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Abstract: 33 

 34 

Mitochondrial DNA (mtDNA) variants influence the risk of late-onset human diseases, 35 
but the reasons are poorly understood. Undertaking an hypothesis-free analysis of 5,689 36 
blood-derived biomarkers with mtDNA variants in 16,220 healthy donors, here we show 37 
that variants defining mtDNA haplogroups Uk and H4 modulate the level of circulating 38 
N-formylmethionine (fMet), which initiates mitochondrial protein translation. In 39 
human cybrid lines, fMet modulated both mitochondrial and cytosolic proteins on 40 
multiple levels - through transcription, post-translational modification, and proteolysis 41 
by an N-degron pathway - abolishing known differences between mtDNA haplogroups. 42 
In a further 11,966 individuals, fMet levels contributed to all-cause mortality and the 43 
disease risk of several common cardiovascular disorders. Together these findings 44 
indicate that fMet plays a key role in common age-related disease through pleiotropic 45 
effects on cell proteostasis. 46 

 47 

Introduction 48 

 49 
The 16.5kb human mitochondrial genome (mtDNA) encodes 13 proteins of the electron 50 
transport chain (ETC) and the tRNA and rRNA machinery necessary for their transcription 51 
and translation in situ1. Genetic diversity in the maternally inherited2 mtDNA with high 52 
mutation rates3 has been effectively used for studies of human evolution and phylogenies4–7. 53 
Because of the ubiquitous and essential roles of mtDNA encoded proteins in cellular 54 
metabolism8, mtDNA sequence variations have been examined extensively for their effects 55 
on cellular metabolism9–12 and human health and diseases.  56 
 57 

A compendium of rare mutations in mtDNA genes encoding ETC subunits have been 58 
identified to cause severe multisystemic diseases13,14, commonly due to the primary 59 
biochemical consequences of the mutations on oxidative phosphorylation (OXPHOS) and the 60 
synthesis of adenosine triphosphate (ATP)15. mtDNA variations and somatic mutations have 61 
also been shown to be important in the pathology of cancers16–18 and inducing the Warburg 62 
effect19. Common mtDNA variants with less severe phenotypes have been shown to affect 63 
the risk of complex late-onset human diseases20, including neurodegenerative diseases like 64 
Alzheimer’s disease 21 and Parkinson’s disease22, cardiovascular diseases like ischemic 65 
stroke23, myocardial infarction24 and coronary artery disease25, and metabolic diseases like 66 
type 2 diabetes26,27. In some cases, mtDNA haplogroups have pleiotropic effects on multiple 67 
diseases, while in others they have opposite effects between diseases 28,29.  68 

 69 
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The relevance of mtDNA variations to health and disease is apparent30, but 70 
understanding the molecular underpinnings of genetic associations on the mtDNA is not 71 
straightforward, especially when they do not directly implicate OXPHOS31, implicating 72 
hitherto unknown mechanisms. Studies have identified mitophagy due to accumulation of 73 
reactive oxygen species (ROS)32,33 and impairment of intra-mitochondrial protein 74 
synthesis34,35 as potential mechanisms behind mtDNA associations with diseases, in addition 75 
to those that directly impact ETC complex functions and OXPHOS efficiency32,36. Most of 76 
the mtDNA associations examined, however, are rare variations with large effects on rare and 77 
severe diseases. Functional analysis of mtDNA variations altering risks to common diseases 78 
are relatively underexplored, and more difficult due to their smaller effect sizes.   79 

 80 
To bridge this gap and discover new ways that mtDNA variants contribute to 81 

physiology and complex diseases, we took a phenome-driven and unbiased approach to 82 
survey the impact of mtDNA polymorphisms on a wide set of 5,689 molecular and metabolic 83 
traits beyond ATP synthesis (Figure 1A). Using mtDNA variations identified from whole-84 
genome and whole-exome sequencing in 16,220 healthy individuals, we found novel 85 
associations between mtDNA variations in Haplogroup Uk with the metabolite N-86 
formylmethionine (fMet). We followed up on this finding with analysis of mtDNA effects on 87 
gene expression in 44 tissues from the GTEx Consortium37, and dissected the molecular 88 
consequences of the associations using human cytoplasmic hybrid (cybrids) cell lines, 89 
including the biogenesis of mitochondrial complexes, efficiency of OXPHOS, and both 90 
cytoplasmic and intra-mitochondrial protein synthesis and degradation. Finally, we examined 91 
the relevance of our findings in health and disease by verifying the effects of fMet and 92 
mtDNA Haplogroup Uk in disease and longitudinal cohorts. Our findings explain how 93 
common mtDNA variants can impact cellular proteostasis, providing a hitherto unknown 94 
genetic checkpoint and an easily measured circulating biomarker for late-onset diseases.   95 
 96 
Results 97 
 98 
mtDNA genotyping in 16,220 individuals  99 
 100 
To identify mtDNA polymorphic sites for association analysis, we obtained short-read 101 
whole-genome sequencing (WGS, mean coverage = 26.8x, SD = 3.1x, in N=12,111 102 
participants) and whole-exome sequencing (WES,  mean coverage = 48.0x, SD = 8.6x, in 103 
N=4,470 participants) data in a total of 16,220 unrelated European descent participants in the 104 
INTERVAL study38 (Supplementary Figure 1). We recovered a mean coverage of 2022.6x 105 
(SD = 566.5x) and 30.6x (SD = 13.5x) on the mtDNA from WGS and WES respectively, and 106 
identified 5,247 homoplasmic variants from WGS and WES (of which 5,161 are single 107 
nucleotide polymorphisms [SNPs]) using GATK HaplotypeCaller v4 39 (Supplementary 108 
Figure 1).  109 
 110 

We took rigorous steps to avoid spurious variant calls, leveraging reference mtDNA 111 
genotyping results from Affymetrix array data to recalibrate genotype quality filters, and high 112 
coverage on mtDNA from the WGS for identifying loci with high frequency of heteroplasmic 113 
variants that may be misidentified as homoplasmic (Supplementary Figure 2). For 114 
subsequent analyses we considered the 396 high-confidence SNPs that could be accurately 115 
identified from both WES and WGS; of these, 184 were common with minor population 116 
allele frequency (MAF) greater than 0.01 (Supplementary Figure 2, Supplementary Table 117 
1). We use these 184 SNPs, consistently in all following analyses on the INTERVAL cohort. 118 
Principal component analysis using common mtDNA SNPs demonstrated the expected 119 
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clustering of individuals by their mitochondrial haplogroup (Figure 1B), distinct from 120 
population structure identified using SNPs from the nDNA (Figure 1 C,D).  121 

 122 
Common mtDNA variants are associated with blood N-formylmethionine 123 
We considered 5,689 distinct quantitative phenotypes representing a broad spectrum of 124 
biological processes and pathways for association with mtDNA variations. These included a 125 
total of 36 haematological traits, 1,344 small-molecule metabolites and 4,309 proteins 126 
measured in whole blood or plasma using nine high-throughput phenotyping platforms 127 
(Figure 1A, Supplementary Table 2). Many of these measures have been previously 128 
reported to be affected by genetic variants in the nDNA40,41. To specifically investigate the 129 
effect of mtDNA variants on these biomarkers, we tested the association of each of the 184 130 
common mtDNA SNPs with each of the phenotypes using linear mixed models (LMM, 131 
Online Methods)42.  132 
 133 

One metabolite, N-formylmethionine (fMet), was significantly associated with 134 
mtDNA variants (5% false discovery rate [FDR], adjusted for SNPs and phenotypes; 135 
equivalent to P= 1.65x10-7), driven by eight mtDNA SNPs (Figure 2A). These represent 136 
three independent associations (Figure 2B,C), two with increased fMet levels (top SNP 137 
mt.1811A>G in MT-RNR2, MAF= 0.129, P= 3.03x10-10, Beta[SE]= 0.12[0.02], and 138 
mt.1189T>C in MT-RNR1, MAF= 0.073, P= 7.57x10-8, Beta[SE]= 0.13[0.03]), and one with 139 
decreased fMet (mt.3992C>T, T229M in MT-ND1, MAF= 0.02, P= 7.86x10-6, Beta[SE]= -140 
0.19[0.04]). Twenty-eight more mtDNA SNPs reached suggestive levels of association with 141 
one or more of the proteins or metabolites (P≤ 5x10-5, Supplementary Table 3). To test the 142 
robustness of the association with fMet, we first sought to assess the contribution of potential 143 
biological pathways or bacterial exposure that may increase exogenous fMet. Using the 144 
Covariates in Multi-phenotype Studies (CMS)43, we selected informative covariates from 896 145 
metabolites and 36 blood cell measures (which can act as proxies for immune reactions 146 
against infections) and we assessed the association between mtDNA SNPs and fMet 147 
accounting for their contributions. Accounting for these additional covariates increased the 148 
statistical significance of the associations between mtDNA SNPs and fMet levels (e.g. at 149 
mt.1811A>G, CMS P= 4.63x10-18, Beta[SE]= 0.06[0.01]) and identified seven additional 150 
SNPs, yielding a total of 15 fMet-associated variants (Figure 2B). We verified that these 151 
findings are not likely due to mtDNA copy number differences between haplogroups (Online 152 
Methods, Supplementary Figure 3), or artefacts introduced during our processing of 153 
metabolite data (Online Methods, Supplementary Figure 4).  154 

 155 
 We found that 14 of the 15 mtDNA SNPs associated with fMet levels (Figure 2B) 156 
defined a single phylogenetic lineage, super-haplogroup Uk (containing branches Uk1 and 157 
Uk2, Figure 2C,D). This includes two out of the three independent SNPs found to be 158 
associated with fMet, mt.1811A>G, which resides on super-haplogroup Uk, and 159 
mt.1189T>C, which resides on haplogroup Uk1. The remaining SNP mt.3992C>T resides on 160 
the H4 branch of Haplogroup H4’9 44. In a LMM association analysis between all 896 161 
metabolites and haplogroups (instead of mtDNA SNPs), we found that only Haplogroup Uk 162 
was significantly associated with fMet (P= 4.41x10-8, Beta[SE]= 0.25[0.05], at P< 0.0029 = 163 
0.05/17 haplogroups tested). We then reassessed all 15 fMet-associated mtDNA SNPs 164 
conditioning on Haplogroup Uk, and confirmed that associations of SNPs mt.1811A>G 165 
(conditional P= 1.37x10-3, Beta[SE]= 0.10[0.03] and mt.3992C>T (conditional P= 2.57x10-5, 166 
Beta[SE]= -0.18[0.04]) were independent from haplogroup Uk (Supplementary Table 4).  167 
 168 
 169 
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Finally, we sought replication in plasma samples from 11,538 participants from the 170 
EPIC-Norfolk study45. Of the 15 variants associated with fMet levels in INTERVAL, eight 171 
were available in EPIC-Norfolk, with at least one SNP representing each of the three 172 
independent signals (). All eight SNPs replicated the fMet association (P<0.0063 = 0.05/8, 173 
Bonferroni adjusted for eight SNPs tested, Figure 2B).  174 
 175 
Relative contribution of mtDNA and nDNA to fMet levels 176 
 177 

A first question is whether the three mtDNA variants (mt.1811A>G on Uk, 178 
mt.1189T>C on Uk1 and mt.3992C>T on H4) exerted effects on fMet independently of the 179 
nuclear genome. We considered 5,577,007 array-imputed nuclear DNA (nDNA) SNPs with 180 
MAF≥ 0.05, and used a LMM model to test for association with fMet (Online Methods). 181 
This analysis yielded an association at intronic variants (top SNP rs550045, chr9:130477160, 182 
MAF= 0.488, P= 1.14x10-26, Beta[SE]= 0.19[0.02], Figure 3A) in PTRH1, encoding a 183 
human homolog of the yeast peptidyl-tRNA hydrolase 1 gene, with unverified hydrolase 184 
function in humans. Conditional analyses showed that all mtDNA effects on fMet were 185 
independent of the nDNA association at PTRH1 (LMM P< 1.86x10-3; Supplementary Table 186 
4). Further, no significant interaction effects were found between the top nDNA SNP 187 
rs550045 and the top mtDNA SNP mt.1811A>G (interaction P= 0.95, Figure 3B). Overall, 188 
mtDNA SNPs collectively contribute to 5.85% (SE= 1.20%) of variance in fMet levels, as 189 
compared to 14.00% (SE= 3.32%) explained by nDNA SNPs and 59.03% (SE= 1.75%) by 190 
unknown factors captured through all plasma metabolites and blood cell counts (Figure 3C, 191 
Supplementary Discussion).  192 
 193 
fMet modulates mitochondrial function throughout coordination of mitochondrial 194 
transcription-translation  195 
 196 
fMet is the initiation amino acid intra-mitochondrial protein translation46,47. Thus, we 197 
hypothesized that variations in fMet levels would be accompanied by changes in mtDNA 198 
gene expression and proteostasis. We first sought to assess whether fMet-associated 199 
mitochondrial variants impact on intra-mitochondrial gene expression, and assessed mtDNA 200 
SNP effects on mtDNA-encoded transcript levels in 41 primary tissues from a total of 456 201 
unrelated donors of European descent in the GTEx Consortium v7 37 (Figure 1D,E 202 
Supplementary Table 5, Supplementary Table 6, Supplementary Figure 5). Five 203 
transcripts were associated with mtDNA SNPs (MT-ND1, MT-ND3, MT-ND4, MT-CO3, MT-204 
CYB) at 5% study-wide FDR, in 29 out of the 41 tissues tested (Figure 3D, Supplementary 205 
Tables 7,8). Strikingly, the 14 fMet-associated mtDNA SNPs on Haplogroup Uk accounted 206 
for 93.75% of top eQTLs on mtDNA encoded genes at 5% study-wide FDR (30 out of 32, 207 
Supplementary Table 7), with associations with MT-ND3 accounting for 87.5% (28 out of 208 
32, Figure 3E) of the top eQTLs, and associations with genes encoding subunits in Complex 209 
I accounting for 93.3% (28 out of 30).  210 
 211 

We next assessed the effects of fMet levels in vitro using trans-mitochondrial 212 
cytoplasmic hybrids (cybrids). Cybrids were generated by fusing a single donor cell line 213 
depleted of mtDNA 48 with cytoplasts from donors with mtDNA of haplogroups Uk and H 214 
respectively 10 (Figure 4A, Online Methods). We used four transmitochondrial cybrid cell 215 
lines generated from four different healthy donors for each mtDNA haplogroup.  As all 216 
cybrid lines contain the same nuclear DNA so that any functional differences between them 217 
is due to differences in the mtDNA sequence. (Supplementary Table 9). We found higher 218 
fMet levels in Uk cybrids than H cybrids (P = 0.02, two-tailed t-test), in line with our 219 
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population-level findings (Figure 4B). As shown in Figure 4C and Extended Figure 1A, 220 
fMet is synthesized by products of the one-carbon metabolism in mitochondria.  221 

 222 
To determine the source of the different fMet levels between the different mtDNA 223 

haplogroups we first looked for evidence of increased synthesis. This included an analysis of 224 
one carbon metabolism proteins which supplement the metabolites necessary for fMet 225 
synthesis (Extended Data Figure 1A-B); methionyl-tRNA formyltransferase (MTFMT) 226 
(Extended Data Figure 1A-D); and mitochondrial ribosomal proteins (for example, 227 
MRPL19). We found no differences between haplogroup Uk and H cybrids (Extended Data 228 
Figure 1C). Next, we looked for differences in the degradation of fMet by studying levels of 229 
the peptide deformylase (PDF) (Extended Data Figure 1C) and its deformylation bioproduct 230 
formate (Extended Data Figure 1D). Again, we saw no differences between haplogroup Uk 231 
and H cybrids. Next, we explored whether the increased fMet in haplogroup Uk was caused 232 
by the accumulation of fMet due to decreased protein synthesis, by studying serum samples 233 
from patients with a rare genetic mitochondrial disorder caused by a mutation in the mtDNA-234 
encoded gene for tRNA Leucine (m.3243A>G). Despite the known profound defect of intra-235 
mitochondrial translation49,50, we did not observe any difference in fMet levels between the 236 
patient serums and controls (Extended Data Figure 1E), indicating that blocking protein 237 
synthesis itself does not lead to an increase in fMet levels. This raises the possibility of other 238 
sources not known at present, including the release of fMet from unstable supercomplexes51. 239 

 240 
Our findings raised the possibility that previously reported differences in intra-241 

mitochondrial protein synthesis between the haplogroups H and Uk10 could be accounted for 242 
by the observed differences in fMet. In previous work, increasing fMet in fibroblasts by over-243 
expressing MTFMT also decreased intra-mitochondrial protein synthesis52. In keeping with 244 
this hypothesis, treating the cybrid lines with exogenous fMet at a similar concentration seen 245 
in plasma significantly increased the intracellular fMet levels ~1.19-fold (Extended Data 246 
Figure 2A).  This was similar to the fold-differences observed in INTERVAL between the 247 
individuals carrying mtDNA SNPs alleles from haplogroup Uk as compared to those carrying 248 
mtDNA SNP alleles from haplogroup H (fold change = 1.25, SE=0.05, P= 1.7x10-7, 249 
Extended Data Figure 2B). This increase significantly decreased intra-mitochondrial protein 250 
synthesis in the cells of both haplogroups (P = 0.04, 2-way-ANOVA; Figure 4D).  251 

 252 
This was accompanied by increased levels of MT-CO3 transcripts (Figure 4E) 253 

(consistent with eQTL analysis in GTEx as shown in Extended Data Figure 3), which is the 254 
characteristic compensatory response to reduced intra-mitochondrial translation49. We 255 
therefore asked if altering fMet levels through downregulation of mitochondrial methionyl-256 
tRNA formyltransferase (MTFMT) using siRNA (Extended Data Figure 4A) would result 257 
in a similar compensatory response. Downregulation of MTFMT reduces fMet and the 258 
synthesis of fMet-dependent proteins in complex I and IV 46,47, resulted in lower levels of the 259 
fMet-dependent protein MT-CO1 (Extended Data Figure 4A) and a parallel increase in 260 
transcript levels for the fMet-independent MT-CO3 (Extended Data Figure 4B). Taken 261 
together, these findings indicate that different fMet levels associated with common mtDNA 262 
polymorphisms modulate intra-mitochondrial protein synthesis under homeostatic conditions 263 
(Figure 4D).  264 

 265 
Next, we studied the downstream consequences of fMet on mitochondrial oxidative 266 

phosphorylation. In keeping with the observed decrease in mtDNA-encoded protein MT-CO1 267 
in the cell lines from the haplogroup H (P= 0.016, 2-way-ANOVA; Extended Data Figure 268 
4D), fMet supplementation reduced the abundance of the N-formylation dependent53 269 
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complexes I and IV (P = 0.02, 2-way-ANOVA; Figure 4F, Extended Data Figure 4E&F). 270 
This reduction was accompanied by lowered enzyme activities 54 (P≤ 0.0005; Figure 4G), 271 
abolishing the differences between the haplogroups. We, however, did not observe this 272 
decrease in the mitochondrial complexes III and V, which are less dependent on fMet 51 273 
(Extended Data Figure 4G-H). As expected, the effect of fMet supplementation on ETC 274 
complexes I and IV abundance was associated with a decrease in oxygen consumption in 275 
both haplogroup H and Uk cybrids (P≤ 0.03, 2-way-ANOVA; Figure 4H), and consequent 276 
increase in both glycolytic ATP (P= 0.02; Figure 4I) and cytoplasmic ROS (P≤ 0.0005; 277 
Figure 4J) as previously observed in mouse fibroblasts lacking MTFMT51, the main enzyme 278 
required for fMet synthesis. fMet had no significant effect on mitochondrial ATP levels (P> 279 
0.05, Extended Data Figure 4J), mitochondrial mass, membrane potential or intra-280 
mitochondrial reactive oxygen species (ROS) (P> 0.05, Extended Data Figure 4K), 281 
reflecting the relative sparing of complex III and V51. Thus, the differences in intra-282 
mitochondrial protein synthesis modulated by fMet have downstream effects on 283 
mitochondrial respiratory chain function, and transcription mediated through the N-284 
formylation of specific intra-mitochondrial proteins. Our findings suggest that fMet levels are 285 
physiologically balanced in the haplogroup H and Uk cybrids due to additional factors that 286 
are poorly understood at present. Adding more fMet disrupted this equilibrium resulting in 287 
the down-stream consequences that we observed. 288 
 289 
fMet regulates cellular stress and cytosolic proteostasis  290 
 291 
Although N-formylation of methionine is important for intra-mitochondrial protein 292 
synthesis47, its effects are less well documented in the cytosol, particularly in mammals. 293 
Interestingly, we observed that fMet supplementation at levels seen in plasma globally 294 
suppressed the de novo cytosolic translation (P= 0.0001, 3-way-ANOVA; Figure 5A). In 295 
accordance with this, we observed activation of the eukaryotic translation initiation factor 2A 296 
(EIF2A) the downstream kinase of the highly conserved integrated stress response (ISR) 297 
pathway that leads to global repression of protein translation55 (Figure 5B, Extended Data 298 
Figure 5A). Consistently with the activation of EIF2A we also saw increased mRNA 299 
expression of its downstream target activation factor 4 (ATF4)56 and the CCAAT-enhancer-300 
binding protein homologous protein (CHOP)57, enough to abolish the basal differences 301 
between the haplogroups (P≤0.03, 2-way-ANOVA, Figure 5C). These observations were 302 
independent of the ATF5-mitochondrial chaperone dependent mitochondrial unfolded 303 
response58 (Extended Data Figure 5B). Exogenous fMet also abolished the difference 304 
between haplogroups Uk and H seen under basal conditions, implicating fMet in modulating 305 
whole cell differences in protein homeostasis associated with the different mtDNA 306 
polymorphisms. 307 
 308 

The EIF2A/ATF4 pathway mediates repression of protein translation through 309 
inhibition of the mammalian target of rapamycin (mTORC1) and thus growth59. However, we 310 
did not find any differences in mTORC1 activation (Extended Data Figure 5A, C) or 311 
growth (Extended Data Figure 5D-E), implying an alternative mechanism for fMet in 312 
cytosolic proteostasis. In Saccharomyces cerevisiae, the formylation of methionine in the 313 
cytoplasm, has been proposed as a new protein degradation mechanism (N-degron) under 314 
stress conditions, in a process dependent on the amino acid sensor GNC2 (general control 315 
nonderepressible 2)60 and  presumably its downstream target EIF2A61. In line with these 316 
observations, supplementation with fMet significantly increased the levels of ubiquitinated 317 
proteins in both H and Uk cybrids (P≤ 0.0002, 2-way-ANOVA; Figure 5D, Extended Data 318 
Figure 5F). These are in keeping with fMet also being an N-degron in humans. Thus, fMet 319 
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modulates cytosolic protein homeostasis at multiple levels, including translation (Figure 5A) 320 
and degradation (Figure 5D, Extended Data Figure 5F).  321 
 322 

Given our previous findings that fMet modulates mitochondrial and cytosolic protein 323 
homeostasis, we determined the potential downstream consequences of the mitochondrial 324 
background H and Uk by comparing the transcriptome of individuals with haplogroup Uk 325 
against those with haplogroup H across 49 tissues using again data from the GTEx 326 
Consortium37. This revealed 1 to 619 differentially expressed genes (total 4,244 genes) in 47 327 
out of 49 tissues using a quasi-likelihood F test in edgeR 62,63 at 5% tissue-wide FDR 328 
(Supplementary Tables 10,11), with the majority (94.5%) of differentially expressed genes 329 
being more highly expressed in haplogroup Uk across all tissues (Supplementary Table 330 
10,11).  Pathway (Figure 5E) and gene set enrichment analysis (GSEA) (Supplementary 331 
Tables 12,13) of all the differentially expressed genes showed an enrichment for pathways 332 
involved in metabolism and immunity in addition to protein homeostasis pathways and 333 
ribosomal translation initiation (Figure 5F). In particular, we found three significant 334 
differential expression signals (at 5% tissue-wide FDR) among nuclear DNA encoded 335 
mitochondrial ribosomal genes and genes involved in the processing of mitochondrial 336 
rRNAs: RMRP (logFC=2.58, FDR=3.93x10-8) in coronary artery, and MRPS6 (logFC=0.82, 337 
FDR=2.24x10-2) and MRPL14 (logFC=0.68, FDR=3.07x10-2) in the prostate 338 
(Supplementary Figure 6). Taken together, these independent observations validate our 339 
earlier in vitro findings, and indicate that mtDNA haplogroup-associated differences in fMet 340 
have multiple potential downstream consequences for cellular function beyond bioenergetics, 341 
oxidative phosphorylation, and mitochondrial ATP synthesis (Extended Data Figure 4J-K).  342 

 343 
fMet levels mediate late-onset disease risk  344 
Haplogroup Uk has been previously associated with reduced risk of developing late-onset 345 
diseases including ischemic stroke (IS)23 and Parkinson’s disease (PD)22, but the reasons for 346 
this are not known. To explore these potential mechanisms, we measured blood fMet levels 347 
in an IS cohort (282 cases, 181 controls, Supplementary Table 14) where we previously 348 
described a protective effect of haplogroup Uk23. In order to remove haplogroup effects on IS 349 
when testing for fMet associations with the disease, we enriched for individuals of 350 
haplogroup Uk in both cases and controls (32% haplogroup Uk in cases, 23% haplogroup Uk 351 
in controls). We then asked whether fMet is associated with IS, and if its effects can be due to 352 
haplogroup differences. We found a marginal and negative association between fMet and IS 353 
(OR= 0.83, SE= 0.08, logistic regression P= 0.06). This association is present in non-Uk 354 
individuals (OR= 0.77, SE= 0.08, logistic P= 0.02), but not in those with haplogroup Uk 355 
(OR= 2.24, SE= 1.06, logistic P= 0.09) (Figure 6A). Our results are consistent with a 356 
potential involvement of fMet in IS etiology, only part of which is due to mtDNA 357 
haplogroups. We also considered a PD cohort without enrichment for haplogroup Uk (120 358 
cases, 43 controls, Supplementary Table 14), which however did not reveal any 359 
associations, possibly due to low sample sizes.  360 

 361 
 Next, we investigated whether fMet levels may be associated with the risk of other 362 
ageing-related diseases (cardiometabolic and common cancers, Supplementary Table 15), 363 
and if those associations were mtDNA haplogroup-dependent. We used Cox-proportional 364 
hazards models to test associations between fMet and incident risk of 24 non-communicable 365 
diseases and all-cause mortality in 11,966 individuals from the EPIC-Norfolk study covering 366 
more than 20-years of follow-up (Online Methods). We observed significant (P< 0.002; 367 
0.05/23 tests) positive associations between fMet levels and incident renal disease, heart 368 
failure, coronary artery disease, abdominal aortic aneurysms, peripheral artery disease and 369 
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chronic obstructive pulmonary disease (COPD) as well as mortality (Figure 6B, 370 
Supplementary Table 16). Hazard ratios ranged between 1.10 and 1.29 per 1 standard 371 
deviation (SD) increase in log-transformed fMet levels. As fMet was correlated with age 372 
(Pearson correlation of age and fMet r= 0.33, P= 2.48x10-307, Figure 6C), all Cox models 373 
accounted for age.  To ensure the age association does not violate the proportional hazards 374 
assumption, we investigated Schoenefeld residuals and age-interaction terms, and none 375 
showed evidence of violation (Supplementary Table 16). Associations did not differ 376 
significantly between the Uk (N= 895) and other haplogroups (N= 9,887), however 377 
confidence intervals were wide in the smaller Uk haplogroup for some outcomes 378 
(Supplementary Table 16, Figure 6D). While this highlights the low power of the current 379 
study to detect heterogeneity between groups, the potential role of fMet as a marker of 380 
ageing-related diseases in different haplogroups warrants further investigations.  381 
 382 
Discussion 383 
 384 

In this study, we profiled more than 5,000 molecular traits in a healthy population-385 
based cohort, and found novel associations between three mtDNA variants in Haplogroups 386 
Uk and H4 and the metabolite fMet. Whilst it is possible that the differences in fMet levels 387 
and mitochondrial transcription and translation are due to independent effects of haplogroup-388 
specific variants rather than through a common causal pathway, it is not clear how this would 389 
occur, and results from our experiments are consistent with the latter. In fact, two of the 390 
variants associated with fMet (Figure 2B) affect the non-coding D-loop which is involved in 391 
regulation mtDNA transcription, and two also involve the rRNA genes directly involved in 392 
protein synthesis. Four variants affect the amino acid sequence of critical respiratory chain 393 
proteins, potentially influencing their function10,64, assembly or stability65, with the non-394 
synonymous variants being associated indirectly through co-inheritance on the same mtDNA 395 
haplogroup. This complex scenario highlights the need of future experiments dissecting the 396 
effect of each independent variant. 397 

 398 
fMet is the initiation amino acid for intra-mitochondrial translation66. Previous studies 399 

have shown that fMet is not necessary for initiation of translation or stability of newly 400 
synthesized polypeptides. However, a lack of fMet decreases synthesis of mtDNA encoded 401 
proteins and their integration into OXPHOS complexes and supercomplexes: MTFMT 402 
knockouts or mutants47 display inefficient OXPHOS and increased risk of disease47,51. On the 403 
other hand, increasing fMet by MTFMT overexpression52 and our experiments with fMet 404 
supplementation also compromised mitochondrial protein synthesis, OXPHOS complex 405 
levels and respiratory supercomplex function51. This implies that under physiological 406 
conditions, fMet is maintained within a narrow window, and increasing or decreasing fMet 407 
can have detrimental effects. Our findings demonstrate a role for fMet-associated mtDNA 408 
variants regulating levels of intra-mitochondrial gene expression, and modulating intra-409 
mitochondrial protein synthesis and OXPHOS complex formation under homeostatic 410 
conditions through fMet. This may have tissue-specific and age-cumulative effects on 411 
metabolism and disease risk. 412 

 413 
One of our most intriguing findings is that of a mechanism of cellular proteostasis that 414 

is modulated by mtDNA. Within mitochondria, mtDNA haplogroup-dependent fMet levels 415 
directly and specifically affect the abundance of mtDNA encoded, N-formylated ETC 416 
subunits and complexes. In the cytosol, fMet exerts indirect influence on global intra-417 
mitochondrial protein synthesis through transcription and proteolysis without effects on cell 418 
growth (Extended Data Figure 5D,E) and/or mitochondrial membrane stability (Extended 419 
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Figure 4J,K); higher fMet levels in individuals from haplogroup Uk increase the ubiquitin-420 
targeted N-degron mediated proteolysis (Figure 5G), and thus decrease the formation of 421 
protein aggregates67 and the regulation of apoptosis68. This can explain the previously found 422 
protective effects of haplogroup Uk on late-onset neurodegenerative disorders69. In addition 423 
to the elimination of mis-folded proteins, N-end rule pathways also play a role in controlling 424 
subunit stoichiometries70 in protein complexes such as the ETC, and the elimination of 425 
proteins mis-localised from their primary cellular compartment71. Furthermore, the profound 426 
reduction in cytosolic protein synthesis is likely to have multiple downstream effects on cell 427 
function. This emphasizes the importance of maintaining fMet levels within a narrow 428 
physiological range and the need of future studies dissecting its fluctuations in different 429 
tissues and disease models. 430 

 431 
It is therefore plausible that fMet is involved in ‘matching’ protein synthesis with the 432 

mitochondrial and cytosolic compartments72 in response to cellular bioenergetic needs in a 433 
tissue-specific manner. Subtle differences in fMet, partly attributable to mtDNA haplogroup 434 
effects, could have a cumulative effect on proteostasis and degradation throughout life, and 435 
thereby modify the risk of developing several late-onset diseases. fMet levels were 436 
significantly associated with late-onset diseases in the EPIC Norfolk cohort independent of 437 
age. Further experimental work is needed to definitively prove a causal role for fMet, 438 
however, given that it can be readily measured in serum as a circulating biomarker of cellular 439 
proteostasis, fMet is likely to be valuable for monitoring new treatments across a wide range 440 
of common human disorders.  441 

 442 
In conclusion, the use of deep molecular phenotyping based on high-throughput 443 

metabolomics, transcriptomics, and proteomics is proving effective in identifying molecular 444 
hypotheses underpinning genetic associations with health and disease endpoints40,41,73,74. Our 445 
findings open up possibilities for further investigations into mtDNA control over metabolism 446 
and cellular physiology, and its implications on human health and disease. fMet may not be 447 
the only metabolite mtDNA variants regulated; most plasma biomarkers included in our 448 
study were only assayed in around 3,000 individuals, limiting statistical power. Continued 449 
investigation of mtDNA effects on biomarkers may lead to further elucidation of 450 
mitochondria’s role in cellular physiology and function.  451 
  452 
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Figure Legends 799 

Figure 1: Overview of analysis and population structure on the nuclear and 800 
mitochondrial genomes  801 

A. Overview of analyses. A flowchat overview of the analyses we performed in this study, 802 
summarizing the number of samples and phenotypes used in each cohort we analysed, and 803 
the number of mtDNA associations with metabolites and cis-eQTLs we found. B. A 804 
simplified mtDNA haplogroup tree with haplogroups present in INTERVAL and GTEx 805 
participants individually coloured. Haplogroups not present in INTERVAL and GTEx 806 
participants are coloured grey. Each haplogroup is consistently represented by the same 807 
colours throughout this manuscript. C. A plot of principal component (PC) 1 and 2 from a 808 
principal component analysis (PCA) performed using 187 mtDNA SNPs (MAF >=1%) in 809 
16,220 participants in INTERVAL, coloured by haplogroups identified for each individual 810 
using Haplogrep v2. Haplogroups U, K (Uk), and H are labelled. D. A plot of PC1 and PC2 811 
from a PCA performed using 5,511,276 nDNA SNPs (MAF >=5%) in the same participants 812 
in INTERVAL, coloured by their haplogroups, as previously described. E. A plot of PC1 and 813 
PC2 from a PCA performed using 215 common mtDNA SNPs (MAF >=1%) in 456 814 
participants in GTEx, coloured by haplogroups identified for each individual using 815 
Haplogrep v2. Haplogroups U, K (Uk), and H are labelled. F. A plot of PC1 and PC2 from a 816 
PCA performed using 5,451,305 common nucDNA SNPs (MAF >=5%) in the same 817 
participants in GTEx, coloured by their haplogroups 818 
 819 
Figure 2. Metabolites and their associations with mtDNA SNPs in INTERVAL.  820 
A. Manhattan plot summarizing results of association between 183 common mtDNA variants 821 
(MAF≥ 5%) and 896 metabolites. Each dot corresponds to the association between a mtDNA 822 
variant and a metabolite. Its x coordinate represents its position along the mitochondrial 823 
genome and its y coordinate represents the -log10 (p value) for the association from a Wald 824 
Test between LMMs with and without genotypes at a mtDNA SNP as a predictor for each 825 
metabolite, implemented in LDAK v5. The red dotted horizontal line at P=1.04x10-6 826 
represents the significance threshold upon correcting for 896 metabolites and an estimate of 827 
53.56 independent mtDNA SNPs (Supplementary Discussion). Red dots are associations 828 
where fMet is the metabolite tested, labelled with their position and genotype. The x axis is 829 
annotated with ranges of positions in the mtDNA with function, including the D-LOOP, the 830 
mtDNA encoded rRNAs (MT-rRNA), the mtDNA encoded tRNAs (MT-tRNA) and the 831 
mtDNA encoded protein-coding genes. B. Table of association statistics between 15 mtDNA 832 
SNPs associated with fMet in the discovery cohort INTERVAL and replication cohort EPIC-833 
Norfolk; for each mtDNA SNP we show its position (BP), the gene it is in (GENE), the allele 834 
whose effects we test (A1), the other allele (A0), the frequency of the tested allele (A1FREQ) 835 
and functional annotations of the variant (ANNOT), the standardised effect size (BETA) of 836 
its association with fMet, its standard error (SE) and P values (P). Association statistics from 837 
both Wald tests on LMM and linear regressions in CMS are shown for the discovery cohort, 838 
while association statistics from linear regression are shown for the replication cohort. C. 839 
Pearson correlation coefficient r2 between the mtDNA SNPs significantly associated with 840 
fMet; the red, light blue and dark blue squares denote the most significantly associated 841 
variants at each of the three independent signals. D. The haplogroup lineage tree for super-842 
haplogroup Uk (on the left) and H (on the right). SNPs that are part of this tree and 843 
significantly associated with fMet are in bold and coloured according to their haplogroups. 844 
All except one SNP (mt.3992C>T) associated with fMet are on the branch for the super-845 
haplogroup Uk.  846 
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Figure 3. fMet-associated genes regulate mtDNA gene expression.  847 
A. Manhattan plot of association between common nDNA SNPs (MAF≥ 5%) with fMet; the 848 
x coordinate represents positions for each nDNA SNP tested; the y coordinate represents the -849 
log10(P) for the Wald Test associations for nDNA SNP effects on fMet levels; red horizontal 850 
line indicates the significance threshold of P= 5x10-8; red dots represent SNPs with 851 
significant associations, orange SNPs represent SNPs with P< 5x10-7. B. Boxplot of fMet 852 
levels in INTERVAL participants with each genotype at rs550045 and mt.1811. Centre of the 853 
boxplots show median fMet levels, upper and lower limits of boxplots show interquartile 854 
ranges, while the whiskers show values within 1.5 times the interquartile range. Outliers 855 
show values beyond 1.5 times the interquartile range. C. The variance decomposition model 856 
for quantifying the variance in fMet levels explained by variation in nDNA SNPs, mtDNA 857 
SNPs, other metabolites and blood cell counts, and those that cannot be accounted for by all 858 
the above. The pie chart shows the relative contribution from all four components. D. A 859 
Manhattan plot of association between 13 protein-coding mtDNA genes and their top eQTL 860 
on the mtDNA for 41 GTEx tissues. X axis represents the position of the SNP along the 861 
mtDNA and Y axis represents the -log10(P) from log-likelihood ratio (LRT) tests for mtDNA 862 
SNP effects on expression of mtDNA encoded genes. Dots are coloured by genes, and the x 863 
axis is annotated with ranges of positions in the mtDNA with function. E. This figure shows 864 
the standardized effect size (BETA) of the mtDNA SNPs on log10(TPM+1) expression levels 865 
of mtDNA encoded MT-ND3 in 41 GTEx tissues. Colour of the boxes corresponds to the 866 
tissue type; centre of the boxplots show median BETA values from all mtDNA SNPs; upper 867 
and lower limits show the interquartile range, while the whiskers show values within 1.5 868 
times the interquartile range. Outliers show values beyond 1.5 times the interquartile range. 869 
The upper panel shows the results for the 15 fMet-associated SNPs, while the bottom panel 870 
shows the results for the non-fMet associated mtDNA SNPs.  871 
 872 
Figure 4: fMet regulates mitochondrial protein synthesis and oxidative phosphorylation 873 
function.  874 
A. Schematic representation of transmitochondrial cybrids. Black, red and blue dots represent 875 
the absence of mtDNA, haplogroup H and haplogroup Uk respectively. B. Quantification of 876 
fMet levels in cybrids of different haplogroups. Statistical testing was performed by unpaired 877 
t-test. Normality was assessed using the Kolmogorov–Smirnov test. The average raw value of 878 
fMet is 3.06 pg/mg. C. Schematic representation of mitochondrial protein synthesis and fMet. 879 
D. Effect of fMet on mitochondrial translation. Electrophoretic patterns of the synthesized 880 
mitochondrial products and fragments of the gel stained with Coomassie (used as a loading 881 
control); molecular weight marker (left) and each mitochondrial protein (right) are shown. 882 
Quantification of the bands was corrected by the loading control in each cell line. E. Effect of 883 
fMet on the levels of the mitochondrial transcript MT-CO3. F. One-dimensional Blue Native 884 
Gel Electrophoresis (1D-BNGE) and Western blot quantification (see Extended Data Figure 885 
3F); values are corrected with relative levels between loading control (CII) in each cell line 886 
and untreated samples from haplogroup H. G. Complex I (left gel) and IV (right gel) in gel 887 
activity assays (IGA) after 1D-BNGE analysis of digitonin treated cybrid cell lines with and 888 
without fMet treatment. Super-complexes (SC) composition is indicated. H. Basal 889 
respiration. I. Glycolytic ATP levels. The average raw value of ATP of all the cybrids is 890 
19367878,79 luminescence units /mg of protein.  J. Cytoplasmic ROS levels. The average 891 
raw value of ROS of all the cybrids is 17434,4/20000 cells fluorescence units.  In all the 892 
graphs (B-I) bars/lines represent the mean ± SD of the biological replicates (n=4) of – 893 
(Control) and + (fMet treated) cell lines of each haplogroup that were measured in 3-5 894 
independent technical replicates each. Colors red and blue represent haplogroup H and Uk 895 
respectively. The values are represented as relative to the average of untreated samples from 896 
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haplogroup H, unless otherwise indicated. Statistical testing was performed by using a 2-897 
way-ANOVA test followed by Holm-Sidak's multiple comparison test unless stated 898 
otherwise. P-values corrected for multiple comparisons are indicated. Unprocessed S35 Blots 899 
and loadings can be found in Source Data Figure 4.   900 

Figure 5. fMet modulates cytosolic protein homeostasis.  901 
A. Effect of fMet on cytosolic translation products. Electrophoretic patterns of the 902 
synthesized proteins and fragments of the gel stained with Coomassie (loading control) and 903 
molecular weight marker (left) are shown. Quantification of the bands was corrected by the 904 
loading control in each cell line. B. Effect of fMet and mitochondrial haplogroup on EIF2A 905 
activation (Extended Data Figure 4A). Quantification of the immune detected bands for 906 
p.EIF2ASer51and EIF2A  corrected by loading control (B-actin) in each cell line. Activation of 907 
EIF2A is calculated as ratio p.EIF2ASer51/ EIF2A.  Values are represented as relative to the 908 
average of untreated samples from haplogroup H. C. Effect of fMet and haplogroup on the 909 
expression of EIF2A downstream targets ATF4 and CHOP. Box plots represent minimum, 910 
maximum, sample median, and the first and third quartiles. All data points are plotted. D. 911 
Effect of fMet on protein ubiquitination. Immunoblot detection with anti-ubiquitin and anti-912 
B-actin as a loading control for untreated (-/-), proteasome inhibition with MG132 (+, -) and 913 
proteasome inhibition plus fMet (+, +). The quantification of the bands for ubiquitin smear 914 
was corrected by loading control (B-actin). Statistical testing was performed with a 3-way-915 
ANOVA followed by Holm-Sidak's multiple comparisons. E. Consensus Pathway Analysis 916 
of all the differentially expressed genes between haplogroup H and Uk in all tissues in GTEx. 917 
Grey represents Reactome pathways and green wikipathways. F. Gene Set Enrichment 918 
Analysis (GSEA) analysis of all the differentially expressed genes between haplogroup H and 919 
Uk in all tissues in GTEx. Enrichment score is shown. G. Schematic representations of the 920 
effects of fMet. In all the plots (B-D) bars/lines represent the mean ± SD of the biological 921 
replicates (n= 4) of – (Control) and + (fMet treated) cell lines that were performed in 3-5 922 
independent technical replicates each. Colors red and blue represent haplogroup H and Uk 923 
respectively. The values are represented as relative to the average of untreated samples from 924 
haplogroup H, unless indicated. Statistical testing was performed with a 2-way-ANOVA 925 
followed by Holm-Sidak's multiple comparisons, unless otherwise stated. P-values corrected 926 
for multiple comparisons are shown. Unprocessed blots and loadings can be found in Source 927 
Data Figure 5. 928 
 929 
Figure 6:  fMet as a biomarker for IS and other late-onset disorders. 930 
A. Rank normalised residuals levels of fMet in IS and controls, separated by their mtDNA 931 
haplogroups, after regressing out batch for quantification of fMet and site of data collection 932 
as covariates; P-values are from logistic regression of IS disease status with haplogroup. The 933 
centre of the boxplots show the median normalised fMet levels; upper and lower limits of 934 
boxplots show the interquartile range, while the whiskers show values within 1.5 times the 935 
interquartile range. Outliers beyond whiskers show values beyond 1.5 times the interquartile 936 
range. All data points are plotted. B. Hazard ratio of fMet levels measured at baseline for 24 937 
health outcomes, including mortality, over a 20-year follow-up. Points and error bars shown 938 
in blue represent the point estimates and 95% confidence intervals of the hazard ratio in 939 
11,966 EPIC-Norfolk participants. C. Relationship between Z scores of fMet measured at 940 
baseline of a 20-year longitudinal study with 11,966 individuals, and their ages at baseline 941 
(mean 60 years, SD 6 years). Significant Spearman correlations were found between fMet 942 
levels and age at measurement in participants of both mtDNA haplogroup Uk and other 943 
haplogroups (Spearman correlation P = 3.51x10-25 and 1.49x10-284 respectively). D. Hazard 944 
ratio of fMet levels measured at baseline for 24 health outcomes, including mortality, over a 945 
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20-year follow-up. Points and error bars shown in blue represent the point estimates and 95% 946 
confidence intervals of the hazard ratio in participants of mtDNA haplogroup Uk, while those 947 
in red represent those in participants of other haplogroups.  948 

 949 
  950 
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Online Methods  951 

 952 
Sample filtering in INTERVAL cohort 953 
 954 
In the INTERVAL dataset38, 12,395 participants were sequenced across the whole genome 955 
(WGS, mean coverage = 26.8x, SD = 3.1x; mtDNA mean coverage = 2022.6x, SD = 566.5x, 956 
Supplementary Figure 1A), and 4,502 participants were sequenced across the whole exome 957 
(WES, mean coverage = 48.0x, SD = 8.6x; mtDNA mean coverage = 30.6x, SD = 13.5x, 958 
Supplementary Figure 1B), including 60 participants on whom WGS was also performed. 959 
Of the 12,395 participants with WGS in the INTERVAL cohort, we identified 32 participants 960 
who were sequenced in duplicate. All 32 participants had their blood samples taken and 961 
sequenced at two time points, so we removed one sample per participant sequenced at the 962 
later of the two time points. Second, 12,112 out of the remaining 12,363 participants with 963 
WGS and 4,471 out of 4,502 participants with WES can be linked to both phenotypic data 964 
and genotypes assayed with the UK Biobank Affymetrix Axiom array75,76. We retain only 965 
these participants for further analysis. Third, we compared genotype calls from WES against 966 
those from WGS in 56 overlapping participants at 307 overlapping polymorphic mtDNA 967 
SNPs between WES and WGS. One individual showed a particularly high rate of discordance 968 
between WES and WGS genotype calls (14 sites discordant), and was hence removed from 969 
further analysis. In the remaining 55 samples with both WGS and WES, we obtained a mean 970 
per variant Pearson r2 of 0.994 (SD = 0.039) between genotypes at all 307 mtDNA SNPs 971 
called in both WGS and WES, and a mean per sample Pearson r2 of 0.980 (SD = 0.134). We 972 
retained all 55 participants for further evaluation of the genotype qualities of variants called 973 
from WGS and WES, giving us 12,111 participants with WGS and 4,470 participants with 974 
WES (55 of whom also have WGS).  975 
 976 
Genotype quality control in INTERVAL cohort   977 
  978 
For mtDNA, we extracted reads mapping to the rCRS mitochondrial reference genome 979 
(NC_012920) from WGS in 10,704 individuals and WES in 4,502 individuals in 980 
INTERVAL, and called mtDNA variants using GATK v439, obtaining 396 high quality 981 
variants, of which 187 have MAF >= 1%. We use the 187 variants for assigning Haplogroups 982 
to each individual in INTERVAL using Haplogrep v2 and all further analyses. For nDNA, 983 
we obtained imputed genotypes from array genotypes at 5,511,276 autosomal, biallelic SNPs 984 
in 43,059 unrelated individuals from European descent from the INTERVAL project75, 985 
filtering raw imputation results with information score (INFO > 0.9), minor allele frequency 986 
(MAF > 5%), P-value of violation of Hardy Weinberg Equilibrium (HWE > 10-6), and 987 
missingness (< 0.1).  988 
 989 
mtDNA variant calling from sequencing data  990 
 991 
To utilize the maximum number of samples for association testing, we called mtDNA 992 
variations in both WGS and WES using GATK HaplotypeCaller v4. Using --ploidy 1 in 993 
GATK HaplotypeCaller v477,78, we called 4,696 variants from WGS (of which 4,602 are 994 
SNPs and 255 are present on the UK Biobank Affymetrix Axiom array, Supplementary 995 
Figure 1C), and 3,618 variants from WES (of which 3,546 are SNPs and 254 are present on 996 
the UK Biobank Affymetrix Axiom array, Supplementary Figure 1D), giving a union of 997 
5,247 variants (of which 5,161 are SNPs). We then performed the following checks and 998 
filters for sample and mtDNA variants. As mtDNA coverage is extremely high on the WGS 999 
(mean coverage = 2015.2x, SD = 578.7x), homoplasmic variations in the mtDNA would be 1000 
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supported by thousands of reads and are therefore of high confidence. This confidence 1001 
however cannot be extended to WES, due to the low coverage (mean coverage = 30.6, SD = 1002 
13.5x) and off-target nature of mtDNA reads on the WES (no mtDNA probes are present on 1003 
the Agilent SureSelect Human All Exon v.5 kit).  1004 
 1005 
mtDNA heteroplasmy check with mtdna-server  1006 
 1007 
We checked the heteroplasmy levels at all WGS variant calls using the local version of 1008 
mtdna-server (v1.1.11), a specialized software for variant calling in mtDNA that is 1009 
particularly optimized for identification of heteroplasmic mutations in the mtDNA 79, so as to 1010 
ensure the post-VQSR variants we obtained from WGS are not likely due to misidentification 1011 
of heteroplasmic mutations as inherited homoplasmic variants. We were unable to perform 1012 
this check directly on the WES data because mtdna-server was able to call only variations at 1013 
only coverage of 30x and above - as the average coverage on the mtDNA in WES is 30.6x, 1014 
we were only able to call 2,341 variants from 540 out of 4,502 samples, much fewer than 1015 
present in the WGS samples. We first checked for correlation between genotypes called with 1016 
GATK HaplotypeCaller and mtdna-server at 4,544 SNPs called with both methods. While 1017 
4,407 SNPs showed high correlation between both methods (Pearson r2 >= 0.9), 137 SNPs 1018 
showed lower correlation. We checked the level of heteroplasmy at all levels of correlation 1019 
and at all minor allele frequencies (MAF) determined with the mtdna-server genotype calls, 1020 
and found that levels of heteroplasmy are higher for SNPs with lower correlation between 1021 
GATK HaplotypeCaller and mtdna-server at all levels of MAF (Supplementary Figure 1E), 1022 
and SNPs with high correlation between the two methods have lower heteroplasmy (mean 1023 
heteroplasmy = 5.54 x 10-5, SD = 2.9 x 10-4) than those with low correlation (mean 1024 
heteroplasmy = 0.018, SD = 0.08, Supplementary Figure 1F). This suggests that GATK 1025 
may have mis-called these heteroplasmic sites as homoplasmic variants. We removed these 1026 
137 SNPs from both WGS and WES variant calls from all further analyses.  1027 

Sequencing-based mtDNA quality 1028 

 1029 
Using 12,111 and 4,470 samples with WGS and WES, we compared genotypes at biallelic, 1030 
polymorphic, and non-strand-ambiguous mtDNA SNPs called in WGS (209 SNPs) and WES 1031 
(206 SNPs) against genotypes called in the Affymetrix Axiom array (out of a total of 235 1032 
biallelic, non strand-ambiguous SNPs genotyped on the array). We find that WES showed 1033 
similar correlation and concordance with array genotypes (mean Pearson r2 = 0.964, SD = 1034 
0.131, mean concordance = 0.999, SD = 0.004, 5 sites with more than 1% participants 1035 
discordant) as WGS (mean Pearson r2 = 0.961, SD = 0.131, mean concordance = 0.999, SD = 1036 
0.004, with the same 5 sites with more than 1% participants discordant as WES). Both 1037 
analyses showed that WES can produce high quality genotypes and variant calls in the 1038 
mtDNA, despite having two orders of magnitude lower coverage on the mtDNA than the 1039 
WGS. In addition, we found that the same sites were discordant between Affymetrix and both 1040 
sequencing platforms: 13 sites had Pearson r2 of lower than 0.9 between Affymetrix and both 1041 
WGS and WES, inclusive of the 5 that had greater than 1% discordant rate between 1042 
Affymetrix and both sequencing platforms. This indicates that these 13 sites (magenta points 1043 
in Supplementary Figure 2) likely represent errors in the Affymetrix array rather than either 1044 
sequencing platforms.  1045 

mtDNA variant quality recalibration 1046 

 1047 
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To assess the quality of variant and genotyping calling at sites that are polymorphic in all 1048 
participants in the WES and WGS cohorts, we used Gaussian mixture models in Variant 1049 
Quality Score Recalibration (VQSR) in GATK (version 4.0.3.0)80 to cluster all SNP calls 1050 
from WES with SNPs of high concordance between the three platforms based on their variant 1051 
call metrics. We first identified 92 SNPs of high concordance between all three platforms 1052 
(Pearson r2 > 0.9), and designated them as the "training" set for training the Gaussian mixture 1053 
model (orange points in Supplementary Figure 2). We then restricted our “known” set to a) 1054 
the 92 SNPs in the training set, b) the 189 SNPs genotyped on the array that showed good 1055 
correlation between WES and array (Pearson r2 > 0.9), and c) the 231 common SNPs with 1056 
high minor allele frequency (MAF > 1%) in WGS, WES or array calls. From c), we removed 1057 
10 SNPs with low Affymetrix genotype quality (Pearson r2 with WGS and WES < 0.9), 9 1058 
SNPs with low WES quality (Pearson r2 with WGS < 0.9), and 1 SNP with low WGS quality 1059 
(Pearson r2 with Affymetrix < 0.9). We took the union of the remaining 211 SNPs from c) 1060 
with a) and b) to arrive at 314 SNPs to use as the “known” set. The correlation between 1061 
platforms and MAF of all SNPs from the three platforms is shown in Supplementary Figure 1062 
2.  We then applied VQSR separately on the WES callset with "--trust-all-polymorphic" and 1063 
“--max-gaussians 2” in SNP mode using the following annotations: QD, FS, MQ, 1064 
MQRankSum, ReadPosRankSum, BaseQRankSum, SOR, and MLEAF. We obtained 1065 
VQSLOD scores for all variants based on the clustering of their annotations with “known” 1066 
and “training” sets, and selected variants not in the above sets whose transition to 1067 
transversion ratio (Ti/Tv) most closely matched that of “known” variants in WES (known 1068 
Ti/Tv = 63.3). After filtering WES variant calls with VQSLOD scores of lower than 1.91 1069 
(TruthSensitivity = 50%, Ti/Tv = 59.0), we obtained 212 high-quality SNPs from WES. We 1070 
took the union of this set with a) 92 polymorphic SNPs from the “training” set and b) 189 1071 
SNPs with high correlation between WES and array, to obtain a total of 403 high-quality 1072 
SNPs from the WES. 7 SNPs were strand-ambiguous or multi-allelic (mt.373, mt.1766, 1073 
mt.3308, mt.7960, mt.13816, mt.14605, mt.15625), and were hence removed, leaving 396 1074 
high-quality SNPs, all of which were called from WGS. Of this, 187 are common at MAF > 1075 
1%, and we used these SNPs for association analyses as well as quantification of the total 1076 
mtDNA contribution to molecular phenotypes.  1077 

Metabolite data quality control  1078 

 1079 
Metabolome profiling was performed in two batches on plasma samples extracted from the 1080 
blood of 9000 INTERVAL participants using the Metabolon HD4 mass spectroscopy 1081 
discovery platform. This platform quantifies plasma metabolites using the Ultrahigh 1082 
Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS) method, 1083 
and produces ion-counts for specific fragments that identify specific metabolites. Raw data 1084 
was extracted, peak-identified and QC processed using Metabolon’s hardware and software. 1085 
As such, the raw data from this platform corresponds to but is not a direct measurement of 1086 
plasma metabolite concentrations. Where metabolite levels were below the lower limit of 1087 
detection, they were set to “missing” rather than 0 or the lowest detectable value, in order to 1088 
prevent skewing of the data. The following steps were carried out for the filtering of samples 1089 
and metabolites for ensuring only high-quality metabolite quantification was used in all 1090 
subsequent analyses. First, only 7,778 out of 9,000 INTERVAL participants who were 1091 
previously found to be unrelated and of European ancestry and had not withdrawn from the 1092 
INTERVAL study are included in this study. Second, 68 participants had metabolite data 1093 
quantified from repeat blood samples (taken either at the same or different times). For these 1094 
participants, metabolite data quantified from the first blood samples (baseline) were kept, 1095 
where available, and repeats were dropped. Where samples were from the same survey time, 1096 
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both samples were dropped. Third, metabolites which were measured in only one batch (n=22) 1097 
were excluded from the analysis. Fourth, participants with missing data for at least 300 1098 
metabolites (n=9) were excluded (arbitrary cut-point decided based on histogram of 1099 
missingness) from further analysis. Quantification measures of all remaining 995 metabolites 1100 
were then transformed by taking the natural logarithm, and then winsorized where the value 1101 
was 5 or more standard deviations away from the mean metabolite value. The transformed 1102 
metabolites were then regressed (linear regression) against the following covariates: age, sex, 1103 
batch, INTERVAL recruitment centre, plate number, appointment month, the lag time 1104 
between the blood donation appointment and sample processing, and the first 5 ancestry 1105 
principal components obtained from genome-wide genotyping data from the Affymetrix UK 1106 
Biobank Axiom array 75. Following regression, the residuals were generated and inverse rank 1107 
normalized. As metabolite levels below detection limits set to “missing” did not factor into 1108 
any of the above transformations and remained “missing”, we finally removed all metabolites 1109 
that were missing in more than 50% (4000) of the samples, leaving 896 metabolites for 1110 
association analysis with mtDNA variants.  1111 
 1112 
Partitioning of contributions to metabolite levels   1113 
 1114 
We tested for single mtDNA or nDNA SNP association with levels of each metabolite in 1115 
LDAK, which implements a linear mixed model: for each of the common mtDNA or nDNA 1116 
variants x_j of MAF >=5% in INTERVAL, we tested for their effect β on metabolite level 1117 
y_i in a linear mixed model, controlling for all autosomal genetic effects and population 1118 
structure in the random effect term g mean metabolite level (using an intercept term) in the 1119 
fixed effect term F_i: y_i= αF_i+ βx_j+g+ φ where g ~ Ν (0,σ_g^2 K_g) and φ ~ Ν (0,σ_e^2 1120 
I), g is the random effect of the LD-weighted relatedness matrix K_g  constructed using 1121 
LDAk v542 with 5,511,276 common (MAF >= 5%) autosomal, biallelic SNPs nuclear DNA 1122 
variants using --power -0.25 as recommended, and φ is the residual variance assuming an 1123 
independent identically distribution (i.i.d) matrix for noise and uncaptured environmental 1124 
effects. For each mtDNA SNP-metabolite association, we asked if we could increase the 1125 
power to detect true associations by controlling environmental factors indexed by levels of 1126 
selected metabolites or blood cell counts using the CMS framework43 (Supplementary 1127 
Discussion). To quantify relative levels of contribution of autosomal, mtDNA, and known 1128 
environmental contribution to each metabolite, we performed a variance decomposition 1129 
analysis with LDAK v5, using combinations of the following variance components: i) LD-1130 
weighted and MAF-adjusted (with --power 0.25 as recommended) relatedness matrix from 1131 
5,511,276 common SNPs on the autosomes only, ii) non-weighted relatedness matrix from 1132 
187 common SNPs on the mtDNA only, and iii) non- relatedness matrix from levels of 896 1133 
metabolites and 36 blood cell types, and assessed significance of contribution from each of 1134 
the three variance components using likelihood ratio tests.   1135 
 1136 
GTEx sample selection and genotype quality control  1137 
 1138 
We obtained 5,696,458 autosomal, biallelic SNPs in 635 GTEx samples from the variant call 1139 
set from WGS data in version 737, filtering on minor allele frequency (MAF >= 5%), P-value 1140 
of violation of Hardy Weinberg Equilibrium (HWE > 10-6), and missingness (< 0.1). We 1141 
then extracted reads mapping to the rCRS mitochondrial reference genome (NC_012920), 1142 
and called mtDNA variants using mtdna-server79, obtaining 1,756 variants, all of which are 1143 
SNPs, and of which 46 are multi-allelic. For multi-allelic SNPs, we retained the two alleles 1144 
with highest frequencies for analysis, hence obtaining a total of 1,714 SNPs, 64 of which are 1145 
common (MAF >= 5%) for use in association testing. To identify unrelated individuals, we 1146 
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used KING9 to identify related samples among the 635 GTEx samples. Two pairs of 1147 
individuals in GTEx are related up to third-degree (kinship >=0.04419), though only 1148 
marginally (kinship among pairs = 0.0477 and 0.0657 respectively), so we did not remove 1149 
them from analyses. To identify individuals of European ancestry, we selected 4,812,475 1150 
common SNPs (MAF > 5%, P value for HWE > 10-6) from the autosomes that overlap 1151 
between GTEx and 1000 Genomes Project Phase 3 (1000G)81, built an LD-weighted kinship 1152 
matrix using LDAK v5 and performed PCA on 1000G samples, projected the GTEx samples 1153 
onto PCs from 1000G samples, and selected 491 GTEx samples that cluster with 1000G 1154 
samples from the EUR superpopulation. We then built a kinship matrix using 5,696,456 1155 
common SNPs (MAF >= 5%, missingness < 0.1, P value for HWE > 10-6) in 491 European 1156 
samples in GTEx for use in testing for association between mtDNA encoded genes and 1157 
mtDNA SNPs with a linear mixed model.  1158 

Population structure on nuclear DNA and mtDNA in GTEx 1159 

 1160 
We obtained 5,696,456 autosomal, biallelic SNPs in 635 GTEx participants from the variant 1161 
call set from WGS data in version 7 37, filtering on minor allele frequency (MAF > 5%), P-1162 
value of violation of Hardy Weinberg Equilibrium (HWE > 10-6), and missingness (< 0.1). 1163 
To identify unrelated participants, we used KING 82 to identify related participants among the 1164 
635 GTEx participants. Two pairs of participants in GTEx are related up to third-degree 1165 
(kinship >=0.04419), though only marginally (kinship among pairs = 0.0477 and 0.0657 1166 
respectively), so we did not remove them from our analyses. To identify participants of 1167 
European ancestry, we selected 4,812,475 common SNPs (MAF > 5%, P value for HWE > 1168 
10-6) from the autosomes that overlap between GTEx and 1000 Genomes Project Phase 3 1169 
(1000G) 81 and built an LD-weighted kinship matrix using LDAK v5 42, and projected the 1170 
GTEx participants onto PCs obtained from 1000G samples using the same SNPs 1171 
(Supplementary Figure 5A). We selected 491 GTEx participants that cluster with 1000G 1172 
participants from the EUR superpopulation (Supplementary Figure 5B). Of these 491 1173 
participants, we were able to obtain WGS reads on the mtDNA of 456 participants. We then 1174 
extracted reads mapping to the rCRS mitochondrial reference genome (NC_012920) from the 1175 
456 participants, and called mtDNA variants using both GATK HaplotypeCaller, using the 1176 
same settings as we did in INTERVAL, as well as mtdna-server (v1.1.11) 79 to check for 1177 
heteroplasmy. We obtained a total of 1,180 SNPs. Of the 1,180 SNPs, 38 are likely mis-1178 
identified as inherited homoplasmic SNPs due to heteroplasmy (mean heteroplasmy = 0.23, 1179 
SD = 0.35, Supplementary Figure 5C,D). Of these, 12 are also found to be potential 1180 
heteroplasmic sites in INTERVAL, indicating that these sites are consistently mis-identified 1181 
as homoplasmic SNPs from WGS data due to heteroplasmy across studies. We removed all 1182 
38 potentially heteroplasmic sites, leaving us with a total of 1,142 SNPs (mean heteroplasmy 1183 
= 2.48 x 10-4, SD = 9.90 x 10-4, Supplementary Figure 5D). Of these, we use the 56 SNPs 1184 
that are common (MAF > 5%), for use in association testing. To assess the diversity on 1185 
nuclear DNA and mtDNA in GTEx in these 456 participants, we built a LD-weighted kinship 1186 
matrix using LDAK v5 42 with 5,451,305 common SNPs (MAF > 5%, missingness < 0.1, P 1187 
value for HWE > 10-6 in just the EUR participants) to obtain PCs specifically in these 1188 
participants to compare against PCs obtained from the mtDNA (Figure 1E,F).   1189 

Obtaining PEER factors as covariates for eQTL analysis 1190 

 1191 
Inaccuracies in quantification of expression levels of some nDNA genes attributable to mis-1192 
mapping of 100bp RNAseq reads originating from mtDNA encoded genes to the nuclear 1193 
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mitochondrial sequence (NUMT) regions of the nucDNA, sequences on the nDNA that are 1194 
highly similar to the mtDNA. As such, we aligned the sequence of each nuclear gene (57,820 1195 
genes) in GENCODE v19 on the rCRS mtDNA reference sequence NC012920 using lastal 1196 
(version 744) 83 and found 651 genes with extensive sequence similarity (>=100bp) where 1197 
the total fraction of genes with such alignment >= 5% (Supplementary Table 6). Of these, 1198 
84.0% are pseudogenes, 5.68% are lincRNAs, 2.30% are antisense RNAs, and 7.93% are 1199 
protein coding genes, of which 0.1% (of total) are in introns. We excluded all of them in the 1200 
calculation of PEER factors84 for capturing unknown confounding factors in the RNAseq 1201 
data and the association analysis. The numbers of PEER factors we used for correction of 1202 
gene expression levels in each tissue increased with the number of participants with gene 1203 
expression data in each tissue, following suggestions from GTEx release 7 37, and are shown 1204 
in Supplementary Table 5.  1205 
 1206 
GTEx mtDNA eQTLs and multiple testing correction  1207 
 1208 
We tested for single mtDNA SNP association with nDNA gene expression levels for every 1209 
gene i (mt-eQTL) using LIMIX85, a linear mixed model package in python. For each of the 1210 
common mtDNA variants xj of MAF > 5% in the GTEx participants, we tested for its effect β 1211 
on PEER-factor84 corrected gene expression yi in a linear mixed model, controlling for all 1212 
autosomal genetic effects and population structure in the random effect term g, and age, sex 1213 
and mean gene expression level (using an intercept term) in the fixed effect term Fi: yi= αFi+ 1214 
βxj+g+ φ, where g ~ Ν (0, σg

2Kg) and φ ~ Ν (0, σe
2I), g is the random effect of the LD-1215 

weighted relatedness matrix Kg  constructed using LDAK with 5,696,456 common (MAF >= 1216 
5%) autosomal, biallelic SNPs nDNA variants, and φ is the residual variance assuming an 1217 
independent identically distributed (i.i.d) matrix for noise and uncaptured environmental 1218 
effects. We obtained nominal p-values for each variant-gene pair by testing the alternative 1219 
hypothesis that the β between genotype and expression deviates from 0. We then calculated 1220 
Beta distribution-adjusted (using the beta distribution model of the minimum P value 1221 
distribution) empirical P values for the top cis-eQTL per gene using P values generated from 1222 
100 permutations of SNPs. These empirical P values were used to calculate Q values, the 1223 
false discovery rate (FDR), using the “qvalue” package in R. A FDR threshold of 0.05 was 1224 
applied to identify genes with a significant eQTL (“eGenes”), and the maximum empirical P 1225 
value with FDR smaller than or equal to 0.05 was the gene-level threshold for identifying 1226 
significant eQTLs (equivalent to empirical P value < 0.004).  1227 

Differential expression and pathway enrichment  1228 
 1229 
We downloaded counts of reads mapping onto each gene quantified in each tissue in GTEx 1230 
from the GTEx portal (version 2016-01-15_v7_RNASeQCv1.1.8), and performed 1231 
normalization of the read counts by effective library size using calcNormFactors with the 1232 
default trimmed-mean of M values (TMM) method using R package “edgeR”62,63. We then 1233 
estimated the common, trended and tagwise dispersions over all genes using estimateDisp in 1234 
edgeR, before computing the log(fold change), P values and false discovery rate (FDR) for 1235 
differential expression in each gene between donors with mtDNA haplogroup H and 1236 
haplogroup Uk using the exactTest function in edgeR. Pathway and GSEA analysis was 1237 
performed using the WEB-based GEne SeT AnaLysis Toolkit86,87 following their instructions 1238 
online. Results are shown in Supplementary Data 12,13.   1239 

mtDNA sequencing in cytoplasmic hybrid cell lines 1240 

 1241 
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We verified the mtDNA sequence from the cybrid cell lines. mtDNA from cybrid cell lines 1242 
was enriched using long-range PCR. To eliminate the potential for error and nDNA 1243 
contamination (nuclear-mitochondrial sequences, NUMTs), amplicons were polymerised 1244 
using PrimeSTAR GXL DNA polymerase (error rate = 0.00108 %, Takara Bio, Saint-1245 
Germain-en-Laye, France) in two overlapping fragments, using primer set-1: CCC TCT CTC 1246 
CTA CTC CTG-F (m.6222-6239) and CAG GTG GTC AAG TAT TTA TGG–R (m.16133-1247 
16153), and set-2: CAT CTT GCC CTT CAT TAT TGC–F (m.15295-15315) and GGC AGG 1248 
ATA GTT CAG ACG-R (7773-7791). Primer efficiency and specificity was assessed as 1249 
successful after no amplification of DNA from rho0 cell lines, minimising the unintended 1250 
amplification of nuclear pseudogenes. Amplified products were assessed by gel 1251 
electrophoresis, against DNA+ve and DNA-ve controls, and quantified using a Qubit 2.0 1252 
fluorimeter (Life Technologies, Paisley, UK). Each amplicon was individually purified using 1253 
Agencourt AMPure XP beads (Beckman-Coulter, USA), pooled in equimolar concentrations 1254 
and re-quantified. For the mtDNA sequencing pooled amplicons were ‘tagmented’, amplified, 1255 
cleaned, normalised and pooled into 48 sample multiplexes using the Illumina Nextera XT 1256 
DNA sample preparation kit (Illumina, CA, USA). Multiplex pools were sequenced using 1257 
MiSeq Reagent Kit v3.0 (Illumina, CA, USA) in paired-end, 250 bp reads. Post run data, 1258 
limited to reads with QV >= 30, were exported for analysis. Post-run FASTQ files were 1259 
analysed using an in-house developed bioinformatic pipeline. Reads were aligned to the 1260 
rCRS (NC_012920) using BWA v0.7.10, invoking –mem88. Aligned reads were sorted and 1261 
indexed using Samtools v0.1.18 89, duplicate åreads were removed using Picard v1.85 1262 
(http://broadinstitute.github.io/picard/). Variant calling (including somatic calling) was 1263 
performed in tandem using VarScan v2.3.8 90,91(minimum depth = 1,500, supporting reads = 1264 
10, base-quality (BQ) => 30, mapping quality (MQ) => 20 and variant threshold = 1.0 %) 1265 
and LoFreq v0.6.1 92. Concordance calling between VarScan and LoFreq was > 99.5%. 1266 
Concordant variants were annotated using ANNOVAR v529 93. In-house Perl scripts were 1267 
used to extract base/read quality data and coverage data. The mtDNA haplogroup was 1268 
determined through in-house algorithms based upon existing phylogenetic data 94,95 and 1269 
through Haplogrep 96. The pathogenicity Score was given to each of the SNPs as previously 1270 
described 97,98. 1271 

Cell lines and formyl-methionine treatment 1272 
 1273 
Cell lines were grown in Dulbecco’s modified eagle medium (DMEM) containing glucose 1274 
(4.5 g/l), pyruvate (0.11 g/l) and fetal bovine serum (FBS) (5 %) without supplemented fMet 1275 
and/or antibiotics at 37oC and 5 % CO2 conditions. 8 cell lines H (4 lines), Uk (4 lines) from 1276 
8 independent healthy control subjects were used. All the cybrids were obtained from cybrid 1277 
pools after the selection process10. All the experiments were performed in at least 3 cell lines 1278 
derived from different donors per haplogroup. The mtDNA sequences of all the cell lines can 1279 
be found on GenBank and their mtDNA accession numbers10 are included in Supplementary 1280 
Table 9. In fMet supplementation experiments, cells were incubated with 1ng /ml of N-1281 
Formyl-L-methionine (F3377, SigmaAldrich) during 2 days prior to the experiments.  1282 
 1283 
Cell growth and doubling time experiments 1284 
 1285 
For growth experiments 30000 cells were seeded in a 6-well plate and counted every 4h using 1286 
an Incucyte® Live-Cell Analysis system. Three to five growth curves were performed for 1287 
every cell line, and each time point was counted in triplicate. Time 0h was used for correction 1288 
of each well. For the doubling time analysis, the data was analyzed on an exponential curve 1289 
and only those curves with R2 ≥ 0.9 were considered. 1290 
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 1291 
Formyl-methionine quantification 1292 
 1293 
fMet was quantified using the Formyl-methionine ELISA Kit from Elabscience (E-EL-0063) 1294 
following manufacturer's conditions. 1295 

Real-time PCR quantification of transcripts.  1296 
 1297 
Total RNA was isolated from cells exponentially growing using an RNA isolation kit from 1298 
Qiagen® according to the manufacturer's protocol. Quantification of mRNA by real-time 1299 
PCR (RT-PCR) was carried out using the High capacity cDNA reverse transcription kit 1300 
(Applied Biosystems) following the manufacturer's conditions. The mRNA levels were 1301 
determined using probes from Applied Biosystems and following MQIE guidelines99. The 1302 
expression levels were normalized with GADPH and B-ACTIN as housekeeping genes.  The 1303 
codes of each of the probes are included in Supplementary Table 17. The comparative Cq 1304 
method was used for relative quantification of gene expression. Differences in the Cq values 1305 
(dCq) of the transcript of interest and the reference gene were used to determine the relative 1306 
expression of the gene in each sample. The dCq method was used to calculate the number of 1307 
copies.  1308 

Mitochondrial and Cytoplasmic Translation Assay 1309 
 1310 
Protein translation was assessed by labeling with 35S-methionine/35S-cysteine 1311 
(EXPRE35S35S Protein Labeling Mix; Perkin Elmer Life Sciences) in cells seeded at 80% of 1312 
confluence. For cytoplasmic translation assessment, cells were washed twice with Met and 1313 
Cys-free DMEM (21013024, ThermoFisher) followed by an incubation on the same media 1314 
for one hour. Then, the cells were incubated with a labelling media containing Met and Cys-1315 
free DMEM, 2 mM Glutamine (25030081, ThermoFisher), 1mM Sodium Pyruvate, 96ug/ml 1316 
Cystein (DOC0122, ForMedium) and 5% dialyzed Fetal Bovine Serum (30067334, 1317 
ThermoFisher) for 10 minutes at 37 ºC, followed by the addition of 100uCi 35S L-1318 
Methionine and incubation for 30 minutes at 37 ºC. Mitochondrial translation assay was 1319 
performed similarly than in the cytoplasmic assay with some adaptations. Cells were 1320 
incubated during 20 minutes at 37 ºC with Labeling Medium including 100ug/ml emetine 1321 
(E2375, Sigma) followed by the addition of 100 Ci 35S L-Methionine and incubation for 60 1322 
min at 37 ºC. In both cases, cells were trypsinized and collected with PBS (and washed twice) 1323 
and pellets kept at -80ºC. Proteins extraction was performed using a buffer containing 0.1% 1324 
DDM (D4641, SigmaAldrich), 1% Sarkosyl (L9150, SigmaAldrich) and 50 units of 1325 
Benzonase (Novagen 70664 25U/ul) vortexed vigorously and left on ice for 30 minutes. 1326 
Protein quantities were assessed by DC assay (Biorad 500-0113) following manufacturer’s 1327 
instructions. Next, 15ug of protein was loaded onto 15-well-12% Tris-Glycine gels 1328 
(Invitrogen NP0343BOX) using MES buffer and ran for 3 hours at 70 volts. Total protein 1329 
levels were assessed by Coomassie blue staining (0.1% Coomassie blue in 7% acetic acid and 1330 
40% methanol and de-stained with (20%methanol, 7% Acetic acid) solution for 2-3h. Images 1331 
of the gel were collected using a Scanner. Gels were dried at 80ºC for 2 hours. Dried gels 1332 
were then exposed for several days and imaged using a phosphor imaging screen on an 1333 
Amersham™ Typhoon™ Biomolecular Imager. The bands were quantified, aligned and 1334 
cropped using the Fiji program and the OD was used as a value for statistical purposes. 1335 

Mitochondrial bioenergetics characterization 1336 
 1337 
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Oxygen consumption modifications. Briefly, 20 × 104 cells/well were seeded 8-12 hours 1338 
before the measurement basal respiration, leaking respiration (LR), maximal respiratory 1339 
capacity (MRC) and not mitochondrial respiration (NMR) were determined by adding 1 μM 1340 
oligomycin (LR),  0.75 and 1.5 μM  of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone 1341 
(FCCP) (MRC) and 1 μM rotenone/antimycin (NMR), respectively.  Data were corrected by 1342 
the NMR and expressed as pmol of oxygen/min/mg of protein. The quantity of protein in 1343 
each well was measured by Bradford method 100.  1344 

Determination of MIMP and cytoplasmic and mitochondrial ROS,  1345 
 1346 
The determination of mitochondrial inner membrane potential (MIMP) was carried using 1347 
Tetramethylrhodamine, methyl ester (TMRM) at 20nM (DMSO) in parallel to the 1348 
mitochondrial mass detection using Mito-Traker Green (20nM in DMSO). Mitochondrial 1349 
superoxide content was measured using MitoSOX Red at 5μM in DMSO. Cytosolic ROS 1350 
were measured using 2ʹ,7ʹ-dichlorofluorescin-diacetate at 9μM in DMSO.  All the reagents 1351 
were purchased in Invitrogen®. Fluorescence activated detection was carried using a BD 1352 
LSRFortessa™ cell analyzer from BD. 20000 events were recorded and doublet 1353 
Discrimination was carried using the FCS-Height and Area FlowJo Software. An example of 1354 
the gating strategy is shown in Supplementary Figure 7. The data is expressed as intensity 1355 
of fluorescence.  1356 
 1357 
Determination of ATP levels 1358 
 1359 
ATP levels were measured four times in three independent experiments using the CellTiter-1360 
Glo® Luminiscent Cell Viability Assay (Promega) according to the manufacturer’s 1361 
instructions. Briefly, 10,000 cells/well were seeded and the media was changed 48h before 1362 
the measurement. After that time cells were lysed, and lysates were incubated with the 1363 
luciferin/luciferase reagents. Samples were measured using a NovoStar MBG Labtech 1364 
microplate luminometer, and the results referred to the protein quantity measured in a parallel 1365 
plate.  1366 

Electrophoresis and Western blot analysis. 1367 
 1368 
Samples for blue-native gel electrophoresis (BNGE) and in gel activities were prepared as 1369 
previously described 54,101. Native samples were run through precast NativePAGE 3–12% 1370 
Bis–Tris gels during 6-9 hours. Total protein extracts were prepared according to each 1371 
protein’s solubilities. Mitochondrial proteins were prepared using 2% dodecyl-maltoside in 1372 
PBS including protease inhibitors. Protein extracted for kinase phosphorylation analysis was 1373 
extracted using PathScan® Sandwich ELISA Lysis Buffer from Cell signaling. In any case 1374 
protein extracts were loaded on NuPAGE® Bis-Tris Precast Midi Protein Gels with MES 1375 
(Invitrogen®) with 20 or 26 wells depending on the experiment. Electrophoresis was carried 1376 
out following the manufacturer's conditions. SeeBlue® Plus2 Pre-stained Protein Standard 1377 
from Invitrogen® was used in each electrophoresis as protein size markers. The separated 1378 
proteins were transferred to polyvinylidene fluoride membranes using the iBLOT system 1379 
(Invitrogen®) or Mini Trans-Blot® transfer system from Biorad®. The resulting blots were 1380 
probed overnight at 4 ºC with primary antibodies with the appropriate concentration 1381 
following manufacturer's condition with small adaptations (Antibodies, and concentrations 1382 
are attached in Supplementary Table 18). After the primary antibody, blots were incubated 1383 
for 1 h with secondary antibodies conjugated with horseradish peroxidase (HRP) and 1384 
immuno-detected using an Amersham Imager 600. The bands for each antibody were 1385 
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quantified, aligned and cropped using the Fiji program and the OD was used as a value for 1386 
statistical purposes. In order to avoid inter-blot variation one cell line was used as an internal 1387 
control and the values of the OD corrected by β-Actin were relative to it in each case. 1388 

Reproducibility of the experiments and statistical analysis  1389 
 1390 
All of the experiments present in this work were performed in 3 independent biological 1391 
replicates (unless noted otherwise) and statistical analyses were derived from these data 1392 
(Prism 8.0.1). Normal distributions were validated by the Kolmogorov–Smirnov test. One-1393 
way ANOVA followed by the Holm-Sidak test for multiple comparisons Kruskal-Wallis was 1394 
applied for group comparison tests.  1395 

Mitochondrial disease patients harboring the m.3243A>G variant  1396 

 1397 
Serum samples from patients carrying the m.3243A>G variant were obtained from Prof 1398 
Chinnery’s neurogenetic/mitochondrial clinic at through the study: Genotype and Phenotype 1399 
in Inherited Neurodegenerative Diseases (REC ID: 13/YH/0310, IRAS ID: 136697) 1400 
Cambridge University Hospitals NHS Trust. Age and gender-matched controls were obtained 1401 
in the NIHR BioResource and the Blood and Stem Cell Biobank (Cambridge, UK) Ethics ID: 1402 
13/YH/0310. 1403 

Oxford Vascular Study 1404 

 1405 
OXVASC is a longitudinal population-based incidence cohort of all acute vascular events in 1406 
a defined population of 92,728 people, covered by around 100 primary care physicians in 1407 
nine primary care practices in Oxfordshire, UK. An estimated 97% of the true study 1408 
residential population is registered with a primary care practice; most unregistered people are 1409 
young students. The study area contains a mix of urban and rural populations. The OXVASC 1410 
population is 94% Caucasian, 3% Asian, 2% Chinese, and 1% Afro-Caribbean. Written 1411 
informed consent or assent from relatives is obtained in all participants for study, interview 1412 
and follow-up, including ongoing review of primary care and hospital records and death 1413 
certificate data. OXVASC was approved by the Oxfordshire research ethics committee 1414 
(OREC A: 05/Q1604/70). Multiple overlapping methods are used for ascertainment of all 1415 
participants with TIA and stroke, approaching 100% of events reaching medical attention. 1416 
These include the following: (a) a daily, rapid access clinic to which participating general 1417 
practitioners and the local emergency department refer participants with suspected TIA or 1418 
minor stroke; (b) daily searches of admissions to the medical, stroke, neurology, and other 1419 
relevant wards; (c) daily searches of the local emergency department attendance register; (d) 1420 
daily searches of in-hospital death records via the Bereavement Office; (e) monthly searches 1421 
of all death certificates and coroner's reports for out-of-hospital deaths; (f) monthly searches 1422 
of general practitioner diagnostic coding and hospital discharge codes; and (g) monthly 1423 
searches of all brain and vascular imaging referrals. Demographic data and stroke risk factors 1424 
are collected from face-to-face interviews by study physicians as soon as possible after 1425 
referral or hospital admission and cross-referenced with primary care records. Detailed 1426 
clinical history was recorded in all patients and assessments were made for stroke severity 1427 
using the National Institute of Health Stroke Scale (NIHSS) as recorded on assessment. 1428 
Cause of ischaemic events was classified according to the Trial of Org 10172 in Acute Stroke 1429 
Treatment (TOAST) criteria. Stroke and TIA were defined according to WHO criteria (acute 1430 
onset of neurological deficit, persisting for >24 hours in case of a stroke, or for <24 hours in 1431 
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case of a TIA), with review of all cases as soon as possible after presentation by the same 1432 
senior neurologist throughout the study. Non-fasting blood samples were taken as soon as 1433 
possible after the event, usually within one day. These included serum, 3.2% buffered tri-1434 
sodium citrate plasma and lithium heparin plasma (Vacutainer tubes; Becton Dickinson, 1435 
United Kingdom). Samples were centrifuged at 3000 g for 10 minutes, and aliquots of serum 1436 
and plasma were stored at -80°C before analysis when they were thawed for use at 37°C. All 1437 
times from sampling to freezing were documented, typically within 4 hours of taking. 1438 
 1439 
ICICLE-PD Cohort  1440 
 1441 
Plasma samples from PD patients and controls were obtained from the ‘Incidence of 1442 
Cognitive Impairment in Cohorts with Longitudinal Evaluation-PD’ (ICICLE-PD) study, 1443 
which includes newly-diagnosed PD cases and unrelated control subjects of a similar age 1444 
recruited from the community and outpatient clinics in Newcastle and Cambridge, UK102. 1445 
Idiopathic PD was diagnosed according to UKPDS Brain Bank criteria 103. The study was 1446 
approved by the Newcastle and North Tyneside Research Ethics Committee. All patients 1447 
provided written informed consent. Venous blood samples were collected in EDTA tubes at 1448 
baseline study visits (between 2009 and 2011), and centrifuged within 30 minutes at 2000rpm 1449 
for 15 minutes. Plasma was removed and stored in 200μl aliquots at -80C until assays were 1450 
performed. 1451 

mtDNA sequencing of patients cohorts  1452 

 1453 
We selected 282 participants with ischaemic stroke (IS) and 181 age-matched controls from 1454 
the Oxford Vascular Study (OXVASC) 104 for sequencing of mtDNA using the Illumina 1455 
Hiseq 2000 using an amplicon-based paired-end library preparation; both groups are enriched 1456 
for individuals with Haplogroup Uk (32% haplogroup Uk in cases, 23% haplogroup Uk in 1457 
controls). We also sequenced 123 participants with Parkinson’s disease (PD) and 40 age-1458 
matched controls from the Incidence of Cognitive Impairment in Cohorts with Longitudinal 1459 
Evaluation–PD (ICICLE-PD) cohort 102 with the same platform; both groups represent 1460 
population samples and are not enriched for any mtDNA haplogroups. The Fluidigm Access 1461 
ArrayTM technology was used to generate tagged and indexed amplicons (on average 100 1462 
per sample of 150-200bp), with sample-specific barcodes and Illumina adaptor sequences. 1463 
The resulting PCR products were checked for quality using the Agilent 2100 Bioanalyzer and 1464 
then pooled together in equal volumes. The PCR product library was purified using AMPure 1465 
XP beads and quantified with PicoGreen prior to loading for Illumina sequencing. 183 age-1466 
matched controls from the OXVASC cohort were sequenced with Illumina Miseq using a 1467 
paired-end library preparation. Mitochondrial DNA MiSeq libraries were prepared by 1468 
amplification of two overlapping fragments 105. After individual purification and 1469 
quantification, the amplicons from each sample were pooled in equal amounts. Libraries were 1470 
prepared with NEBNext Ultra library prep reagents (New England BioLabs, MA) according 1471 
to manufacturer's instructions and sequenced using a 2 × 250-cycle MiSeq Reagent kit v3.0 1472 
(Illumina, CA).  1473 

Mitochondrial variant calling and haplogroup prediction 1474 

 1475 
Quality of raw sequencing fastq files was checked with FastQC 1476 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) prior to mapping and eventually 1477 
trimmed using TrimGalore!  1478 
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(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to remove low-quality 1479 
read ends (--q 20), remove adapters (--stringency 5) and Ns from either side of the read (–1480 
trim-n). Trimmed reads below 35bp were removed (–length 35). Read were mapped using the 1481 
MToolBox pipeline (v.1.1) 106 which performs a two-step reads mapping, first on the rCRS 1482 
mitochondrial reference genome and then simultaneously on the hg19 nuclear reference and 1483 
rCRS reference, to remove possible nuclear-mitochondrial DNA sequences (NumtS) 1484 
contaminations. PCR duplicates were removed with MarkDuplicates in the picard package 1485 
(https://gatk.broadinstitute.org/hc/en-us/articles/360037052812-MarkDuplicates-Picard-) 1486 
from sequencing generated with Illumina Miseq and with FastUniq 107 from sequencing 1487 
generated with amplicon-based library preparations. The average coverage obtained 1488 
(percentage of mtDNA molecules covered by at least one read) was 99.5% for IS samples, 1489 
98.7% for PD samples and 100% for controls. Average mitochondrial read depth was 1220X 1490 
for IS samples, 1299X for PD samples and 2282X for controls. Mitochondrial variant calling 1491 
was performed with the MToolBox pipeline, using the default options (minimum read depth 1492 
per alternative allele ≥ 5 and minimum quality score per base ≥ 25). Haplogroup predictions 1493 
were generated with the Haplogrep 2 software 96, using VCF files with homoplasmic and 1494 
nearly homoplasmic (i.e. with heteroplasmic fraction ≥ 0.8) variants generated with 1495 
MToolBox.   1496 
 1497 
mtDNA haplogroup association in patient cohorts  1498 
 1499 
We measured fMet levels 631 participants from both the IS and PD cohorts (Stroke N = 282, 1500 
Parkinson’s disease N = 124, Control N = 225) in three batches (Supplementary Table 14). 1501 
Haplogroup predictions were available for 95% of the samples (N=601) whose mtDNA were 1502 
deep-sequenced. In the IS cohort, 92 IS cases and 17 controls were of haplogroup Uk, while 1503 
190 IS cases and 139 controls were of other haplogroups. fMet levels measured in pg/ml 1504 
from the samples were controlled for batch and data collection site (Cambridge or Newcastle) 1505 
of fMet measurement using linear regression, and residuals were rank normalised for further 1506 
analysis. Associations between normalized fMet levels with Uk haplogroup was tested using 1507 
a logistic regression implemented with the R glm function (family = “binomial”). In the PD 1508 
cohort, 2 PD cases and 4 controls were of haplogroup Uk, and 118 PD cases and 39 controls 1509 
were of other haplogroups. fMet levels measured in pg/ml from the samples were controlled 1510 
for batch of fMet measurement (all PD samples were collected at the same site) using linear 1511 
regression, and residuals were rank normalised for further analysis in the same fashion as in 1512 
the IS cohort.  1513 

EPIC Norfolk cohort  1514 

 1515 
We obtained incidences of late-onset diseases from 11,966 men and women from the EPIC-1516 
Norfolk prospective cohort EPIC Norfolk cohort. Participants were identified as having 1517 
experienced an event if the corresponding ICD-10 code was registered on the death certificate 1518 
(as the underlying cause of death or as a contributing factor), or as the cause of 1519 
hospitalization. Participants were on average 60 years (standard deviation: 6 years) old and 1520 
46.3% were men. All participants were flagged for mortality at the UK Office of National 1521 
Statistics, and vital status was ascertained for the entire cohort. Death certificates were coded 1522 
by trained nosologists according to the International Classification of Diseases (ICD), 10th 1523 
revision. Hospitalization data were obtained using National Health Service numbers through 1524 
linkage with the East Norfolk Health Authority (ENCORE) database, which contains 1525 
information on all hospital contacts throughout England and Wales. Participants were 1526 
identified as having experienced an event if the corresponding ICD-10 code was registered on 1527 
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the death certificate (as the underlying cause of death or as a contributing factor), or as the 1528 
cause of hospitalization, Supplementary Data 11). The current study is based on follow-up 1529 
to 31st March 2016.  1530 
 1531 
fMet measurement and mtDNA genotyping in EPIC-Norfolk   1532 
 1533 
fMet was measured from plasma samples stored in liquid nitrogen since baseline in 1993-97 1534 
from a total of 11,966 men and women from the EPIC-Norfolk prospective cohort as part of 1535 
an untargeted metabolomic profiling using Metabolon’s DiscoveryHD4™ platform 1536 
(Metabolon Inc., Morrisville, North Carolina, USA). Measurements were undertaken in two 1537 
sub-cohorts of 5,989 and 5,977 participants, respectively, quasi-randomly selected from the 1538 
full cohort. Prior to statistical analyses, fMet levels were transformed using the natural 1539 
logarithm and values at the tail of the distribution, defined by mean ± 5 x standard deviation, 1540 
were replaced by the respective lower/upper bound. They were then rescaled to a mean of 1541 
zero and standard deviation of one. Processing steps were performed for each batch 1542 
separately. mtDNA haplogroups in 10,782 participants were obtained with Haplogrep v2, 1543 
using the --chip option with genotype data at 262 (2 of which were multi-allelic) mtDNA 1544 
variants on the Affymetrix UK Biobank Axiom genotyping array (895 participants fall under 1545 
haplogroup Uk, 9,887 individuals were of other haplogroups).  1546 

Cox-proportional hazards models 1547 

 1548 
We used Cox-proportional hazards models to estimate hazard ratios for the association of 1549 
fMet levels (log-transformed and standardized) with first incidences of 24 diseases and health 1550 
outcomes during a 20-year follow up period, with age as the underlying time scale adjusting 1551 
for sex. For each incident outcome, we excluded participants reporting an instance of the 1552 
outcome at baseline. For cancer outcomes, we additionally excluded all participants with the 1553 
onset of any cancer within six months after baseline. mtDNA haplogroups in 10,782 1554 
participants were obtained with Haplogrep v2, using the --chip option with genotype data at 1555 
262 (2 of which were multi-allelic) mtDNA variants on the Affymetrix UK Biobank Axiom 1556 
genotyping array (895 participants fall under haplogroup Uk, 9,887 individuals were of other 1557 
haplogroups). Cox-proportional hazard models for fMet effects on outcome incidence were 1558 
calculated for all participants, as well as separately within each haplotype group on 24 1559 
outcomes, all of which had more than 10 incidences in both haplogroup Uk or otherwise, to 1560 
obtain both cohort-based and haplotype-specific hazard ratios (Supplementary Table 16). 1561 
As fMet levels are positively associated with age, we note that outcomes with significant 1562 
fMet hazard ratios were late-onset diseases or outcomes. Further, we checked for potential 1563 
violations of the proportional hazard assumption in Cox-proportional hazard models with 1564 
Schoenfeld residual tests for each outcome, and found no violations except for cataracts, on 1565 
which fMet does not have a significant effect (Supplementary Table 16). We further tested 1566 
for interaction effects between mtDNA haplogroups and fMet levels to formally test for 1567 
differences in effect estimates, and found no significant interaction effects (Supplementary 1568 
Table 16).  1569 
 1570 

Data availability: 1571 

The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the 1572 
Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, 1573 
NIDA, NIMH, and NINDS. The data used for the analyses described in this manuscript were 1574 
obtained from the GTEx Portal (GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8) and 1575 
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dbGaP accession number phs000424.v7.p2. All data is available in the main text or the 1576 
supplementary materials, or available upon request to the authors.  1577 

 1578 

Code Availability: 1579 

We conducted our analyses using the following published and publicly available software: 1) 1580 
calling mtDNA variants: GATK v4.0.3.0 HaplotypeCaller 1581 
(https://gatk.broadinstitute.org/hc/en-us/articles/360037225632-HaplotypeCaller) and mtdna-1582 
server local version (https://github.com/seppinho/mutserve), 2) for mtDNA association 1583 
analysis using a linear mixed model and variance decomposition analysis: LDAK v5 1584 
(http://dougspeed.com/downloads2/); 3) for improving power of mtDNA association: CMS 1585 
v1.0 (https://github.com/haschard/CMS); 4) for eQTL analyses: limix v3.0 1586 
(https://github.com/limix/limix); 5) for identifying pseudogenes in nuclear genome with high 1587 
sequence similarity to the mtDNA: lastal 744 (http://last.cbrc.jp/doc/lastal.html); 6) for 1588 
identifying PEER factors that capture unknown confounding in gene expression data: PEER 1589 
v1.3 (https://github.com/PMBio/peer); 7) differential expression analysis: edgeR v3.11 1590 
(http://bioconductor.org/packages/release/bioc/html/edgeR.html); 8) gene set enrichment 1591 
analysis: GSEA v4.1.0 (https://www.gsea-msigdb.org/gsea/index.jsp); 9) Flow cytometry 1592 
analysis: FlowJo v10.2 1593 

 1594 

Supplementary Materials: 1595 

Members of the ICICLE-PD Consortium, Supplementary Discussion, Supplementary Figures 1596 
1-7, Supplementary Tables 1-18, References (1-10) 1597 

 1598 
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3. Department of Clinical Neurosciences, School of Clinical Medicine, University of 1601 
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A full list of members and their affiliations appears in the Supplementary Information. 1603 
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