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To the Editor 
 

Patients with acute myeloid leukemia (AML) suffer from poor prognosis and precision 

oncology represents an attractive therapeutic option, applying targeted therapies 

against so-called dependencies1-4. Dependencies are essential components required 

for cell growth and survival; they represent attractive therapeutic targets as their 

inhibition reduces tumor burden1-4.  

Many genes recurrently mutated in AML contribute to oncogenesis5,6, which may 

imply a role as dependency and allow precision therapy, based on genetic profiling. 

Examples already in routine clinical practice include AML with mutated FLT3 kinase 

treated with Midostaurin and AML with mutated isocitrate dehydrogenase (IDH) 

responding to Ivosidenib2. Here we asked whether additional recurrently mutated 

genes might represent dependencies in established AML. 

Previous efforts to identify dependencies used established cell lines, including large 

scale functional genomic screens; WT1 and DNMT3A were shown to be dispensable 

in AML cell lines7. As limitation, cell lines might acquire non physiologic alterations 

and discrepant results have been described, e.g., between cell lines and 

organoids8,9. To approximate the clinical situation, we studied patient-derived 

xenograft (PDX) models10,11 and mimicked the complex in vivo situation by 

performing CRISPR/Cas9 knockout studies in mice. Using this highly patient-related 

in vivo approach, we identified WT1 and DNMT3A as yet unknown dependencies in a 

subset of patients' AML tumor cells.  

 
From our toolbox of serially transplantable AML xenografts12, models derived from 7 

patients were selected for the study (Tables S1-S3). Genetically engineered PDX 

(GEPDX) models were generated that stably expressed recombinant Cas9 (Figure 

S1A).  

We had recently established in vivo CRISPR/Cas9 dropout screens in GEPDX 

models of acute lymphoblastic leukemia13; here, we transferred the technique to AML 

which resulted in favourable quality controls (Figures 1A and S2A). The 34 most 

frequently mutated genes in AML were studied, restricted to gain-of-function or 

change-of-function mutations5. A library was designed containing 5 sgRNAs per 

target gene, together with positive and negative controls (Table S4 and S5); the 
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library was cloned into a lentiviral vector that co-expressed recombinant markers to 

enrich successfully transduced cells, using our CLUE technique (Figures S1 and 

S2A; Tables S3 and S4)14. 

A CRISPR/Cas9 dropout screen was performed with five GEPDX models. KO 

resulted in dropout in about half of all genes from the screen, albeit to varying 

degrees, and most KO induced similar effects across the PDX samples (Figures 1B 

and S2B; Tables S6-S8). Confirming the robustness of our technical approach, genes 

with known common essential function or genes required for the hematopoietic 

system were strongly depleted in the knockout screen. Among them, NPM1 was a 

dropout hit and served as a positive control, as it is known to have a broad essential 

function in malignant cells (Figure 1B)7. Another expected hit was KRAS which is one 

of the genes most frequently mutated across all cancers and known to represent a 

dependency in numerous tumor types, including AML15,16. 

Hits from dropout screens require validation and single-knockout experiments were 

performed as competitive in vivo assays where all cell populations are studied under 

identical conditions within the same mouse, giving robust results at low resources17. 

Recombinant fluorochromes enabled an unbiased differentiation of cell populations 

by flow cytometry (Figures 1C-D and S3). For each gene of interest as well as for 

non-targeting (NT) controls, three different, highly efficient sgRNAs were tested in 

three independent mixtures (Figures S4 and S5). From the 7 PDX models studied, up 

to 5 PDX models gave reliable results for each gene.  

NPM1 was included as a positive control and knockout of NPM1 completely 

eliminated AML GEPDX cells in all GEPDX models tested in vivo (Figures 1E). KRAS 

was studied in PDX models carrying mutant KRAS at variant allele frequencies of 

either 0 or close to 0.5, avoiding intrasample heterogeneity. KRAS knockout revealed 

a strong dropout in all GEPDX models studied, which was significantly more 

pronounced in KRASmutant PDX models than KRASwildtype PDX models (Figures 1F 

and S6). Thus, our PDX models strengthen previously published data showing that 

KRAS represents a dependency and attractive therapeutic target in AML, especially 

in tumors carrying a KRAS mutation16. 

 

Next, we examined two genes with poorly defined roles in oncogenes and for which 

we had suitable PDX models with appropriate variant allele frequencies (VAFs) at 
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hand (Table S1). While data on WT1 as an oncogene is controversial18,19, DNMT3A 

mainly represents a tumor suppressor, required for hematopoietic differentiation20-23.  

Reproducing published data with our own tools7, we found no evidence that either 

WT1 or DNMT3A might play a role as dependencies in AML cell lines, with trends 

toward slightly increased proliferation rates upon gene knockout (Figures S7-S9; 

Table S1). In contrast and surprisingly, in in vivo GEPDX models, we discovered a 

pronounced dropout of either of both genes upon knockout in certain PDX models 

(Figure 2A). Thus, WT1 and DNMT3A represent dependencies in a subset of PDX 

AML models in vivo, indicating an obvious discrepancy with their function in cell lines 

in vitro (Figure 2B), without any meaningful impact on the immunophenotype (Figure 

S10). PDX models showed dropout of WT1 or DNMT3A exclusively in the in vivo 

environment on which PDX cells depend as opposed to cell lines, suggesting that in 

vivo approaches are required to unmask certain dependencies in AML (Figure 2C). 

There was no correlation between dependency on DNMT3A and presence of a 

somatic hot spot mutation in DNMT3A in the GEPDX models (Figure S6D). In the 

transcriptome, knockout of WT1 or DNMT3A was accompanied by regulation of 

biological processes such as apoptosis and oxidative phosphorylation (Figures 2D 

and S11). 

When characterizing in vivo essentiality in more detail, we found that knockout of 

WT1 induced a certain increase in the anti-tumor effect of Cytarabine, an important 

drug in routine treatment of AML (Figure S12). WT1 knockout reduced the capacity of 

AML-346 cells to home to the bone marrow environment upon either intrafemural or 

intravenous cell injection followed by early in vivo growth disadvantage, suggesting 

an impaired tumor-niche interaction (Figure S13 and S14). Knockout of either WT1 or 

DNMT3A reduced the numbers of leukemia-initiating cells in competitive limiting 

dilution transplantation assays and prevented re-engraftment of AML-346 into 

secondary recipient mice, with and without prior cell enrichment, indicating that stem 

cell surrogates were depleted upon WT1 or DNMT3A KO (Figures 2E and S15). 

Taken together, our data reveal that WT1 and DNMT3A represent dependencies in a 

subset of AML GEPDX models in vivo, suggesting that they might represent 

therapeutic targets. 

 

Our study identified WT1 and DNMT3A as dependencies in a subset of patient AML 

PDX samples growing in vivo, although less pronounced and less frequent compared 
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to KRAS. Knockout of WT1 and DNMT3A impaired PDX AML growth in vivo, 

attenuated the tumor-niche interaction, eradicated AML stem cells and increased 

treatment response.  

While cell lines did not reveal the phenotype, PDX models proved valuable tools to 

identify dependency on WT1 and DNMT3 and might more closely resemble patient's 

tumors10,11. Our technique now allows studying gene dependencies in patient PDX 

models in vivo, e.g., to personalize pharmacologic precision therapy. Our data 

encourage testing additional genes recurrently mutated in AML for their essentiality in 

PDX models in vivo, e.g., additional dropout candidates from our screens. 

The essential function of WT1 identified here fits with its previously described 

oncogenic function18, while different phenotypes between different PDX models might 

mirror conflicting data on WT1 obtained during leukemogenesis18,19. 

For DNMT3A, a prevailing tumor suppressor function was described20-22, making a 

dependency function unlikely. Amid complexity, a tumor-supportive function of mutant 

DNMT3A was reported in specific AML subsets, e.g., AML driven by a partial tandem 

duplication in KMT2A24. AML-388 harbors a KMT2A-AFDN translocation (Table S2), 

indicating that KMT2A-driven AML might preferably depend on DNMT3A. 

Taken together, our molecular PDX AML in vivo studies allowed identifying WT1 and 

DNMT3A as dependencies and putative therapeutic targets in defined subsets of 

AML, warranting further evaluation. 
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Figure Legends 

 
Figure 1 PDX models depend on KRAS and NPM1 for in vivo growth 
A Experimental procedure for CRISPR/Cas9 in vivo screens performed with PDX 

models. Serially transplantable AML PDX models were established from primary 

patient AML cells and lentivirally transduced to express a split version of Cas9 

together with a sgRNA library (see Figure S1 for constructs). Transgenic cells 

were enriched by flow cytometry (Cas9-GFP) and puromycin selection (sgRNA 

library). Except for the input control aliquot, cells were injected into groups of mice 

and recovered from the mice at advanced leukemia stage (output). Next- 

generation sequencing (NGS) was performed and analyzed using the 

DepMap_CHRONOS, Lin et al., MAGeCK algorithm to compare sgRNA 

distribution between input and output.  

B CRISPR/Cas9 in vivo dropout screens were performed in 5 PDX AML models 

using the library of 34 genes recurrently mutated in AML; gene essentiality scores 

were calculated using the DepMap_CHRONOS algorithm (see Figure S2 for 

quality controls). 

C Experimental procedure for competitive in vivo assays for single hit validation. 

sgRNAs targeting either KRAS or NPM1 or nontargeting (NT) sgRNAs (n=3 per 

gene) were cloned into the sgRNA construct together with the appropriate 

fluorochromes and transduced into Cas9-GFP-expressing PDX cells. After 

puromycin selection, 3 subpopulations (KRAS knockout (KRAS KO), NPM1 

knockout (NPM1 KO) and NT sgRNA) were mixed at a 1:1:1 ratio as an input. 

Three replicate mixtures, each containing different sgRNAs, were transplanted 

into one mouse each (9 different sgRNAs per experiment in 3 replicate mice) and 

recovered at advanced disease stage (output). The distribution of the 

subpopulations was analyzed by flow cytometry (see Figure S3 for the step-by-

step analysis and Figures S4 and S5 for quality controls). 

D Representative flow cytometry plots for KRAS KO1 and NT-1 in AML-661, using 

Boolean gating.  
E, F Quantitative summaries of the knockout effects for NPM1 (E) and KRAS (F) in 

all PDX models studied. Each dot represents the percentage of GOI KO 

population from a single mouse, with related sgRNAs linked by a dotted line. Bar 
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plots indicate mean, minimum and maximum. The results of a two-tailed paired t-

test are shown if they were significant; *p<0.05, **p<0.01 and ***p<0.001.  
 
 
Figure 2 Certain PDX models depend on WT1 and DNMT3A for in vivo growth 
A Competitive in vivo assays were performed, analyzed and depicted as in Figure 

1CD, except that WT1 and DNMT3A were studied (see Figure S6 for quality 

controls). 

B Comparing gene dependency in PDX models versus cell lines. Raw data from 

Figures 2A, S8 and S9 are summarized using a single dot for each single KO of 

each PDX model or cell line. For each PDX model or cell line, three sgRNAs per 

gene were studied. Results of an unpaired t-test are shown if they were significant 

(*p<0.05, **p<0.01 and ***p<0.001). 
C Comparing behavior of PDX cells with KO in vitro versus in vivo. Experiment with 

AML-346 cells was performed, analyzed and depicted as in Figure 2A, except that 

the incubation time was 26 days and an aliquot of cells was kept in vitro (*p<0.05, 

**p<0.01 and ***p<0.001). 

D Transcriptome of AML-356, AML-388, AML-661 and AML-346 cells with DNMT3A 

knockout were compared to NT control (raw and complementary data in Figure 

S10). Gene enrichment map shows gene overlap (lines) in gene sets of hallmarks 

(orange nodes) and KEGG (blue nodes) pathways. Node size is proportional to 

the number of genes in each set; the proportion of shared genes between gene 

sets is depicted by the thickness of the line between nodes. Enrichment plot 

shows the genes differentially regulated in the hallmark oxidative phosphorylation 

upon KO of DNMT3A (Normalized enrichment score (NES) = 2.1537, p-value < 

0.001, adjusted p-value (FDR q-value) < 0.001). 

E Limiting dilution transplantation assay. PDX AML-346 cells were transduced with 

sgRNAs against WT1 or DNMT3A or CTRL, enriched, mixed in a 1:1 ratio for 

WT1: CTRL or DNMT3A: CTRL and injected into 4 mice each at 400,000, 

128,000 or 32,000 cells per mouse (WT1 n=12 and DNMT3A n=11 mice). After 14 

weeks, BM was analyzed by flow cytometry and data analyzed using the ELDA 

software. Mean (solid lines) and 95% confidence interval (CI, dashed line) are 

depicted.  
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