

colocalization methodology using eQTL from GTEx tissues. Among the 7,042 

colocalization events in aggregate across all eQTL maps, 836 events were exclusively 

detected in iPSCs (Fig. 3C, Supplementary Table 15). Notably, 47 of these iPSC-specific 
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colocalization events were associated with genes that lack an eQTL in GTEx tissues, and 

231 colocalizations were due to iPSC-specific eQTL signals as identified from the MASHR 

(V0.2.21) analysis. For example, we identified an iPSC-specific colocalization event for 

POLR1B and a GWAS variant for height (rs7586668>C:T48, Extended Data Fig. 8b). 

Recently, a mutation in this gene in zebrafish has shown to give rise to altered body size49. 

Collectively, these novel colocalizations substantially increased the number of linkages 

between GWAS loci and eQTL for traits such as CAD50 (50% new colocalizations, Fig. 3D), 

Parkinson’s disease51 (20% new colocalizations) and Alzheimer’s52 (7.5% new 

colocalizations). Moreover, 74 of the iPSC-specific colocalizations were linked to 31 traits 

that had no prior evidence for eQTL colocalization.

Outlier rare variants in iPSCs have large impacts on diverse complex traits

We leveraged the map of GWAS-eQTL colocalizations to prioritize genes that are more 

likely to harbor rare variants that are associated to expression outliers in iPSCs and affect a 

specific trait.

Specifically, we intersected our catalog of outlier-associated rare variants with GWAS 

summary statistics for matched traits contained in the UKBB Phase 1 GWAS, resulting in 

10,103 outlier-associated variants linked to 779 genes (Methods). We then compared these 

outlier variants with matched non-outlier variants stratified by the colocalization CLPP score 

of the corresponding gene (Methods). Globally, outlier-associated rare variants for genes 

with evidence of GWAS-QTL colocalization were associated with more significant GWAS P 
values for the corresponding traits (Fig. 4A). This enrichment was stronger for increasing 

CLPP score (Methods; CLPP >0, P = 0.02; CLPP ≥0.2, P <1 × 10−16), and consistent trends 

were observed when considering GWAS effect sizes instead of statistical significance 

(Extended Data Fig. 9). Overall, from the starting list of outlier and matched non-outlier 

variants with CLPP score > 0 (N genes = 319; N traits = 543), we identified 48 (8.8%) traits 

with at least weak evidence of colocalization (CLPP ≥0.01), comprising 58 unique outlier-

associated variants proximal to 35 genes (Supplementary Table 16).

Among these we observed an example an outlier-associated rare variant rs189811790:A>G 

in HSD17B12, a gene known to be involved in type 2 diabetes mellitus53, for basal 

metabolic rate (UKBB GWAS ID: 23105) with a CLPP score of 0.29 (Fig. 4B). The outlier-

associated rare variant in this gene has one of the largest protective effect sizes within 1 Mb 

around the locus (overall SNP rank = 30/4,065; top 0.73%), and it was among the top effects 

genome-wide (top 0.8% across all SNPs). However, owing to its low frequency this variant 

does not pass conventional thresholds for genome-wide significance (P = 0.003). Another 

candidate was observed for outlier-associated rare variant rs11589930:C>A linked to gene 

DENND1B, previously implicated in cholangitis54, for which we identified a rare variant 

associated with gene and transcript-level outliers and associated with cholangitis (UKBB 

GWAS “40001_K830 - Underlying (primary) cause of death: Cholangitis”). This variant had 

a genome-wide significant P value (P = 9 × 10−12), was in low LD with known GWAS SNPs 

(R2 = 0.0009) and had an absolute effect size within the top 0.04% of variants overall (Fig. 

4C). The P value did not reach genome-wide significance in any other UKBB GWAS (Fig. 

4D). Taken together, these results highlight a generalizable approach enabled by the i2QTL 
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resource whereby colocalization and outlier analyses enable the detection of candidate rare 

variant effects on quantitative traits.

Discussion

Genetic effects in pluripotent cells can elucidate the spectrum of traits that may manifest 

during development and across cell differentiation. To maximize the power for such genetic 

analyses, we harmonized population-scale iPSC genetic and transcriptomic datasets across 

five studies. The scale of our resource, spanning transcriptomic and genomic profiles from 

iPSCs derived from close to one thousand unique donors, has enabled the mapping of cis-

eQTL across a comprehensive range of RNA traits, the identification of trans-eQTL and the 

study of rare variant effects and their collective impacts on genetic traits and diseases.

We identified cis-eQTL across five RNA traits, yielding regulatory variants for 67.2% of 

expressed genes in human iPSCs (N = 21,548). This included 995 cis-eGenes that were not 

previously reported in eQTL maps from somatic tissues. Next to cis-eQTL, we identified 

193 trans-eQTL, a substantial fraction of which (91/193) are linked to non-gene-level eQTL, 

which supports the relevance of eQTL variants acting on splicing, transcript isoforms, exons 

or alternative polyadenylation.

Outlier gene expression can aid in detection of rare variants and disease genes. We observed 

increased power to discover outlier-associated rare variants in iPSCs compared to somatic 

tissues. We further demonstrated how population-scale iPSC transcriptome data enables 

prioritizing disease genes from individuals with known rare genetic disorders. In a collection 

of rare disease samples that are part of our study, we identified a 5-fold enrichment of 

outliers in known rare disease genes and demonstrated detection of gene outliers in cases 

with monogenic diabetes, Bardet-Biedl syndrome, and hereditary cerebellar ataxia. These 

results demonstrate how iPSC transcriptome data from a large control cohort such as i2QTL 

can be directly utilized for rare disease identification, even prior to generating disease-

specific differentiated cell types.

The large-scale eQTL maps enabled the generation of a comprehensive colocalization map 

between regulatory variants in human pluripotent cells and complex human traits. We 

annotated over 4,400 GWAS implicated loci (out of the 29,666 assessed loci), originating 

from over 600 traits, to eQTL in iPSCs. We observe unique colocalized loci across a range 

of traits, from physical traits to diseases and lab-measurements, including 836 

colocalizations present exclusively in iPSCs. Among these we found colocalizations for 

developmental traits, such as congenital craniofacial abnormalities, and heritable cancers. 

Lastly, by integrating our colocalization results and rare variants linked to expression 

outliers, we demonstrated prioritization of variants with large impacts on traits measured in 

the UK Biobank.

Overall, the genetic maps and colocalization catalogs generated in this study form a valuable 

reference dataset, further aiding in the interpretation of risk variants in a unique cell type 

relevant for both development, cellular differentiation, cancer and rare disease research. We 

expect that the genetic maps presented here, in combination with the constantly growing 

Bonder et al. Page 9

Nat Genet. Author manuscript; available in PMC 2021 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GWAS and rare disease resources, will reveal missing molecular underpinnings of complex 

and rare genetic diseases and traits manifesting during development.

Online Methods

Dataset information

Within the “Integrated iPSC QTL” (i2QTL) consortium we reprocessed existing and newly 

generated transcriptomic and genomic data from iPSC lines from five studies17–20,56–59. A 

short description is given on each of the analyzed studies in the supplementary methods, and 

in Supplementary Table 1 the references to the data sources are given.

Genotype and RNA data processing

In brief, all data, array-based genotypes, whole-genome sequencing and RNA-sequencing, 

were homogenously reprocessed from the raw data deposited on the respective repositories 

(Supplementary Table 1). Array-based genotypes from all cohorts were quality controlled 

and imputed against a combined reference of UK10K and 1000 genomes. Whole-genome 

sequencing data from HipSci and iPSCORE were jointly reprocessed to perform joint 

variant calling across the two cohorts. RNA-sequencing data were homogenously processed 

with study-level quality control metrics and read mapping using STAR, followed by gene 

and exon expression quantification using featureCounts. Salmon was used to quantify 

transcript levels and ratios, leafCutter was used to quantify splicing levels, and APA ratios 

were quantified as described in Zhernakova et al.3. Full details on the raw data processing 

are provided in Supplementary Methods.

PEER correction and optimization

We used PEER34 to adjust for transcriptome-wide confounding sources of variation. We 

chose to not include known factors when estimating PEER factors, as meta-data were sparse 

and not standardized across studies. We ran PEER (v1.3) on normalized gene-level 

quantifications, considering genes with a TPM > 2. We assessed the impact of the number of 

estimated PEER factors on eQTL mapping as quantified by the number of eGenes detected 

(genes with at least one eQTL at FDR < 5%) (Extended Data Fig. 10). We used 50 PEER 

factors for all analyses, reflecting a compromise between selecting a compact set of factors 

while maximizing eQTL detection power. To rule out that PEER factors themselves are 

subject to genetic regulation, we tested each factor association with genome-wide variants, 

and found no effect (FDR >10%).

Quantitative trait loci mapping

For expression quantitative trait loci (eQTL) mapping, both in cis and trans, we used a linear 

mixed model implemented in LIMIX60 (v2). This model allowed controlling for both 

population structure and repeat lines from the same donor using kinship as a random effect 

component. The kinship matrix was estimated using the identity-by-descent function in 

PLINK (1.07)61, considering independent variants with a MAF ≥5%. Fifty PEER factors, 

derived from gene-level abundance were included as fixed effect covariates in all analyses 

(see previous section). eQTL mapping was performed using log-transformed standardized 

expression levels when considering both gene-level and exon-level data; for the other RNA 
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traits, the ratio-based traits, we used an arcsin-transformation to approximately variance 

stabilize each trait. Significance of the eQTL SNP was assessed using a likelihood ratio test.

To control for multiple testing, we employed an approximate permutation scheme as in 

Ongen et al.62. Briefly, for each gene, we obtained an empirical null distribution of P values 

from 1,000 genotype permutations while retaining covariates, kinship, and expression 

values. Subsequently, we fit a parametric Beta distribution to the most significant P value per 

gene per permutation to interpolate the null distribution. Using this null model, we estimated 

cis region adjusted P values for eQTL lead variants. When multiple features per gene where 

tested, i.e. for transcript-ratio, exon-level, splicing-ratio and APA-ratio cis-eQTL (herein 

features), the FDR was controlled at a gene-level, using an additional Bonferroni correction 

for the number of features per gene. To control for multiple testing across genes, we 

employed Storey’s Q-value procedure63 to control for the genome-wide FDR.

cis-eQTL Mapping—For cis-quantitative trait loci (cis-eQTL) mapping, we considered 

common variants (MAF >1%) in gene-proximal regions (variants within 250 kb of the gene 

body). To limit technical factors of variation, only paired-end stranded European samples 

were used (n = 716 donors, n = 932 lines). Significant eQTL were reported at a gene-level 

FDR < 5%.

For all RNA traits, equivalent trait inclusion criteria were used for genetic analyses. 

Considered were traits that were expressed, i.e. non-zero expression, in at least 25% of the 

samples. For the splicing and APA-eQTL, we required at least 50% of the samples to have a 

non-zero and non-NA ratio. The assessed genes per eQTL type are summarized in 

Supplementary Table 17.

For gene-level eQTL, we additionally tested for higher order eQTL using iterative eQTL 

mapping. Lead eQTL variants were accounted for as covariate in subsequent mapping 

iterations until no additional independent cis-eQTL were identified (Extended Data Fig. 2).

Using information from GTEx, BIOS and results from previous iPSC eQTL studies, we 

assessed the replication and annotated the identified cis-eQTL. See Supplementary Methods 

for details including alternative replication strategies using MASHR.

Trans-eQTL mapping—Trans-eQTL were identified using an analogous approach as for 

cis-eQTL mapping, considering common variants (MAF >1%) in gene-distal regions defined 

as at least 2.5 Mb upstream and downstream of the gene transcription start and end sites. 

Given the potentially large number of tests when assessing all variant gene pairs in an 

exhaustive manner, we chose to limit the trans-eQTL tests to the union of cis-eQTL lead 

variants discovered in our study and known GWAS-implicated variants (obtained from the 

NHGRI-EBI GWAS catalog), yielding 115,709 variants to test for trans-eQTL. These 

variants were tested for association with 17,039 expressed protein coding genes (TPM ≥ 1 in 

at least 25% of the samples). To maximize power for the trans-eQTL discovery we used all 

samples from European ancestry (n = 743, lines = 1,120), and given the even larger number 

of tests for the other RNA-traits and the larger impact of sequencing difference we chose not 

to test trans-eQTL on other RNA-traits.
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To reduce the possibility of spurious associations, a more conservative quantile 

normalization to a Gaussian distribution was employed, and we included the lead cis-eQTL 

variant as additional fixed effect covariate in the model. To avoid spurious associations 

caused by read cross-mapping64, we excluded gene combinations with high sequence 

similarity from the trans analysis. Briefly, we used primary and secondary mappings of the 

RNA-seq reads to the genome to construct such a black-list. Any secondary mapping to 

another gene was reason to exclude the specific gene pair for trans-eQTL mapping (n = 

66,964 gene pairs, Supplementary Table 18). This cross-mapping black-list was obtained 

based on all paired-end stranded data only (Supplementary Table 2). Additionally, we 

excluded variants within the HLA region, due to its complex LD structure.

We considered the left out RNA-seq samples, single-cell RNA-seq data from the Cuomo et 

al.8 differentiation study and DNA methylation information on the HipSci samples to assess 

the replication of the discovered trans-eQTL effects. For details see Supplementary 

Methods.

Outlier analysis

Complementary to eQTL analyses of common variants (MAF >1%), we considered effects 

of rare variants linked to transcriptomic outliers. Based on featureCount gene quantifications 

(log TPM), we considered autosomal protein-coding and long non-coding RNA genes for 

outlier analysis. Cell lines from donors with predicted ancestry other than European super-

population were discarded, and we additionally limited the analysis to lines with paired-end 

RNA-seq data. Genes were then filtered for minimal expression, defined as gene expression 

TPM>0 in 50% or more in each study.

To adjust for transcriptome-wide confounding sources of variation, PEER34 correction was 

run on the filtered data as described above (N = 50 PEER factors). The resulting residual 

expression profiles were scaled and centered (Z-score normalization). As additional quality 

control step, we tested for consistent over or under expression, i.e. cell line found to be the 

most under- or over-expressed cell line across hundreds of genes. Cell lines with expression 

abs(Z-score) >2 in more than 100 genes were discarded from subsequent analyses (N = 21 

lines). Finally, cell lines were retained if WGS was available in addition to RNA-seq, leaving 

data from the HipSci and iPSCORE projects only. After applying these quality control steps, 

17,514 genes and 425 cell lines remained for further analysis.

To prepare the WGS genotype data SNP and indel variants for the analysis, variants were 

filtered based on QVSR tranche 99%. The software vcfanno65 (V0.2.9) was used to annotate 

the WGS VCF with minor allele frequency from gnomAD66 (version r2.0.2), and CADD 

score from CADD67 (version 1.3). Variants were filtered on a per sample level to retain 

variants with at least one alternate allele. Variants were then linked to genes using the 

bcftools68 (V1.11) window command, selecting a maximum distance of 10 kb based on the 

Ensembl 75 GTF reference. A separate file was produced for each cell line consisting of the 

following columns: cell line ID; gene ID; chromosome; position; gnomAD MAF; CADD 

(phred); CADD (raw).
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To facilitate comparative analysis using GTEx v7 tissues, i2QTL data were reprocessed to 

match the GTEx v7 pipeline to limit technical variation. For this specific analysis, RNA-

SeQC (v1.1.8) expression quantification was used, and a separate PEER analysis was run to 

correct for technical variation, including known factors. As before, the top 50 PEER factors 

were selected to adjust the i2QTL data. For GTEx v7 tissues with ≤ 150 samples, 15 PEER 

factors were used; for tissues with ≤ 250 samples, 30 PEER factors; for tissues with >250 

samples, 35 PEER factors were used. GTEx v7 WGS variants were annotated with MAF 

from gnomAD (version r2.0.2) and CADD scores from CADD (version 1.3) using vcfanno. 

GTEx v7 tissue samples with expression abs(Z) >2 in more than 100 genes were discard. 

GTEx tissues were considered only if there at least 50 samples were available (N tissues = 

35). Residuals expression profiles from PEER adjustment were centered and scaled to 

generate expression Z-scores.

Outlier enrichment—We considered the subset of lines with both RNA-seq and WGS 

available (N = 425 cell lines after filtering, Supplementary Table 2), and focused on variants 

up to 10 kb upstream and downstream protein-coding and long non-coding RNA genes. 

Gene expression outliers for a given gene were defined as samples with a minimum gene 

expression Z-score (Z-score < −2, under-expression outlier) or a maximum gene expression 

Z-score (Z-score > 2, over-expression outlier). Separate scores were computed for gene-level 

under-expression outliers and over-expression outliers. The reported enrichment score were 

calculated as the ratio of the proportion of outlier lines with variants across several MAF/

CADD bins compared to non-outlier lines. Specifically, enrichment here refers to the 

relative risk:

RR =
(OV

O )

(O′V
O′ )

,

where OV denotes the number of outlier lines with ≥1 variant in or near (± 10 kb upstream 

or downstream of gene body) a gene passing given MAF and CADD thresholds, O is the 

total number of outlier lines, O′V is the number of non-outlier lines with ≥1 variant in/near 

gene passing given MAF and CADD thresholds, and O′ is the number of non-outlier lines. 

The relative risk is reported with 95% Wald confidence intervals derived from the 

asymptotic distribution of the log relative risk:

log log (SE) = 1
OV − 1

O + 1
O′V − ( 1

O′ ) .

The bounds on the confidence interval are defined as follows:

maxCI = RR ∗ exp exp 1.96 ∗ logSE

minCI = RR ∗ exp − 1.96 ∗ logSE .
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The analysis was performed separately for SNP, indel as well as SV variants, and across 

different MAF bins (from common to rare) and CADD bins (progressively more deleterious 

variants). Expression outlier direction (i.e. under-expression, over-expression) was tested 

separately. For example, for under-expression outliers, an outlier line was defined as the 

least-expressed line in a given gene that also has a Z-score < −2. Consequently, a gene is 

defined to have at most one outlier line per outlier direction. Non-outliers were defined as 

lines with a Z-score between −1 and 1 for a given gene. Genes were discarded if there was 

not at least one outlier and one non-outlier line matching MAF and CADD thresholds. The 

outlier analysis was performed for i2QTL and GTEx data.

Colocalization of GWAS loci with iPSC eQTL

For colocalization analyses, we considered two sets of curated GWAS summary stats: i) UK 

Biobank (UKBB) rapid GWAS results (N = 1,740 traits)69, and ii) publicly available GWAS 

results obtained from the NHGRI-EBI GWAS catalog30 and PHENOMESCANNER V242 

(N = 350 studies), obtained through a wide variety of studies and consortia43. For each trait 

and study, we iteratively selected loci with a GWAS P value of < 5 × 10−8 and located at 

least 1 Mb away from previously selected (more significant) loci for the same trait and study. 

Among these GWAS loci, we selected those with at least one significant cis-eQTL, for any 

the quantified RNA traits, within 10 kb of the lead GWAS variant at FDR < 5%. Owing to 

the vast number of SNPs and traits in the UKBB, we only tested UKBB GWAS hits for 

colocalization if the lead GWAS hit overlapped with a known eQTL, for computational 

feasibility. Given the presence of several different types of eQTL and abundant measured 

features for each of these eQTL types, it was possible for a single GWAS locus to be tested 

for colocalization with a number of eQTL traits originating from single or multiple genes.

We then tested each pair of GWAS locus and eQTL feature in our set. For each locus pair, 

we considered variants that were contained in both the GWAS and eQTL summary statistics. 

Loci with less than 5 common SNPs were discarded. We additionally discarded loci for 

which the minimal GWAS P value for the intersecting variants was greater than 5 × 10−6 and 

loci for which the adjusted eQTL P value was greater than 0.05.

LD between SNP pairs was estimated based on 1000 Genomes phase 3 (2,504 individuals) 

data55. We then applied FINEMAP40 separately to the GWAS and eQTL summary data to 

estimate posterior probabilities of causality for each SNP, and we combined these 

probabilities to compute a colocalization posterior probability (CLPP) following the 

approach outlined in eCAVIAR40,41,43.

We note that there is a relationship between the LocusCompare CLPP scores and the number 

of intersecting variants that are observed at a locus. To improve the comparability of 

colocalization events from different studies, we employed an adaptive threshold, which 

accounts for the observed differences in the number of overlapping variants. Specifically, we 

considered a locus to be colocalized if it passed one of three CLPP and #SNP thresholds; 1) 

5 or more variants at a locus: CLPP of 0.5; 2) 10 or more variants at the locus: CLPP of 0.1; 

25 or more variants at a locus: CLPP of 0.01. Further details and a discussion on the relation 

between CLPP and number of SNPs can be found in Hormozdiari et al. (2016)41.
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To compare colocalization results between GTEx tissues and i2QTL, we obtained 

colocalization results from LocusCompare and applied the same filtering strategies to select 

high-confidence colocalizations. Overlap of colocalization events between GTEx tissues and 

i2QTL were assessed based on the level of study, trait and eGene pairs.

To link trans-eQTL to GWAS loci we performed an extended trans-eQTL mapping linking 

all variants within 250 kb around the identified trans-eQTL variants to the identified 

downstream genes. This trans-eQTL information was subsequently used to perform a 

colocalization analysis as detailed above for cis-eQTL. For details see Supplementary 

Results.

Annotating rare variants using UKBB GWAS summary statistics

To test for differences in outlier and non-outlier associated rare variants and risk for disease 

and traits, we overlapped i2QTL WGS variants (as described in Outlier Analysis above) with 

those measured or imputed in UKBB GWAS69. Specifically, we considered variants with 

gnomAD MAF <1% and CADD >0. Multi-allelic variants were discarded. Variants were 

retained if they were observed in only one i2QTL individual; for outlier-associated variants. 

This has the effect of isolating the set of variants putatively driving observed outlier gene 

expression (i.e. should the same variant be observed in both an outlier and non-outlier 

sample, by definition this would suggest that the variant is less likely to be causing the 

observed outlier expression). From this list of unique variants, outlier-associated variants 

were identified separately for under and over-expression outlier samples (therefore, there 

could be a maximum of two outlier samples per gene).

For each gene with ≥ 1 outlier sample, non-outlier-associated variants were chosen for each 

non-outlier sample if a variant had a CADD score within a range ± 5 of outlier variants. 

Non-outlier samples were defined as samples with expression absolute Z-score < 1 for a 

given gene. If a non-outlier sample had a larger number of variants than the outlier sample, 

variants were randomly downsampled to match the number of outlier variants. If a non-

outlier sample had a less or equal number of variants than the outlier sample, all variants 

were chosen for that sample. This process was performed separately for each gene and each 

outlier direction (i.e. under-expression, over-expression). Integrating co-localization results, 

we subset to variants linked to the set of genes which showed any evidence of co-

localization (CLPP score > 0). The final list of variants was then linked to UKBB GWAS 

effect size and P values for each trait in UKBB GWAS Phase 1. After intersecting these 

datasets, we obtained 10,103 outlier- and non-outlier associated variants linked to 779 genes 

and 2,419 traits.

Data availability

All data used in the study are available via SRA, dbGaP or ENA; the full data availability is 

provided in Supplementary Table 1. Supplementary Table 2 provides sample description on 

the samples used in the study. Full summary statistics on significant eQTL can be obtained 

from https://zenodo.org/record/4005576 (doi:10.5281/zenodo.4005576). The colocalization 

results are accessible from the LocusCompare portal (http://locuscompare.com). We used 

eQTL summary statistics from GTEx (v7, available at: https://gtexportal.org/home/datasets); 
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the BIOS cohort (available at: https://genenetwork.nl/biosqtlbrowser/). We further used 

GWAS summary statistics from the NHGRI-EBI GWAS catalog (Ensembl V92, available at: 

https://www.ebi.ac.uk/gwas/); Phenome scanner v2 (available at: http://

www.phenoscanner.medschl.cam.ac.uk/); and GWAS studies aggregated in the 

LocusCompare study. Via LocusCompare we downloaded the GTEx colocalization results. 

Other external data sources are referenced in Methods and the main text.

Code availability

Code produced for the analyses described in this manuscript is available on GitHub from the 

following URLs:

• eQTL mapping: https://github.com/PMBio/hipsci_pipeline/tree/master/

limix_QTL_pipeline

• gene expression outlier analysis: https://github.com/csmail/i2qtl_outlier

• colocalization analysis: https://github.com/mikegloudemans/ipsc-coloc.
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Extended Data

Extended Data Fig. 1. Replication and consistency of effect sizes of eQTL discovered in the the 
original iPSC studies and replicated in i2QTL
Shown are scatter plots between eQTL effect size estimates in this study (i2QTL, x-axis) 

versus effect size estimates from previous studies (y-axis). Dots correspond to eQTL 

discovered in the respective study. Black: eQTL with consistent effect direction. Red: eQTL 

with discordant effect direction. Replication defined at nominal P<0.05 in i2QTL. A. 

Replication of HipSci in i2QTL. 70.4% of the effects are replicated; 98% of the eQTL have 

Bonder et al. Page 17

Nat Genet. Author manuscript; available in PMC 2021 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



concordant effect direction. Differences in the approach for estimating effect sizes result in 

the observed variation. B. Replication of iPSCORE in i2QTL. 81% of the effects are 

replicated; 98.7% of the eQTL have concordant effect direction. Notably only SNP eQTL 

were considered whereas SVs were not considered for replication. C. Replication of 

GENESiPS in i2QTL; 76.7% of the effects are replicated; 99.5% of the effects have 

concordant effect direction. D. Replication of PhiLiPS in i2QTL. 76.8% of the effects are 

replicated; 97.5% of the effects have concordant effect direction.

Extended Data Fig. 2. Identification of multiple independent eQTL for the same gene using 
stepwise regression
A. Histogram of the number of independent eQTL effects identified for individual eGenes. 

Up to 12 independent effects were identified. B. Zoom-in view displaying the number of 

eGenes with 5 to 8 independent effects. C. Zoom-in view displaying the number eGenes 

with 8 to 12 independent effects.
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Extended Data Fig. 3. Sharing of lead eQTL signals between cell types and studies, considering 
i2QTL, GTEX and the iPS differentiation study from Cuomo et al.
A. Pairwise sharing of lead eQTL signals in i2QTL (iPSC) and 48 GTEx tissues. Shown is 

the fraction of shared eQTL signals relative to the total number of common genes and lead 

eQTL variants in the two respective maps. Shared eQTL signals are defined as eQTL with 

concordant effect direction and absolute effect size within a factor of two (Methods). B. 

Distribution of pairwise sharing as in A of iPSCs versus GTEx tissues (blue, N=48 

comparisons) versus pairwise sharing between GTEx tissues (red, N=2,401 comparisons).C. 

Pairwise sharing of lead eQTL signals in i2QTL (iPSC) and 48 GTEx tissues as in A, 

however additionally including single-cell eQTL form Cuomo et al. in iPSCs (iPSCsc), 

differentiated cell types (mesendo, endoderm). D. Distribution of pairwise sharing as in C, 

considering iPSCs and differentiated cell types (bulk left, followed by iPSC single cell), 

mesendoderm (cyan), and endoderm (green) versus GTex tissues (N=48 comparisons). 

During differentiation genetic signals in iPSC become more similar to those in GTEx 

tissues. Data in panels B and D are displayed as violin- and boxplot with the midpoint 

corresponding to the median, the lower and upper edges of the box to the first and third 

quartiles and the whiskers corresponding to the IQR ×1.5.
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Extended Data Fig. 4. Properties of distal (trans) gene-level eQTL.
A. Dot plot of N=862 trans-eQTL detected in iPSC (FDR<10%). Dots correspond to 

individual trans-eQTL, with color denoting the variant category (blue: cis-eQTL, red: 

GWAS variant, purple: cis-eQTL and GWAS variant). </p> B. Breakdown of unique trans-

eQTL variants (N=193) across different variant annotations. Darker shaded colors denote 

trans-eQTL linked to variants that have more than one annotation; lighter shades correspond 

variants that can be unique assigned to a given variant category. C. Mediation analysis of 

trans-eQTL, considering variants that are linked to a cis eQTL. The outer pie denotes the 

annotation of the underlying trans variant: GWAS only variants (n=7, white), cis eQTL 

variants (n=186, dark-blue). The inner pie displays results from the mediation analysis for 

individual trans variants: n=7 trans eQTL are exclusively linked to GWAS variants and 

hence not mediated (white, “GWAS only trans-eQTL”); n=58 trans eQTL variants are not 

significantly linked to mediation with any RNA trait (“Non-significant link to any cis-

eQTL”); 86 are exclusively linked to gene-level abundance (“Only linked to gene-level cis-

eQTL”), 7 are exclusively linked a RNA trait other than gene-level abundance (“Linked only 

to non gene-level cis-eQTL”); 35 are linked to gene-level abundance and at least one 

additional RNA trait(“Linked both to gene-level and other level cis-eQTL”).
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Extended Data Fig. 5. Analysis of the trans-eQTL hotspot at ELF2
A. Schematic representation of the genetic loci around ELF2 (left) and NAA15 (right). SNPs 

are annotated by evidence of cis-eQTL regulation on different traits (blue: transcript-ratio 

eQTL on ELF2, purple: gene-level eQTL on EFL2, green: splice eQTL on ELF2, brown: the 

APA eQTL on NAA15). B. LD structure between cis-eQTL variants implicated in the 

hotspot, annotated by cis-eQTL type as in A. C-F. Lead cis-eQTL effects by RNA trait for 

ELF2 and NAA15 across SNPs linked to downstream trans-eQTLs(n=682 samples). Data 

are represented as a violin- and boxplot with the midpoint corresponding to the median, the 

lower and upper edges of the box to the first and third quartiles, the whiskers represent the 

interquartile range ×1.5. C. Splicing cis-eQTL on ELF2. D. Gene level cis-eQTL on ELF2. 

E. Transcript-ratio cis-eQTL on ELF2. F. Alternative polyadenilation cis-eQTL on NAA15. 

G. Co-expression network of genes that are controlled by the trans-eQTL linked to the 

hotspot at ELF2 (N=37 genes), including ELF2 itself (center). Color of the bounding box 

around Genes denotes the cis-eQTL variant that drives the corresponding trans effect (colors 

as in D-G). Genes with multiple trans regulators are depicted with multiple colored rings. H. 
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Replication of trans effects at ELF2 in a single cell differentiation study (Cuomo et al.). 

Shown are trans-eQTL effect sizes (beta’s) for the 12 ELF2-linked trans targets that show 

significant replication (defined as P<0.05 and consistent effect direction) in any of the 

Cuomo et al tissues. From left to right: eQTL effect size in; the i2QTL study (discovery); in 

undifferentiated iPSC profiled using scRNA-seq; in mesendoderm profiled using scRNA-seq 

and in definitive endoderm profiled using scRNA-seq. Significant replication are indicated 

with a red asterisk.
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Extended Data Fig. 6. Enrichment for rare, deleterious SNPs in iPSC and GTEx tissues
Comparison of enrichments for singleton, highly-deleterious (CADD > 25) SNPs in iPSC 

versus GTEx v7 tissues analogous to Fig. 2B, however with an additional adjustment for the 

number of expressed genes. Displayed are enrichments for 10,000 random draws of 50 

samples, controlling for the number of expressed genes (genes subset at a fixed number 

across tissues, N=500 genes). Strongest enrichment is observed in iPSC. The data are 

represented as a boxplot where the middle line corresponds to the median, the lower and 

upper edges of the box corresponding to the first and third quartiles, the whiskers represent 

the interquartile range (IQR) ×1.5 and beyond the whiskers are outlier points.
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Extended Data Fig. 7. Expression level of rare disease genes in iPSC versus GTEx tissues
A. Distribution of gene expression level of XX rare disease genes (log10(FPKM+1)) in 

i2QTL iPSC and 17 GTEx tissues with a median expression level of at least 1 FPKM (red 

dashed line). Expression in i2QTL highlighted in teal, GTEx tissues in yellow. Disease 

genes are expressed in iPSCs and only difficult to biopsy tissues in GTEx display higher 

expression levels. n=2,952 biologically independent samples. Data are represented as 

boxplots with the middle line corresponding to the median, the lower and upper edges of the 

box to the first and third quartiles, the whiskers to the interquartile range (IQR) ×1.5. B. 
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Expression level of genes in different curated gene lists, comparing i2QTL iPSC (left), all 

GTEx tissues (middle) and GTEx whole blod (right). Shown is the fraction of genes in each 

category for two expression bins: [0,1) FPKM expression absent or lowly expressed; [1,1e

+12) FPKM gene expressed.

Extended Data Fig. 8. Additional results from the colocalization analysis of eQTL and GWAS 
traits
A. Summary of colocalization results for the Coronary artery Disease GWAS (van der Harst 

et al 2018). 36 out of 93 GWAS loci were identified as colocalized with an eQTL of at least 

one RNA trait (38.7%). Shown are the number of colocalization events for eQTL of different 

RNA traits. From left to right: any eQTL type (All), gene-level eQTL (Gene), exon eQTL 
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(Exon), transcript eQTL (Transcript), splicing eQTL (Splicing), APA eQTL (APA). The 

number of GWAS colocalization that are uniquely linked to a given RNA trait eQTL are 

displayed using a triangle and the total number of colocalizations per trait is depicted as a 

circle. B. Colocalization between a gene-level eQTL for POLR1B and a GWAS hit 

(rs7586668:C>T) for Height. Left: Manhatten plots displaying the local association signal 

for the eQTL on POLR1B (bottom) and the GWAS signal on Height (top). Right: Scatter 

plot of negative log P-values for the GWAS signal (x-axis) for BMI versus the POLR1B 
eQTL signal (y-axis) for the corresponding region.

Extended Data Fig. 9. Enrichment for large-effect outlier-associated rare variants in colocalized 
genes
Absolute effect size of GWAS trait associations for iPSC outlier- and non-outlier-associated 

variants, considering genes with varying degree of evidence for colocalization with common 

eQTL variants.
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Extended Data Fig. 10. Optimization of the number of PEER factors to adjust for confounding 
expression heterogeneity.
Shown is the number of genes with at least one gene-level eQTL (eGenes) for the top 3,000 

highest expressed genes in iPSC for increasing number of PEER factors. PEER factors are 

adjusted for as additional fixed effect covariates. The vertical red line denotes the number of 

PEER factors considered in all i2QTL analyses.
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Figure 1. Map of cis genetic regulation in human induced pluripotent cells.
A. Comparison of gene expression profiles of iPSCs vs. GTEx (v7) tissues. Shown are the 

first two MDS components based on gene-level RNA abundance. B. Comparison of the 

number of discovered eGenes as a function of sample size considering this study (i2QTL), 

existing iPSC studies (HipSci, iPSCORE, GENESiPS, PHILIPS, Banovich), GTEx (color 

code as in A) and a blood eQTL meta-analysis (BIOS). C. Breakdown of the number of 

RNA traits with a cis-eQTL. The bar plots display both the number of individual RNA traits 

with a cis-eQTL (grey) as well as the number of genes with at least one association (eGenes, 

black, aggregated across RNA traits per gene). D. Pairwise replication of genetic effects 

between RNA traits. Shown is the fraction of cis-eQTL discovered for each trait (rows, FDR 

< 5%) with replicated effects in a second trait (columns, FDR < 10%; assessing pairwise 

replication across RNA traits per gene). E. Comparison of the number of protein-coding 

genes with an eQTL (eGene), genes without eQTL (no eGene) and genes not tested for 

eQTL (not tested) in Fibroblasts (orange), the combination of the GTEx tissues and BIOS 

(black) and i2QTL iPSCs (blue). The fraction of protein-coding (0.5%) eGenes without 

previous evidence for an eQTL in BIOS & GTEx is shown in red.
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Figure 2. Linking rare variants to gene expression outliers.
A. Enrichment of deleterious rare SNPs and indels in samples with gene expression outliers. 

B. Comparison of enrichments for singleton, highly-deleterious (CADD > 25) SNPs in 

iPSCs versus GTEx v7 tissues (adjusted for differences in sample size; Methods). Shown are 

enrichment scores for 10,000 random draws of 50 samples. The strongest enrichment is 

observed in iPSCs. N = 7,756 biologically independent samples. The data are represented as 

a boxplot where the middle line corresponds to median, the lower and upper edges of the 

box corresponding to first and third quartiles, the whiskers represent the interquartile range 

(IQR) × 1.5 and beyond the whiskers are outlier points. C. Odds ratios comparing gene and 

splicing outliers in validated rare disease genes compared to non-disease genes (P values: 

Gene/splicing = 0.0009; Gene = 0.002; Splicing = 0.01). Outliers in rare disease patient 

samples are observed in known disease genes at a higher rate. P values computed using two-

sided Fisher’s exact test. Error bars represent 95% confidence interval. D. Example of outlier 

expression in two validated rare disease genes (BBS2 for Bardet-Biedl syndrome (top) and 

CACNA1A for hereditary cerebellar ataxia). Rare disease cases indicated in red, reference 

distribution shown in grey. E. Integrating splicing outliers in blood and iPSCs to reduce the 

total number of candidate disease genes in a rare disease patient.
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Figure 3. Colocalization of disease and traits variants with iPSC eQTL.
A. Overview of colocalization events with iPSC eQTL, depicting the total number of 

colocalization events across 350 GWAS and UKBB, with colors encoding the trait 

categories. B. Colocalization events for each cis-eQTL type, displaying the number of 

GWAS loci with colocalization events that are either specific to a given eQTL type (light 

color; not detected by any other eQTL type) or shared with at least one other eQTL type 

(dark color). C. Overlap between i2QTL and GTEx GWAS colocalization events for gene-

level eQTL, considering the number of unique gene-colocalization pairs. D. For the Howsen 
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et al. coronary artery disease GWAS, iPSC eQTL resulted in an 50% increase in the number 

of colocalization events with disease loci compare to GTEx eQTL alone. iPSC associations 

in orange GTEx in blue, GTEx tissues with 2 or more genes implicated in the dashed box 

below.
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Figure 4. Integration of common-variant colocalization analyses with outlier-associated rare 
variants.
A. Negative log10 P values of GWAS trait associations for iPSC outlier- and non-outlier-

associated variants, considering genes with varying degree of evidence for colocalization 

with common eQTL variants. Genes are stratified by colocalization posterior probability 

(CLPP) score. Outlier-associated variants have overall more significant effects in GWAS in 

which there was evidence for colocalization of the same genes compared to matched non-

outlier variants, increasing with colocalization probability (CLPP). Dots denote median 

values; error bars indicate 95% of empirical data range. P values from one-sided Wilcoxon 

test (P values: CLPP >0, P = 1.3 × 10−02; CLPP ≥0.01, P = 7.2 × 10−04; CLPP ≥0.1, P = 4.0 

× 10−18; CLPP ≥0.2, = 7.1 × 10−17). B. Example gene locus with two outlier-associated 

variants highlighted (blue highlight), which exhibit the largest protective effect sizes among 

all outlier and non-outlier samples (gray highlight) mapping to the gene. Color denotes LD 

(1000 Genomes European55) relative to the lead variant (smallest P value) (purple diamond) 

in HSD17B12 gene locus. C. Example gene locus highlighting an outlier-associated variant 

(blue highlight) with the largest protective effect sizes among all outlier and non-outlier 

samples (gray highlight) mapping to the DENND1B gene. Points are colored by LD (1000 

Genomes European55) relative to lead variant (smallest P value) (purple diamond) in gene 

locus. D. P value rank for SNP rs11589930:C>A across all UKBB Phase 1 GWAS (N = 

2,419). Red dashed line indicates Bonferroni P value cutoff.
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