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A B S T R A C T

Automatic segmentation of the placenta in fetal ultrasound (US) is challenging due to the (i) high diversity of
placenta appearance, (ii) the restricted quality in US resulting in highly variable reference annotations, and
(iii) the limited field-of-view of US prohibiting whole placenta assessment at late gestation. In this work, we
address these three challenges with a multi-task learning approach that combines the classification of placental
location (e.g., anterior, posterior) and semantic placenta segmentation in a single convolutional neural network.
Through the classification task the model can learn from larger and more diverse datasets while improving
the accuracy of the segmentation task in particular in limited training set conditions. With this approach we
investigate the variability in annotations from multiple raters and show that our automatic segmentations
(Dice of 0.86 for anterior and 0.83 for posterior placentas) achieve human-level performance as compared
to intra- and inter-observer variability. Lastly, our approach can deliver whole placenta segmentation using a
multi-view US acquisition pipeline consisting of three stages: multi-probe image acquisition, image fusion and
image segmentation. This results in high quality segmentation of larger structures such as the placenta in US
with reduced image artifacts which are beyond the field-of-view of single probes.
1. Introduction

Fetal ultrasound (US) is the primary imaging modality to monitor
fetal health and development. US is relatively inexpensive and widely
available, portable and safe for both mother and fetus. In the UK,
all expectant mothers are offered at least two US screening exami-
nations (in the first and second trimester of pregnancy), where the
fetus’ anatomy and functions are assessed and compared to normal
appearances. Mainly 2D US images are acquired, due to their higher
resolution, wider availability and ease of acquisition and interpretation
compared to 3D US. The rate of anomaly detection in these exami-
nations is highly variable between institutions and sonographers, and
significantly below governmental targets for some anomalies and in
certain geographical locations (Public Health England, 2020). The main
reason for this is that US is a highly operator- and patient-dependent
modality (Sarris et al., 2012) and image quality is restricted by the
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limited field-of-view (FoV) later in gestation, lack of contrast, and
view-dependent artifacts.

In recent years, methods from artificial intelligence research, in
particular data-driven deep learning approaches, have been successfully
investigated to improve fetal screening, for example by automating
standard tasks such as detection of standard fetal planes (Baumgartner
et al., 2017), estimating fetal biometrics (van den Heuvel et al., 2018;
Budd et al., 2019), and investigating the fetal heart (Tan et al., 2020)
from 2D US. Further, 3D US (and particularly the combination of
multiple 3D views) has been exploited to improve image quality of
specific body parts, like the fetal head (Wright et al., 2019) and to
extend the field of view (Wachinger et al., 2007; Gomez et al., 2017).
The majority of such works focuses on the fetal body, and only few
works study the placenta in utero (Torrents-Barrena et al., 2019c).
Placental assessment during fetal US examination is important for the
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identification of pathologies which may be associated with poor fetal
and/or maternal outcomes (Fadl et al., 2017). The size, shape and
location of the placenta in relation to maternal orientation can be
evaluated qualitatively (Salomon et al., 2011), as well as the site and
type of cord insertion (Kelley et al., 2020). For example, it has been
shown that placental volume in the first (Schwartz et al., 2022) and
second (Quant et al., 2016) trimester can be used as a predictor for
small-for-gestation (SFG) age birth weight and fetal growth restriction
(FGR), as placental growth restriction precedes FGR. However, this
does not hold true (especially for first trimester placental volume) for
late-onset FGR and preeclampsia pregnancies (Higgins et al., 2016).
The authors therefore looked at placentas at late gestation. Pathological
conditions such as placenta accreta spectrum (Jauniaux et al., 2018),
or lesions including chorioangiomata (Buca et al., 2020), that are likely
to require specialist clinical management, may also be visualized.

A full evaluation of the placenta using conventional 2D US, how-
ever, is considered to be infeasible beyond the first trimester because
of the limited width of the US view sector (Looney et al., 2018;
Soongsatitanon and Phupong, 2019; Farina, 2016). As a result, the
placenta can only be assessed qualitatively and in segments, which
relies on a vigilant operator technique to ensure thorough coverage.

Advances in placental MR imaging including microcirculation as-
sessment (Slator et al., 2018), 3D reconstruction (Torrents-Barrena
et al., 2019b) and automatic segmentation (Shahedi et al., 2020) are
helping to increase the popularity of fetal MRI as a complementary
modality to US in placental evaluation (Prayer et al., 2017). One major
advantage of MRI in placental imaging is the larger FoV it affords (Bulas
and Egloff, 2013). This enables clinicians to visualize the placenta as
a complete structure, facilitating a more coherent and holistic evalua-
tion, and allowing assessment in context to other fetal and maternal
structures as well (Miller et al., 2006). Nevertheless, fetal MRI has
its own limitations including expense, availability, acoustic noise and
sensitivity to maternal and fetal movement, which can degrade image
quality (Alansary et al., 2016). Thus, US currently remains the modal-
ity of choice for placental assessment during pregnancy. Quantitative
assessment of the placenta can be enabled by capturing and segmenting
the entire placenta with multiple 3D US images acquired from different
views. This is however a difficult task with a number of challenges that
need to be addressed.

Automatic segmentations of the placenta are necessary to allow
a quantitative assessment throughout the pregnancy. Early works in
placenta segmentation in US images have focused on the segmentation
of anterior placentas (Stevenson et al., 2015; Oguz et al., 2016). To gen-
eralize the segmentation, semi-automatic methods have been proposed
in Stevenson et al. (2015) and Oguz et al. (2020). Both methods need a
manual initialization to find the position of the placenta in the image.
In Oguz et al. (2018), an ensemble of methods is proposed to increase
robustness. First, an initial segmentation of the placenta is predicted
using a 2D slice, and then a multi-atlas label fusion algorithm is used
to provide the full segmentation in 3D.

Convolutional neural networks (CNNs) have recently become the
state-of-the-art tools for accurate segmentation (Wang et al., 2020).
When a large amount of labeled training data is available, super-
vised CNN approaches show impressive performance in a variety of
medical image segmentation tasks, including good performances for
segmenting the placenta in 3D US images (Looney et al., 2018; Yang
et al., 2019; Torrents-Barrena et al., 2019a; Zimmer et al., 2019, 2020;
Schwartz et al., 2022; Looney et al., 2021). One major drawback is,
however, that accurate expert pixel-level annotations are expensive and
time-consuming to acquire.

1.1. Remaining challenges in placenta segmentation

Three main challenges have to be overcome: (i) High variability in
placental appearance in US; (ii) Intrinsic uncertainty and variability in
2

placenta annotations due to poor US image quality; (iii) limited FoV in
US images, prohibiting whole placenta assessments at late gestation. In
the following, we describe these challenges in more detail.

First, we consider variability in appearance. A major factor affecting
placenta appearance in US is the location of the placenta. Anterior
placentas are located at the front of the uterus towards the mother’s
abdomen, and posterior placentas at the back of the uterus towards the
mother’s spine (see Fig. 1, bottom row). Anterior placentas are closer
to the US probe, yielding higher contrast between placental and other
tissues. On the other hand, the appearance of posterior placentas in
US often suffers from shadows (the fetus can lie between the US probe
and placenta) and attenuation artifacts. The placenta can be located in
any position between the anterior or posterior of the uterine wall with
the most common positions being anterior, posterior, lateral and fundal
(placentas located at the left or right lateral and top of the uterus,
respectively).

Second, we consider variability and uncertainty of segmentations
due to poor image quality. US images typically suffer from poor con-
trast, and view-dependent artifacts, which results in an intrinsic uncer-
tainty for placenta annotation even for clinical experts.

And third, we consider the relatively small FoV of 3D US, which
normally cannot capture large structures like the second and third
trimester placenta in a single image. Therefore, assessing automati-
cally the whole placenta at late gestation is infeasible with current
imaging protocols (Higgins et al., 2016), and it can only be assessed
qualitatively in segments.

1.2. Related work

Common strategies in many (medical and non-medical) applications
to deal with the lack of large annotated datasets are approaches of
transfer, self-supervised and multi-task learning. In transfer learning,
information and/or features can be transferred from another image
domain, or another task. For the former, one starts with pre-trained
models (Shin et al., 2016) (e.g., pre-trained on large natural image
datasets such as ImageNet) and then fine-tune the model weights on
the new data. The assumption is that the pre-trained weights, even
when trained on a different data domain, provide a better initialization
for the optimization process during training than random weights, and
that fewer data are required to achieve good performance for the
final model (Rajpurkar et al., 2020). Another approach is to use self-
supervised transfer learning (Shin et al., 2016; Raghu et al., 2019) to
adapt the model to a new task. This involves pre-training on the target
image domain, but training for a task (the pretext task) which uses
different annotations that are already part of the data (or very easy to
obtain). In Bai et al. (2019), the prediction of the location of multiple
anatomical positions in 2D cardiac MR images was successfully used as
a pretext task to boost the accuracy of cardiac segmentation. Here, the
transfer learning has been enhanced by a multi-task training strategy,
where both the pretext task and the main task are optimized together
to achieve the best performance.

In multi-task learning, the idea is to leverage knowledge and in-
formation from multiple related tasks to improve performance on all
tasks (Zhang and Yang, 2021). The assumption is that related tasks
share a common feature representation. This learning strategy is often
employed, similar to transfer learning, when the data available for
one or all tasks is sparse. Different to transfer learning, the knowledge
between all tasks is shared and all tasks are similarly important. In
medical imaging, multi-task strategies have been used successfully
to detect and correct simultaneously motion-corrupted cardiac MRI
sequences during reconstruction (Oksuz et al., 2019), for segmentation
and bone suppression in chest X-ray images (Eslami et al., 2020), for the
alignment of 3D fetal brain US images and region co-prediction (Nam-
burete et al., 2018), for the segmentation and classification of tumors
in breast US (Zhou et al., 2021), and to segment and classify CT images
for COVID-19 pneumonia (Amyar et al., 2020), to just name a few.
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Fig. 1. (a): Examples of anterior (top) and posterior (bottom) placentas in ultrasound (US). (b): Design and implementation of a custom-made multi-probe holder for fetal imaging
(left); two- and three-probe multi-view images (right). The placenta is delineated by white dashed lines. (All images are 3D volumes and only central 2D slices are shown.)
To extend the FoV of a single image, multi-view imaging has been
previously used. In Wachinger et al. (2007), Ni et al. (2008) and Gomez
et al. (2017), registration algorithm and/or tracker information were
employed to align the images and provide multi-view US. The resulting
image has an extended FoV, and view-dependent artifacts such as
shadows can be minimized through the additional signal information
from multiple views (Zimmer et al., 2018). In Wright et al. (2019),
many different views of the fetal head were registered to a common
atlas and fused to provide a detailed, almost tomographic, image of
the brain. Aligning US placenta remains however challenging, due to
the lack of salient features to drive the registration process, and the
high variability in shape, which makes it difficult, if not impossible,
to define a placenta atlas space. External tracking, on the other hand,
can provide position information of the US probe but is oblivious to
maternal and fetal motion.

In general, clinical adoption of segmentation methods requires that
clinicians trust the segmentation results. One of the most effective ways
to achieve this is by modeling the uncertainty of the estimated segmen-
tations, and communicating this uncertainty to clinicians. Typically,
two types of uncertainty are considered: (i) the aleatoric or data/intrinsic
uncertainty and (ii) epistemic or model/parameter uncertainty (Kendall
and Gal, 2017). The former is caused by the ambiguity and noise
inherent in the data itself and is independent of the data used for
training. For example, US images are often affected by artifacts and
the image quality and contrast can vary greatly. The manual annota-
tion of objects in an image might be therefore ambiguous and rather
subjective. Also, the task of manual annotation in 3D images is difficult
and their quality is dependent on annotator experience. Previous works
have therefore studied the questions How good is good enough? or How
good can we actually get? by looking at inter-rater variability (Joskowicz
et al., 2019). Data uncertainty can be incorporated by multiple anno-
tations in the training process as multiple possible labels (Kohl et al.,
2018) or as noisy labels (Tanno et al., 2019; Zhang et al., 2020), or
estimated using test-time augmentation (Wang et al., 2019). We address
the data uncertainty by exploring inter- and intra-rater variability for
3D placenta segmentation in US. The second type of uncertainty, the
model/parameter uncertainty, describes the ambiguity in the model
parameters, and originates from the data used to train the model. With
infinite data, the parameter uncertainty can be neglected. Bayesian
approaches have been used to estimate the parameter uncertainty, such
as ensemble learning (Kamnitsas et al., 2017; Kohl et al., 2018) and
Monte Carlo (MC) dropout as approximation to Bayesian inference (Gal
and Ghahramani, 2016).

1.3. Contributions

In this work, we propose a new method to segment 3D US images
towards whole placenta segmentation in multi-view images. To achieve
3

this, we address and overcome the three main challenges detailed in
Section 1.1.

1. We address the variability in the data by leveraging the in-
formation of larger unlabeled data. We propose a transfer and
multi-task learning approach combining the classification of pla-
cental location and semantic placenta segmentation in a single
network to capture data variability in the presence of limited
training data;

2. We explore the intra- and inter-rater variability for manual
annotation of the placenta in US and study the uncertainty of au-
tomatic models. We show that the segmentations obtained by the
proposed model lie within the inter-rater variability for manual
placenta annotation and that the model shows less uncertainty
than baseline models.

3. We describe a multi-view US acquisition pipeline to image larger
structures in US as a whole (see Fig. 1(b)). We introduce a new
US imaging technique using multiple US probes for the acquisi-
tion and fusion of multi-view images. By including the multi-task
segmentation model into the multi-view imaging pipeline, we
are able to extract whole placentas at late gestation.

In particular, we propose a multi-task approach combining the
classification of placental location and semantic placenta segmentation
in a single artificial neural network. The location classification as
pretext task informs the network about the data variability to improve
performance in unfavorable training set conditions for segmentation,
which is the clinical downstream task. We discretize the placenta
location in three classes: anterior, posterior and none. Anterior includes
placentas located towards the front uterine wall between the fetus and
the US probe, and posterior includes placentas located towards the back
uterine wall with the fetus and amniotic fluid between the placenta
and the tip of the US probe (see Fig. 1(a)). None comprises images
without placental tissue, independent of the global image label from
the corresponding patient.

Since the location of the placenta is typically recorded in fetal
screening, training for position classification does not require any
additional manual labeling. Hence many more images are available for
the pretext task than for the segmentation.

By employing this model in a multi-view US acquisition pipeline, we
obtain whole placenta segmentation at late gestation, with significantly
better segmentation performances than other UNet-like networks.

This study combines and expands our previous works in Zimmer
et al. (2019, 2020). In Zimmer et al. (2019), our multi-view imaging
pipeline was described for the first time. Since then, we continued
to further improve on the image acquisition process, and we show
here new results on a larger data set comprising multi-view images.
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Fig. 2. (a): Training data for multi-task networks using labeled datasets for segmentation and classification (classes anterior, posterior and no placenta); (b): Networks for
segmentation (downstream) incorporating information from placental position classification (pretext) in different ways; (c): Inference for single and multi-view ultrasound imaging.
(All images are 3D volumes, central 2D slices are shown.)
In Zimmer et al. (2020), we presented a first version of the multi-task
model. In this work, we extended the models from 2D to 3D, added
Bayesian uncertainty modeling to the UNet architecture, and extended
the evaluation and discussion.

2. Methodology

An overview of the entire image segmentation pipeline is shown in
Fig. 2. The black box represents any of the models that we compare in
this paper, which are illustrated in Fig. 2(b). The pipeline is presented
in two parts. First, we describe the multi-task model to segment the
placenta using positional information (Section 2.1), and second, we
present the multi-view imaging procedure to extract the whole placenta
at late gestation (Section 2.3).

2.1. Placenta segmentation and classification

In this section we describe five CNN-based models for segmenta-
tion, classification, or both, that are evaluated and compared: UNet,
EncNet, TUNet,MTUNet and TMTUNet. These five models are illustrated
schematically in Fig. 2(b).

Notation. Let us consider 𝑑-dimensional images 𝐼𝑛 ∶ 𝛺 ⊂ R𝑑 → R

and corresponding labels 𝐿𝑛 (here class memberships or voxel-wise
segmentations). In a fully supervised strategy, the training set  =
{(𝐼𝑛, 𝐿𝑛), 𝑛 = 1,… , 𝑁} contains 𝑁 pairs of image and reference label,
and a CNN model 𝑓 with parameters Θ is trained to find optimal
parameters Θ∗ to estimate for an unseen image 𝐼 its label �̃� = 𝑓 (𝐼,Θ∗).
During training, a loss function  is optimized with respect to the
parameters Θ. The loss function measures the agreement between
reference labels 𝐿𝑛 and estimated labels 𝑓 (𝐼𝑛,Θ) over the training set
 .

Image Segmentation (UNet). We adapt the UNet (Ronneberger et al.,
2015; Çiçek et al., 2016) for our segmentation task. UNet has a fully
convolutional encoder–decoder structure with convolutional layers, a
bottleneck layer in between and skip connections from encoder to
decoder. We use a slightly modified version where each layer consists
of a residual block with strided convolutions, group normalization and
ReLU activations. In the encoder, max pooling is used for downsam-
pling. Dropout is typically used for regularization in CNNs to prevent
overfitting. In training, activations of incoming features are randomly
4

removed (with a probability of 𝑟). We add dropout with a dropout
probability of 𝑟 = 0.2 after each layer of the decoder.

We choose as a loss function Seg(�̃�, 𝑆) for training the UNet the
sum of the binary cross-entropy loss and Dice loss between the output
�̃� of the network and the manual reference segmentations 𝑆. This
proposed model will be referred to as UNet and will form our baseline
comparison.

Image Classification (EncNet). In image classification, labels 𝐿𝑛 are
vectors 𝐜𝑛 ∈ R𝐶 of class membership for each image 𝐼𝑛. They are
defined as 𝐜𝑛 = 𝐞𝑐 if 𝐼𝑛 belongs to class 𝑐 with 𝑐 = 1,… , 𝐶 and the
𝑐th unit vector 𝐞𝑐 .

Our classification (pretext) network has the same structure as the
encoder of UNet followed by a convolutional block (convolutional
layer, layer normalization and ReLU), and a linear block (linear layer,
layer normalization and sigmoid activation). We refer to these extra
layers as the classification or pretext head. We also incorporate the
attention mechanism from Jetley et al. (2018), which not only helps
in the interpretation of neural networks by providing visual clues
on which image regions are important for the prediction, but also
improves final classification accuracy. One attention layer (adapted to
3D volumes) was added after the third layer of the encoder. The trained
model 𝑓Class(𝐼,ΘClass) assigns to an unseen image 𝐼 two outputs: the
class vector �̃� with predicted class 𝑐 = argmax(�̃�), and the attention
map �̃� ∶ R𝑑 → R, highlighting the region in the image, which most
contributed to the predicted classification. We use cross entropy as a
loss function for classification, denoted by Class(�̃�, 𝐜). We refer to this
model as EncNet.

Learning strategies: Transfer and Multi-task Learning (TUNet,
MTUNet and TMTUNet). We explore two different strategies to incor-
porate the information of unlabeled data or data labeled for a different
task in a supervised segmentation network: transfer and multi-task
learning.

For transfer learning we use the classification of placental position
(𝑐 = 0 ∶ anterior; 𝑐 = 1 ∶ no placental tissue in image; 𝑐 = 2 ∶
posterior) as a pretext task. Placental position is routinely recorded
in each US scanning session and available as meta/clinical data, and
does not require any additional expert labeling. Using this strategy, the
classification and segmentation tasks are trained sequentially. First, a
classification network 𝑓Class(𝐼,ΘClass) (EncNet) is trained on the pretext
task. After convergence, the encoder and bottleneck of a UNet 𝑓 (𝐼, ⋅)
Seg
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are initialized with the optimized pretrained weights Θ∗
Class and further

ine-tuned on the downstream task. We refer to this model as TUNet.
Another strategy is multi-task learning, where two or multiple tasks

re optimized simultaneously. To achieve this for classification and seg-
entation, we added the classification pretext head after the encoder

f the UNet, and added also the attention mechanism to the encoder,
s shown in Fig. 2(b). The loss functions Seg(�̃�, 𝑆) and Class(�̃�, 𝐜) are
ombined in a multi-task loss function MT(�̃�, �̃�, 𝑆, 𝐜) as

MT(�̃�, �̃�, 𝑆, 𝐜) = Class(�̃�, 𝐜) + 𝛽Seg(�̃�, 𝑆). (1)

he parameter 𝛽 ∈ R+ is a weighting parameters between classification
nd segmentation. When 𝛽 > 1, it emphasizes the downstream task
placental segmentation) during training.

The multi-task training can be combined with transfer learning
y initializing the weights of the encoder and pretext head with the
retrained weights Θ∗

Class, and fine-tune the network using both tasks
imultaneously using the multi-task loss function in Eq. (1). The multi-
ask models are referred to as MTUNet and TMTUNet in the remainder
f the paper.

.2. Variability and uncertainty modeling

We adopt a simple approach towards uncertainty modeling by
sing dropout at test time. This will allow us to put the uncertainty
f the model predictions into context with the inter- and intra-rater
ariability. In standard dropout, the full activations are used at test
ime to obtain a single robust prediction. It is also possible (Kendall
t al., 2015) to use dropout at test time as an approximation to Bayesian
nference. At each test run, activations are removed randomly, yielding
ultiple possible segmentations for the same image. These can be

nterpreted as MC samples obtained from the posterior distribution.
n the following, we refer to this procedure during test time as MC
ropout.

.3. Multi-view ultrasound imaging

Multi-view placenta imaging with US requires two steps: (i) the
mage acquisition using multiple probes, and (ii) the multi-view image
usion, see Fig. 1(b) for illustration.

ulti-probe ultrasound imaging. We acquire multiple US images us-
ng an in-house US signal multiplexer which allows to connect multiple
hilips X6-1 probes to a Philips EPIQ V7 US system. The multiplexer
witches rapidly between up to three probes so that images from each
robe are acquired in a time-interleaved fashion. The manual move-
ent speeds of the transducer array is within the Nyquist sampling

ates. Therefore, for the purpose of data processing, consecutive images
re assumed to have been acquired simultaneously over a small time
indow.

We designed a physical device that fixes the probes in an an-
le of 30◦ to each other, which ensures a large overlap between
he images (see Fig. 1(b)), and allows easy and comfortable opera-
ion. Appendix A.1 with Fig. A.10 describe and show a more detailed
llustration of the probe holder design with exact measurements.

ulti-view image fusion. We use a simple, but effective voxel-based
eighted fusion strategy to suppress view-dependent artifacts in the

mages and extend the FoV. First, the images are aligned. This can be
chieved via image registration, external tracking information, or fixed
ultiple probes, as described in the previous section. The weight of
(transformed) data point from each single image is formulated as a

unction of the depth in the US image with respect to the probe position
nd the beam angle. In effect, image points with a strong signal (to
orrect for shadow artifacts) and at a position close to the center of
he US frustum (where the quality of the image is typically the best)
ill receive higher weights. The weighted fusion method is described

n detail in Zimmer et al. (2018, 2019). We showed the potential of such
cquired and constructed multi-view images for placental volumetry
n Skelton et al. (2019).
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3. Materials and experiments

3.1. Implementation details

We implemented the models in PyTorch 1.7.1 on a Ubuntu work-
station with 48 cores of 3.80 GHz and trained them on a GPU Quadro
RTX 8000 48 GB and CUDA 11.1. The code is publicly available.1

The hyperparameters and data augmentations for the networks
were determined using the validation sets and optimized for EncNet
(for classification) and UNet (for segmentation). We tested different
numbers of layers ({3, 4, 5}) and initial feature maps ({4, 16, 32}). The
best validation performance was achieved using 5 layers with (16, 32,
64, 128, 256) feature maps per layer, both for EncNet and UNet. For the
EncNet and the multi-task UNets, we added an attention layer in the
third layer of the encoder. A dropout rate of 0.2 is used in the decoder.

The images are resampled to 128 × 128 × 128. We augmented the
dataset by flipping the images around the x- and 𝑧-axis (an image is not
flipped upside down to keep a correct positioning of the frustum), and
affine transformations (translation range of 10 voxels, rotations range
of 15◦, scaling of 10 and shearing of 15 voxels).

All models are optimized using the ADAM optimizer (Kingma and
Ba, 2014) and trained until convergence. Convergence was achieved
for all folds after 400 epochs (EncNet), 100 epochs (UNet), 50 epochs
(multi-task UNets). For the classification-only EncNet, a learning rate of
10−5 is employed, for UNet, the initial learning rate was 10−4 and was
reduced by a factor of 0.1 at epochs 30, 70, 90, and for the multi-task
and multimodel UNets, the initial learning rate was 5 ⋅ 10−5 and was
reduced by a factor of 0.1 at epochs 20, 30, 40.

Since the number of training images for classification differs from
the number of training images for segmentation, we follow the training
procedure described in Bai et al. (2019). The training alternated be-
tween the two different tasks. At each epoch, the task with the higher
number of training images, here classification, was optimized for one
sub-iteration and the other task, here segmentation, was optimized for 𝛽
sub-iterations. If 𝛽 > 1, a higher weight is assigned to the segmentation
task. For our experiments, we empirically chose 𝛽 = 4.

The manual reference segmentations for training and evaluation
were created using The Medical Imaging Interaction Toolkit (MITK)2

(Wolf et al., 2005).

3.2. Data

All data were collected as real-time 3D US image streams, on
healthy volunteers with a singleton pregnancy (at a gestational age
(GA) range of 19–33 weeks). Data were collected under approved
institutional ethics (NRES number 14/LO/1806) and all patients were
recruited under informed consent. This study was carried out in agree-
ment with the Declaration of Helsinki.

Datasets for classification and segmentation. We collected images
from an US examination (duration 30–50 min) of 71 healthy volunteers.
A part of the examination were sweeps covering the placenta from
different directions. Two expert sonographers (S1 with 10 and S2 with
over 15 years of experience) collected the data, and S1 and S3 (with
eight years of experience) provided the manual annotations. In 35
patients an anterior placenta is observed and in 32 a posterior placenta.
In four patients, only images without placenta visible in the FoV were
used. For each patient, 5–30 images were selected, resulting in 1188
images in total, from which 460 show an anterior, 409 a posterior
placenta, and 319 show no placental tissue. The images used to train
and evaluate segmentation models (see below) were selected from the
placental sweeps. Images which are only used in the classification task

1 https://github.com/vamzimmer/multitask_seg_placenta.
2 www.mitk.org.

https://github.com/vamzimmer/multitask_seg_placenta
http://www.mitk.org
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were collected from different timepoints of the examination and show
very different views of the fetus and/or (unavoidable) placental tissue.

We divided the data into two parts. First, the whole dataset  of
188 images with labels of the classes anterior, posterior and none (no
lacental tissue in the image), and second, an annotated segmentation
ataset  with 292 images and corresponding voxel-wise manual seg-
entations, manually annotated by S1 from 57 patients. We performed
5-fold cross-validation where each fold divided the patients into a

est, training and validation set. In each fold, approximately 60% of the
ata  is used for training, and 20% for both validation and testing.
ifferent folds had different amount of images (up to 10%) because of

he heterogeneity of the data: each patient had a different number of
mages, with and without manual segmentations, and with and without
lacental tissue. However, we made sure that the images from individ-
al patients were not distributed across training/validation/testing sets,
he number of training images with segmentations was always the same
or posterior and anterior placentas, and that each patient with manual
egmentations was exactly once part of a test set. Details about the data
istribution in the folds can be found in Table A.5 in the Appendix.

ulti-view data. A subset of the placenta sweeps described above
ere acquired using the multi-probe acquisition system described in
ection 2.3, as follows. On 21 patients, a two-probe and on 32 patients
three-probe holder was used. We selected 1–4 multi-view images per
atient which differed in the orientation of the probes with respect to
he mother’s tummy. This resulted in 32 two-view and 57 three-view
mages in total. An obstetric sonographer (S1) manually segmented the
lacenta in all multi-view images (50 images from anterior and 39
mages from posterior placentas.)

atasets for variability and uncertainty. To examine the variabil-
ty and uncertainty in the segmentations, we created two additional
anual reference segmentations for a subset of 53 images from 12
atients by sonographer S1 (around 1 year after the first set), and
y sonographer S3, also an expert obstetric sonographer, but without
rior experience with MITK. Also the multi-view images from these
2 patients were manually segmented by sonographer S1 twice. In the
ollowing, S1.1 and S1.2 denote the two sets of manual segmentations
y sonographer S1. On these additional test sets, we investigated the
ntra- and inter-observer variability.

On a small subset of the multi-view data (17 two- and three-view
mages), a set of manual segmentations S1.2 is also created. Addition-
lly, we created a third set of annotation (S1.3) of the same subset by
using the manual segmentations of S1.1 from the single view images
o a multi-view segmentation.

.3. Evaluation metrics

egmentation and classification. To evaluate the segmentation per-
ormance, we use multiple criteria. To compare pairs of segmentations
an automatic and a manual (reference) segmentation), we report both
he Dice and IoU (Intersection over Union) index as overlap measures,
nd the robust Hausdorff Distance (HD) and the Average Surface Distance

(ASD) as surface metrics. The conventional HD is the maximum dis-
tance between two shapes and highly sensitive to outliers. Therefore,
we report a robust HD (RHD), by considering the 95 percentile. The
classification performance is assessed using the balanced accuracy,
precision and F1-score.

Variability in segmentations. To investigate the inter-/intra-expert
ariability in manual segmentations, and the uncertainty in automatic
egmentations, we use the Generalized Energy Distance (GED), as de-
cribed in Kohl et al. (2018). Instead of comparing pairs of segmenta-
ions as the measures Dice, IoU, ASD and RHD, the GED compares two
istributions of possible segmentations, here a set of possible automatic
egmentations obtained with MC dropout and a set of manual segmen-
ations by different annotators. It is based on a distance metric (IoU
6

b

in Kohl et al. (2018) and Dice in Zhang et al. (2020)), and leverages
pairwise distances. A detailed definition can be found in Kohl et al.
(2018).

To test for significance, we performed a paired Wilcoxon signed-
rank test between the results of the baseline UNet and the proposed
models. We report significance at 𝑝 < 0.05 and compute the effect size
𝑟 as 𝑟 = |

𝑧
√

𝑁
|, where 𝑧 is the test statistic and 𝑁 is the number of paired

samples. We consider the effect size as small when 𝑟 ≤ 0.3, moderate
hen 0.3 < 𝑟 < 0.5 and strong when 𝑟 ≥ 0.5 (Cohen, 2013).

.4. Experiments

We perform two sets of experiments analyzing (i) classification
nd segmentation performance, and (ii) variability and uncertainty in
anual and automatic segmentations.

i) Placenta classification and segmentation. In the first set of
xperiments, we compare classification and segmentation performance
f different variants of the models described in Section 2, for both indi-
idual and multi-view images. We trained all models for segmentation
downstream task) on three different training and validation sets: set
, set P and set AP. In set A, only images with anterior placentas are
sed for training and validation, in set P only images with posterior
lacentas, and in set AP both types of images are used. The models
re tested on both types of placentas. In the following, we use the term
n-distribution data (InD) for images whose class was part of the training
et (anterior for set A and posterior for set P) and out-of-distribution data
OoD) for images whose class was not part of the training set (posterior
or set A and anterior for set P).

For classification (pretext task), the baseline EncNet is trained on the
ull classification data 𝐶 . In the multi-task training, we restricted the
umber of training images for classification to avoid a large difference
n numbers between the training data for the pretext and downstream
asks. Next to the 180 images with manual segmentations, we added
0 images without placental tissue and with label none for a balanced
raining set for classification.

The models are tested on the complete test sets both for clas-
ification and segmentation and compared for the performance on
he individual US images. As described in Section 2 B, the resulting
egmentations are then aligned and fused to obtain segmentations of
he multi-view images.

ii) Variability and uncertainty. In a second set of experiments, we
nvestigate the inter- and intra-rater variability of the manual seg-
entations and compare the variability and uncertainty in automatic

egmentations. We measure the variability on a subset of the test
ata, for which three manual annotations are available, as described in
ection 3.2. The intra-rater variability is the agreement between S1.1
nd S1.2 and the inter-rater between S1.1 and S3. We compare the
utomatic segmentation to S1.1 (intra) and S3 (inter). The agreement
etween pairs of segmentations is measured using Dice, IoU, ASD and
HD.

To assess the general uncertainty for placenta annotation, we com-
are the distributions of segmentations obtained by manual annotators
nd by an automatic model using GEDDice and GEDIoU. We compare for
ach training set set A, set P and set AP the baseline UNet to the best
erforming multi-task models. We used MC dropout during test-time to
btain a set of possible segmentations for each image.

iii) Downstream task: placental volume analysis. As downstream
nalysis, we extract and compare placental volume from manual and
utomatic multi-view placenta segmentations. Additionally, we relate
he volume extracted from three-probe placenta imaging with reference
alues throughout gestation obtained from MRI images, as reported

y León et al. (2018).
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Fig. 3. Attention maps (Jetley et al., 2018) obtained by model EncNet (top row) and MTUNet (bottom row) trained on set AP for both anterior (columns 1–3) and posterior
(columns 4–6) placentas. The placenta is delineated by a white dashed line. EncNet ’s attention lies at the boundary of the placenta and surrounding tissue, MTUNet ’s on the
placenta itself. (All images are 3D volumes, central 2D slices are shown.)
Fig. 4. Examples of automatic placenta segmentations obtained by models UNet, TUNet, MTUNet and TMTUNet for pairs of in-distribution (InD) and out-of-distribution (OoD) test
data. The orange arrows indicate areas with segmentation errors and differences between the models. (All images are 3D volumes, central 2D slices are shown.)
4. Results

We first present three types of results: (1) placenta classification
and segmentation when using individual images, (2) when using multi-
view data, and (3) variability of the annotations and uncertainty of the
segmentations.

4.1. Placenta classification and segmentation

4.1.1. Individual images

Classification. The classification results (balanced accuracy, precision,
F1-score) obtained by all models are reported in Table 1 and examples
of attention maps are shown in Fig. 3. The model EncNet trained on the
full classification training set of 817 − −840 images (depending on the
fold), is a strong baseline and achieved high performances on all three
measures, and in particular a precision of 0.91, 0.90 and 0.88 for the
classes anterior, none and posterior, respectively.

Although the training set for classification is 73.41% smaller for
the multi-task models, their performance on this task is competitive
with the baseline EncNet trained on the full training sets. Both multi-
task models outperform the baseline for classes anterior and posterior,
suggesting that the additional segmentation task has an influence on the
performance on the pretext task. This is also confirmed by the better
performance of the models trained on the segmentation set AP. As an
example, the model TMTUNet achieved a balanced accuracy of 0.90 for
class anterior when trained on set A, and 0.94 when trained on set AP.
The difference between the models is that the latter uses also manual
7

segmentations of posterior placentas during training, and this increases
the performance of the classification of anterior placentas. A final
observation is that EncNet performs better for class none (precision and
F1-score) than the multi-task models, which can be explained by the
larger number of training images, and that this class is not considered
in the downstream task.

We show attention maps obtained by models EncNet and MTUNet in
Fig. 3. In EncNet, the model’s attention lies rather at the boundary of the
placenta and surrounding tissue/space than on the placenta itself. The
additional training on segmentation in model MTUNet, yields attention
maps with good placenta localization.

Segmentation. The segmentation performance of the different models
measured by Dice, IoU, ASD and RHD are reported in Table 2 and
representative segmentations comparing InD and OoD examples are
shown in Fig. 4 with further examples in Fig. B.11. Results using
different training and validation sets suggest that anterior and posterior
placentas represent two different distributions in the data. The baseline
UNet trained on set A (only anterior) achieves a high Dice score of
0.84 for the InD test set (anterior), but performs poorly on the OoD
set (posterior) with a Dice score of 0.26. When trained on set P (only
posterior), the Dice score for the InD set (posterior) is 0.79, and 0.63
for the OoD set (anterior). The performance on the OoD sets is reduced
with a higher standard deviation, indicating that the sets A and P
alone are not representative enough for the segmentation of all types of
placenta. These results confirm also that it is easier to segment anterior
placentas, which achieve both a higher InD and OoD Dice score. The
same trend is observed for the other performance metrics (IoU, ASD,
RHD) and models (TUNet, MTUNet, TMTUNet).
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Table 1
Classification performance measured by the balanced accuracy, precision and F1-score for classes anterior, none and posterior. The baseline classification model EncNet is compared
to the multi-task models trained both on classification and segmentation (MTUNet and TMTUNet). These models are trained on different sets for segmentation: set A (only anterior),
set P (only posterior), set AP (both). Bold values indicate best performance on the corresponding class over all models. Gray boxes indicates best performance for each training set

Train set Model Classification performance

Balanced accuracy Precision F1-score

Anterior None Posterior Anterior None Posterior Anterior None Posterior

EncNet 0.91 0.90 𝟎.𝟗𝟑 0.91 𝟎.𝟗𝟎 0.88 0.91 𝟎.𝟗𝟎 0.90

A MTUNet 0.83 0.75 0.74 0.83 0.75 0.74 0.83 0.75 0.74
A TMTUNet 0.90 0.89 0.84 0.91 0.81 0.87 0.90 0.84 0.85

P MTUNet 0.82 0.77 0.86 0.82 0.76 0.86 0.82 0.779 0.86
P TMTUNet 0.92 0.89 0.90 0.92 0.87 0.88 0.92 0.88 0.89

AP MTUNet 0.91 𝟎.𝟗𝟑 0.90 0.91 0.87 𝟎.𝟗𝟏 0.91 0.90 0.90
AP TMTUNet 𝟎.𝟗𝟒 0.89 0.91 𝟎.𝟗𝟒 0.87 0.90 𝟎.𝟗𝟒 0.88 𝟎.𝟗𝟏
Table 2
Segmentation performance for single-view data measured by the Dice score, Intersection-over-Union (IoU), Average Surface Distance (ASD) in mm, Robust (95%) Hausdorff
distance (RHD) in mm. The baseline (UNet) is compared to transfer-based (TUNet) and multi-task learning-based (MTUNet and TMTUNet) models. Showing performance when
raining on different sets: A (only anterior), P (only posterior), and AP (both). The bold values indicate the best performance of the corresponding class over all models. Gray
oxes indicate significance compared to UNet (baseline) with a 𝑝 < 0.05 with effect sizes small, moderate (∗) and strong (∗∗).
Train Model Dice IoU ASD (mm) RHD (mm)

set Anterior Posterior Anterior Posterior Anterior Posterior Anterior Posterior

A UNet 0.84 (0.12) 0.26 (0.29) 0.74 (0.14) 0.19 (0.23) 3.09 (7.26) 33.75 (28.03) 10.99 (14.13) 66.12 (39.86)
A TUNet 0.85 (0.10)) 0.41 (0.30)∗∗ 0.75 (0.12) 0.30 (0.25)∗∗ 2.69 (3.79) 24.03 (29.33)∗ 10.51 (12.35) 52.54 (39.05)∗

A MTUNet 𝟎.𝟖𝟔 (𝟎.𝟎𝟗) 0.27 (0.29) 𝟎.𝟕𝟔 (𝟎.𝟏𝟐) 0.19 (0.23) 𝟐.𝟐𝟑 (𝟏.𝟗𝟓) 34.31 (29.01) 𝟗.𝟎𝟖 (𝟕.𝟕𝟔) 68.24 (39.02)
A TMTUNet 0.85 (0.11) 𝟎.𝟒𝟓 (𝟎.𝟐𝟗)∗∗ 0.76 (0.12) 𝟎.𝟑𝟒 (𝟎.𝟐𝟔)∗∗ 2.78 (5.81) 𝟏𝟗.𝟗𝟕 (𝟐𝟑.𝟒𝟏)∗∗ 10.33 (11.69) 𝟒𝟖.𝟖𝟗 (𝟑𝟕.𝟎𝟔)∗

P UNet 0.63 (0.33) 0.79 (0.10) 0.52 (0.29) 0.67 (0.12) 15.44 (22.74) 4.61 (7.10) 33.68 (32.93) 17.05 (16.75)
P TUNet 0.67 (0.29) 0.80 (0.09) 0.56 (0.26) 0.670 (0.12) 12.25 (19.82) 3.96 (2.46) 28.92 (29.57) 𝟏𝟓.𝟑𝟔 (𝟏𝟏.𝟑𝟓)
P MTUNet 0.67 (0.29) 𝟎.𝟖𝟏 (𝟎.𝟎𝟖) 0.56 (0.27) 𝟎.𝟔𝟖 (𝟎.𝟏𝟏) 12.66 (20.62) 𝟑.𝟖𝟑 (𝟐.𝟒𝟔) 29.24 (31.10) 15.77 (13.17)
P TMTUNet 𝟎.𝟕𝟒 (𝟎.𝟐𝟐)∗ 0.80 (0.10) 𝟎.𝟔𝟐 (𝟎.𝟐𝟏)∗ 0.68 (0.12) 𝟕.𝟖𝟕 (𝟏𝟒.𝟎𝟏)∗ 4.43 (8.26) 𝟐𝟑.𝟎𝟖 (𝟐𝟑.𝟕𝟕)∗ 15.70 (15.24)

AP UNet 0.864 (0.07) 0.78 (0.12) 0.77 (0.10) 0.65 (0.13) 𝟐.𝟏𝟒 (𝟏.𝟕𝟒) 4.89 (7.26) 𝟖.𝟓𝟕 (𝟕.𝟔𝟗) 18.07 (17.33)
AP TUNet 0.85 (0.12) 0.79 (0.12) 0.76 (0.13) 0.66 (0.13) 3.07 (8.59) 4.88 (9.10) 10.13 (14.49) 17.29 (16.94)
AP MTUNet 𝟎.𝟖𝟕 (𝟎.𝟏𝟎)∗ 𝟎.𝟖𝟎 (𝟎.𝟏𝟑)∗ 𝟎.𝟕𝟕 (𝟎.𝟏𝟐)∗ 𝟎.𝟔𝟖 (𝟎.𝟏𝟒)∗ 2.62 (7.05) 4.73 (8.71) 9.41 (12.06) 𝟏𝟔.𝟓𝟎 (𝟏𝟔.𝟖𝟒)
AP TMTUNet 0.86 (0.10) 0.79 (0.11) 0.77 (0.12) 0.67 (0.12) 2.67 (6.58) 𝟒.𝟔𝟕 (𝟕.𝟔𝟏) 9.49 (12.26) 17.30 (16.67)
m
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With the incorporation of the classification task with additional
raining data in models TUNet, MTUNet and TMTUNet, the segmenta-
ion performances increase on the OoD data (posterior for set A and
nterior for set P). In particular, it can be observed that with transfer
earning on set A, i.e., the initialization of the encoder weights with Enc-
et, our method yields a statistically significant (moderate and strong
ffect size) performance increase from a Dice of 0.258 (baseline UNet)
o 0.409 (TUNet) and 0.450 (TMTUNet). The best OoD performance
re achieved with model TMTUNet. For the InD data, the additional
raining data for classification, whose information is incorporated in
odels TUNet and TMTUNet via weight initialization, is not crucial and

he performance increase is not statistically significant. On these data,
he best performances are achieved with model MTUNet.

When trained on set AP, which is representative for both ante-
ior and posterior placentas, good performances are achieved on both
lasses. The multi-task training improves the segmentation results, and
his improvement is statistically significant for the measures Dice, IoU
nd ASD on all classes with model MTUNet, the best performing model.

Notable is that the performance of posterior placentas improve gen-
rally more with multi-task learning than the performance of anterior
lacentas compared to the baseline. As OoD data, posterior placentas
mprove the Dice score by 74.42%, while anterior only by 17.60% with
MTUNet. On the full set AP, posterior improve by 2.43% withMTUNet,

anterior only by 0.35%.
Fig. 4 visualizes examples comparing the segmentation when the

images was InD or OoD data. Multi-task models, especially TMTUNet
(row 4) show a more robust performance with respect to OoD data. For
example, UNet tries to segment a posterior placenta in OoD of example
2 and an anterior placenta in OoD of example 3. Also, MTUNet and
MTUNet are more robust to image artifacts, such as shadows, which is
hown in InD of example 3. Further examples can be found in Fig. B.11
8

n the Appendix. A
4.1.2. Multi-view images
When the spatial transformation between multiple images is known,

e.g., by using a multi-probe system as described in Section 2 for image
acquisition, the segmentations in individual images can be combined
to obtain the segmentation in the multi-view image. The multi-view
segmentation performance is reported in Table 3 and representative
results are shown in Fig. 5.

We observe that, in agreement with the results on single views, pre-
training significantly improves the performance on OoD data, especially
TMTUnet, showing a strong effect size. We would like to emphasize
the performance increase on OoD data of TMTUnet trained on set P.
Compared to the second best model, TUNet, the ASD is improved by
58.1% (11.81 mm to 4.95 mm) and the RHD by 34.8% (29.22 mm to
19.04 mm).

Interestingly, the performance on OoD data is in general higher on
the multi-view data than on single view data. We emphasize here again
that the segmentations are obtained from the single view image models
and then fused for a multi-view image segmentation. The manual
annotations are created on the fused images directly. We surmise that
the increased performance measured on multi-view OoD data might be
due to the artifact reduction in multi-view US.

For the majority of the performance measures, the multi-task model
MTUNet performs best on both anterior and posterior placentas on the
representative training set AP. This is statistically significant for the

easures Dice, IoU and ASD with a moderate effect size.
Exemplary multi-view images are shown in Fig. 5 with corre-

ponding placenta segmentations with MTUNet and combined attention
aps. The placenta is better visualized in the multi-view images with

educed image artifacts and an extended FoV. The multi-task model
TUNet provides an accurate segmentation and the combined attention
aps localize well the placenta. Further examples of multi-view images
ith corresponding segmentations can be found in Fig. B.12 in the

ppendix.
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Table 3
Segmentation performance for multi-view data measured by the Dice score, Intersection-over-Union (IoU), Average Surface Distance (ASD) in mm, Robust (95%) Hausdorff distance
(RHD) in mm. The baseline (UNet) is compared to transfer-based (TUNet) and multi-task learning-based (MTUNet and TMTUNet) models. Showing performance when training on
different sets of single-view data: A (only anterior), P (only posterior), AP (both) and subsequently evaluated on the multi-view data. The bold values indicate the best performance
of the corresponding class over all models. Gray boxes indicate significance compared to UNet (baseline) with a 𝑝 < 0.05 with effect sizes small, moderate (∗) and strong (∗∗).

Train Model Dice IoU ASD (mm) RHD (mm)

set Anterior Posterior Anterior Posterior Anterior Posterior Anterior Posterior

A UNet 0.84 (0.09) 0.35 (0.31) 0.74 (0.11) 0.26 (0.25) 2.88 (2.92) 26.00 (23.94) 10.77 (11.32) 57.49 (36.39)
A TUNet 0.84 (0.08) 0.53 (0.23)∗∗ 0.73 (0.10) 0.40 (0.21)∗∗ 3.12 (2.92) 13.25 (9.38)∗ 12.23 (13.38) 40.01 (21.72)∗

A MTUNet 𝟎.𝟖𝟔 (𝟎.𝟎𝟕)∗ 0.34 (0.30) 𝟎.𝟕𝟓 (𝟎.𝟎𝟗)∗ 0.24 (0.24) 𝟐.𝟒𝟏 (𝟏.𝟑𝟖) 26.96 (23.81) 𝟗.𝟐𝟖 (𝟕.𝟎𝟐) 63.00 (38.37)
A TMTUNet 0.85 (0.08) 𝟎.𝟓𝟕 (𝟎.𝟐𝟑)∗∗ 0.74 (0.10) 𝟎.𝟒𝟑 (𝟎.𝟐𝟑)∗∗ 2.82 (2.09) 𝟏𝟏.𝟎𝟏 (𝟖.𝟏𝟓)∗∗ 11.78 (11.41) 𝟑𝟕.𝟎𝟖 (𝟐𝟐.𝟖𝟏)∗∗

P UNet 0.63 (0.30) 0.81 (0.06) 0.52 (0.27) 0.68 (0.09) 14.94 (21.63) 4.52 (2.92) 35.75 (33.49) 18.89 (16.62)
P TUNet 0.68 (0.26) 0.81 (0.06) 0.56 (0.24) 0.69 (0.09) 11.81 (19.91) 4.23 (2.54) 29.22 (31.67) 17.03 (14.16)
P MTUNet 0.64 (0.30) 0.81 (0.06) 0.53 (0.26) 0.69 (0.08) 15.89 (24.20) 4.44 (3.18) 36.63 (35.87) 19.05 (18.40)
P TMTUNet 𝟎.𝟕𝟕 (𝟎.𝟏𝟐)∗∗ 𝟎.𝟖𝟐 (𝟎.𝟎𝟔)∗ 𝟎.𝟔𝟒 (𝟎.𝟏𝟒)∗∗ 𝟎.𝟕𝟎 (𝟎.𝟎𝟖)∗ 𝟒.𝟗𝟓 (𝟒.𝟐𝟓)∗∗ 𝟑.𝟖𝟓 (𝟐.𝟑𝟓)∗ 𝟏𝟗.𝟎𝟒 (𝟏𝟕.𝟗𝟑)∗∗ 𝟏𝟓.𝟗𝟖 (𝟏𝟒.𝟕𝟐)

AP UNet 0.86 (0.05) 0.80 (0.06) 0.75 (0.07) 0.67 (0.07) 2.45 (1.25) 4.76 (2.75) 𝟗.𝟑𝟕 (𝟕.𝟎𝟐) 20.55 (16.76)
AP TUNet 0.85 (0.05) 0.81 (0.08) 0.75 (0.08) 0.68 (0.10) 2.49 (1.30) 4.50 (3.20) 9.79 (7.16) 18.32 (16.09)
AP MTUNet 𝟎.𝟖𝟔 (𝟎.𝟎𝟒)∗ 𝟎.𝟖𝟐 (𝟎.𝟎𝟕)∗ 𝟎.𝟕𝟔 (𝟎.𝟎𝟕)∗ 𝟎.𝟕𝟎 (𝟎.𝟏𝟎)∗ 𝟐.𝟑𝟓 (𝟏.𝟒𝟐)∗ 𝟒.𝟐𝟐 (𝟐.𝟓𝟕)∗ 9.48 (9.46) 𝟏𝟕.𝟕𝟎 (𝟏𝟓.𝟎𝟏)
AP TMTUNet 0.86 (0.05) 0.80 (0.07) 0.75 (0.08) 0.68 (0.09) 2.64 (1.80) 4.74 (3.33) 10.97 (11.21) 19.66 (17.35)
Fig. 5. Three examples of multi-view images, each showing three individual images (top) and fused images with manual (in red) and automatic segmentation (model MTUNet in
green) (middle) and combined attention maps (bottom). (All images are 3D volumes, central 2D slices are shown.)
4.2. Variability and uncertainty

We investigated the inter- and intra-observer variability for the
manual annotation of placental tissue in 3D US. In each fold, we
use a subset of the test set, for which three manual annotations are
available, as described in Section 3.2. Fig. 6(a) shows the agreement of
the segmentations as measured by Dice. We compared the agreement
between manual raters S1.1 and S1.2 (intra-variability) and S1.1 and
S3 (inter-rater variability), and Fig. 7 shows examples with best and
worst intra- and inter-observer agreement. In addition, we assess the
agreement between manual and automatic segmentations (UNet and
MTUNet), which are summarized under the term intra with reference
S1.1 and inter with reference S3 in Fig. 6.

Comparing the agreement between manual annotations (plain white
bars in Fig. 6), we observe that the intra-observer agreement is higher
than the inter-observer agreement for all measures. The difference is
statistically significant for anterior placentas with a moderate effect size
and for posterior placentas with a strong effect size, denoted by one and
two asterisks, respectively, above the bar for inter-rater agreement.

This suggests that the manual annotation of the placenta in US
is a subjective task. In all cases and for all measures, the agreement
in segmenting posterior placentas is smaller than in anterior placen-
tas, emphasizing that the segmentation of posterior placentas is more
ambiguous, possibly due to image artifacts. This is in line with the ob-
servation of the previous experiment, that the automatic segmentation
models perform worse for posterior than for anterior placentas.
9

The intra-observer comparison of anterior placentas achieved the
best agreement with a Dice of 0.89, an IoU of 0.80, an ASD of 1.70 and
a RHD of 12.30. These values can be therefore interpreted as an upper
bound and the range between inter- and intra-observer agreement as
the desired performance of any automatic segmentation model. For
anterior placentas, both the baseline model UNet and our best perform-
ing model MTUNet, as selected in the previous experiment, lie within
intra- and inter-rater variability with no significant difference (𝑝 > 0.05)
between the segmentation agreements. For posterior placentas, there
is a statistically significant difference (with a moderate effect size) for
the baseline model UNet, but not for MTUNet. The multi-task approach
increases the performance and reduces the variance for all measures.
The same trend is observed for IoU, ASD and RHD (see Fig. B.13 in the
Appendix).

The GED scores for comparing manual and automatic segmentation
distributions are shown in Fig. 6(b). For each training set (set A, set P,
and set AP) we compare the baseline UNet to the best performing model
from the first experiment (TMTUNet for not representative training
dataset A and set P, and MTUNet for set AP).

The uncertainty, as measured by GED (based on Dice as a distance
measure) of the InD data, both anterior on set A and posterior on set
P is small and comparable to the uncertainty obtained with the rep-
resentative training set AP. There is no statistical significant difference
between UNet and TMTUNet on InD data. On OoD data, the uncertainty
and variability increases and is higher for posterior than for anterior
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Fig. 6. (a) Variability among manual and automatic segmentations. The agreement of possible segmentation is measures using the Dice score. Manual: S1.1 vs. S1.2 (intra) and
S1.1 vs. S3 (inter); UNet/MTUNet : S1.1 vs. UNet/MTUNet (intra) and S3 vs. UNet/MTUNet (inter). (b): The difference in distributions between manual annotations from three
raters and automatic segmentations from models UNet, MTUNet, and TMTUNet with MC dropout is measured by the Generalized Energy Distance using Dice as distance measure.
This is compared for models trained on sets A, P and AP and tested on both anterior and posterior placentas. Statistical significance between UNet and MTUNet/TMTUNet is
indicated by ∗ (moderate effect size) and ∗∗ (strong effect size).
Fig. 7. Manual segmentations S1.1 (red), S1.2 (blue) and S3 (green). All three segmentations agree well in (a) and (b) with an Intersection over Union (IoU) score of 0.82 and
0.73, respectively. Due to strong image artifacts (shadows) and/or low contrast in (c) and (d), the agreement is poorer with an IoU of 0.51 and 0.43. (All images are 3D volumes,
central 2D slices are shown.)
placentas. TMTUNet, however, obtained significant lower GED scores
than UNet with a strong effect size both on anterior and posterior
placentas. On set AP, MTUNet shows significantly lower GED scores
for posterior placentas compare to UNet.

The segmentation performance on this data subset is higher for all
measures, classes and models comparing to the performance on the full
dataset as reported in Table 2. This suggests that the subset contains
images, showing both anterior and posterior placentas, with on average
a higher image quality and less artifacts than the full dataset. Thus, we
surmise that our observations on variability and uncertainty would be
confirmed and even stronger effects could be detected.

4.3. Downstream task: placental volume analysis

Placenta segmentations can be used to extract useful clinical in-
formation, such as placental volume. In a last set of experiments, we
analyze the volume computed from automatic segmentations obtained
with MTUNet when trained on the representative set AP. Fig. 8(a),(b)
show Bland–Altman plots placental volume estimates obtained with
MTUNet and manual segmentations S1.1 ((a) is color-coded for ante-
rior/posterior and (b) for two-/three-view images). Outliers are mostly
posterior placentas, where the image quality is reduced by artifacts.
We observe that the majority of two-probe anterior placental volume
estimates are relatively small. Anterior placentas are located closer to
the probe (where the FoV is very narrow) and tissue is more likely
missed even in two-view images.

We compare intra-rater variability with MTUNet in Fig. 8(c)–(e).
The intra-rater variability is measured on a subset of the multi-view
data, where two manual and one pseudo-manual annotations of rater
S1 are available (S1.1, S1.2 and S1.3). For the definition of the pseudo-
manual annotation see Section 3.2. We observe from the Bland–Altman
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plots, that the differences between MTUNet and S1.1 are comparable
to the intra-rater differences (S1.1 vs. S1.2 and S1.1 vs. S1.3).

In addition, we compared the placenta volumes extracted from
multi-view images (only acquired with the 3-probe holder) to values
of placental volume reported in León et al. (2018) measured in MRI
images. The authors found that the equation 𝑓 (𝑥) = −0.02𝑥3 + 1.6𝑥2 −
13.3𝑥 + 8.3 best describes the volume increase throughout gestation in
their cohort. We plot this curve with standard deviations and min/max
values reported in León et al. (2018) together with the volumes of our
cohort (three-probe holder) in Fig. 9 from (a) the manual annotations
S1.1, and (b) the automatic segmentations of MTUNet. We observe a
good agreement with the reference volumes S1.1 and the automatic
volumes. Overall, there is a good agreement between the volumes
from our cohort and the values reported in the literature. However,
we observe some outliers (arrows in Fig. 9) of anterior placentas. In
these cases, the placenta was close to the probe, where the FoV is very
narrow, and the multi-view image does not contain the whole placenta.

5. Discussion

We propose a multi-task approach combining the classification of
placental position and semantic placenta segmentation in a single
network. Through the classification, the model can learn from larger
and more diverse datasets and improve segmentation accuracy, which
are comparable to human-level performance. Our results suggest that
images of anterior and posterior placentas represent two different
distributions in the data. In other words they are OoD data to each
other in relation to a placenta segmentation task.

We have shown that multi-task models not only improve signifi-
cantly the segmentation performance on OoD data, but also the per-
formance when trained on representative data (to a lesser extent). The
baseline method, a UNet trained on a large dataset including data
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Fig. 8. Bland–Altman plots comparing the placental volume (in mL) extracted from automatic and manual multi-view segmentations. (a)/(b): automatic (MTUNet trained on AP)
and manual (S1.1) on the multi-view data color-coded for separating (a) anterior and posterior placentas and (b) two- and three-view images. (c)–(e): Comparison to intra-rater
differences on a subset of the multi-view data. (c): automatic (MTUNet trained on AP) and manual (S1.1); (d) intra-rater (S1.1 and S1.2); (e) intra-rater (S1.1 and S1.3). S1.3 is
a pseudo-manual segmentation, which is obtained by fusing the manual segmentations from S1.1 for single views.
Fig. 9. Comparison of placental volumes (in mL) in multi-view (three-probe holder) images with values reported by León et al. (2018). The curve 𝑓 (𝑥) = −0.02𝑥3+1.6𝑥2−13.3𝑥+8.3
(blue line) was found to describe best the volume increase throughout gestation in the respective cohort. The shaded area in dark blue indicates the standard deviation and the
shaded area in light blue the minimum and maximum placental volumes as reported in Table 2 in León et al. (2018). (a) Manual (S1.1) and (b) automatic placenta segmentations
(MTUNet trained on set AP) show a good agreement (anterior marked as red circles and posterior as green triangles). There is also a good agreement between the volumes of the
cohorts used in León et al. (2018) and in this study. The gray arrows indicate some outliers of anterior placentas, where some tissue is missed by the limited field-of-view close
to the ultrasound probe.
from both distributions, can learn reliable segmentations. However,
the manual voxel-wise annotation is a difficult, time-consuming and
subjective task and therefore availability of such data is not always
possible. In unfavorable training set conditions, our multi-task ap-
proach achieved up to 70% improvement over the baseline. Overall, the
benefits for posterior placenta segmentations were higher, as these are
more affected by imaging artifacts. To this end, our multi-task model
shares the entire encoder weights for both tasks. This might not be the
ideal network structure, as suggested in Guo et al. (2020), where the
authors proposed an automated method to learn the best sharing and
branching configuration. This would be an interesting avenue for future
work.
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Our best performing model MTUNet achieves a Dice score of 0.87±
0.10 for anterior and 0.80±0.13 for posterior placentas. A direct compar-
ison to performances of other placenta segmentation models reported
in the literature is difficult since they are trained and evaluated on
different datasets. Table 4 contains a summary of previous approaches
with specifications about the training and testing data, the GA of the
fetus and the average Dice score achieved for placenta segmentation.
The Dice scores vary from 0.64 to 0.92, and the number of data used
for training and evaluation from 14 to over 1000. The majority of
other works focus on the placenta at the first trimester, and all more
recent works (in the last 5 years) employ CNNs. Our segmentation
results are comparable to most of these works. Note that only the work
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Table 4
Previous work on placenta segmentation in ultrasound with specifications about training and testing data, average performance measured by the Dice score and subjects included
in the study. (CNN: convolutional neural network; RNN: recurrent neural network; cGAN: conditional generative adversarial network; CV: average performance obtained in a
cross-validation strategy.)

Reference Method Dice Training + Validation Testing GA Subjects

Stevenson et al. (2015) Random walker, 0.87 – 88 First trimester 3D US, singleton
semi-automatic

Oguz et al. (2016) Multi-atlas label 0.83 ± 0.05 – 14 First trimester 3D US, only anterior
fusion

Yang et al. (2019) Multi-object, 0.64 50 + 10 44 First trimester 3D US, singleton
3D CNN + RNN (10–14 weeks) and twin

Looney et al. (2018) 3D CNN 0.81 ± 0.15 1097 + 100 1196 First trimester 3D US, singleton
(11–14 weeks)

Oguz et al. (2018) 2D CNN + 3D 0.88 ± 0.05 384 slices 73 First trimester 3D US, singleton,
Multi-atlas label (anterior) 28 anterior
fusion 0.85 ± 0.05 19 posterior

(posterior)

Oguz et al. (2020) Semi-automatic, 0.82 ± 0.06 – 73 First trimester 3D US, singleton,
Multi-atlas label (11–14 weeks) 28 anterior
fusion 19 posterior

Schwartz et al. (2022) 2D and 3D CNNs 0.88 ± 0.05 99 25 First trimester 3D US, singleton
(11–14 weeks)

Looney et al. (2021) Single- and Multi- 0.85 ± 0.05 1893 + 150 50 First trimester 3D US, singleton
object, 3D CNN (11–14 weeks)

Hu et al. (2019) 2D CNN + 0.92 ± 0.04 954 + 205 205 First, second and 2D US, singleton
shadow detection trimester and twin
layer (8–34 weeks)

Torrents-Barrena et al. (2019a) 3D cGAN 0.75 ± 0.12 61 61 (CV) Second and third 3D US, singleton
trimester and twin
(15–38 weeks)

Ours 3D Multi-task 0.87 ± 0.10 1188 (292 with segm.) 292 (CV) Second and third 3D US, singleton
CNN (anterior) trimester

0.80 ± 0.13 (19–33 weeks)
(posterior)
Fig. A.10. Design of a custom-made multi-probe holder for fetal imaging. The probes are fixed in an angle of 30◦ to each other to ensure a large overlap of the field-of-view.
The system is flexible in the sense that it allows the use of two (left) or three (right) probes simultaneously.
12
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Fig. B.11. Examples of automatic placenta segmentations obtained by models UNet, TUNet, MTUNet and TMTUNet for in-distribution (InD) and out-of-distribution (OoD) test data.
The orange arrows indicate areas with segmentation errors and differences between the models. (All images are 3D volumes, central 2D slices are shown.)
Fig. B.12. Four examples of multi-view images, each showing three individual images (left) and fused images with manual (in red) and automatic segmentation (model MTUNet
in green) (top right) and combined attention maps (bottom right). (All images are 3D volumes, central 2D slices are shown.)
Table A.5
Data splits for five folds in training, validation and testing sets for the segmentation dataset  and the classification dataset  . For  , the number of images are given for
anterior (ant.) and posterior (post.) placentas. For  additionally the number of images with no placental tissue visible (none) are reported.

Segmentation data  Classification data 

Training Validation Testing Training Validation Testing

ant. post. ant. post. ant. post. ant. post. none ant. post. none ant. post. none

Fold 1 90 90 34 24 30 22 286 290 241 101 64 49 89 55 29
Fold 2 90 90 33 19 31 27 276 295 267 111 53 34 89 61 18
Fold 3 90 90 34 21 30 25 285 298 240 102 51 48 89 60 31
Fold 4 90 90 33 19 31 27 288 284 261 99 52 11 89 73 47
Fold 5 90 90 32 23 32 23 287 296 267 98 55 19 91 58 33
13
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Fig. B.13. (a)–(c) Variability among manual and automatic segmentations. The agreement of possible segmentation is measures using (a) the Intersection-over-Union (IoU), (b) the
average surface distance (ASD) and (c) the robust Hausdorff distance (RHD). Manual: S1.1 vs. S1.2 (intra) and S1.1 vs. S3 (inter); UNet/MTUNet : S1.1 vs. UNet/MTUNet (intra)
and S3 vs. UNet/MTUNet (inter). (b): The difference in distributions between manual annotations from three raters and automatic segmentations from models UNet, MTUNet, and
TMTUNet with MC dropout is measured by the Generalized Energy Distance using IoU as distance measure. This is compared for models trained on sets A, P and AP and tested
on both anterior and posterior placentas. Statistical significance between UNet and MTUNet/TMTUNet is indicated by ∗ (moderate effect size) and ∗∗ (strong effect size).
(Oguz et al., 2018) separates between different positions of the placenta
in the evaluation. The works (Hu et al., 2019; Torrents-Barrena et al.,
2019a) consider both early and late gestation. The overall best perfor-
mance is achieved in Hu et al. (2019) with a Dice of 0.92. However,
they used 2D US (in contrast to all other methods) which has higher
image quality than 3D US. In 3D US, the contrast between placenta and
surrounding tissue is low, especially at early but also at late gestation.
Shadow artifacts become more apparent at late gestation because of
the larger size of the fetus, lying in between the US probe and the
placental tissue (posterior). Also, at later gestation, only part of the
placental tissue might be visible in the image (especially for our multi-
view images, where the middle probe is centered on the placenta and
the other two probes only ‘‘see’’ a small part of the placenta, which is
visualized with poor contrast (as seen in Figs. 5 and B.12).

Due to poor image quality and shadow artifacts, reproducible man-
ual segmentation is challenging. We studied the intra- and inter-rater
variability with two clinical experts. Our results show a higher inter-
than intra-rater variability, more pronounced in posterior than in an-
terior placentas. Our proposed models lie within or very close to the
manual rater agreement. When comparing distributions of segmenta-
tions, the multi-task approach yields a reduced uncertainty for OoD
data than the baseline model. However, the comparison between only
two different raters is rather limited and its generalizability should be
investigated in the future. This could also be expanded to the fetal
anatomy, where accurate segmentations are important.

We do not perform explicit uncertainty modeling or incorporate the
knowledge of noisy labels into the model training, as done in Tanno
et al. (2019), Zhang et al. (2020), Wang et al. (2019) and Kohl et al.
(2018). To this end, we employ an approximation to Bayesian inference
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by using MC dropout at training and test time and interpret the vari-
ability of all possible segmentations for an image as the segmentation
uncertainty.

Multi-task models perform statistically significantly better than
UNet, however, it remains unclear if the improvement, which is rather
small for the full dataset, is clinically relevant. The UNet is a very strong
baseline under ideal training set conditions. However, ideal training set
conditions are hard to achieve, due to the variability of the placenta
appearance in US and a multi-task approach is favored when only
limited annotated data is available.

In addition to a novel segmentation method, we describe a multi-
view US acquisition pipeline consisting of three stages: multi-probe
image acquisition, image fusion and image segmentation. We designed
and printed new accessories for the handling of two or three probes us-
ing a standard US system. The obtained images show the anatomy from
different view-directions and cover an enlarged FoV, allowing the com-
bined imaging of larger structures in US. Using a simple but effective
voxel-based weighted fusion strategy, image artifacts are reduced.

Extracting placental volume is of clinical interest, as it is related to
fetal and placental abnormalities (Schwartz et al., 2022; Quant et al.,
2016; Higgins et al., 2016). We conducted an analysis of placental
volume extracted from manual and automatic segmentation from the
multi-view images, and we showed a good agreement of these volumes
with reference values extracted from MRI images (León et al., 2018).
To this end, we have not used the segmentations/volumes to identify
placenta pathologies. While the automatic detection of placental abnor-
malities would be the overall goal, our study only proposes a first step
towards it, which is automatic placenta extraction. Our cohort consists
of mainly healthy volunteers without diagnosed placental abnormalities
(but blinded to fetal pathologies). A routine clinical workflow typically
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does not include a detailed assessment of the placenta. Our study
addresses an unmet clinical need and opens up the opportunity to better
study placental pathologies throughout gestation. The extension of our
work to abnormal cases would be a next logical step.

We only included second and third trimester singleton pregnancies
in our study. A next step would be to extend the models and analysis
to the whole gestation by including first trimester placentas. This will
in addition enable a more concise comparison to previous placenta
segmentation methods. Also, it would be important to test our models
on twin pregnancies. Twin pregnancies can be monochorionic (shared
placenta) or dichorionic (two individual placentas). Individual placen-
tas might pose challenges for models trained only on first trimester
singleton pregnancies (when the whole placenta fits in the image). The
model might not recognize a second placenta in the image. In our study,
however, we use second and third trimester pregnancies. The placenta
is rarely completely contained in one image and our models are trained
with a variety of different views. Some contain mostly placenta, some
only a small part of the placenta. Therefore, we assume that our models
would also perform well for twin pregnancies, but this is speculation
and has to be confirmed by future studies.

A limitation of this study is that we consider only two separate
classes: anterior and posterior placentas (next to the class none). The
placenta can be located in any position between the anterior or pos-
terior of the uterine wall and it would be interesting to incorporate a
finer classification of placentas in our models.

6. Conclusion

In this work we focused on US placenta imaging and address chal-
lenges arising due to the high variability of placenta appearance, the
poor image quality in US resulting in noisy reference annotations, and
the limited FoV of US prohibiting whole placenta assessment at late
gestation. We propose a multi-task approach combining the classifi-
cation of placental position and semantic placenta segmentation in a
single network. Through the classification, the model can learn from
larger and more diverse datasets and improve segmentation accuracy,
which are comparable to human-level performance. Our results suggest
that images of anterior and posterior placentas represent two different
distributions in the data. In other words they are OoD data to each
other in relation to a placenta segmentation task.

We believe that this work presents important contributions for
reliable imaging and image analysis in fetal screening using US. Our
proposed models show a higher robustness against poor image quality
and limited data availability for training. With accurate placenta seg-
mentations together with a pipeline to image the whole placenta at all
gestations, we enable clinicians towards a more comprehensive routine
examination by considering placental health.
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Appendix A. Materials and experiments

A.1. Probe holder design

Fig. A.10 shows the design of the two- and three-probe holder
with measurements in mm. The initial design was developed on a
fetal phantom in the second trimester (Kyoto Kagu Space-fan CT),
and subsequently optimized with regard to comfort and usability in a
clinical setting by scanning pregnant volunteers. The result is a flexible
system which allows the use of two, three, or even four probes (not used
in this study). We fixed the angulation between the probes so that the
FoV can be extended with a known spatial alignment of the images.
We chose an angle of 30◦ which empirically showed to angulate the
probes sufficiently to maintain contact between the probe’s surface and
maternal skin. However, other configurations are possible.

A.2. Data

We perform a 5-fold cross-validation and each fold divides the
patients in a test, training and validation set. In each fold, approx-
imately 60% of the data  is used for training, and 20% for both
validation and testing. Different folds had different amount of images
for validation and testing (up to 10%) because of the heterogeneity
of the data: each patient had a different number of images, with and
without manual segmentations, and with and without placental tissue.
However, we made sure that the images from individual patients were
not distributed across training/validation/testing sets, the number of
training images with segmentations is always the same for posterior and
anterior placentas, and that each patient with manual segmentations is
exactly once part of a test set.

Details about the data distribution in the folds can be found in
Table A.5.

Appendix B. Results

B.1. Placenta segmentation - Single images

Fig. B.11 visualizes examples comparing the segmentation when the
images was InD or OoD data. Multi-task models, especially TMTUNet
(row 4) show a more robust performance with respect to OoD data.
Only TMTUNet is able to localize correctly the placenta in these OoD
examples. Also, MTUNet and TMTUNet are more robust to image
artifacts, such as shadows, which is shown in InD, last example.

B.2. Placenta segmentation - Multi-view images

Additional exemplary multi-view images are shown in Fig. B.12
with corresponding placenta segmentations with MTUNet and com-
bined attention maps. The placenta is better visualized in the multi-
view images with reduced image artifacts and an extended FoV. The
multi-task model MTUNet provides an accurate segmentation and the
combined attention maps localize well the placenta.

B.3. Variability and uncertainty

We investigated the inter- and intra-observer variability for the
manual annotation of placental tissue in 3D US. In each fold, we
use a subset of the test set, for which three manual annotations are
available. Fig. B.13(a)–(c) show the agreement of the segmentations
as measured by IoU, ASD and RHD, respectively, and Fig. B.13(d)
the difference in manual and automatic distributions (as a measure of
uncertainty) measured by the Generalized Energy Distance using the
Intersection-over-Union (IoU).
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