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THE PEŁCZYŃSKI AND DUNFORD–PETTIS PROPERTIES
OF THE SPACE OF UNIFORM CONVERGENT FOURIER SERIES

WITH RESPECT TO ORTHOGONAL POLYNOMIALS

BY

J. OBERMAIER (München)

Abstract. The Banach space U(µ) of uniformly convergent Fourier series with re-
spect to an orthonormal polynomial sequence with orthogonalization measure µ supported
on a compact set S ⊂ R is studied. For certain measures µ, involving Bernstein–Szegö
polynomials and certain Jacobi polynomials, it is proven that U(µ) has the Pełczyński
property, and also that U(µ) and U(µ)? have the Dunford–Pettis property.

1. Introduction. Let S ⊂ R be a compact infinite set and µ be a Borel
measure on R with µ(R) = 1 and suppµ = S. By Gram–Schmidt procedure
there exists a unique sequence {pn}∞n=0 of algebraic polynomials such that	
pnpm dµ = δn,m, deg pn = n and pn has a positive leading coefficient.

We call {pn}∞n=0 the orthonormal polynomial sequence with respect to µ. In
particular, we have p0 ≡ 1. It is well-known [2] that there holds a three-term
recurrence relation

(1.1) xpn(x) = λn+1pn+1(x) + βnpn(x) + λnpn−1(x) for all n ∈ N0,

where p−1 ≡ 0, {λn}∞n=0, {βn}∞n=0 ⊂ R are bounded sequences, λn > 0 for
all n ∈ N and λ0 is arbitrary.

As usual, let

(1.2) C(S) = {f : S → C : f continuous}

with norm ‖f‖∞ = supx∈S |f(x)|. The formal Fourier series of f ∈ C(S) is
given by

(1.3) f ∼
∞∑
n=0

f̂npn,

2020 Mathematics Subject Classification: Primary 46E15; Secondary 42C05, 42C10.
Key words and phrases: orthogonal polynomials, Fourier series, uniform convergence,
Pełczyński property, Dunford–Pettis property, Bernstein–Szegö polynomials, Jacobi poly-
nomials.
Received 12 April 2019; revised 23 March 2020.
Published online 6 August 2020.

DOI: 10.4064/cm7890-3-2020 [1] c© Instytut Matematyczny PAN, 2020



2 J. OBERMAIER

where the Fourier coefficients are defined by

(1.4) f̂n =
�
fpn dµ.

By the Weierstrass theorem the polynomials {pn}∞n=0 form a complete or-
thonormal system in L2(µ), therefore the coefficients f̂n determine the func-
tions f ∈ C(S).

The Nth partial sum of the formal Fourier series of f ∈ C(S) is given by

(1.5) DN (f) =

N∑
n=0

f̂npn.

Let

(1.6) U(S, µ) = U(µ) =
{
f ∈ C(S) : lim

N→∞
‖DN (f)− f‖∞ = 0

}
denote the subspace of C(S) with uniformly convergent Fourier series. Then

(1.7) ‖f‖U = sup
N∈N0

‖DN (f)‖∞

defines a norm on U(µ), which we call the U -norm. It is well-known that
(U(µ), ‖ ‖U ) is a Banach space (see [17, Proposition 3.1]). Obviously,

(1.8) ‖f‖∞ ≤ ‖f‖U for all f ∈ U(µ).

If S = [a, b], then U(µ) ( C(S) (see [4]). But there are discrete S such that
U(µ) = C(S) (see [10, 11, 12, 13]). In such a case the open mapping theorem
yields the equivalence of the norms, i.e. there exists C > 0 such that

(1.9) C‖f‖U ≤ ‖f‖∞ ≤ ‖f‖U for all f ∈ C(S).
But in general, less is known about the Banach space (U(µ), ‖ ‖U ). For inves-
tigating U(µ) later on, the following lemma is of fundamental importance.
The proof is based on ideas of [16].

Lemma 1.1. Let (U(µ), ‖ ‖U ) be a Banach space of uniformly convergent
Fourier series with respect to an orthonormal polynomial sequence. Then
there exists a compact Hausdorff space K and an isometry J from U(µ) into
the Banach space C(K) of complex-valued continuous functions on K.

Proof. Since
Sd = {1/n : n ∈ N} ∪ {0}

with the topology induced by the topology of R is a compact Hausdorff
space, so is

K = Sd × S
with the product topology. For ϕ ∈ C(K) set

fn−1(x) = ϕ((1/n, x)), n ∈ N ∪ {∞}, x ∈ S.
Here we assume that 1/∞ = 0 and ∞ − 1 = ∞. Then fn ∈ C(S) for all
n ∈ N0 ∪ {∞} and fn converges uniformly to f∞ as n → ∞. The other



PEŁCZYŃSKI AND DUNFORD–PETTIS PROPERTIES 3

way round, if fn ∈ C(S) and {fn}∞n=0 converges uniformly to f∞ ∈ C(S) as
n→∞, then ϕ((1/n, x)) = fn−1(x), n ∈ N∪{∞}, x ∈ S, defines a function
in C(K). Thus C(K) is isometrically isomorphic to the Banach space

Cseq = {{fn}∞n=0 : fn ∈ C(S) and {fn}∞n=0 is uniformly convergent},

where the norm on Cseq is given by ‖{fn}∞n=0‖Cseq = supn∈N0
‖fn‖∞. If we

denote the isometry from Cseq onto C(K) by J2 and the isometry from U(µ)
into Cseq by J1, which is defined by J1(f) = {Dn(f)}∞n=0, then

J = J2 ◦ J1
is an isometry from U(µ) into C(K).

For the investigation of U(µ) we focus on boundedness properties of
orthonormal polynomial sequences.

2. Boundednessproperties of orthonormalpolynomial sequences.
In this section we deal with measures µ which give rise to special boundedness
properties of the sequence {pn}∞n=0.

Definition 2.1. Let {pn}∞n=0 denote the orthonormal polynomial se-
quence with respect to µ. If {‖pn+1‖∞/‖pn‖∞}∞n=0 and {‖pn‖∞/‖pn+1‖∞}∞n=0

are bounded sequences, then we say µ has property (PB). If {‖pn‖∞}∞n=0 is
bounded, then we say µ has property (B).

Notice that ‖pn‖∞ ≥ 1 for all n ∈ N0 and therefore property (B) implies
property (PB). The following lemma is fundamental to the achievement of
our goal. Let P denote the set of polynomials in one variable with complex
coefficients.

Lemma 2.2. If µ has property (PB), then PU(µ) = U(µ).

Proof. Let f ∈ U(µ) and let cn =
	
fpn dµ denote the Fourier coefficients

of f with respect to the orthonormal polynomial sequence {pn}∞n=0. By (1.1)
the Fourier coefficients of xf(x) are given by dn = cn−1λn+cnβn+cn+1λn+1,
and

x

N∑
n=0

cnpn(x) =

N∑
n=0

cn(λn+1pn+1(x) + βnpn(x) + λnpn−1(x))

=

N+1∑
n=1

cn−1λnpn(x) +

N∑
n=0

cnβnpn(x) +

N−1∑
n=0

cn+1λn+1pn(x)

=

N∑
n=0

dnpn(x) + λN+1(cNpN+1(x)− cN+1pN (x)).
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Thus∥∥∥xf(x)− N∑
n=0

dnpn(x)
∥∥∥
∞
≤sup
x∈S
|x| ‖f−DN (f)‖∞+λn+1‖cNpN+1−cN+1pN‖∞

and

λn+1‖cNpN+1 − cN+1pN‖∞

=
∥∥∥xDN (f)(x)−

N∑
n=0

dnpn(x)
∥∥∥
∞

≤ sup
x∈S
|x| ‖DN (f)− f‖∞ +

∥∥∥xf(x)− N∑
n=0

dnpn(x)
∥∥∥
∞
.

Hence, the Fourier series of xf(x) is uniformly convergent if and only if

lim
N→∞

‖cNpN+1 − cN+1pN‖∞ = 0.

As limN→∞ ‖cNpN‖∞=0, by property (PB) we get limN→∞ ‖cNpN+1‖∞=0
and limN→∞ ‖cN+1pN‖∞ = 0.

Let us give some examples of measures µ with properties (PB) and (B).

Example 2.3. The Jacobi measure

dµ(α,β) =
Γ (α+ β + 2)

2α+β+1Γ (α+ 1)Γ (β + 1)
(1− x)α(1 + x)βdx, α, β > −1,

is supported on [−1, 1]. If −1 < α, β ≤ −1/2, then µ(α,β) has property (B),
whereas in the case α > −1/2 or β > −1/2 the Jacobi measure has only
property (PB) but not (B) (see [18, Theorem 7.32.1]).

Example 2.4. Let q ∈ P with q(x) > 0 for all x ∈ [−1, 1] and

Cq =
( 1�

−1
(1− x2)−1/2q(x)−1 dx

)−1
.

Then
dµq(x) = Cq(1− x2)−1/2q(x)−1dx

is called the Bernstein–Szegö measure with respect to q (see [18, (2.6.1)]).
The Bernstein–Szegö measure has property (B) for any q (see [8]).

3. The Pełczyński property with respect to U(µ). For notations
and definitions in this and in the next sections we also refer to [9]. Let X and
Y be Banach spaces. A series

∑
n xn in X is called weakly unconditionally

convergent if the series
∑

n x
?xn is absolutely convergent for all x? ∈ X?, and

a continuous linear operator T : X → Y is called unconditionally convergent
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if it maps weakly unconditionally convergent series to unconditionally con-
vergent ones. An immediate consequence of a result of Orlicz [14] is that every
weakly compact operator T is unconditionally convergent. The converse was
introduced by Pełczyński [15] as property (V ). In honor of Pełczyński the
following definition was made.

Definition 3.1. A Banach space X is said to have the Pełczyński prop-
erty if every unconditionally convergent operator T : X → Y is weakly
compact.

There are other characterizations of the Pełczyński property (see [16,
Proposition 1.1]). For instance all reflexive Banach spaces and the Banach
space C(K) of continuous scalar-valued functions on a compact Hausdorff
space K have the Pełczyński property [15]. Hence, if U(µ) = C(S), then
U(µ) has the Pełczyński property.

The main result of Saccone [16, Theorem 2.1] is that so-called tight sub-
spaces of continuous function spaces have the Pełczyński property.

Definition 3.2. Let K be a compact Hausdorff space and X ⊂ C(K)
be a closed subspace of the space of continuous scalar-valued functions on K.
Then X is said to be a tight subspace if the operator Tγ : X → C(K)/X,
ϕ 7→ ϕγ +X, is weakly compact for every γ in C(K).

Now, the following theorem holds.

Theorem 3.3. If µ has property (B), then U(µ) has the Pełczyński prop-
erty.

Proof. We are using the notations and definitions of the proofs of Lem-
mas 1.1 and 2.2. Set X = J(U(µ)) and Xseq = J1(U(µ)).

By [16, Theorem 2.1] it is sufficient to prove that X is a tight subspace
of C(K). For that purpose let

Tγ : X → C(K)/X, ϕ 7→ ϕγ +X,

where γ ∈ C(K) and

Y = {γ ∈ C(K) : Tγ is weakly compact}.
It is known that Y is a closed subalgebra of C(K) (see [16, p. 151]). Hence, by
the Stone–Weierstrass theorem it remains to prove that there is a self-adjoint
subset of Y which separates the points of K.

Let φk = {δk,n}∞n=0 ∈ Cseq, k ∈ N0, and φ∞ = {x}∞n=0 ∈ Cseq, where 0, 1
in φk stand for the corresponding constant functions, and x in φ∞ stands for
the identity function on S. It is easy to show that {J2(φk) : k ∈ N0 ∪ {∞}}
is self-adjoint and separates the points of K.

Now, we may study the corresponding operators Tφk and Tφ∞ on Xseq.
Notice that f ∈ U(µ) if and only if {Dn(f)}∞n=0 ∈ Xseq.
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For k ∈ N0 we have

Tφk({Dn(f)}∞n=0) = {δk,nDn(f)}∞n=0 +Xseq.

Hence, Tφk is of finite rank and therefore weakly compact.
If k =∞, then

Tφ∞({Dn(f)}∞n=0) = {xDn(f)}∞n=0 +Xseq

= {λn+1(cn+1pn − cnpn+1)}∞n=0 + {Dn(x f)}∞n=0 +Xseq

= {λn+1(cn+1pn − cnpn+1)}∞n=0 +Xseq

(see the proof of Lemma 2.2).
Since the canonical quotient map Cseq → Cseq/Xseq is continuous and the

composition of two continuous operators is weakly compact if one of them
is [9, Proposition 3.5.11], the problem is reduced to proving that

V : Xseq → Cseq, {Dn(f)}∞n=0 7→ {λn+1(cn+1pn − cnpn+1)}∞n=0,

is weakly compact.
The continuity of the operators (U(µ), ‖ ‖U ) → (U(µ), ‖ ‖∞), f 7→ f ,

and (U(µ), ‖ ‖∞)→ L2(µ), f 7→ f , in conjunction with Plancherel’s theorem
yields the continuity of the operator

H : (U(µ), ‖ ‖U )→ `2, f 7→ {cn}∞n=0.

Moreover, since `2 is reflexive, the operator H is weakly compact (see [9,
Proposition 3.5.4]). The assumed boundedness of {‖pn‖∞}∞n=0 implies that
the operator

W : `2 → Cseq, {ξn}∞n=0 7→ {λn+1(ξn+1pn − ξnpn+1)}∞n=0,

is well-defined and continuous. Since we may identify U(µ) with Xseq, the
operator V = W ◦H is a composition of a weakly compact operator and a
continuous operator and therefore is weakly compact itself.

The proof goes along the lines of the proof of [16, Theorem 4.1(b)]. We
should mention that the functions given in the proof in [16] do not really
separate the points, but this drawback can be eliminated easily as we have
done in our proof here. The main reason why we can apply the ideas of [16]
is Lemma 2.2 above. Also note that our results imply that if µ has prop-
erty (B), then U(µ)? is a so-called separable distortion of an L1-space (see
[16, Section 3]).

4. The Dunford–Pettis property with respect to U(µ) and U(µ)?.
Another Banach space characteristic which attracts attention is the so-called
Dunford–Pettis property. Note that a sequence {xn} in a normed space
(X, ‖ ‖) is called weakly null if limn→∞ x

?x = 0 for all x? ∈ X?, and norm
null if limn→∞ ‖xn‖ = 0.
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Definition 4.1. Let X and Y denote two Banach spaces. An operator
T : X → Y is said to be completely continuous if it takes weakly null
sequences to norm null sequences. The Banach space X has the Dunford–
Pettis property if every weakly compact operator T : X → Y is completely
continuous.

There are other characterizations of the Dunford–Pettis property (see [9,
3.5.18]). A well-known Banach space with the Dunford–Pettis property is
the Banach space C(K) of scalar-valued continuous functions on a compact
Hausdorff space K (see [6]). If the dual space X? of a Banach space X has
the Dunford–Pettis property, then so does X (see [9, Exercise 3.60]). By the
Gelfand–Naimark theorem [5], C(K)?? is isometrically isomorphic to C(Σ),
where Σ denotes the maximal ideal space. Thus, as a simple consequence,
C(K)? and any higher dual space of C(K) have the Dunford–Pettis property.
Hence, if U(µ) = C(S), then U(µ), U(µ)? and any higher dual space have
the Dunford–Pettis property.

Note that in the following the adjoint operator of an operator T is denoted
by T ? and the adjoint operator of T ? is denoted by T ??. In order to check
whether an operator T is completely continuous, one can use the following
lemma (see [16, Lemma 4.3]):

Lemma 4.2. Suppose that (X, ‖ ‖X), (Y, ‖ ‖Y ) and (Z, ‖ ‖Z) are Banach
spaces and let T : X → Y be a continuous linear operator. Further let
W : X → Z be a weakly compact operator such that W ?? is completely
continuous. If limn→∞ ‖Txn‖Y = 0 for any bounded sequence {xn} ⊂ X
with limn→∞ ‖Wxn‖Z = 0, then T ?? is completely continuous.

Basing on the assumption that X is a closed subspace of C(K), Cima
and Timoney [3] used methods provided by Bourgain [1] to check whether
X or X? has the Dunford–Pettis property. The following lemma holds (see
also [16]).

Lemma 4.3. Let K be a compact Hausdorff space and let X be a closed
subspace of C(K). Set

Xb = {γ ∈ C(K) : Tγ is completely continuous},(4.1)
XB = {γ ∈ C(K) : T ??γ is completely continuous}.(4.2)

Then Xb and XB are closed subalgebras of C(K). Moreover, if Xb = C(K),
then X has the Dunford–Pettis property, and if XB = C(K), then X? and
X have the Dunford–Pettis property.

The above Xb and XB have been introduced in [3] and called Bourgain
algebras. With regard to Tγ see Definition 3.2. Now, we are able to prove the
following theorem.



8 J. OBERMAIER

Theorem 4.4. If µ has property (B), then U(µ) and U(µ)? have the
Dunford–Pettis property.

Proof. Again we refer to the notations and definitions of the proofs of
Lemmas 1.1 and 2.2. As in the proof of Theorem 3.3 we set X = J(U(µ))
and Xseq = J1(U(µ)).

Let m be the positive measure on K defined by m({1/n} × S) = 0
for all n ∈ N and m|{0}×S = µ. It can be shown easily that the natural
embedding W̃ : C(K) → L1(K,m), ϕ 7→ ϕ, is weakly compact. Thus, by
Gantmacher’s theorem [9, 3.5.13], W̃ ?? is weakly compact too. Since C(K)??

has the Dunford–Pettis property, W̃ ?? is completely continuous.
The restriction W = W̃ |X is also weakly compact. Note that X?? is

isometrically isomorphic to the closed subspace (X⊥)⊥ ⊂ C(K)?? (see [9,
1.10.15, 1.10.16, 1.10.17]), where ⊥ denotes the annihilator. Hence, we may
identify W ?? with W̃ ??|(X⊥)⊥ , which implies W ?? is completely continuous.

The operators Tφk , k ∈ N0, are bounded and of finite rank. Hence, they
are compact (see [9, 3.4.3]). Therefore, by Schauder’s theorem [9, 3.4.15] the
operators T ??φk , k ∈ N0, are compact too and by [9, 3.4.34] they are completely
continuous.

Let V : Xseq → Cseq, {Dn(f)}∞n=0 7→ {λn+1(cn+1pn − cnpn+1)}∞n=0. By
property (B) we have

‖V ({Dn(f)}∞n=0)‖Cseq = sup
n∈N0

(|λn+1| ‖cn+1pn − cnpn+1‖∞)

≤ 2 sup
n∈N0

|λn+1| sup
n∈N0

‖pn‖∞ sup
n∈N0

|cn|

≤M
�

S
|f |dµ =M

�

K

|J(f)| dm for all f ∈ U(µ).

Therefore, we can apply Lemma 4.2, which implies that T ??φ∞ is completely
continuous. Finally, Lemma 4.3 and the Weierstrass theorem [7, (7.34)] imply
XB = C(K), and so X? and X have the Dunford–Pettis property.
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