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Abstract 

Cell competition is emerging as a quality control mechanism that eliminates unfit cells in a wide 

range of settings from development to the adult. However, the nature of the cells normally 

eliminated by cell competition and what triggers their elimination remains poorly understood. In 

mouse, prior to gastrulation 35% of epiblast cells are eliminated. Here we have performed single 

cell transcriptional profiling of these cells and find that they show the hallmarks of cell 

competition and have mitochondrial defects. We demonstrate that mitochondrial defects are 

common to a range of different loser cell types and that manipulating mitochondrial function is 

sufficient to trigger competition. Importantly, we show that in the embryo cell competition 

eliminates cells with mitochondrial DNA mutations and that even non-pathological changes in 

mitochondrial DNA sequence can induce cell competition. Our results therefore suggest that cell 

competition is a purifying selection that optimises mitochondrial performance prior to 

gastrulation. 
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Cell competition is a fitness sensing mechanism that eliminates cells that, although viable, are 1 

less fit than their neighbours. The cells that are eliminated are generically termed losers, while 2 

the fitter cells that survive are referred to as winners. Cell competition has been shown to act in 3 

a broad range of settings, from the developing embryo to the ageing organisms1-3. It has been 4 

primarily studied in Drosophila, where it was first described in the imaginal wing disc 4. Since 5 

then, it has also been found to be conserved in mammals. In the mouse embryo 35% of 6 

embryonic cells are eliminated between E5.5 and E6.5 and there is strong evidence that this 7 

elimination is through cell competition5-7. These and other studies identified a number of read-8 

outs of cell competition in the mouse embryo, such as relative low c-MYC expression, a loss of 9 

mTOR signalling, low TEAD activity, high P53 expression, or elevated levels of ERK 10 

phosphorylation 5-9. Importantly, there is a significant overlap with the markers of cell competition 11 

originally identified in Drosophila as well as those found in other cell competition models, such 12 

as Madin-Darby Canine Kidney (MDCK) cells – as reviewed1-3. In spite of the advance that 13 

having these cell competition markers signifies, given that they were primarily identified by using 14 

genetic models that rely on over-expression or mutation, we still have little insight into the over-15 

arching features of the cells that are eliminated in the physiological context. 16 

Mitochondria, with their diverse cellular functions ranging from determining the bioenergetic 17 

output of the cell to regulating its apoptotic response, are strong candidates for determining 18 

competitive cell fitness. During early mouse development mitochondria undergo profound 19 

changes in their shape and activity10. In the pre-implantation embryo mitochondria are rounded, 20 

fragmented and contain sparse cristae, but upon implantation they fuse to form complex 21 

networks with mature cristae11. The mode of replication of the mitochondrial genome (mtDNA), 22 

that encodes for vital components of the bioenergetic machinery, also changes during early 23 

mouse development. After fertilization, mtDNA replication ceases and its copy number per cell 24 

decreases with every division until post-implantation stages, when mtDNA replication resumes10. 25 

As the mutation rate of mtDNA is significantly higher than that of nuclear DNA12, 13, this 26 

increased replication most likely leads to an increased mutation load. In fact, inheritable mtDNA 27 
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based diseases are reported with a prevalence of 5-15 cases per 100,000  individuals14, 15. A 28 

number of mechanisms have been proposed to reduce this mutation load, such as the 29 

bottleneck effect, purifying selection or biased segregation of mtDNA haplotypes16-21. However, 30 

how these mechanisms act at the molecular and cellular level is still poorly understood. 31 

To understand the nature of the cells eliminated during early mouse post-implantation 32 

development, we have analysed their transcriptional profile by single-cell RNA sequencing and 33 

found that these cells share a cell competition signature. Analysis of the pathways mis-regulated 34 

identified mitochondrial dysfunction as a common feature. Importantly, our studies uncovered 35 

that the cells eliminated have mtDNA mutations. Furthermore, we demonstrate that manipulating 36 

mitochondrial activity either by disrupting mitochondrial dynamics or by introducing non-37 

pathological mtDNA changes is sufficient to trigger cell competition. These results therefore 38 

pinpoint mitochondrial performance as a key cellular feature that determines the competitive 39 

ability of embryonic cells and suggest that cell competition is acting as a purifying selection 40 

during early mammalian development.41 

42 

Results 43 

Cells eliminated in the early mouse embryo have a distinct transcriptional profile 44 

We have previously shown that in the early post-implantation mouse embryo about 35% of 45 

epiblast cells are eliminated and that these cells are marked by low mTOR signalling7. However, 46 

we currently do not understand the characteristics of these cells or what triggers their 47 

elimination. To answer these questions, we have analysed their transcriptional profile by single 48 

cell RNA sequencing (scRNA-seq). To ensure we can capture the eliminated cells, as we have 49 

done before7, we isolated embryos at E5.5 and cultured them for 16 hours in the presence of a 50 

caspase inhibitors (CI) or vehicle (DMSO) (Fig. 1a). Unsupervised clustering of the scRNA-seq 51 

data revealed five clusters: two corresponding to extra-embryonic tissues (visceral endoderm 52 

and extra-embryonic ectoderm) and three that expressed epiblast marker genes (Fig. 1b-c, 53 

Extended Data Fig. 1a-f and Methods). Interestingly, cells from CI- and DMSO-treated embryos 54 
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are unequally distributed across the three epiblast clusters. In particular, one of these clusters 55 

(cluster 4) is only composed of cells from CI-treated embryos (Fig. 1d-e). It is worth noting that 56 

all epiblast clusters contained cells in G2/M and S phases of the cell cycle, suggesting they are 57 

all cycling (Extended Data Fig. 2a).   58 

The three epiblast clusters are highly connected, as highlighted by a connectivity analysis 59 

carried out with PAGA22 (Extended Data Fig. 2b). Hence, to establish the relationship between 60 

these epiblast clusters we computed a diffusion map23. For this, we selected only cells captured 61 

from CI-treated embryos, to eliminate possible confounding effects due to the caspase inhibitor 62 

(Fig. 2a). However, when all epiblast cells are considered, the results remain unchanged 63 

(Extended Data Fig. 2c-e). This analysis identified a trajectory between the three epiblast 64 

clusters, with those cells unique to CI-treated embryos falling at one extreme end of the 65 

trajectory (corresponding to cluster 4; Fig. 2a) and with those cells present in both DMSO and 66 

CI-treated embryos at the other (corresponding to cluster 1; Fig. 2a and Extended Data Fig. 2d).   67 

To further define the identity of the epiblast cells of CI-treated embryos we analysed the genes 68 

differentially expressed along the trajectory (see Methods and Extended Data Fig. 3a) using 69 

Ingenuity Pathway Analysis (IPA) to characterize gene signatures24. Importantly, we found that 70 

these differentially expressed genes fell under molecular and cellular function categories 71 

associated with cell death and survival, protein synthesis and nucleic acids (Fig. 2b). Analysis of 72 

the factors with enriched targets within the genes differentially expressed along the trajectory 73 

revealed RICTOR (an mTOR component), TLE3, MYC, MYCN, P53 and IGFR (that is upstream 74 

of mTOR) as the top upstream regulators (Fig. 2c). Breaking down the differentially expressed 75 

genes into those down-regulated or up-regulated along the winner-to loser trajectory revealed 76 

that the targets of RICTOR, MYC, MYCN and IGFR primarily fell within the down-regulated 77 

genes (Supplementary Tables 1 and 2). P53 activated targets were preferentially up-regulated 78 

and P53 repressed targets were preferentially down-regulated (Extended Data Fig. 3b-c). 79 

Moreover, genes related to protein synthesis were primarily found to be downregulated.  80 
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The observation that the genes differentially expressed along the trajectory fall into cell death 81 

categories, as well as being mTOR, MYC and P53 targets strongly suggests that cells at each 82 

end of the trajectory are the winners and losers of cell competition5-7. For this reason, we 83 

hereafter refer to those epiblast cells unique to CI-treated embryos as “loser” epiblast cells and 84 

to those at the opposite end of the trajectory as the “winner” epiblast cells. Those cells lying 85 

between these two populations on the trajectory are considered “intermediate”. Using this 86 

knowledge we can define a diffusion pseudotime (dpt) coordinate25 originating in the “winner” 87 

cluster that tracks the position of cells along the trajectory and that can be interpreted as a 88 

“losing score”, i.e., it quantifies how strong the signature of the “losing” state is in the 89 

transcriptome of a cell (see Fig. 2d-e). 90 

In accordance with previous studies6, 8, 9, we also found evidence for miss-patterning in the 91 

eliminated epiblast cells, as a proportion of these cells co-expressed naïve pluripotency and 92 

differentiation markers (Fig. 2f and Extended Data Fig. 3d). To test if loser cells are 93 

developmentally delayed or advanced compared to control cells we projected our data onto a 94 

previously published diffusion map that includes epiblast cells from E5.5, E6.25 and E6.5 stage 95 

embryos26. We found that all epiblast cells, irrespective of the condition the embryos were 96 

cultured in (ie, DMSO or CI-treated) and of their losing state (ie, that they belonged to the 97 

winner, intermediate or loser cluster) mostly overlap with the E6.5 epiblast cells (Extended data 98 

Fig. 3e-g). Cells from the loser cluster are slightly closer to the E6.25 stage than the winner and 99 

intermediate cells, as shown by their pseudo-time coordinate, but they remain far from the earlier 100 

E5.5 stage. This result combined with the higher expression of some differentiation markers 101 

observed in loser cells suggests that these cells are miss-patterned rather than developmentally 102 

delayed.  103 

Loser cells are characterised by defects in mitochondrial function 104 

We next analysed using IPA the cellular pathways mis-regulated in loser epiblast cells and found 105 

that the top two pathways (mitochondrial dysfunction and oxidative phosphorylation) are related 106 

to mitochondrial function (Fig. 3a-b, Supplementary Table 1 and 2). For example, we found a 107 
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down-regulation along the winner to loser trajectory of the mtDNA encoded mt-Nd3 and mt-Atp6, 108 

of regulators of mitochondrial dynamics such as Opa1, as well as of genes involved in 109 

mitochondrial membrane and cristae organisation such as Samm50 (Fig. 3c), suggesting that 110 

mitochondrial function is impaired in loser cells.  111 

A recent body of evidence has revealed that stress responses, such as the integrated stress 112 

response (ISR) or the closely related unfolded protein response (UPR), when triggered in cells 113 

with impaired mitochondrial function prompt a transcriptional program to restore cellular 114 

homeostasis27-29. We observed that loser epiblast cells displayed a characteristic UPR-ISR 115 

signature30-33 and key regulators of this response, such as Atf4, Ddit3, Nrf2 and Foxo3 were all 116 

up-regulated in these cells (Extended Data Fig. 4a-d). Similarly, Sesn2, a target of p53 that 117 

controls mTOR activity34, was also up-regulated in loser cells (Extended Data Fig. 4d). These 118 

findings support that loser epiblast cells present mitochondrial defects, leading to the activation 119 

of a stress response in an attempt to restore cellular homeostasis35.  120 

To validate the significance of the observed mitochondrial defects, we did two things. First, we 121 

asked if the changes of mitochondrial regulators at the mRNA level are also reflected at the 122 

protein level. We observed that in CI-treated embryos, loser cells that persist and are marked by 123 

low mTOR activity7, also show significantly lower OPA1 levels (Fig. 3d-f).  We also found that 124 

DMSO-treated embryos showed strong DDIT3 staining (an UPR-ISR marker) in the dying cells 125 

that accumulate in the proamniotic cavity, and that in CI-treated embryos, DDIT3 expression was 126 

up-regulated in a proportion of epiblast cells (Extended Data Fig. 4e-g). The second thing we did 127 

to validate the importance of the mitochondrial defects was to study in loser epiblast cells their 128 

mitochondrial membrane potential (∆ψm), an indication of mitochondrial health. We observed 129 

that while the cells of DMSO-treated embryos showed a high ∆ψm that fell within a narrow 130 

range, in CI-treated embryos the proportion of cells with a low ∆ψm significantly increased (Fig. 131 

3d and 3g-h). Together, these results suggest that loser epiblast cells have impaired 132 

mitochondrial activity that triggers a stress response. 133 

Mitochondrial dysfunction is common to different types of loser cells 134 
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To address if mitochondrial defects are a common feature of loser cells eliminated by cell 135 

competition, we analysed ESCs that are defective for BMP signalling (Bmpr1a-/-) and tetraploid 136 

cells (4n)6. We first carried out a mass spectrometry analysis using the Metabolon platform and 137 

found that metabolites and intermediates of the TCA cycle, such as malate, fumarate, glutamate 138 

and α-ketoglutarate are depleted in both Bmpr1a-/- and 4n ESCs in differentiation culture 139 

conditions (Fig. 4a). Next, we performed an extracellular flux Seahorse analysis of Bmpr1a-/- 140 

ESCs to measure their glycolytic and oxidative phosphorylation (OXPHOS) rates. We observed 141 

that when these cells are maintained in pluripotency culture conditions that are not permissive 142 

for cell competition6, they showed a similar glycolytic activity but a higher OXPHOS rate than 143 

control cells (Extended Data Fig. 5a-b). In contrast, when Bmpr1a-/- cells are induced to 144 

differentiate, this phenotype is reversed, with mutant cells showing lower ATP generated through 145 

OXPHOS and a higher glycolytic capacity than controls (Fig. 4b-e and Extended Data Fig. 5c-d). 146 

This suggests that upon differentiation Bmpr1a-/- cells are unable to sustain proper OXPHOS 147 

activity. 148 

To further test the possibility that defective ESCs have impaired mitochondrial function, we 149 

assessed their ∆ψm. We found that whilst Bmpr1a-/- and 4n cells had a similar ∆ψm to control 150 

cells in pluripotency conditions (Extended Data Fig. 5e-f), upon differentiation both these cell 151 

types presented a loss of ∆ψm, irrespective of whether they were separate or co-cultured with 152 

wild-type cells (Fig. 4f-g). This reduction in ∆ψm is not due to excessive mitochondrial reactive 153 

oxygen species (ROS) production or to a lower mitochondrial mass within mutant cells since, as 154 

for example, Bmpr1a-/- cells have lower ROS levels and similar TOMM20 and mt-CO1 155 

expression as control cells (Fig. 4h-j and Extended Data Fig. 5g). The fact that the loss of ∆ψm 156 

and lower OXPHOS activity can be observed even when loser cells are cultured separately, 157 

suggests that the mitochondrial dysfunction phenotype is an inherent property of loser cells and 158 

not a response to them being out-competed. These results also indicate that the mitochondrial 159 

defects are directly linked to the emergence of the loser status: in conditions that are not 160 

permissive for cell competition (pluripotency) mutant cells do not show defective mitochondrial 161 
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function, but when they are switched to differentiation conditions that allow for cell competition, 162 

they display impaired mitochondrial function.  163 

To further explore the relationship between mitochondrial activity and the competitive ability of 164 

the cell, we analysed the ∆ψm of BMP defective cells that are null for p53 (Bmpr1a-/-; p53-/- 165 

ESCs), as these are not eliminated by wild-type cells7. Remarkably, we observed that mutating 166 

p53 in Bmpr1a-/- cells not only rescues the loss of ∆ψm of these cells, but also causes 167 

hyperpolarisation of their mitochondria (Fig. 4k). These results not only suggest a role for P53 in 168 

regulating mitochondrial activity of ESCs, but also strongly support a pivotal role for 169 

mitochondrial activity in cell competition. 170 

Impaired mitochondrial function is sufficient to trigger cell competition 171 

The mitochondrial defects observed in loser cells led us to ask if disrupting mitochondrial activity 172 

alone is sufficient to trigger cell competition. During the onset of differentiation, mitochondrial 173 

shape changes substantially. In pluripotent cells mitochondria have a round and fragmented 174 

shape, but upon differentiation they fuse and become elongated, forming complex networks10. 175 

Given that this change in shape correlates with when cell competition occurs, we tested if 176 

disrupting mitochondrial dynamics is sufficient to induce cell competition. MFN1 and MFN2 177 

regulate mitochondrial fusion and DRP1 controls their fission36-38. We generated Mfn2-/- ESCs, 178 

that have enlarged globular mitochondria, and Drp1-/- ESCs, that show hyper-elongated 179 

mitochondria (Fig. 5a). We observed that Mfn2-/- ESCs displayed very poor growth upon 180 

differentiation (data not shown). For this reason, we tested their competitive ability in 181 

pluripotency conditions, that we have previously found not to induce the out-competition of 182 

Bmpr1a-/- or 4n cells6. Interestingly, we found that although Mfn2-/- cells grow similarly to wild-183 

type cells in separate cultures, they were out-competed in co-culture (Fig. 5b). Analysis of the 184 

Drp1 mutant cells showed that although they did not grow significantly slower than wild-type 185 

cells when cultured separately in differentiation inducing conditions, they were out-competed by 186 

wild-type cells in co-culture (Fig. 5c). The observation that disrupting mitochondrial dynamics 187 
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can induce cell competition even in pluripotency culture conditions, suggests that mitochondrial 188 

activity is a dominant parameter determining the competitive ability of the cell. 189 

To establish how disruption of mitochondrial fusion and fission affects mitochondrial 190 

performance we compared the ∆ψm, respiration rates and mitochondrial ATP production of 191 

Mfn2-/- and Drp1-/- ESCs to that of wild-type cells (Fig. 5d-g). We found that whilst Mfn2-/- and 192 

Drp1-/- ESCs had lower ∆ψm than control cells (Fig. 5d,f), Mfn2-/- ESCs had lower maximal 193 

respiration rates but similar basal respiration and ATP production to controls and Drp1-/- ESCs 194 

showed similar respiration and ATP production to controls (Fig. 5e,g). This suggests that ATP 195 

production or respiration rates alone do not determine the relative competitive ability of ESCs.  196 

Besides mitochondrial dysfunction, another prominent signature of loser cells found in vivo was 197 

the UPR/ISR (Ext. Data Fig. 4). Since the loss of Drp1 has been associated with activation of the 198 

UPR39-41, we investigated if the Drp1-/- loser cells also showed evidence for the activation of the 199 

UPR/ISR. We observed that Drp1-/- cells show higher expression of ATF4 and p-eIF2ɑ than wild-200 

type counterparts, which is indicative of UPR/ISR activation (Fig. 5h)39-41. Another feature 201 

previously described upon loss of Drp1 is the proteolytic cleavage of OPA1, where short 202 

isoforms (S-OPA1) are accumulated in detriment of the long isoforms (L-OPA1)39. When we 203 

analysed the expression of OPA1 in wild-type and Drp1-/- cells we observed that while wild-type 204 

cells retain L-OPA1 expression, loser cells predominantly express the S-OPA1 isoforms and 205 

display almost no expression of L-OPA1 (Fig. 5i). This defect has been associated with mito-206 

ribosomal stalling, a phenotype that can be replicated by treating cells with actinonin (Extended 207 

Data Fig. 6)42. To test if the shift in isoform expression observed in Drp1-/- ESCs is due to 208 

aberrant mitochondrial translation we treated cells with doxycycline, that inhibits this 209 

translation43, and observed that this was sufficient to partially rescue L-OPA1 expression (Fig. 210 

5j). This rescue together with the evidence for UPR/ISR expression suggest that Drp1-/- cells 211 

display defects in mitochondrial translation. 212 

Loser epiblast cells accumulate mtDNA mutations 213 
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There is strong evidence for selection against aberrant mitochondrial function induced by 214 

deleterious mtDNA mutations in mammals21, 44-47. Given that we observe that cell competition 215 

selects against cells with impaired mitochondrial function, we asked if cell competition could be 216 

reducing mtDNA heteroplasmy (frequency of different mtDNA variants) during mouse 217 

development. It has been recently shown that scRNA-seq can be used to reliably identify mtDNA 218 

variants, although with a lower statistical power compared to more direct approaches, like 219 

mtDNA sequencing48. We therefore tested if mtDNA heteroplasmy is present in our scRNA-seq 220 

data and whether this correlates with the losing score of a cell. Our analysis revealed that the 221 

frequency of specific mtDNA polymorphisms increased with the losing score of epiblast cells 222 

(Fig. 6a), and such mtDNA changes occurred within mt-Rnr1 and mt-Rnr2 (Fig. 6b-h and 223 

Extended Data Fig. 7a-e).  Moreover, these changes were not dependent on the litter from which 224 

the embryo came from (Extended Data Fig. 7f-k). The mutations we detected in mt-Rnr1 and mt-225 

Rnr2 strongly co-occurred in the same cell, with those closest together having the highest 226 

probability of co-existing (Fig. 6i and Extended Data Fig. 7l). This is suggestive of mtDNA 227 

replication errors that could be ‘scarring’ the mtDNA, disrupting the function of mt-Rnr1 (12S 228 

rRNA) and mt-Rnr2 (16S rRNA) and causing the loser phenotype. Importantly, the presence of 229 

these specific mtDNA mutations in the loser cells suggests that cell competition is contributing to 230 

the elimination of deleterious mtDNA mutations during early mouse development. 231 

Changes in mtDNA sequence can determine the competitive ability of a cell 232 

To explore this possibility further, we analysed if alterations in mtDNA can induce cell 233 

competition by testing the competitive ability of ESCs with non-pathological differences in 234 

mtDNA sequence.  For this we compared the relative competitive ability of ESCs that shared the 235 

same nuclear genome background but differed in their mitochondrial genomes by a small 236 

number of non-pathological sequence changes. We derived ESCs from hybrid mouse strains 237 

that we had previously engineered to have a common nuclear C57BL/6N background, but 238 

mtDNAs from different wild-caught mice16. Each wild-derived mtDNA variant (or haplotype) 239 

contains a specific number of single nucleotide polymorphisms (SNPs) that lead to a small 240 
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number of amino acid changes when compared to the C57BL/6N mtDNA haplotype. 241 

Furthermore, these haplotypes (BG, HB and ST) can be ranked according to their genetic 242 

distance from the C57BL/6N mtDNA (Fig. 7a and Extended Data Fig. 8a). Characterization of 243 

the isolated ESCs revealed that they have a range of heteroplasmy (mix of wild-derived and 244 

C57BL/6N mtDNAs) that is stable over several passages (Extended Data Fig. 8b). Importantly, 245 

these different mtDNA haplotypes and different levels of heteroplasmy do not alter cell size, cell 246 

granularity, mitochondrial mass or mitochondrial dynamics, nor do they substantially impact the 247 

cell’s ∆ψm (Extended Data Fig. 8c-f).  248 

When we tested the competitive ability of these ESCs with different mtDNA content, in 249 

pluripotency culture conditions, we observed that cells carrying the mtDNAs that are most distant 250 

from the C57BL/6N mtDNA, such as the HB(100%), the HB(24%) and the ST(46%) ESCs could 251 

all out-compete the C57BL/6N line (Fig. 7b-c and Extended Data Fig. 8g). Similarly, when we 252 

tested the HB(24%) line against the BG(99%) or the BG(95%) lines (that have mtDNAs more 253 

closely related to the C57BL/6N mtDNA), we found that cells with the HB haplotype could also 254 

out-compete these ESCs (Fig. 7d and Extended Data Fig. 8h). In contrast, we observed that the 255 

HB(24%) ESCs were unable to out-compete either their homoplasmic counterparts, HB(100%), 256 

or the ST(46%) cells that carry the most distant mtDNA variant from C57BL/6N (Fig. 7e and 257 

Extended Data Fig. 8i). These results tell us three things. First, that non-pathological differences 258 

in mtDNA sequence can trigger cell competition. Second, that a competitive advantage can be 259 

conferred by only a small proportion of mtDNA content, as indicated by our finding that HB(24%) 260 

behave as winners. Finally, these findings suggest that the phylogenetic proximity between 261 

mtDNA variants can potentially determine their competitive cell fitness. 262 

To characterise the mode of competition between cells with different mtDNA we focussed on the 263 

HB(24%) and the BG(95%) ESCs. Analysis of these cell lines revealed that specifically when co-264 

cultured, the BG(95%) cells display high levels of apoptosis (Fig. 7f), indicating that their out-265 

competition is through their elimination. To gain further insight we performed bulk RNA-seq of 266 

these cells in separate and co-culture conditions (Extended Data Fig. 8j) and analysed the 267 
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differentially expressed genes by gene-set enrichment analysis (GSEA). We found that in 268 

separate culture the most notable features that distinguish BG(95%) from HB(24%) cells were a 269 

down-regulation of genes involved in oxidative phosphorylation and an up-regulation of those 270 

associated with cytokine activity (Fig. 8g). Interestingly, in the co-culture condition, in addition to 271 

these signatures, BG(95%) cells revealed a down-regulation in signature markers of MYC 272 

activity and mTOR signalling (Fig. 7h), whose downregulation are known read-outs of a loser 273 

status during cell competition in the embryo5-7 (Fig. 2c).  274 

To test if the down-regulation of genes involved in oxidative phosphorylation was also reflected 275 

at the functional level we compared oxygen consumption rates and mitochondrial ATP 276 

generation in HB(100%), HB(24%), BG(95%) and C57Bl/6N ESCs. We find that the winner cells 277 

HB(100%) and HB(24%) have higher basal respiration, higher maximal respiration and higher 278 

mitochondrial ATP production than the loser BG(95%) and C57BL/6N ESCs (Extended Data Fig. 279 

9). These data indicate that the mtDNA differences that exist between winner and loser cells are 280 

sufficient to affect their mitochondrial performance and this ultimately determines their 281 

competitive ability. However, the observation that differentiating Drp1-/- ESCs are eliminated by 282 

cell competition but do not show differences in respiration rates or mitochondrial ATP production 283 

(Fig. 5b,e), suggests that respiration or ATP production rates alone are unlikely to be the 284 

mitochondrial parameters that control competitive cell fitness. 285 

The finding that the genes down-regulated in BG(95%) cells when co-cultured with HB(24%) 286 

cells fell under functional categories relating to mitochondrial function (Extended Data Fig. 10a) 287 

led us to analyse the degree of overlap between these genes and the genes differentially 288 

expressed along the winner-to-loser trajectory in the embryo. We observed a significant overlap 289 

in mis-regulated genes (Extended Data Fig. 10b), as well as in the functional components that 290 

these genes can be categorised into (Extended Data Fig. 10c). This further highlights the 291 

importance of relative mitochondrial activity for determining the competitive ability of embryonic 292 

cells. 293 
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Discussion 294 

The emerging role of cell competition as a regulator of cell fitness in a wide range of cellular 295 

contexts, from the developing embryo to the ageing tissue1-3, has highlighted the importance of 296 

understanding what cell types are normally eliminated by this process. With the aim of 297 

understanding this question, we have analysed the transcriptional identity of the cells eliminated 298 

in the early mouse embryo. We have found not only that they present a cell competition 299 

signature but also that they are marked by mtDNA mutations and impaired mitochondrial 300 

function. Starting from these results, we leveraged in vitro models of cell competition to show 301 

that: (i) mitochondrial function is impaired in loser cells eliminated by cell competition, and (ii) 302 

differences in mitochondrial activity are sufficient to trigger cell competition in ESCs. Overall, this 303 

points to mitochondrial performance as a key determinant of the competitive ability of cells 304 

during early mammalian embryonic development. One implication of our findings is that a range 305 

of different types of defects, such as mis-patterning, karyotypic abnormalities or mtDNA 306 

mutations, all lead to dysfunctional mitochondria at the onset of differentiation and that ultimately 307 

it is their impaired mitochondrial function that triggers cell competition, inducing their elimination 308 

(Fig. 8). 309 

Embryos are exposed to different microenvironments in vivo and when cultured ex-vivo. 310 

Similarly, ESCs also experience a different micro-environment to epiblast cells in the 311 

embryo.  These different micro-environments could potentially affect the selective pressure and 312 

hence the transcriptional signature of loser cells. However, there are two reasons why we think 313 

that the loser cell signatures we identify here are conserved across systems. First, the 314 

transcriptional profile of our epiblast cells from cultured embryos is very similar to that of epiblast 315 

cells from freshly isolated embryos (see Extended Data Figure 3e-g). Second, the loser 316 

signature identified here is enriched for targets of P53 and depleted for mTOR and c-MYC 317 

targets. Given that these are regulators of cell competition identified by us and others in the 318 

embryo and in ESCs5-7, it suggests that the same pathways are inducing loser cell elimination in 319 

in vivo, ex-vivo and in ESC models of cell competition. 320 
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It is well known that the successful development of the embryo can be influenced by the quality 321 

of its mitochondrial pool10. Moreover, divergence from normal mitochondrial function during 322 

embryogenesis is either lethal or can lead to the development of mitochondrial disorders49. 323 

Deleterious mtDNA mutations are a common cause of mitochondrial diseases and during 324 

development selection against mutant mtDNA has been described to occur through at least two 325 

mechanisms: the bottleneck effect and the intra-cellular purifying selection. The bottleneck effect 326 

is associated specifically with the unequal segregation of mtDNAs during primordial germ cell 327 

specification, for example as seen in the human embryo50. In contrast to this, purifying selection, 328 

as the name implies, allows for selection against deleterious mtDNAs and has been proposed to 329 

take place both during development and post-natal life51.  Importantly, purifying selection has 330 

been found to occur at the molecule and organelle level, as well as at the cellular level52. Our 331 

findings indicate that purifying selection can occur not only at the intra-cellular level but also 332 

inter-cellularly (cell non-autonomously). We show that epiblast cells are able to sense their 333 

relative mitochondrial activity and that those cells with mtDNA mutations, lower or aberrant 334 

mitochondrial function are eliminated. By selecting those cells with the most favourable 335 

mitochondrial performance, cell competition would not only prevent cells with mitochondrial 336 

defects from contributing to the germline or future embryo, but also ensure optimisation of the 337 

bioenergetic performance of the epiblast, therefore contributing to the synchronization of growth 338 

during early development.  339 

Cell competition has been studied in a variety of organisms, from Drosophila to mammals, and it 340 

is likely that multiple different mechanisms fall under its broad umbrella1-3. In spite of this, there 341 

is considerable interest in understanding if there could be any common feature in at least some 342 

of the contexts where cell competition has been described. The first demonstration of cell 343 

competition in Drosophila was made by inducing clones carrying mutations in the ribosomal 344 

gene Minute4 and this has become one of the primary models to study this process. Our finding 345 

that during normal early mouse development cell competition eliminates cells carrying mutations 346 

in mt-Rnr1 and mt-Rnr2, demonstrates that in the physiological context mutations in ribosomal 347 
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genes also trigger cell competition. Furthermore, our observation that mis-patterned and 348 

karyotypically abnormal cells show impaired mitochondrial activity indicates that during early 349 

mouse development different types of defects impair mitochondrial function and trigger cell 350 

competition. Interestingly, mtDNA genes are amongst the top mis-regulated factors identified 351 

during cell competition in the mouse skin53. In the Drosophila wing disc oxidative stress, a 352 

general consequence of dysfunctional mitochondria, underlies the out-competition of Minute and 353 

Mah-jong mutant cells54. Similarly, in MDCK cells a loss of ∆ψm occurs during the out-354 

competition of RasV12 mutant cells and is key for their extrusion55. These observations raise the 355 

possibility that differences in mitochondrial activity may be a key determinant of competitive cell 356 

fitness in a wide range of systems. Unravelling what mitochondrial features can lead to cellular 357 

differences that can be sensed between cells during cell competition and if these are conserved 358 

in human systems will be key not only for understanding this process, but also to open up the 359 

possibility for future therapeutic avenues in the diagnosis or prevention of mitochondrial 360 

diseases. 361 
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Figure titles and legends 390 

Fig. 1 | Cells eliminated during early mouse embryogenesis have a distinct transcriptional 391 

profile. 392 

a, Experimental design. The number of cells in the two conditions (DMSO-treated and CI-393 

treated) refers to the number of cells that passed the quality control. b, Identification of the 394 

clusters according to known gene markers from the different embryonic regions56. Three clusters 395 

(clusters 1, 3 and 4) show marker genes of the epiblast (Epi), while the remaining clusters 396 

correspond to the extra-embryonic lineages visceral endoderm (VE; cluster 5) and 397 

extraembryonic ectoderm (ExE; cluster 2). The epiblast clusters are named “Winner”, 398 

“Intermediate” and “Loser” on the basis of the relative fraction of cells from CI-treated embryos 399 

they include (see panel e). c,d, UMAP visualization of the single-cell RNA-seq data, with cells 400 

coloured according to cluster (c) or condition (d). A region made up exclusively by cells from CI-401 

treated embryos emerges. e, Ratio between the fraction of cells from DMSO-treated and CI-402 

treated embryos in the three epiblast clusters. While the “winner” epiblast cluster shows an 403 

enrichment of cells from DMSO-treated embryos, the “intermediate” and the “loser” epiblast 404 

clusters are strongly enriched for cells from CI-treated embryos.  405 

Fig. 2 | A cell competition transcriptional signature is identified in cells eliminated during 406 

mouse embryonic development. 407 

a, Diffusion map of epiblast cells (only from CI-treated embryos), coloured by cluster. b, c, IPA 408 

run on the list of genes differentially expressed along the diffusion trajectory (see Extended Data 409 

Fig. 2a) generated lists of top 5 molecular and cellular functions (b) and upstream regulators (c) 410 

found to be differentially activated in epiblast cells along the diffusion trajectory from winner 411 

(cluster 1) to loser status (cluster 4). d, Diffusion map of epiblast cells (only from CI-treated 412 

embryos) coloured by diffusion pseudotime coordinate (dpt). The winner and the loser clusters 413 

are found at the two extremities of the trajectory, hence the dpt can be interpreted as a “losing 414 

score”.  e, Losing score of the cells in the three epiblast clusters in CI-treated (left) or DMSO-415 

treated (right) embryos. The losing score of the cells from DMSO-treated embryos was obtained 416 
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by projecting them on the diffusion map shown in panel d (see Methods).  f, Expression levels in 417 

epiblast cells from CI-treated embryos of genes (in rows) that are markers for naïve pluripotency 418 

(Klf4, Klf5, Sox2, Pou3f1, Tcf7l1 and Pou5f1 and Rex1), primed pluripotency (Fgf5 and Tdgf1), 419 

mesoderm (Mesp1 and T), neuroectoderm (Neurod1 and Sox1) and endoderm (Sox17 and 420 

Gata6). Cells (in columns) are sorted by their losing scores. The genes marked with a * are 421 

differentially expressed along the trajectory. 422 

Fig. 3 | Cells eliminated during early mouse embryogenesis have mitochondrial defects. 423 

a, Top canonical pathways, identified by IPA, mis-regulated in loser cells in comparison to 424 

normal epiblast cells. The numbers at the end of each bar refer to total amount of genes 425 

involved in that pathway. The percentage refers to the number of genes found mis-regulated in 426 

loser cells relative to the number total genes within each pathway. Statistical significance 427 

calculated with Fisher’s exact test (p<0.05): Mitochondrial Dysfunction, -log10(p-value) = 21.1; 428 

Oxidative Phosphorylation, - log10(p-value) = 18.6; EIF2 signalling,  - log10(p-value) = 11.9. b, 429 

Detail of changes in oxidative phosphorylation pathway identified in (a). Circular and oval shapes 430 

represent each of the ETC complexes (complexes I to V). Diamond shapes represent subunits 431 

of each ETC complex. Genes that are down-regulated in loser cells are coloured in shades of 432 

red. Darker shades correspond to lower values of FDR, which ranges from 1.25E-51 (for Atp5b) 433 

to 5.42E-03 (for Ndufa11). Cox6b2, coloured in yellow, was found to be up-regulated in loser 434 

cells (FDR=2.69E-13). Grey colour denotes genes that were not differentially expressed 435 

between loser and winner cells (FDR>0.01). White colour denotes genes from the Knowledge 436 

Base that were not tested (e.g., because they were not detected in our dataset). c, Expression 437 

levels of some mitochondrial genes as a function of cells’ losing score. mt-Atp6, mitochondrial 438 

DNA encoded ATP synthase membrane subunit 6; mt-Nd3, mitochondrial DNA encoded NADH 439 

dehydrogenase subunit 3; Opa1, optic atrophy 1; Samm50, sorting and assembly machinery 440 

component 50 homolog. d, Experimental design adopted to assess mitochondria function (OPA1 441 

expression, by immunofluorescence or ∆ψm, given by TMRM fluorescence) in epiblast cells 442 

from embryos where cell death was allowed (DMSO-treated) or inhibited (CI-treated). * 443 
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Micrograph of isolated epiblast (arrow) after embryo microdissection. e, Representative 444 

immunohistochemistry of OPA1 in E6.5 embryo where cell death was inhibited (CI-treated), 445 

quantified in (f). Loser cells are identified by low mTOR activation (low p-rpS6, arrowheads). 446 

Scale bar = 20 μm. f, Quantification of OPA1 fluorescence in normal epiblast cells and loser 447 

cells. N=6 embryos with a minimum of 8 cells analysed per condition. Statistical analysis 448 

performed by Mann-Whitney test. g, Representative histogram of flow cytometry analysis of 449 

TMRM probe, indicative of ∆ψm, in epiblast cells from embryos where cell death was allowed 450 

(DMSO-treated) or inhibited (CI-treated), quantified in (h). h, Frequency of epiblast cells with 451 

high or low TMRM fluorescence, according to range defined in (g) from embryos where cell 452 

competition was allowed (DMSO treated) or inhibited (CI-treated). Statistical analysis done by 453 

two-way ANOVA, followed by Holm-Sidak's multiple comparisons test. N=3 independent 454 

experiments. Data shown as mean ± SEM. 455 

Fig. 4 | Mitochondrial defects are a common feature of cells eliminated by cell 456 

competition. 457 

a, Metabolic enrichment analysis of the TCA cycle and intermediate metabolites obtained using 458 

Metabolon platform for defective cells (Bmpr1a-/-, left bar and 4n, right bar), in comparison to 459 

wild-type cells during differentiation. Bars indicate compound levels relative to wild-type cells. 460 

Blue bars indicate compounds that are significantly depleted (p<0.05) and light blue bars 461 

indicate compounds that are almost significantly depleted (0.05≤p≤0.1). Black bars indicate 462 

compounds that are depleted although not statistically significant in comparison to the levels 463 

found in wild-type cells. The enzymes on the pathway are represented as boxes and labelled by 464 

their canonical names. b-e, Metabolic flux analysis of wild-type and BMP-defective cells during 465 

differentiating conditions. Data obtained with a minimum of 3 independent experiments, with 5 466 

replicates per cell type in each assay. Statistical analysis done with Mann-Whitney test. Analysis 467 

of oxygen consumption rate (OCR) as a measure of mitochondria function (mitochondria stress 468 

test) (b). Detail of metabolic parameters found changed from the analysis of the mitochondria 469 

stress test (c). Analysis of extracellular acidification rate (ECAR) as a measure of glycolytic 470 
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function (glycolysis stress test) (d). Detail of metabolic parameters found changed from the 471 

analysis of the glycolysis stress test (e). f-g, Analysis of mitochondrial membrane potential 472 

(∆ψm) in defective mESCs undergoing differentiation in separate or co-culture conditions. 473 

Representative histograms of TMRM fluorescence and quantification for wild-type and Bmpr1a-/- 474 

(f) and wild-type and 4n (g). Statistical analysis done by two-way ANOVA, followed by Holm-475 

Sidak's multiple comparisons test. h, Representative micrographs of wild-type and Bmpr1a-/- 476 

cells co-cultured during differentiation and stained for a reporter of ∆ψm (MitoTracker Red, top 477 

panel) or mitochondria mass (TOMM20, bottom panel). Nuclei are stained with Hoechst. Scale 478 

bar = 10 μm. i-j, Western blot analysis of mitochondria mass markers TOMM20 (i) and mt-CO1 479 

(j) for wild-type and Bmpr1a-/- cells during differentiation. Statistical analysis done with Mann-480 

Whitney test (i) or unpaired t-test (j). k, Analysis of mitochondrial membrane potential (∆ψm) for 481 

wild-type, Bmpr1a-/- and Bmpr1a-/-;p53-/- cells during differentiation. Representative histogram of 482 

TMRM fluorescence and quantification. Statistical analysis done by one-way ANOVA, followed 483 

by Holm-Sidak's multiple comparisons test. Data shown as mean ± SEM of a minimum of 3 484 

independent experiments. 485 

Fig. 5 | Manipulating mitochondria biology is sufficient to trigger cell competition. 486 

a, Representative micrographs of wild-type, Mfn2-/- and Drp1-/- mESCs showing alterations in 487 

mitochondrial morphology in mutant cells. TOMM20 was used as a mitochondrial marker and 488 

NANOG as a pluripotency marker. Nuclei are stained with Hoechst. Scale bar = 5 μm. b,c, Cell 489 

competition assays between wild-type mESCs and cells with altered morphology, Mfn2-/- during 490 

pluripotency (b) and Drp1-/- during differentiation (c). The ratio of final/initial cell numbers in 491 

separate or co-culture is shown. Statistical analysis done with two-way ANOVA, followed by 492 

Holm-Sidak's multiple comparisons test. d-j, Metabolic profile of Mfn2-/- and Drp1-/- mESCs. 493 

Analysis of mitochondrial membrane potential (∆ψm) for wild-type and Mfn2-/- cultured 494 

separately during pluripotency (d) and for wild-type and Drp1-/- mESCs -/- after 3 days of 495 

differentiation in separate culture (f). Data was obtained from 3 independent experiments and 496 

statistical testing done with one sample t-test. Metabolic flux analysis of wild-type and Mfn2-/- 497 
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mESCs cultured separately during pluripotency (e) and for wild-type and Drp1-/- after 3 days of 498 

differentiation in separate cultures (g). Data was collected from 3 independent experiments, with 499 

5 replicates per cell type in each assay, and statistical testing done with Mann-Whitney test. h-j,  500 

Western blot analysis of markers of UPR and mitochondrial markers in wild-type and Drp1-/- after 501 

3 days of differentiation in separate culture. Cells were treated with doxycycline (Dox, 22.5 μM) 502 

or vehicle (Con) from day 1 of differentiation and samples were collected on day 3 (j). Statistical 503 

analysis was done with an unpaired t-test (h-i) or two-way ANOVA followed by Holm-Sidak's 504 

multiple comparisons test (j). Data shown as mean ± SEM of a minimum of 3 independent 505 

experiments. p-eIF2ɑ,  phosphorylated eukaryotic initiation factor 2ɑ. 506 

Fig. 6 | Intermediate and loser epiblast cells accumulate polymorphisms in mtDNA 507 

sequence. 508 

a-g, mtDNA heteroplasmy in epiblast cells from CI-treated embryos. Average heteroplasmy 509 

(considering all eleven polymorphisms that have a statistically significant dependence on the 510 

losing score; see Methods) as a function of cells’ losing scores. The p-value was computed with 511 

a generalized linear model (a). mtDNA heteroplasmy for six positions within the mt-Rnr1 gene 512 

(b-g). The heteroplasmy at all of these positions as well as the average heteroplasmy increase 513 

with the cells’ losing scores in a statistically significant way (the adjusted p-value estimated via a 514 

generalized linear model is indicated at the top of each plot). h, The barplot indicates the fraction 515 

of epiblast cells in each of the cluster indicated on the x-axis (winner, intermediate, loser) that 516 

carry a mean heteroplasmy (computed on the six positions within the mt-Rnr1 indicated in the 517 

panels b-g) greater than 0.01. This shows that the level of mtDNA heteroplasmy in mt-Rnr1 is 518 

strongly associated with the loser status of the cells, since ~55% and ~87% of cells in the 519 

intermediate and the loser clusters, respectively, have heteroplasmic sequences in this gene 520 

compared to only ~5% of cells in the winner cluster. i, Spearman’s correlation coefficient 521 

between the mtDNA heteroplasmy at the six positions shown in panels (b-g).  522 

Fig. 7 | Changes in mtDNA sequence can determine the competitive ability of a cell. 523 
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a, Derivation of mESCs from hybrid mouse strains, generated elsewhere by Burgstaller and 524 

colleagues. Neighbour-Joining Phylogenetic Analysis of mtDNA from wild and C57BL/6N mouse 525 

strains, that were used to generate hybrid mice (adapted from16), illustrates the genetic distance 526 

of the mtDNA from wild mouse strains to the C57BL/6N lab mouse. The number of single 527 

nucleotide polymorphisms and amino acid changes (SNPs/ a.a. changes) from wild to lab mouse 528 

strain is shown. mESCs were derived from embryos of hybrid mice, containing the nuclear 529 

background of a C57BL/6N lab mouse and mtDNA from three possible wild-derived strains (BG, 530 

HB or ST). b-e, Cell competition assays between cells derived from the embryos of hybrid mice 531 

performed in pluripotency maintenance conditions. The ratio of final/initial cell numbers in 532 

separate or co-culture is shown. Statistical analysis done with two-way ANOVA, followed by 533 

Holm-Sidak's multiple comparisons test. f, Representative micrographs of cleaved caspase-3 534 

staining and quantification of the percentage of apoptotic events in winners HB(24%) and loser 535 

BG(95%) mESCs maintained pluripotent and cultured in separate or co-culture conditions. 536 

Statistical analysis done with two-way ANOVA, followed by Holm-Sidak's multiple comparisons 537 

test. g-h, Gene set enrichment analysis of differentially expressed genes from bulk RNA seq. in 538 

loser BG (95%) compared to winner HB (24%) mESCs maintained pluripotent and cultured in 539 

separate (g) or co-culture conditions (h). Gene sets that show positive normalized enrichment 540 

scores (NES) are enriched in loser cells, while gene sets that show negative NES are depleted 541 

in loser cells. Data in panels (b-f) shown as mean ± SEM of a minimum of 3 independent 542 

experiments.  543 

Fig. 8 | Model of cell competition. 544 

Summary of the main findings of the study. A range of cellular defects, such as aneuploidy, mis-545 

patterning or mtDNA mutations cause alterations in mitochondria function, which affect the 546 

relative fitness of cells. The cells with suboptimal mitochondrial activity survive in a 547 

homogeneous population but are eliminated by cell competition in the presence of fitter cells.  548 

Extended Data Fig. 1 | Quality controls of scRNA-seq and clustering robustness analysis. 549 
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a, Selection criteria for quality control (QC) of all cells. A total of 723 passed the quality control 550 

(723 good quality cells) and were considered for downstream analysis. All these parameters 551 

were computed for each cell. Log10 total number of reads (top left): log10 of the sum of the 552 

number of reads that were processed in every cell; Fraction of mapped reads (top central): 553 

number of reads that are confidentially mapped to the reference genome divided by total number 554 

of reads that were processed for each cell. This number is automatically provided by Salmon 555 

v0.8.2; Fraction of genes (top right): number of reads mapped to endogenous genes divided by 556 

the total sum of reads that were processed; Fraction of mt-genes (bottom left): number of reads 557 

mapped to mitochondrial genes divided by the total sum of reads that were processed; Fraction 558 

of spikes (bottom central): number of reads mapped to ERCC spike-ins divided by the total sum 559 

of reads that were processed; Number of genes above 10 RPM (bottom right): number of genes 560 

with expression level above 10 reads per million. b, Number of good quality cells in each 561 

condition (rows) and batch (columns). c, Number of good quality cells per cluster (rows) and 562 

batch (columns). d, UMAP plot of the data with cells coloured by batch. In each batch there is a 563 

balanced distribution of cells in the two conditions and across the five clusters. e, The Pearson’s 564 

gamma (left panel) and the Average Silhouette Width (right panel) was calculated for each set of 565 

clusters obtained with 100 random subsamples of 60% of highly variable genes and different 566 

values of the deepSplit parameter (see Methods). The most robust clusters correspond to 567 

deepSplit values of 0 and 1. f, The changes in composition and number of clusters between the 568 

clustering obtained with deepSplit 0 (top) and 1 (bottom) are shown using the library “clustree”57. 569 

Extended Data Fig. 2 | Cell cycle analysis and cluster connectivity.  570 

a, Cell cycle analysis of epiblast cells from clusters 1, 3 and 4. Cell cycle phase was predicted 571 

with cyclone algorithm58 and shows that there are cells in S and G2M phase also in the loser and 572 

intermediate clusters. b, PAGA plot showing the connectivity of the five clusters of cells from CI-573 

treated embryos. c-d, Diffusion map analysis in all epiblast cells (from DMSO and CI-treated 574 

embryos): cells are coloured according to the condition (c) and to the cluster (d). e, The pseudo-575 

time coordinate of the CI-treated epiblast cells obtained from the diffusion map including all 576 
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epiblast cells correlates extremely well with the pseudo-time coordinate obtained in the diffusion 577 

map calculated only from CI-treated epiblast cells (Fig. 2a).  578 

Extended Data Fig. 3 | Analysis on epiblast cells from DMSO and CI-treated embryo.  579 

a, Heatmap showing the expression pattern of all genes differentially expressed along the 580 

trajectory from winning to losing cells in Fig. 2d. b-c, Overlap of genes differentially expressed 581 

along the trajectory joining winning and losing epiblast cells in CI-treated embryos (Fig. 2a and 582 

panel d) and genes targeted by p53. Pie charts show the percentage of genes up- or down-583 

regulated in loser cells within the group of target genes that are activated (b) or repressed (c) by 584 

p53. There is an enrichment of activated/repressed targets among genes 585 

upregulated/downregulated in losing cells respectively (Fisher’s test, p-value=1E-4). The list of 586 

p53 targets is taken from59. d, Scatter plots of the expression levels of different marker genes 587 

plotted against each other in loser epiblast cells (cluster 4). Loser cells have higher expression 588 

of pluripotency markers as well as higher expression of some lineage-specific markers and the 589 

co-expression of these markers is only weakly correlated. e-g Our scRNA-seq data from epiblast 590 

cells is projected on top of previously published data from epiblast collected from freshly isolated 591 

embryos at different stages (E5.5, E6.25 and E6.5; data from26). First, a diffusion map (e) and a 592 

pseudotime coordinate (f) is computed for the epiblast cells from freshly isolated embryos. Then, 593 

a pseudotime coordinate is estimated for our data after projecting it onto the diffusion map. 594 

Panel g shows the pseudotime coordinates for both datasets, split by stage, treatment and 595 

cluster.   596 

Extended Data Fig. 4 | Cells eliminated during early mouse embryogenesis have activated 597 

stress responses. 598 

a, Overlap of genes differentially expressed along the trajectory joining winning and losing 599 

epiblast cells in CI-treated embryos (Fig. 2a and Extended Data Fig. 3a) and genes related to 600 

the unfolded protein response and integrated protein response pathways (UPR_ISR, see 601 

Supplementary Table 3). From the 32 genes related to the UPR & ISR pathways, 12 are down-602 

regulated in loser cells, 8 genes are up-regulated in loser cells, and 12 genes are not 603 
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differentially expressed between loser and winner cells. There is a statistically significant 604 

enrichment of UPR&ISR genes among the up-regulated genes in loser cells (Fisher test, odds 605 

ratio=3.0, p-value=0.012). The intersection between UPR-ISR genes and the down regulated 606 

genes is not significant (Fisher test, odds ratio=1.2, p value=0.69). b-c, List of genes from UPR-607 

ISR pathways that are statistically significantly up-regulated (b) or down-regulated (c) in loser 608 

cells. d, Scatterplots with the expression levels of genes involved in stress responses in epiblast 609 

cells from CI-treated embryos as a function of cells’ losing score. e, Experimental design with the 610 

approach taken to validate the expression of the stress response marker DDIT3 in epiblast cells 611 

from DMSO or CI-treated embryos. f, Representative micrographs of DMSO (upper panel) or CI-612 

treated embryos (100 μM, lower panel) stained for DDIT3, quantified in (g). Nuclei are labelled 613 

with Hoechst. In control embryos (DMSO-treated), dying cells in the cavity show very high 614 

DDIT3 expression (arrow), while live cells in the epiblast of the CI-treated embryos show more 615 

modest levels of DDIT3 expression (arrowheads). Scale bar = 20 μm. g, Quantification of the 616 

percentage of epiblast cells with nuclear DDIT3 expression. N=10 DMSO and N=9 CI-treated 617 

embryos. Data shown as mean ± SEM. Ddit3 (Chop), DNA-damage inducible transcript 3; Atf3, 618 

activating transcription factor 3; Atf4, activating transcription factor 4; Foxo3, forkhead box O3; 619 

Ppp1r115a (Gadd34), Protein Phosphatase 1 Regulatory Subunit 15A, Eif2ak3 (Perk), 620 

Eukaryotic Translation Initiation Factor 2 Alpha Kinase 3; Nfe2l2 (Nrf2), NFE2-related factor 2;. 621 

Sesn2, Sestrin 2; Gdf15, Growth Differentiation Factor 15; Mthfd1l, Methylenetetrahydrofolate 622 

Dehydrogenase (NADP+ Dependent) 1 Like; Hspe1, Heat Shock Protein Family E (Hsp10) 623 

Member 1; Cat, Catalase; Hspd1, Heat Shock Protein Family D (Hsp60) Member 1; Sod2, 624 

Superoxide Dismutase 2; Hsph1, Heat Shock Protein Family H (Hsp110) Member 1; Lonp1, Lon 625 

Peptidase 1, Mitochondrial; Eif2a, Eukaryotic Translation Initiation Factor 2A; Mthfd2, 626 

Methylenetetrahydrofolate Dehydrogenase (NADP+ Dependent) 2, Methenyltetrahydrofolate 627 

Cyclohydrolase; Hspa4, Heat Shock Protein Family A (Hsp70) Member 4; Cth, Cystathionine 628 

Gamma-Lyase; Nrf1, Nuclear Factor 1. 629 

Extended Data Fig. 5 | Mitochondrial function in Wild-type, Bmpr1a-/- and 4n mESCs. 630 
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a-d, Metabolic flux analysis of wild-type and Bmpr1a-/- mESCs. OCR profile and metabolic 631 

parameters assessed during the mitochondria stress test performed in pluripotency conditions 632 

(a). ECAR profile and metabolic parameters assessed during the glycolysis stress test 633 

performed in pluripotency conditions (b). Metabolic parameters from the mitochondria stress test 634 

found to be similar between wild-type and Bmpr1a-/- mESCs during differentiation – day 3 (c). 635 

Metabolic parameters from the glycolysis stress test found to be similar between wild-type and 636 

Bmpr1a-/- mESCs during differentiation – day 3 (d). Data obtained with a minimum of 3 637 

independent experiments, with 5 replicates per cell type in each assay. Statistical analysis done 638 

with Mann-Whitney test. e-f, Analysis of mitochondrial membrane potential (∆ψm) in defective 639 

mESCs maintained in pluripotency conditions, in separate or co-culture. Representative 640 

histograms of TMRM fluorescence and quantification for wild-type and Bmpr1a-/- (e) and wild-641 

type and 4n (f).  Statistical analysis done by two-way ANOVA, followed by Holm-Sidak's multiple 642 

comparisons test. g, Analysis of mitochondrial ROS in wild-type and Bmpr1a-/- mESCs 643 

undergoing differentiation in separate or co-culture: representative histograms of mitoSOX Red 644 

fluorescence and quantification of the percentage of mitoSOX positive cells. Statistical analysis 645 

done by two-way ANOVA, followed by Holm-Sidak's multiple comparisons test.  Data obtained 646 

with a minimum of 3 independent experiments. Error bars represent SEM.  647 

Extended Data Fig. 6 | Effect of actinonin in OPA1 expression in wild-type and Drp1-/- 648 

cells. a, Western blot analysis of OPA1 expression in wild-type and Drp1-/- cells treated with 649 

actinonin (Act, 150 μM) during 6 hours on the third day of differentiation, quantified in (b-c). b-c, 650 

Expression levels of L-OPA1 (b) and S-OPA1 (c) relative to ɑ-tubulin. Data shown as mean ± 651 

SEM of a minimum of 3 independent experiments. Statistical analysis done by two-way ANOVA, 652 

followed by Holm-Sidak's multiple comparisons test. 653 

Extended Data Fig. 7 | Analysis of SNPs in mtDNA in epiblast cells. 654 

a-e, mtDNA heteroplasmy in epiblast cells from CI-treated embryos for five positions within the 655 

mt-Rnr2 gene. All of these positions have an heteroplasmy that increases with the cells’ losing 656 

scores in a statistically significant way (the adjusted p-value estimated via a generalized linear 657 
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model is indicated at the top of each plot). f-k, The variation in the heteroplasmy across the CI-658 

treated cells is not due to a batch effect for the 6 significant positions within the mt-Rnr1 gene. l, 659 

Spearman’s correlation between the mtDNA heteroplasmy at all the statistically significant 660 

positions (six within the gene mt-Rnr1 and five within the gene mt-Rnr2). 661 

Extended Data Fig. 8 | Changes in mtDNA sequence are enough to trigger cell 662 

competition.  663 

a, Illustration of the process of derivation of the mESCs lines from mice that are hybrid between 664 

the wild-caught strains (BG, HB or ST) and the lab mouse (C57BL/6N). These hybrid mice were 665 

generated elsewhere16 by ooplasmic transfer: the zygote of a C57BL/6N mouse was injected 666 

with ooplasm from a wild-caught mouse (orange, HB pictured). Therefore, these hybrid mice 667 

contain the nuclear background of the C57BL/6N strain and the mtDNA of wild-caught strain and 668 

potentially C57BL/6N mtDNA (heteroplasmic mice strains). mESCs lines were derived from the 669 

hybrid mice and characterised. b-f, Characterisation of the derived cell lines by flow cytometry, 670 

during pluripotency, in comparison to the wild-type cell line used in previous experiments (E14, 671 

129/Ola background). Heteroplasmy analysis of the derived mESC lines from the hybrid mice, 672 

indicating the percentage of wild-derived mtDNA (b). Cell granularity (internal complexity) given 673 

as median fluorescence intensity of SSc-A laser (c). Cell size given as median fluorescence 674 

intensity of FSc-A laser (d). Analysis of the expression of mitochondrial markers: representative 675 

western blot and quantification of markers of mitochondrial mass (ATPB, mt-CO1 and TOMM20) 676 

and mitochondrial dynamics (DRP1, MFN1and MFN2), relative to vinculin, in cells derived from 677 

hybrid mice (e). f, Representative histograms and quantification of median TMRM fluorescence, 678 

indicative of ∆ψm, for the hybrid cell lines derived, in comparison to the wild-type cell line used in 679 

previous experiments (E14, 129/Ola background). Statistical analysis done by one-way ANOVA, 680 

followed by Holm-Sidak's multiple comparisons test. g-i, Cell competition assays between hybrid 681 

cell lines maintained in pluripotency culture conditions. The ratio of final/initial cell numbers in 682 

separate or co-culture is shown. Statistical analysis done by two-way ANOVA, followed by Holm-683 

Sidak's multiple comparisons test. j, Experimental design for RNA-Seq and gene set enrichment 684 
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analysis (GSEA). The isolation of RNA from winner HB(24%) and loser BG(95%) cells was 685 

performed after three days in separate or co-culture conditions, once cells have been subjected 686 

to FACS to isolate the two populations form mixed cultures. Data obtained with a minimum of 3 687 

independent experiments. Error bars represent SEM. 688 

Extended Data Fig. 9 | Metabolic flux analysis of the cells with different mtDNA variants: 689 

HB(100%), HB(24%), BG(95%) and C57BL/6N. a, OCR profile during mitochondria stress test 690 

performed in pluripotency maintenance conditions. b-i, Metabolic parameters assessed during 691 

the during the mitochondria stress test performed in pluripotency conditions. Data obtained with 692 

a minimum of 3 independent experiments, with 5 replicates per cell type in each assay. Error 693 

bars represent SEM. Statistical analysis done with Kruskal-Wallis test, followed by Dunn’s 694 

multiple comparison test. 695 

Extended Data Fig. 10 | Common features of scRNA-seq and bulk RNA-seq datasets. 696 

a, Terms significantly enriched among genes downregulated in BG(95%) (loser) ESCs in vitro 697 

when co-cultured with HB(24%) cells. The loss of mitochondrial activity emerges as a common 698 

feature between loser cells in vivo and in vitro. The gene enrichment analysis was performed 699 

using g-profiler tool (see Methods). b, Intersection between differentially expressed genes along 700 

the trajectory from winning to losing epiblast cells (“in_vivo_scRNA-seq”; Fig. 2a and Extended 701 

Data Fig. 3a and genes differentially expressed between co-cultured HB(24%) (winner) and 702 

BG(95%) (loser) ESCs (“in_vitro_bulk_RNA-seq”). “Up” and “Down” here refer to genes up- or 703 

down-regulated in loser cells. Fisher test for the intersection between down-regulated genes 704 

from scRNA-seq (in vivo) and down-regulated genes from bulk RNA-seq (in vitro): p-value, 705 

1.71E-12; odds ratio 1.80. Fisher test for the intersection between down-regulated genes from 706 

scRNA-seq (in vivo) and up-regulated genes from bulk RNA-seq (in vitro): p-value, 5.20E-3; 707 

odds ratio 0.67. Fisher test for the intersection between up-regulated genes from scRNA-seq (in 708 

vivo) and down-regulated genes from bulk RNA-seq (in vitro): Fisher test p-value, 4.87E-3; odds 709 

ratio 0.80. The intersection between up-regulated genes from sc-RNA-seq (in vivo) and up-710 

regulated genes from bulk RNA-Seq (in vitro) is not statistically significant: Fisher test p-value: 711 
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0.30, odds ratio 1.14. c, Intersection between the significantly enriched terms in genes 712 

upregulated or downregulated in loser cells in the epiblast of CI-treated embryos 713 

(“in_vivo_scRNA-Seq”) or in our in vitro model of competition between co-cultured HB(24%) 714 

(winner) and BG(95%) (loser) ESCs (“in_vitro_bulk_RNA-seq”). All the terms enriched among 715 

downregulated genes in vitro are also enriched in vivo.  716 
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Methods 733 

Animals 734 

Mice were maintained and treated in accordance with the Home Office’s Animals (Scientific 735 

Procedures) Act 1986 and covered by the Home Office project license PBBEBDCDA. All mice 736 

were housed on a 10 hr-14 hr light-dark cycle with access to water and food ad libitum. Mattings 737 

were generally set up in the afternoon. Noon of the day of finding a vaginal plug was designated 738 

embryonic day 0.5 (E0.5). Embryo dissection was performed at appropriate timepoints in M2 739 

media (Sigma), using Dumont No.5 forceps (11251-10, FST). No distinction was made between 740 

male and female embryos during the analysis. 741 

Cell lines, cell culture routine and drug treatments 742 

E14, kindly provided by Prof A. Smith, from Cambridge University, were used as wild-type 743 

control cells tdTomato-labelled or unlabelled. GFP-labelled or unlabelled cells defective for BMP 744 

signalling (Bmpr1a-/-), tetraploid cells (4n) and Bmp1a-/- null for p53 (Bmpr1a-/-;p53-/-) are 745 

described elsewhere 6, 7. Cells null for Dynamin-related protein 1 (Drp1-/-) or Mitofusin 2 (Mfn2-/-) 746 

were generated by CRISPR mutagenesis. Cells with different mitochondrial DNA (mtDNA) 747 

content in the same nuclear background were derived from embryos of hybrid mice, generated 748 

elsewhere 16. 749 

Cells were maintained pluripotent and cultured at 37ºC in 5% CO2 in 25 cm2 flasks (Nunc) 750 

coated with 0.1% gelatin (Sigma) in DPBS. Growth media (ES media) consisted of GMEM 751 

supplemented with 10% FCS, 1 mM sodium pyruvate, 2 mM L-glutamine, 1X minimum essential 752 

media non-essential amino-acids, 0.1 mM β-mercaptoethanol (all from Gibco) and 0.1% 753 

leukemia inhibitory factor (LIF, produced and tested in the lab). Cells derived from hybrid mice 754 

(C57BL/6N nuclear background) were maintained on 0.2% LIF. The growth media was changed 755 

daily, and cells were split every 3 days. 756 

To manipulate mitochondrial translation during differentiation, wild-type and Drp1-/- mESCs were 757 

treated with doxycycline (Dox, 22.5 μM), from day 1 to day 3 of culture, or with actinonin (Act, 758 
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150 μM), for 6 hours on day 3 of culture in N2B27 media (see Differentiation and Cell 759 

competition assays). As control condition, cells were treated with vehicle (Con). Samples were 760 

collected on day 3 of differentiation for western blot analysis. 761 

 762 

CRISPR mutagenesis 763 

Drp1 and Mfn2 knockout ESCs were generated by CRISPR-Cas9 mediated deletion of Drp1 764 

exon 2 and Mfn2 exon 3 respectively. sgRNA guides flanking Drp1 exon 2 or Mfn2 exon 3 were 765 

cloned into the PX459 vector (Addgene)60: Drp1 exon 2 upstream sgRNA: 766 

5’ TGGAACGGTCACAGCTGCAC 3’; Drp1 exon 2 downstream sgRNA: 767 

5’ TGGTCGCTGAGTTTGAGGCC 3’; Mfn2 upstream sgRNA: 5’ GTGGTATGACCAATCCCAGA 768 

3’; Mfn2 downstream sgRNA: 5’ GGCCGGCCACTCTGCACCTT 3’. E14 ESCs were co-769 

transfected with 1ug of each sgRNA expression using Lipofectamine 2000 (Invitrogen) according 770 

to manufacturer’s instructions. As control E14 ESCs were transfected in parallel with equal 771 

amount of empty PX459 plasmid. Following 6 days of Puromycin selection, single colonies were 772 

picked from both Drp1 sgRNA and empty vector transfected ESCs and screened for 773 

mutations. Drp1 exon 2 deletion was confirmed by PCR genotyping using the following primers: 774 

Drp1_genot F: 5’ GGATACCCCAAGATTTCTGGA 3’; Drp1_genot R: 5’ 775 

AGTCAGGTAATCGGGAGGAAA 3’, followed by Sanger Sequencing. Mfn2 exon 3 deletion was 776 

confirmed by PCR genotyping using the following primers: Mfn2_genot F: 5’ 777 

CAGCCCAGACATTGTTGCTTA 3’; Mfn2_genot R: 5’ AGCTGCCTCTCAGGAAATGAG 3’, 778 

followed by Sanger Sequencing.  779 

Derivation of mESCs from hybrid mouse strains and heteroplasmy determination 780 

The derivation of new mESC lines was adapted from 61. Cells were derived from embryos of 781 

hybrid mouse strains BG, HB and ST. These contain the mtDNA of C57BL/6N (Bl6) lab mouse 782 

and mtDNA variants from wild-caught mice 16.  783 
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Embryos were isolated at E2.5 (morula stage) and cultured in 4-well plates (Nunc, Thermo 784 

Scientific) containing KSOM media (Millipore) plus two inhibitors (KSOM+2i): 1 μM MEK inhibitor 785 

PDO325901 (Sigma-Aldrich) and 3 μM GSK-3 inhibitor CHIR9902 (Cayman Chemicals) for 2 786 

days at 37ºC in 5% CO2 incubator. To reduce evaporation, the area surrounding the wells was 787 

filled with DPBS. Embryos were further cultured in a fresh 4-well plates containing‚ 788 

N2B27+2i+LIF media: N2B27 media supplemented with 1 μM MEK inhibitor PDO325901 and 3 789 

μM GSK-3 inhibitor and 0.1% LIF for up to 3 days until reaching the blastocyst stage. Each 790 

embryo was then transferred to a well of a 96-well plate coated with 0.1% gelatin in DPBS and 791 

containing 150 μL of N2B27+2i+LIF media per well. In these conditions, the embryos should 792 

attach to the wells allowing the epiblast to form an outgrowth. This plate was then incubated at 793 

37ºC in 5% CO2 incubator for 3 to 7 days until ES-like colonies start to develop from the epiblast 794 

outgrowth. Cells were passaged by dissociation with Accutase (Sigma) and seeded in gradual 795 

increasing surface area of growth (48-well, 24-well, 12-well plate, T12.5 and T25 flask), until new 796 

cell lines were established. At this stage cells were weaned from N2B27+2i+LIF media and then 797 

routinely cultured in ES media. 798 

These new cell lines were then subjected to characterisation by flow cytometry (cell size, 799 

granularity and mitochondrial membrane potential) and ARMS-qPCR assay16 (to determine 800 

heteroplasmy).  801 

Embryo experiments 802 

Early mouse embryos were isolated at E5.5 (from pregnant CD1 females, purchased from 803 

Charles River, UK). Following dissection from the decidua, embryos were cultured overnight in 804 

N2B27 "poor" media (same formulation as N2B27 media but supplemented with 0.5xB27 805 

supplement and 0.5xN2 supplement) with pan-caspase inhibitors (100 μM, Z-VAD-FMK, 806 

FMK001, R&D Systems, USA) or equal volume of vehicle (DMSO) as control. On the next 807 

morning, embryos were processed for single cell RNA-Seq (scRNA-seq) or functional validation 808 

(∆ψm analysis and immunohistochemistry for markers of loser cells). 809 
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For the scRNA-seq and ∆ψm analysis embryos were dissociated into singe-cells. Briefly, up to 810 

12 embryos were dissociated in 600 μL Acccutase (A6964, Sigma, UK) during 12 min at 37ºC, 811 

tapping the tube every two minutes. Accutase was then neutralised with equal volume of FCS, 812 

cells span down and stained with TMRM, for ∆ψm analysis, or directly re-suspended in 300 μL 813 

DPBS with 1% FCS, for single cell sorting and RNA-seq. Sytox blue (1:1000, S34857, 814 

ThermoFisher Scientific, UK), was used as viability staining. 815 

Differentiation and Cell competition assays 816 

Cell competition assays between wild-type and Bmpr1a-/-, 4n or Drp1-/- cells were performed in 817 

differentiating conditions. Cells were seeded onto fibronectin-coated plates (1:100, Merck) in 818 

DPBS during 1h at 37ºC and grown in N2B27 media - to promote the differentiation of mESCs 819 

into a stage resembling the post-implantation epiblast, as cell competition was previously shown 820 

to occur in these conditions 6. N2B27 media consisted of 1:1 Dulbecco's modified eagle medium 821 

nutrient mixture (DMEM/F12) and Neurobasal supplemented with N2 (1x) and B27 (1x) 822 

supplements, 2 mM L-glutamine and 0.1 mM β-mercaptoethanol - all from Gibco. Cell 823 

competition assays between wild-type and Mfn2-/- and between mESCs with different mtDNA 824 

content were performed in pluripotency maintenance conditions (ES media).  825 

Cells were seeded either separately or mixed for co-cultures at a 50:50 ratio, onto 12 well plates, 826 

at a density of 8E04 cells per well, except for assays between wild-type and Mfn2-/- mESCs, 827 

where 3.2E05 cells were seeded per well. The growth of cells was followed daily and compared 828 

between separate or co-culture, to control for cell intrinsic growth differences, until the fourth day 829 

of culture. Viable cells were counted daily using Vi-CELL XR Analyser (Beckman Coulter, USA), 830 

and proportions of each cell type in co-cultures were determined using LSR II Flow Cytometer 831 

(BD Bioscience), based on the fluorescent tag of the ubiquitously expressed GFP or TdTomato 832 

in one of the cell populations. 833 

Metabolomic analysis  834 
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The metabolic profile was obtained using the Metabolon Platform (Metabolon, Inc). Each sample 835 

consisted of 5 biological replicates. For each replicate, 1E07 cells were spun down and snap 836 

frozen in liquid nitrogen. Pellets from 5 independent experiments for each condition were 837 

analysed by Metabolon Inc by a combination of Ultrahigh Performance Liquid Chromatography-838 

Tandem Mass Spectroscopy (UPLC- MS/MS) and Gas Chromatography-Mass Spectroscopy 839 

(GC-MS). Compounds were identified by comparison to library entries of purified standards 840 

based on the retention time/index (RI), mass to charge ratio (m/z), and chromatographic data 841 

(including MS/MS spectral data) on all molecules present in the library. Samples were 842 

normalized to protein content measured by Bradford assay. Statistical analysis was done using 843 

Welch’s two-sample t-test and statistical significance defined as p ≤0.05. 844 

Seahorse analysis 845 

The metabolic function of cells was assessed by extracellular flux analysis using Seahorse XF24 846 

(Agilent Technologies, UK). For assays ran during pluripotency, cells were seeded, on the day 847 

prior to the assay, onto 0.1% gelatin-coated (Sigma, UK) in 300 µL of ES media. All cell types 848 

were seeded at 5×104 cells per well, except for Bmpr1a-/- cells, that were seeded at 6E04 per 849 

well). For assays ran during differentiation, cells were seeded, the 3 days before the assay, onto 850 

fibronectin-coated fibronectin-coated plates (1:100, Merck, UK), in 300 µL of N2B27media. All 851 

cell types were seeded at 2.4E04 cells per well, except for Bmpr1a-/- cells, that were seeded at 852 

3.2E04 cells per well. 853 

On the day of the assay, cells were carefully washed twice with assay media and then left with a 854 

final volume of the 600 µL per well. The plate was then equilibrated on a non-CO2 incubator at 855 

37ºC for 30 min. The assay media consisted in unbuffered DMEM (D5030 – Sigma, UK), that 856 

was supplemented on the day of the assay according to the test performed. For the OCR 857 

measurements the assay media was supplemented with 0.5 g.L−1 of glucose (Sigma, UK) and 2 858 

mM of L-glutamine (Life Technologies, UK), while for the ECAR measurements the media was 859 

supplemented with 1 mM of Sodium Pyruvate and 2 mM of L-glutamine (both from Life 860 

Technologies, UK), pH 7.4 at 37ºC. 861 
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The protocol for the assay consisted of 4 baseline measurements and 3 measurements after 862 

each compound addition. Compounds (all from Sigma, UK) used in OCR and ECAR assays 863 

were prepared in the supplemented assay media. For the OCR assay, test the following 864 

compounds were added: 1 mM Pyruvate (Pyr), 2.5 µM oligomycin (OM), 300 nM Carbonyl 865 

cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP) and a mixture of rotenone and antimycin 866 

A at 6 µM each (R&A). For the ECAR assay, the following compounds were added: 2.5 mM and 867 

10 mM of glucose, 2.5 µM of oligomycin (OM), and a 50 mM of 2-deoxyglucose (2-DG). 868 

Each of the experiments was performed in 3 times, with 5 biological replicates of each cell type. 869 

For background correction measurements, 4 wells were left without cells (A1, B4, C3 and D6). 870 

Both ECAR and OCR measurements were performed on the same plate. The assay parameters 871 

for both tests were calculated following the Seahorse assay report generator (Agilent 872 

Technologies, UK). 873 

At the end of the assay, cells were fixed and stained with Hoechst. Both OCR and ECAR were 874 

normalised to cell number, determined by manual cell counts using Fiji software. The 875 

normalisation of the data was processed on Wave Desktop software (Agilent Technologies, UK) 876 

and data exported to Prism 8 (GraphPad) for statistical analysis. 877 

Analysis of mitochondrial membrane potential (∆ψm) and mitochondrial ROS 878 

Quantitative analysis of ∆ψm and mitochondrial ROS was performed by flow cytometry. Cells 879 

were grown in pluripotency or differentiating conditions, as described above. Cells were 880 

dissociated and pelleted to obtain 2E05 cells per sample for the staining procedure.  881 

For TMRM staining in single cells from early mouse epiblasts, embryos were dissected at E5.5 882 

and cultured overnight in the presence or absence of caspase inhibitors. On the following 883 

morning, to avoid misleading readings, epiblasts were isolated initially by an enzymatic 884 

treatment with of 2.5% pancreatin, 0.5% trypsin and 0.5% polyvinylpyrrolidone (PVP40) - all from 885 

Sigma-Aldrich- to remove the visceral endoderm (VE). Embryos were treated during 8 min at 886 

4ºC, followed by 2 min at RT. The VE was then pealed with the forceps and the extraembryonic 887 

ectoderm removed to isolate the epiblasts. Up to 16 epiblasts were pooled per 600µL of 888 
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Accutase (Sigma-Aldrich) for dissociation into single cells prior to staining. Reaction was 889 

stopped with equal volume of FCS and cells subjected to TMRM staining. 890 

Cells were loaded with 10 nM of the Nernstian probe tetramethylrhodamin methyl ester 891 

perchlorate (TMRM, Sigma), prepared in N2B27 media. After incubating for 15 min at 37ºC, cells 892 

were pelleted again and re-suspended in flow cytometry (FC) buffer (3% FCS in DPBS). Sytox 893 

blue (1:1000, Invitrogen, UK) was used as viability staining. Stained cell suspensions were 894 

analysed in BD LSRII flow cytometer operated through FACSDiva software (Becton Dickinson 895 

Biosciences, UK). For TMRM fluorescence detection the yellow laser was adjusted for excitation 896 

at λ=562 nm, capturing the emission light at λ=585 nm for TMRM. In the case of GFP-labelled 897 

cell lines, for GFP fluorescence detection the blue laser was adjusted for excitation at λ=488 nm, 898 

capturing the emission light at λ=525 nm. Results were analysed in FlowJo vX10.0.7r2. 899 

Qualitative analysis of ∆ψm was performed by confocal microscopy. Wild-type and Bmpr1a-/- 900 

cells were grown in fibronectin-coated glass coverslips. On the third day of differentiation, cells 901 

were loaded with 200 nM MitoTracker Red probe (Life Technologies), prepared in N2B27 media, 902 

for 15 min at 37ºC. Cells were then washed with DPBS and fixed with 3.7% formaldehyde for 903 

subsequent immunocytochemical staining of total mitochondria mass, with TOMM20 antibody. 904 

For the analysis of mitochondrial ROS, cells were grown in differentiating conditions and stained 905 

on the third day of culture. Briefly, 2E05 cells of each cell line were resuspended in 200 μL of 5 906 

μM solution of MitoSOX (Invitrogen, UK) prepared in N2B27 media. Cells were incubated at 907 

37ºC for 15 min, and then resuspended in FC buffer. MitoSOX fluorescence was analysed with 908 

the violet laser adjusted for excitation at λ=405 nm, capturing the emission light at λ=610 nm. 909 

Sytox blue was used as viability staining.  910 

Immunofluorescence 911 

Cells were washed with DPBS and fixed with 3.7% formaldehyde (Sigma, UK) in N2B27, for 15 912 

min at 37ºC. Permeabilization of the cell membranes was done with 0.4% Triton X-100 in DPBS 913 

(DPBS-Tx), at RT with agitation. Blocking step with 5% BSA in DPBS-Tx 0.1% was performed 914 

for 30 min, at RT with agitation. Mitochondria were labelled with TOMM20 antibody (1:100, 915 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2020.01.15.900613doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.15.900613


 39

Santa Cruz Biotechnologies). Dead cells were labelled with cleaved caspase-3 antibody (1:400, 916 

CST) and NANOG antibody was used to mark pluripotent cells (1:100, eBioscience). Secondary 917 

antibodies were Alexa Fluor (1:600, Invitrogen). Primary antibody incubation was performed 918 

overnight at 4ºC and secondary antibody incubation during 45 min, together with Hoechst to 919 

stain nuclei (1:1000, ThermoScientific), at RT and protected from light. In both cases antibodies 920 

were diluted in blocking solution. Three 10 min washes with DPBS-Tx 0.1% were performed 921 

between each critical step and before mounting with Vectashield medium (Vector Laboratories). 922 

Samples were imaged with a Zeiss LSM780 confocal microscope (Zeiss, UK) and processed 923 

with Fiji software 62. Mitochondria stainings were imaged with a 63x/1.4 Oil objective. For 924 

samples stained with TOMM20 antibody and MitoTracker Red, Z-stacks were acquired and 925 

processed for deconvolution using Huygens software (Scientific Volume Imaging, https://svi.nl/). 926 

Samples stained with cleaved caspase-3 were imaged with 20x/0.8 air objective. Imaging and 927 

deconvolution analysis were performed with the support and advice from Mr. Stephen Rothery 928 

from the Facility for Imaging by Light Microscopy (FILM) at Imperial College London.  929 

Embryo immunofluorescent staining for p-rpS6, OPA1 and DDIT3 (CHOP) markers was 930 

performed as follows. Cultured embryos were fixed in 4% PFA in DPBS containing 0.01% Triton 931 

and 0.1% Tween 20 during 20 min at RT. Permeabilization of the membranes was done during 932 

10 min in DPBS with 0.5% Triton. Embryos were blocked in 5% BSA in DPBS with 0.25% Triton 933 

during 45 min. Incubation with primary antibodies - CHOP (1:500, CST- 2895S), OPA1 (1:100, 934 

BD Biosciences - 612606) and p-rpS6 (CST - 5364) - was done overnight at 4ºC in 2.5% BSA in 935 

DPBS with 0.125% Triton. On the following morning, hybridisation with secondary antibodies 936 

Alexa Fluor 568 and Alexa Fluor 488 (diluted 1:600 in DPBS with 2.5% BSA and 0.125% Triton) 937 

was done next during 1h at RT. Hoechst was also added to this mixture to stain nuclei (1:1000, 938 

Invitrogen). Three 10 min washes with filtered DPBS-Tx 0.1% were performed between each 939 

critical step. All steps were done with gentle agitation.  940 

Embryos were imaged in embryo dishes (Nunc) in a drop of Vectashield using Zeiss LSM780 941 

confocal microscope at 40x/1.3 oil objective.  942 
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Further details about image acquisition and processing are specified in the Supplementary 943 

Methods file “Imaging equipment and settings.docx” 944 

Western Blotting 945 

Cells were washed in DPBS and lysed with Laemmli lysis buffer (0.05 M Tris- HCl at pH 6.8, 1% 946 

SDS, 10% glycerol, 0.1% β-mercaptoethanol in distilled water). Total protein quantification was 947 

done using BCA assay (Thermo Scientific, UK) and samples (15μg of protein per lane) were 948 

loaded into 12% Bis-Tris protein gels (BioRad). Resolved proteins were transferred into 949 

nitrocellulose membranes (GE Healthcare). The following primary antibodies were incubated 950 

overnight at 4ºC: rabbit anti-TOMM20 (1:1000, CST - 42406), rabbit anti-α-Tubulin (1:1000, 951 

CST- 2144), mouse anti-mt-CO1 (1:2000, Abcam - 14705), rabbit anti-DRP1 (1:1000, CST- 952 

8570), mouse anti-MFN1 (1:1000, Abcam - 57602), mouse anti-MFN2 (1:500, Abcam - 56889), 953 

mouse anti-Vinculin (1:1000, Sigma - V9131), mouse anti-OPA1 (1:1000, BD Biosciences - 954 

612606), rabbit anti-ATF4 (1:1000, CST-11815), rabbit anti-α-PCNA (1:1000, Abcam - 2426) 955 

and rabbit anti-p-eIF2ɑ (Ser51, 1:1000, CST-9721). On the following morning, HRP-conjugated 956 

secondary antibodies (Santa Cruz) were incubated for 1h at RT.  Membranes were developed 957 

with ECL reagents (Promega) and mounted in cassette for time-time-controlled exposure to film 958 

(GE Healthcare). 959 

Bulk RNA-Seq and Single cell RNA-Seq 960 

For bulk RNA Seq in the competitive scenario between cells with different mtDNA, HB(24%) and 961 

BG(95%) mESCs were grown separately or in co-culture. On the third day of culture cells were 962 

dissociated and subjected to fluorescence activated cell sorting (FACS) to separate the cell 963 

populations in co-culture. To control for eventual transcriptional changes due to the FACS 964 

process, a mixture of the two separate populations was subjected to the same procedure as the 965 

co-cultured samples. Total RNA isolation was then carried out using RNA extraction Kit (RNeasy 966 

Mini Kit, Qiagen). PolyA selection/enrichment was the method adopted for library preparation, 967 

using the NEB Ultra II RNA Prep Kit. Single end 50bp libraries were sequenced on Illumina 968 

Hiseq 2500. Raw basecall files were converted to fastq files using Illumina’s bcl2fastq (version 969 
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2.1.7). Reads were aligned to the mouse genome (mm9) using Tophat2 version 2.0.11 63 with 970 

default parameters. Mapped reads that fell on genes were counted using featureCounts from 971 

Rsubread package 64. Generated count data were then used to identify differentially expressed 972 

genes using DESeq2 65. Genes with very low read counts were excluded. Finally, Gene Set 973 

Enrichment Analysis was performed using GSEA software 66, 67 on pre-ranked list generated by 974 

DESeq2.  975 

To investigate the nature of cells eliminated by cell competition during early mouse 976 

embryogenesis by means of Single Cell RNA-Sequencing (scRNA-seq), early mouse embryos 977 

were dissected at E5.5 and cultured overnight in the presence or absence of caspase inhibitors. 978 

On the following morning, embryos were dissociated with Accutase and subjected to single-cell 979 

sorting into 384-well plates. Total RNA isolation was then carried out using a RNA extraction Kit 980 

(RNeasy Mini Kit, Qiagen). scRNA-seq was performed using the Smart-seq2 protocol68. PolyA 981 

selection/enrichment with Ultra II Kit (NEB) was the method adopted for library preparation.  982 

Data processing, quality control and normalization 983 

We performed transcript quantification in our scRNA-seq data by running Salmon v0.8.2 69 in the 984 

quasi-mapping-based mode. First, a transcriptome index was created from the mouse reference 985 

(version GRCm38.p4) and ERCC spike-in sequences. Then, the quantification step was carried 986 

out with the “quant” function, correcting for the sequence-specific biases (“--seqBias” flag) and 987 

the fragment-level GC biases (“--gcBias” flag). Finally, the transcript level abundances were 988 

aggregated to gene level counts. On the resulting raw count matrix including 1,495 cells, we 989 

apply a quality control to exclude poor quality cells from downstream analyses. 990 

For the quality control we used the following criteria: we identified the cells that have a log10  total 991 

number of reads equal to or greater than 4, a fraction of mapped reads equal to or greater than 992 

0.8, a number of genes with expression level above 10 reads per million equal to or greater than 993 

3000 and a fraction of reads mapped to endogenous genes equal to or greater than 0.5. This 994 

resulted in the selection of 723 cells, which were kept for downstream analyses. Transcripts per 995 

million (TPM) normalization (as estimated by Salmon) was used. 996 
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Identification of highly variable genes and dimensionality reduction 997 

To identify highly variable genes (HVG), first we fitted a mean-total variance trend using the R 998 

function “trendVar” and then the variance was decomposed into biological and technical 999 

components with the R function “decomposeVar”; both functions are included in the package 1000 

“scran” (version 1.6.9 70). 1001 

We considered HVGs those that have a biological component that is significantly greater than 1002 

zero at a false discovery rate (Benjamini-Hochberg method) of 0.05. Then, we applied further 1003 

filtering steps by keeping only genes that have an average expression greater to or equal than 1004 

10 TPM and are significantly correlated with one another (function “correlatePairs” in “scran” 1005 

package, FDR<0.05). This yielded 1921 genes, which were used to calculate a distance matrix 1006 

between cells defined as ඥ(1 −  is the Spearman’s correlation coefficient 1007 ߩ where ,  2/(ߩ

between cells. A 2D representation of the data was obtained with the UMAP package (version 1008 

0.2.0.0 https://cran.r-project.org/web/packages/umap/index.html) using the distance matrix as 1009 

input. 1010 

Cell clustering and connectivity analysis 1011 

To classify cells into different clusters, we ran hierarchical clustering on the distance matrix (see 1012 

above; “hclust” function in R with ward.D2 aggregation method) followed by the dynamic hybrid 1013 

cut algorithm (“cutreeDynamic” function in R package “dynamicTreeCut” (https://CRAN.R-1014 

project.org/package=dynamicTreeCut) version 1.63.1, with the hybrid method, a minimum 1015 

cluster size of 35 cells and a “deepSplit” parameter equal to 0), which identified five clusters.  1016 

Cells from different batches were well mixed across these five clusters (see Extended Data Fig. 1017 

1), suggesting that the batch effect was negligible. The identity of the five clusters was 1018 

established based on the expression of known marker genes of Epiblast, Visceral Endoderm 1019 

and Extra-Embryonic Ectoderm, which were identified in a previous study56. The expression 1020 

levels of some of the top markers is plotted in Figure 1b. 1021 

We performed a robustness analysis on the clustering by exploring in detail how the choices of 1022 

genes, clustering parameters and algorithms affect the identity and the number of clusters. First, 1023 
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we quantified the cluster robustness by calculating Pearson's gamma and the Average 1024 

silhouette width obtained with 100 random subsets of 60% of the highly variable genes and 1025 

different values of the deepSplit parameter. While the robustness at deepSplit=0 and 1 is similar, 1026 

for greater values of deepSplit (corresponding to less conservative clustering) the robustness 1027 

rapidly declines (Extended Data Figure 2a). The clustering with deepSplit = 0 and 1 (the more 1028 

robust choices) yield very similar results, the only difference being the splitting of the 1029 

intermediate cluster in two subclusters (Extended Data Figure 2b). 1030 

In addition to this, we also used Louvain clustering on the highly variable genes (resolution=0.3, 1031 

k=20 with 20 principal components), which again produced very similar clusters.  1032 

We quantified the connectivity between the clusters (using only CI-treated cells) with PAGA22 1033 

implemented in the python library scanpy (version 1.4.7)71. The analysis revealed that the three 1034 

epiblast clusters are connected with each other while the two extra embryonic tissues (Visceral 1035 

Endoderm and Extra Embryonic Ectoderm) are isolated (Extended Data Figure 2c).  1036 

Identification of a single-cell trajectory in the epiblast  1037 

We calculated a diffusion map (“DiffusionMap” function in the R package “destiny” version 2.6.2 1038 

23 on the distance defined above on the epiblast cells from CI-treated embryos. The pseudotime 1039 

coordinate was computed with the “DPT” function with the root cell in the winner epiblast cluster 1040 

(identified by the function “tips” in the “destiny” package). Such pseudotime coordinate can be 1041 

interpreted as a “losing score” for all the epiblast cells from the CI-treated embryos.  1042 

We estimated the losing scores of the epiblast cells from DMSO-treated embryos by projecting 1043 

such data onto the diffusion map previously calculated (function “dm_predict” in the destiny 1044 

package). Finally, for each of the projected cells, we assigned the losing score as the average of 1045 

the losing scores of the 10 closest neighbours in the original diffusion map (detected with the 1046 

function “projection-dist” in the destiny package).  1047 

While for the clustering and the trajectory analysis we used the highly variable genes computed 1048 

from the whole dataset, we verified that all results concerning the separation between winner 1049 
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and loser epiblast cells (eg, clusters and losing score) remain unaffected if the highly variable 1050 

genes are calculated using only the epiblast cells. 1051 

Mapping of data from epiblast cells onto published single-cell RNA seq datasets of 1052 

epiblast from freshly isolated embryos 1053 

We compared the transcriptional profile of epiblast from embryos cultured in DMSO and CI with 1054 

that of epiblast collected from freshly isolated embryos at different stages.  1055 

To do this, we considered the dataset published in26, which includes epiblast cells from embryos 1056 

at the stages E5.5 (102 cells), E6.25 (130 cells) and E6.5 (288 cells). A diffusion map and a 1057 

diffusion pseudotime coordinate were computed with these cells following the same procedure 1058 

described in the section above (Extended Data Figure 2d-e). Then, we projected epiblast cells 1059 

from CI and DMSO-treated embryos and we assigned to them a diffusion pseudotime coordinate 1060 

as described above (Extended Data Figure 2f). 1061 

Differential gene expression analysis along the trajectory 1062 

To identify the genes that are differentially expressed along the trajectory, first we kept only 1063 

genes that have more than 15 TPM in more than 10 cells (this list of genes is provided in 1064 

Supplementary Table 4); then, we obtained the log-transformed expression levels of these 1065 

genes (adding 1 as a pseudo-count to avoid infinities) as a function of the losing score and we 1066 

fitted a generalized additive model to them (R function “gam” from “GAM” package version 1067 

1.16.). We used the ANOVA test for parametric effect provided by the gam function to estimate a 1068 

p-value for each tested gene. This yielded a list of 5,311 differentially expressed genes (FDR < 1069 

0.01).  1070 

Next, we looked for groups of differentially expressed genes that share similar expression 1071 

patterns along the trajectory. To this aim, similarly to what we did when clustering cells, we 1072 

calculated a correlation-based distance matrix between genes, defined as ඥ(1 −  1073 ߩ where  ,2/(ߩ

is the Spearman’s correlation coefficient between genes. Hierarchical clustering was then 1074 

applied to this matrix (hclust function in R, with ward.D2 method) followed by the dynamic hybrid 1075 
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cut algorithm (dynamicTreeCut package) to define clusters (“cutreeDynamic” function in R with 1076 

the hybrid method and a minimum cluster size of 100 genes and a deepSplit parameter equal to 1077 

0). This resulted in the definition of four clusters, three of genes that decrease along the 1078 

trajectory (merged together for the GO enrichment and the IPA analysis) and one of increasing 1079 

genes (Extended Data Fig. 2d). IPA (QIAGEN Inc., https://www.qiagenbio- 1080 

informatics.com/products/ingenuity-pathway-analysis), was run on all genes differentially 1081 

expressed (FDR < 0.01) along the trajectory from winner to loser cells (see Fig. 2a-d and Fig. 1082 

3a-c), using all the tested genes as a background (see Supplementary Table 4). This software 1083 

generated networks, canonical pathways and functional analysis. The list of 1084 

decreasing/increasing genes is provided in Supplementary Tables 1 and 2.   1085 

Analysis of Mitochondrial DNA heteroplasmy in single-cell RNA seq dataset 1086 

We used STAR (version 2.7 72) to align the transcriptome of the epiblast cells from CI-treated 1087 

embryos (274) to the mouse reference genome (mm10). Only reads that uniquely mapped to the 1088 

mitochondrial DNA (mtDNA) were considered. From these, we obtained allele counts at each 1089 

mtDNA position with a Phred Quality Score greater than 33 using the samtools mpileup function.  1090 

Next, we applied filters to remove cells and mtDNA positions with a low coverage. First, we 1091 

removed cells with fewer than 2,000 mtDNA positions covered by more than 50 reads. Second, 1092 

we removed positions having less than 50 reads in more than 50% of cells in each of the three 1093 

epiblast clusters (winner, intermediate and loser). These two filters resulted in 259 cells and 1094 

5,192 mtDNA positions (covered by ~700 reads per cell on average) being considered for further 1095 

analyses. 1096 

Starting from these cells and positions, we applied an additional filter to keep only positions with 1097 

a sufficiently high level of heteroplasmy. To this aim, for each position with more than 50 reads 1098 

in a cell, we estimated the heteroplasmy as: 1099 ܪ = 1 − ௠݂௔௫ 
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where fmax is the frequency of the most common allele. We kept only positions with H>0.01 in at 1100 

least 10 cells.  1101 

Finally, using generalized additive models (see above), we identified the positions whose 1102 

heteroplasmy H changes as a function of the cells’ losing score in a statistically significant way. 1103 

We found a total of eleven significant positions (FDR < 0.001), six of them in the mt-Rnr1 gene 1104 

and five in the mt-Rnr2 gene. All of these positions have a higher level of heteroplasmy in loser 1105 

cells (see Fig. 6b-g and Extended Data Fig. 6f-k). The results remain substantially unaltered if 1106 

the Spearman’s rank correlation test (in alternative to the generalized additive models) is used.  1107 

For the barplot shown in Fig. 6h and the correlation heatmaps in Fig. 6i and Extended Data Fig. 1108 

6l, we took into account only cells that covered with more than 50 reads all the significant 1109 

positions in the mt-Rnr1 gene (215 cells, Fig. 6h-6i) or in both the mt-Rnr1 and mt-Rnr2 genes 1110 

(214 cells, Extended Data Fig. 6l). 1111 

As a negative control, we repeated the analysis described above using the ERCC spike-ins 1112 

added to each cell. As expected, none of the positions was statistically significant, which 1113 

suggested that our procedure is robust against sequence errors introduced during PCR 1114 

amplification. 1115 

We also performed the mtDNA heteroplasmy analysis in cells from the Visceral Endoderm and 1116 

the Extra-Embryonic Ectoderm in both DMSO and CI conditions: none of these cells have a 1117 

mtDNA heteroplasmy higher than 0.01 in the 11 significant positions identified within mt-Rnr1 1118 

and mt-Rnr2 in loser epiblast cells, and the reference allele is always the most common. This 1119 

reinforces the hypothesis that such variants are specific to loser epiblast cells and are not 1120 

resulting from contamination. 1121 

To test the reliability of our heteroplasmy estimations, we used the RNA-seq data from two of the 1122 

mtDNA cell lines (BG and HB, see Figure 7), for which the heteroplasmy was measured also by 1123 

ARMS-qPCR. To do so, first we downloaded the fasta files of the two mtDNA cell lines from 1124 

https://www.ncbi.nlm.nih.gov/nuccore/KC663619.1 and 1125 

https://www.ncbi.nlm.nih.gov/nuccore/KC663620.1, then we identified the mtDNA positions that 1126 

differ from the BL6 reference genome. Finally, on these different positions, the heteroplasmy H 1127 
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was computed as explained above. The values of heteroplasmy we found with our 1128 

computational analysis were very close to those estimated by ARMS-qPCR (~17% from RNA-1129 

seq data vs ~21% measured by ARMS-qPCR; and ~93% from RNA-seq data vs ~97% by 1130 

measured by ARMS-qPCR).  1131 

Common features of scRNA-seq and bulk RNA-seq datasets 1132 

Differential expression analysis between the co-cultured winner HB(24%) and loser cell line 1133 

BG(95%) was performed using the package EdgeR version 3.20.9 73.  1134 

Batches were specified in the argument of the function model.matrix. We fitted a quasi-likelihood 1135 

negative binomial generalized log-linear model (with the function glmQLFit) to the genes that 1136 

were filtered by the function filterByExpr (with default parameter). These genes were used as 1137 

background for the gene enrichment analysis. 1138 

We set a FDR of 0.001 as a threshold for significance. The enrichment analysis for both the 1139 

scRNA-seq and bulk RNA-seq datasets were performed using the tool g:Profiler 74. The list of 1140 

up-regulated, down-regulated and background genes related to the DE analysis for the bulk 1141 

RNA-seq dataset are provided in the Supplementary Tables 5, 6 and 7. 1142 

Quantification and Statistical Analysis 1143 

Box plots show lower quartile (Q1, 25th percentile), median (Q2, 50th percentile) and upper 1144 

quartile (Q3, 75th percentile). Box length refers to interquartile range (IQR, Q3-Q1). The upper 1145 

whisker marks the minimum between the maximum value in the dataset and the IQR times 1.5 1146 

from Q3 (Q3+1.5 x IQR), while the lower whisker marks the maximum between the minimum 1147 

value in the dataset and IQR times 1.5 from Q1 (Q1-1.5 x IQR). Outliers are shown outside the 1148 

interval defined by box and whiskers as individual points. 1149 

Flow cytometry data was analysed with FlowJo Software. 1150 

Western blot quantification was performed using Image Studio Lite (LI-COR). Protein expression 1151 

levels were normalised to loading controls vinculin or α-tubulin. 1152 

The quantification of the DDIT3 and OPA1 expression in embryos was done by two distinct 1153 

methods. DDIT3 expression was quantified by counting the number of epiblast cells with positive 1154 
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staining in the embryos of each group. The expression of OPA1 was quantified on Fiji software 1155 

as the mean fluorescence across a 10 pixel width line drawn on the basal cytoplasm of each cell 1156 

with high or low p-rpS6 fluorescence intensity, as specified in7. min of 8 cells were quantified per 1157 

condition (high vs low mTOR activity) in each embryo. Six embryos treated with CI were 1158 

analysed. Mean grey values of OPA1 fluorescence for each epiblast cell are pooled on the same 1159 

graph. 1160 

Normalisation of data from metabolic flux analysis with Seahorse was performed using Wave 1161 

Desktop software (Agilent Technologies, UK) and data exported to Prism 8 (GraphPad) for 1162 

statistical analysis. 1163 

The statistical analysis of the results was performed using GraphPad Prism version 8.0.0 for 1164 

Mac (GraphPad Software, San Diego, California USA). Data was tested for normality using 1165 

Shapiro-Wilk normality test. Parametric or non-parametric statistical tests were applied 1166 

accordingly. Details about the test used in each of the experiments are specified in figure 1167 

legends. Statistical significance was considered with a confidence interval of 0.05%. n.s., non-1168 

significant; * p<0.05; ** p<0.01;*** p<0.001. 1169 

Data Availability 1170 

Data were analysed with standard programs and packages, as detailed above. Authors can 1171 

confirm that all relevant data are included in the paper and/ or its supplementary information 1172 

files. Source data for Figures 2-5,7 and for Extended Data Figures 4-5, 7-8  are provided with 1173 

the paper. RNA-seq raw as well as processed data are available through ArrayExpress, 1174 

accession numbers E-MTAB-8640, for scRNA-seq data, and E-MTAB-8692, for bulk RNA-seq 1175 

data. 1176 

 1177 

Code Availability 1178 

All code that was used in this study is available upon request.  1179 
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