
1Mempel TR, Krappmann D. J Immunother Cancer 2022;10:e005442. doi:10.1136/jitc-2022-005442

Open access�

Combining precision oncology and 
immunotherapy by targeting the 
MALT1 protease

Thorsten R Mempel  ‍ ‍ ,1,2 Daniel Krappmann  ‍ ‍ 3

To cite: Mempel TR, 
Krappmann D.  Combining 
precision oncology and 
immunotherapy by targeting 
the MALT1 protease. Journal 
for ImmunoTherapy of Cancer 
2022;10:e005442. doi:10.1136/
jitc-2022-005442

Accepted 17 September 2022

1Center for Immunology 
and Inflammatory Diseases, 
Massachusetts General Hospital, 
Boston, Massachusetts, USA
2Harvard Medical School, 
Boston, Massachusetts, USA
3Research Unit Cellular Signal 
Integration, Molecular Targets 
and Therapeutics Center, 
Helmholtz Center Munich 
- German Research Center 
for Environmental Health, 
Neuherberg, Germany

Correspondence to
Professor Thorsten R Mempel;  
​tmempel@​mgh.​harvard.​edu

Professor Daniel Krappmann;  
​daniel.​krappmann@​helmholtz-​
muenchen.​de

Review

© Author(s) (or their 
employer(s)) 2022. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published by 
BMJ.

ABSTRACT
An innovative strategy for cancer therapy is to combine the 
inhibition of cancer cell-intrinsic oncogenic signaling with 
cancer cell-extrinsic immunological activation of the tumor 
microenvironment (TME). In general, such approaches 
will focus on two or more distinct molecular targets in 
the malignant cells and in cells of the surrounding TME. 
In contrast, the protease Mucosa-associated lymphoid 
tissue protein 1 (MALT1) represents a candidate to 
enable such a dual approach by engaging only a single 
target. Originally identified and now in clinical trials as 
a lymphoma drug target based on its role in the survival 
and proliferation of malignant lymphomas addicted to 
chronic B cell receptor signaling, MALT1 proteolytic activity 
has recently gained additional attention through reports 
describing its tumor-promoting roles in several types of 
non-hematological solid cancer, such as breast cancer 
and glioblastoma. Besides cancer cells, regulatory T (Treg) 
cells in the TME are particularly dependent on MALT1 to 
sustain their immune-suppressive functions, and MALT1 
inhibition can selectively reprogram tumor-infiltrating Treg 
cells into Foxp3-expressing proinflammatory antitumor 
effector cells. Thereby, MALT1 inhibition induces local 
inflammation in the TME and synergizes with anti-PD-1 
checkpoint blockade to induce antitumor immunity and 
facilitate tumor control or rejection. This new concept of 
boosting tumor immunotherapy in solid cancer by MALT1 
precision targeting in the TME has now entered clinical 
evaluation. The dual effects of MALT1 inhibitors on cancer 
cells and immune cells therefore offer a unique opportunity 
for combining precision oncology and immunotherapy to 
simultaneously impair cancer cell growth and neutralize 
immunosuppression in the TME. Further, MALT1 targeting 
may provide a proof of concept that modulation of Treg 
cell function in the TME represents a feasible strategy to 
augment the efficacy of cancer immunotherapy. Here, we 
review the role of MALT1 protease in physiological and 
oncogenic signaling, summarize the landscape of tumor 
indications for which MALT1 is emerging as a therapeutic 
target, and consider strategies to increase the chances 
for safe and successful use of MALT1 inhibitors in cancer 
therapy.

INTRODUCTION
Mucosa-associated lymphoid tissue protein 
1 (MALT1), also known as paracaspase 1 
(PCASP1), is a human immune protease that 
is attracting attention as an emerging drug 

target for cancer therapy. Interest in targeting 
MALT1 originated from its cell-intrinsic role 
as a driver of cancer cell survival and prolif-
eration especially in hematological malignan-
cies, such as diffuse large B cell lymphoma 
(DLBCL).1–4 Beyond being an oncogenic 
driver in cancer cells, MALT1 executes key 
functions in the immune system and recent 
research uncovered that its protease func-
tion in Treg cells is critical for maintaining 
an immunosuppressive tumor microenviron-
ment (TME) in solid cancer.5 6 Based on these 
cancer cell-intrinsic and cell-extrinsic func-
tions, clinical trials are now testing the safety 
and efficacy of MALT1 inhibitors for cancer 
therapy. While several trials explore the 
direct targeting of MALT1 in B cell receptor 
(BCR)-addicted non-Hodgkin’s lymphoma 
(NHL) (NCT03900598, NCT04876092 and 
NCT04657224), another trial investigates the 
use of MALT1 inhibitors to reprogram tumor-
infiltrating Treg cells into proinflammatory 
effector cells to boost antitumor immune 
responses in non-hematological cancers 
(NCT04859777).

MALT1 PARACASPASE: A UNIQUE ROLE IN BOTH 
IMMUNE ACTIVATION AND TOLERANCE
MALT1 is ubiquitously expressed in most 
human tissues and cells, but genetic defi-
ciency or loss-of-function mutations in mice 
and humans revealed its primary role in 
controlling the activity of lymphocytes and 
thus adaptive immunity.7 8 In T and B cells, 
assembly of the higher-order CBM (CARD11-
BCL10-MALT1) signalosome, consisting of 
the core subunits CARD11 (caspase recruit-
ment domain 11, also termed CARMA1), 
BCL10 (B cell lymphoma/leukemia protein 
10) and MALT1, bridges T and BCR (TCR/
BCR) signaling to the nuclear factor-kappaB 
(NF-κB) and Jun N-terminal kinase (JNK) 
pathways, which trigger lymphocyte activa-
tion, differentiation and effector functions.9 
MALT1 localizes to the outer surface of the 
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CBM signalosome and thereby provides an accessible 
platform that serves a dual function10 (figure  1): First, 
by recruiting TNF receptor associated factor 6 (TRAF6), 
MALT1 exerts non-catalytic molecular scaffolding func-
tion to drive activation of downstream signaling pathways, 
including NF-κB and JNK.11 12 Second, recruitment to the 
CBM complex activates the MALT1 protease so that its 
paracaspase domain catalyzes the cleavage of a range of 
substrate proteins.13 The latter is not critical for initial 
NF-κB or JNK signaling, but modulates NK-κB activity 
and other immune cell functions by cleaving regulators 
involved in cell signaling (eg, BCL10, A20, CYLD, HOIL-
1), transcriptional activation (RelB), and RNA stability/
metabolism (Regnase-1, Roquin-1/2 and N4BP1).9 13 14

Analyses of MALT1-deficient mice revealed critical func-
tions in both immune activation and immune tolerance, 
which has been attributed to its roles in conventional 
effector as well as regulatory T cells, respectively.15–17 
Absence of MALT1 does not cause major disruptions of 
early lymphocyte development, but a complete block in 
thymic Treg (tTreg), yet only a partial block in peripheral 
Treg (pTreg) cell development, in addition to a severe 
reduction in innate B cells. Antigen-induced NF-κB 
signaling is nearly abolished in T cells and impaired in 
B cells, which explains the severe defect in mounting 
an appropriate response to T cell-dependent or T cell-
independent antigens.16–18 Accordingly, human germ-
line mutations associated with defective MALT1 lead to 
combined immunodeficiencies that predispose patients 
to bacterial, viral and fungal infections.7 The impair-
ment of conventional lymphocyte effector function likely 

explains the absence of the early-onset inflammatory 
syndromes that would otherwise be expected with absent 
tTreg cells and reduced pTreg cell numbers.19

Mice expressing a catalytically inactive mutant MALT1 
protease also have a block in tTreg cell and innate B 
cell development. In contrast to MALT1-deficient mice, 
however, they develop a lymphoproliferative, IFNγ-driven 
autoimmune inflammatory syndrome, although more 
variably and with delayed onset compared with mice 
devoid of Treg cells due to a lack of the Foxp3 transcrip-
tion factor.20–24 This indicates that in contrast to thymic 
Treg cell development, effector lymphocyte function only 
partially depends on MALT1 protease activity.

Conditional deletion of MALT1, CARD11, or BCL10 in 
mature Treg cells following completion of their develop-
ment does not cause a significant decline in their overall 
frequency in blood and peripheral lymphoid tissues, 
indicating that these proteins do not control Treg cell 
survival.5 6 25 26 However, deletion of each CBM compo-
nent or selective inactivation of MALT1 paracaspase in 
mature Treg cells revealed the cell-intrinsic role of the 
CBM complex in maintaining peripheral immune toler-
ance by enabling the full differentiation and maintenance 
of activated effector Treg (eTreg) cells. Thereby, MALT1, 
CARD11, and BCL10 are required for the suppressive 
activity of Treg cells, explaining why their Treg cell-
specific deletion leads to a Scurfy-like, fatal autoimmune 
inflammatory syndrome.5 6 Importantly, selective genetic 
inactivation of either MALT1 protease or scaffolding 
function demonstrated that protease activity, but not 
TRAF6 recruitment, is required for Treg cell maturation 
and their sustained suppressive functions in vivo.5 11 20 22–24 
Thus, the catalytic and non-catalytic functions of MALT1 
balance the activation of conventional and regulatory 
effector T cells, which is critical for maintaining periph-
eral tolerance and allows productive immune activa-
tion upon challenge. While the necessity of the MALT1 
protease for maintaining the suppressive function of 
Treg cells represents an opportunity to enhance anti-
tumor immunity by pharmacological MALT1 targeting, 
autoimmune-related side effects need to be considered 
in the clinical use of highly effective, long-term MALT1 
inhibition, as will be discussed below.

THERAPEUTIC TARGETING OF CANCER CELL-INTRINSIC MALT1
MALT1 function and targeting in hematological malignancies
NHL represents a heterogeneous group of lymphoid 
neoplasms originating from mature or precursor B 
or T cells. B cell lymphomas are often characterized 
by oncogenic mutations affecting key components 
of BCR and downstream NF-κB signaling pathways.27 
Even before it was demonstrated that MALT1 is a func-
tional protease,28 29 the oncogenic API2-MALT1 fusion 
protein in MALT lymphoma and the critical prosurvival 
function of MALT1 in DLBCL raised strong interest in 
MALT1 as a precision target for the treatment of aggres-
sive lymphomas.30 31 Importantly, MALT1 protease is 

Figure 1  CBM complex signaling to NF-κB and the role of 
MALT1 protease function following TCR or BCR stimulation 
in T or B cells, respectively. APC, antigen-presenting cell; 
BCR, B cell receptor; MALT1, Mucosa-associated lymphoid 
tissue protein 1; NF-κB, nuclear factor-kappaB; TCR, T cell 
receptor; CBM, CARD11-BCL10-MALT1 complex.
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not active in all lymphoma subtypes, because it relies on 
chronic BCR signaling or oncogenic activation of BCR 
signaling mediators. Here, we will summarize lymphoma 
entities for which genetic and pharmacological evidence 
point to a functional role of MALT1 and thus a potential 
benefit of therapeutic targeting.

MALT lymphoma is a usually slow growing, extran-
odal marginal zone B cell lymphoma that manifests 
most frequently in the mucosa of the stomach. While the 
early stages of MALT lymphoma are in general sensitive 
to eradication of Helicobacter pylori, aggressive late stage 
MALT lymphomas, in which the translocation break-
point t(11;18)(q21;q21) results in the generation of the 
oncogenic fusion protein API2-MALT1,31 32 grow inde-
pendently of bacterial infection and are resistant to anti-
microbial treatments.33 The API2-MALT1 fusion activates 
NF-κB signaling and especially the non-canonical NF-κB 
pathway relies on MALT1 catalytic activity.34 Importantly, 
in the context of the API2-MALT1 fusion, substrate speci-
ficity of MALT1 is expanded to include the non-canonical 
NF-κB regulator NIK (NF-κB inducing kinase) and 
the tumor suppressor LIMA1 (LIM domain and actin-
binding protein 1), demonstrating that oncogenic muta-
tions can influence substrate selection.34 35 Cleavage of 
NIK enhances non-canonical NF-κB signaling and LIMA1 
inactivation promotes NF-κB-independent tumor growth, 
suggesting that aberrant MALT1 protease activity may be 
a target in the relatively small subset of MALT lymphoma 
patients (<10%) with late stage, antibiotic-resistant 
MALT lymphomas expressing by the API2-MALT1 fusion 
oncogene.

The concept of cancer cell-intrinsic therapeutic MALT1 
targeting originated from research on the role of chronic 
BCR signaling for survival and growth of DLBCL, the 

most prevalent subtype of NHL.36 Molecularly, DLBCL 
represents a heterogeneous disease, and cell-of-origin 
analyses based on gene expression profiling defined the 
activated B cell (ABC)-type and the germinal center B 
cell (GCB)-type as the two main entities that account for 
approximately 85% of all DLBCL cases.37 38 Overall patient 
survival significantly improved with the introduction of 
R-CHOP (rituximab, cyclophosphamide, doxorubicin, 
vincristine, and prednisone) immune-chemotherapy, 
but response rates are significantly worse for the ABC- 
compared with the GCB-type.39 Loss-of-function RNAi 
screens demonstrated the critical prosurvival functions 
of BCR-proximal protein kinases spleen tyrosine kinase, 
BTK (Bruton’s tyrosine kinase), and PKCβ as well as the 
entire CBM complex including MALT1 for ABC DLBCL 
tumor growth30 (figure 2). Oncogenic driver mutations 
in the BCR adaptors CD79A and B are frequently found 
in ABC DLBCL and often occur in association with the 
MYD88 L265P variant, which provokes chronic Toll-like 
receptor 9 (TLR9) signaling.40–43 In these cases, BCR and 
TLR signals converge in the formation of a CBM-MYD88-
containing super-activation cluster, which fosters onco-
genic signaling.44 The predominant clinical relevance 
of chronic BCR signaling was emphasized in a phase 
III trial that demonstrated vastly superior outcomes 
by combining R-CHOP treatment with the BTK inhib-
itor ibrutinib in younger DLBCL patients (≤60 years) 
carrying CD79B and/or MYD88 mutations.45 However, 
patients with oncogenic lesions downstream of BTK, as 
frequently found in CARD11, do not benefit from BTK 
targeting.43 46 47 Further, multiple genetic and non-genetic 
adaptations can lead to secondary ibrutinib resistances 
and lymphoma relapse, underscoring that targeting BTK 
alone may often not be sufficient to achieve long-term 
responses.48

Since MALT1 acts downstream of BTK, MALT1 protease 
inhibition represents an alternative strategy to overcome 
ibrutinib resistance or to increase clinical efficacy by 
combinatorial treatment. Initial in vitro studies with the 
irreversible peptide inhibitor VRPR-FMK demonstrated 
that MALT1 inhibition is toxic to human ABC DLBCL-
derived, but not MALT1-independent GCB DLBCL-
derived cancer cell lines.3 4 First-in-class non-competitive 
(eg, phenothiazines mepazine and thioridazine) or 
irreversible (MI-2 and compound 3) small molecule 
MALT1 inhibitors validated these in vitro findings and 
effectively and selectively killed xenotransplanted ABC 
DLBCL tumors in vivo.1 2 49 Expression of the allosteric 
inhibitor-resistant MALT1 E397A variant renders ABC 
DLBCL cell lines resistant to mepazine or thioridazine 
induced cytotoxicity, proving that cancer cell-intrinsic 
targeting of MALT1 is necessary for killing the lymphoma 
cells.50 Indeed, the optimized MALT1 inhibitor S-mep-
azine is toxic to CARD11 mutant and ibrutinib-resistant 
ABC DLBCL and combinatorial BTK and MALT1 inhibi-
tion augments killing of CD79 mutant DLBCL.51 Killing 
of BTK inhibitor resistant ABC DLBCL cells was also 
confirmed with the more potent and selective allosteric 

Figure 2  Chronic BCR and TLR signaling and oncogenic 
driver mutations impacting MALT1 protease activation in ABC 
DLBCL. ABC, activated B cell; BCR, B cell receptor; DLBCL, 
diffuse large B cell lymphoma; TLR, Toll-like receptor. Z
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MALT1 inhibitors MLT-985 and JNJ-67856633 in vitro and 
after xenotransplantation.52 53

The mechanistic function of MALT1 protease activity 
in driving aberrant survival and proliferation of ABC 
DLBCL are not yet fully understood. As mentioned 
above, the non-catalytic MALT1 scaffolding directly trig-
gers activation of the canonical IKK/NF-κB pathway, 
whereas the MALT1 protease is thought to enhance 
NF-κB signaling by cleaving and inactivating inhibitory 
factors such as the tumor suppressors A20 or CYLD.2 4 
Further, MALT1-catalyzed cleavage and destabilization of 
the non-canonical NF-κB family member RelB augments 
DNA binding of the canonical NF-κB proteins RelA and 
c-Rel, which in turn induces antiapoptotic gene expres-
sion in ABC DLBCL.54 In line with the concept that the 
MALT1 protease removes negative regulators to release 
brakes on NF-κB activation, MALT1 inhibition suppressed 
global NF-κB-dependent gene expression in ABC DLBCL 
cells.1 3 However, MALT1 also constitutively cleaves posi-
tive NF-κB regulators such as HOIL-1, MALT1 (auto-
cleavage) and BCL10 in ABC DLBCL cells, with unknown 
consequences for lymphomagenesis.3 4 55 56 Moreover, 
MALT1 protease activity may not only modulate transcrip-
tional induction in DLBCL, but also post-transcriptional 
gene regulation through the cleavage of Roquin-1/2.49 
How strong this contributes to aberrant activation in B 
cell lymphomas needs to be addressed. Collectively, these 
data provided strong conceptual support for the clinical 
application of allosteric MALT1 inhibitors to treat highly 
malignant ABC DLBCL.

Mantle cell lymphoma (MCL) is a relatively rare 
and highly aggressive subtype of NHL. Despite high 
initial response rates with frontline R-CHOP immuno-
chemotherapy, nearly all patients develop a relapsing-
remitting disease course and only few patients can be 
cured.57 Similar to ABC DLBCL, MCL are characterized 
by an NF-κB gene signature that is highly sensitive to 
upstream BCR pathway inhibitors.58 59 Small molecule 
BTK inhibitors have been approved for relapsed MCL, but 
primary or acquired resistances are nearly universal.60 61 
At least a subset of MCLs is addicted to MALT1 protease 
activity, which stabilizes MYC protein by a yet undefined 
cellular mechanism and thereby induces MYC-induced 
target gene expression.62 MCLs also display recurrent 
translocations of the CCND1, 2 and 3 genes resulting in 
overexpression of the cell cycle promoting factors cyclin 
D1, D2 and D3.63 Interestingly, expression of cyclin D2 
during early hematopoiesis in mice drives an MCL-like 
lymphoma with chronic BCR/NF-κB pathway activation 
and increased MALT1 protease activity.64 Inhibition of 
MALT1 protease activity is highly toxic to these cyclin 
D2-driven MCL-like tumors in vitro and in vivo, providing 
an additional rationale for targeting of MALT1 in MCL 
patients.

Chronic lymphocytic leukemias (CLL) is the most 
prevalent neoplasia in Western countries. Its growth 
and survival relies on antigen-independent ‘tonic’ BCR 
signaling65 and interference with BCR signaling through 

BTK inhibitors induces death of CLL cells and strong ther-
apeutic responses. Targeting BTK provides in many cases 
long-term control of the disease, but in-class toxicities and 
acquired resistances remain common complications,66 
bringing attention to MALT1 inhibitors as promising 
candidates to treat BTK-resistant CLL. However, evidence 
that MALT1 is required for survival of CLL cells remains 
scarce and mainly relies on the use of the covalent 
MALT1 inhibitor MI-2.67 68 While MI-2 inhibits MALT1 
protease function and NF-κB signaling and reduces cell 
viability in CLL cells, it also disrupts several other biolog-
ical networks to a similar degree and decreases MALT1-
independent PI3K/AKT and MAPK/ERK signaling in 
CLL. Given the non-selectivity of MI-2,69 70 it remains to 
be seen if these findings can be reproduced with more 
potent and specific MALT1 inhibitors.

Besides the well-studied role of MALT1 in B cell 
lymphomas, aberrant MALT1 protease activation has 
also been implicated in T cell malignancies. CARD11 
activating mutations have been identified in some T cell-
derived lymphomas, indicative of CBM-triggered MALT1 
protease activation.71–73 While in most cases the thera-
peutic potential of MALT1 protease inhibition has not 
yet been explored, MALT1 protease inhibition was shown 
to impair growth and survival of aggressive adult T cell 
leukemia and T cell acute lymphoblastic leukemia.74 75 
As for CLL, however, these studies relied on the poorly 
selective MALT1 inhibitor MI-2 and further analyses 
using more potent and selective inhibitors are warranted 
to firmly establish the utility of MALT1 inhibitors for the 
treatment of T cell lymphomas.

Taken together, strong biological evidence links MALT1 
protease activity to aberrant antigen receptor signaling 
in various hematological malignancies. Since MALT1 
protease acts downstream of BTK, which is a target of 
several approved drugs for the treatment of BCR-addicted 
NHL, direct targeting of MALT1 is a promising strategy 
to overcome BTK resistances or to enhance efficacy in 
combination treatment of lymphomas. Accordingly, clin-
ical trials have been initiated to evaluate the safety and effi-
cacy of either single arm treatment of NHL with MALT1 
inhibitor JNJ-67856633 (NCT03900598) or the combina-
tion of JNJ-67856633 with first-generation and second-
generation BTK inhibitors ibrutinib and JNJ-64264681, 
respectively (NCT04876092 and NCT04657224).

MALT1 function and targeting in non-hematological solid 
cancer
Besides the well-established prosurvival function of 
MALT1 and the CBM complex downstream of the BCR in 
hematological malignancies, a number of recent studies 
also demonstrated oncogenic roles of MALT1 in several 
non-hematological cancers. While CARD11 expression is 
confined to lymphoid cells, alternative CBM complexes 
comprizing either CARD9, CARD10 (CARMA3) or 
CARD14 (CARMA2) subunits mediate NF-κB signaling 
on ligand binding to innate immune receptors, G-protein-
coupled receptors (GPCRs), or receptor tyrosine kinases 
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(RTKs) in various other cell types.76 77 Especially CARD10 
is broadly expressed, and can assemble an alternative 
CARD10-BCL10-MALT1 (C10BM) complex after ligand 
engagement by GPCRs and RTKs.78 The GPCRs lysophos-
phatidic acid receptors, type 1 angiotensin II receptor 
(AT1R), and thrombin-induced protease-activated 
receptor 1 (PAR1) trigger NF-κB-dependent inflamma-
tory responses via these C10BM complexes.79–83 In addi-
tion, CARD10 also channels RTK signaling downstream 
of EGFR and HER2 to the canonical NF-κB pathway.84 85 
Since expression and activation of these GPCRs or RTKs is 
linked to cancer cell transformation, survival, and metas-
tasis, a tumor-promoting function of MALT1 protease 
has been proposed for various solid cancers, but it is best 
characterized in the case of breast cancer.

High expression of the GPCRs AT1R and PAR1 correlates 
with increased metastasis and poor clinical outcome 
in breast cancer.86 87 Both, AT1R-induced and PAR1-
induced NF-κB activation and target gene expression in 
breast cancer cells strictly rely on CARD10, BCL10, and 
MALT1. In addition, angiotensin II and thrombin induce 
MALT1 protease activation and substrate cleavage.86 88 
Similar to the known function of NF-κB in BCR-addicted 
lymphomas, C10BM-mediated NF-κB activation via GPCRs 
promotes proliferation and survival of breast cancer 
cells.86 87 Furthermore, the C10BM complex controls cell 
migration and invasion, hallmarks of tumor metastasis. 
Mechanistically, expression of AT1R and PAR1 drives 
epithelial-to-mesenchymal transition (EMT), which relies 
on MALT1 protease activity.88 Especially in triple-negative 
breast cancer (TNBC), characterized by the absence 
of estrogen and progesterone receptors and low HER2 
expression, MALT1 protease and NF-κB are required 
for the transcriptional EMT program, suggesting that 
MALT1 targeting may affect not only cancer cell survival 
but also metastasis. Accordingly, while MALT1 inhibition 
by mepazine reduced growth of orthotopic PAR1-positive 
breast cancer xenografts, it even more strongly impaired 
metastatic dissemination of TNBC cells.88 Of note, AT1R 
and HER2 overexpression are mutually exclusive in 
patients with invasive breast cancer, suggesting that the 
receptors may serve redundant functions in tumorigen-
esis.87 Indeed, heregulin (HRG) stimulation of HER2-
positive breast cancer cells induces NF-κB activation via 
the C10BM signalosome, contributing to proliferation, 
anchorage-independent growth and cell migration, and 
tumor invasiveness.85 Collectively, these data suggest that 
MALT1 inhibition counteracts the tumor-promoting and 
prometastatic functions GPCRs and RTKs, providing a 
rationale for tumor-cell intrinsic targeting of MALT1 in 
breast cancer. Of note, CARD10-dependent MALT1 acti-
vation in cancer cells acts not only in a cell-intrinsic, but 
also cell-extrinsic manner by inducing their expression 
and secretion of proinflammatory cytokines, chemokines, 
and growth factors that have paracrine, tumor growth-
promoting effects on the TME, for example, through 
endothelial cell chemotaxis.87 Besides breast cancer, 
CARD10, BCL10, and MALT1-dependent processes have 

been suggested to operate downstream of GPCRs or 
RTKs in glioblastoma, lung cancer, osteosarcoma, mela-
noma, pancreatic cancer, oral cancer, ovarian cancer, and 
prostate cancer.85 86 89–95 In general, however, the role of 
MALT1 protease activation in these cancers has not been 
explored in detail.

A recent study suggested a novel mechanism through 
which MALT1 promotes glioma cell survival, implicating 
MALT1 protease as a potential target for the treatment 
of glioblastoma.96 MALT1 is highly expressed in glio-
blastoma multiforme and, especially in patient-derived 
glioblastoma stem cells (GSCs), displays basal protease 
activity. Either knock-down or pharmacological inhibi-
tion of MALT1 by phenothiazine-derivatives attenuates 
growth and reduces viability of GSCs, which again relies 
on the CARD10-containing CBM complex present in 
non-immune cells.96 While the upstream mechanisms 
responsible for MALT1 activity remained unclear, its 
inhibition impairs autophagic flux leading to lysosomal-
mediated cell death, which is linked to a displacement 
of mTOR from lysosomes. Thus, disruption of endo-
lysosomal homeostasis appears to be the main cause of 
cell death on MALT1 inhibition in GSCs and a new mech-
anism by which MALT1 inhibition exerts its therapeutic 
effects. The findings are of particular interest, because 
phenothiazine-derived MALT1 inhibitors like mepazine 
are able to cross the blood–brain barrier.96 97

Taken together, MALT1 protease activity has been 
shown to control proliferation, survival, migration, and/
or invasiveness in many non-hematological solid cancers, 
even though the underlying mechanisms and therapeutic 
relevance in most cases still require closer inspection. 
However, in combination with augmented antitumor 
immunity on MALT1 inhibition in the TME, direct inhibi-
tion of MALT1 in cancer cells may further enhance treat-
ment efficacy (see next chapter).

MODULATING THE TME BY MALT1 PROTEASE INHIBITORS
Involvement of tumor infiltrating Treg cells in cancer 
immunotherapy resistance
Therapeutic antibodies that block so-called immune 
checkpoints, such as CTLA-4 or the PD-1/PD-L1 pathway, 
produce long-term disease-free survival and cures in 
some patients with previously hard to treat or untreat-
able forms of cancer. Consequently, immune checkpoint 
therapies (ICTs) are now approved as front- or second-
line treatment for a wide range of human cancer types.98 
However, the majority of patients still do not respond to 
these treatments (‘primary resistance’) or relapse after 
exhibiting an initial response (‘acquired resistance’).99 
Therapy resistance is often correlated with an a priori 
insufficient immune and inflammatory reaction to the 
cancerous growth. Defects in tumor-reactive effector T 
cell priming, their infiltration, or their survival in the 
TME can lead to such ‘cold’ tumors, but in addition, the 
local immunosuppressive activity of tumor-infiltrating 
Treg cells is thought to be a major cause for the lack of an 
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effective either spontaneous or ICT-induced antitumor 
immune response.99 100 Even in inflamed, so-called ‘hot’ 
tumors, which are characterized by abundant infiltration 
of cytotoxic CD8+ T cells and natural killer (NK) cells, 
high densities of Treg cells in the TME are associated 
with weaker responses to ICT and poorer prognosis.100 
Given the critical role of the CBM complex and MALT1 
protease activity for the immunosuppressive function 
of Treg cells,5 6 25 26 pharmacological MALT1 inhibitors 
present an intriguing opportunity to overcome ICT resis-
tance by breaking Treg cell-mediated tolerance in both 
immunologically ‘cold’ or ‘hot’ tumors.

Treg cells physiologically serve to maintain immune 
homeostasis. Whereas tTreg cells recognize self antigens, 
pTreg cells respond to (eg, commensal- and food-derived) 
non-self-antigens. Both subsets functionally complement 
each other, but are transcriptionally similar and capable of 
deploying the same mechanisms of suppression, including 
secretion of immune-regulatory cytokines such as TGF-β, 
IL-10, and IL-35, metabolization of extracellular immune-
stimulatory ATP into immune-suppressive adenosine, and 
CTLA-4-mediated downregulation of costimulatory mole-
cules on antigen-presenting cells.101 102 Tumor-infiltrating 
Treg cells contribute to both primary and acquired immu-
notherapy resistance through the same mechanisms of 
suppression, preventing elimination of the cancer cells. 
Both mouse and human studies suggest, based on largely 
non-overlapping TCR usage by tumor-infiltrating Treg 
and conventional effector T cells, a predominant role for 
self-antigen-specific tTreg in immunological tumor toler-
ance,103–106 even though evidence for intratumoral pTreg 
generation is also found in some human tumors.107 108

Treg cell reprogramming by MALT1 inhibition in the TME
The above-mentioned block in tTreg cell development 
in the constitutive, global absence of CBM proteins or 
MALT1 protease activity initially precluded an exam-
ination of their role in tumor infiltrating Treg cells. 
However, selective CBM complex disruption in mature 
Treg in more recent studies yielded some unexpected 
results.5 6 25 26 Whereas the impaired generation and 
maintenance of eTreg cells upon conditional deletion 
of CARD11 in Foxp3+ Treg cells causes early-onset, fatal 
immune pathology, partial reduction of CARD11 protein 
in Treg cells through heterozygous deletion of only 
one Card11 allele does not cause detectable immune 
pathology. Mice with heterozygous Card11 deletion are 
healthy and show normal life expectancy, but implanted 
solid cancers grow more slowly in these animals.6 Impor-
tantly, partial CARD11 reduction in Treg cells provokes 
their production of the proinflammatory cytokines IFNγ 
and TNF in the TME. These proinflammatory Treg cells 
maintain Foxp3 expression, suggesting a state of Treg cell 
‘fragility’ rather than the loss of lineage identity referred 
to as Treg cell 'instability’.109 Proinflammatory Treg 
cell conversion is confined to the tumor tissue and not 
observed in lymphoid or in healthy non-lymphoid tissues, 
suggesting a therapeutic window for the modulation of 

CBM complex activity that avoids systemic autoimmune 
toxicity. The basis for this selectivity remains unclear, 
but eTreg may have an elevated need for CBM signaling 
to withstand the exposure to strong TCR and costimu-
latory signals, cytokines, and the metabolic conditions 
of the TME, rendering them more sensitive to partial 
CBM complex disruption than their counterparts that 
maintain immune homeostasis in uninflamed tissues.6 
Importantly, deletion of one allele of CARD11 in only 
50% of Treg cells is sufficient to reduce tumor growth.6 
Since a mere loss of immune-suppressive function by a 
reduction in CARD11 in only half of Treg cells would be 
compensated for by the remaining CARD11-sufficient 
cells, these data indicate an active antitumor function 
of the CARD11-deficient Treg cells. In fact, antitumor 
activity relies on IFNγ production of Treg cells with 
reduced CARD11 expression, which causes classical acti-
vation of tumor-associated macrophages and elevated 
expression of antigen-presenting MHC class I proteins 
on cancer cells. These preclinical observations suggest 
a dominant mechanism, in which the proinflammatory 
reprogramming of a fraction of Treg cells by partial inac-
tivation of the CBM complex is sufficient to obtain an 
antitumor effect, which will be also of clinical relevance 
for enhancement of ICT through MALT1 inhibition, as 
discussed below.

Similar antitumor activity is also observed following 
deletion of BCL10 in Treg cells5 and in mice that lack 
MALT1 protease activity either globally or specifically 
in Treg cells.26 Since MALT1 protease activity, but not 
its recruitment of TRAF6 to induce TCR-driven NF-κB 
signaling is required for maintaining the suppressive 
function of mature Treg cells,5 11 MALT1 protease inhib-
itors are promising candidates to reduce the function or 
even to reprogram tumor infiltrating Treg cells into anti-
tumor effectors. Accordingly, treatment with the MALT1 
inhibitor mepazine slows mouse melanoma growth in 
immune-competent hosts.5 6 However, it is ineffective in 
lymphocyte-deficient animals, indicating an immune-
mediated mechanism. It is also ineffective in MALT1-
deficient hosts, ruling out a requirement for direct activity 
on MALT1-sufficient cancer cells in this setting.5 6 MALT1 
inhibition acts on multiple layers to enhance antitumor 
immunity. By reducing Treg cell suppressive activity, it 
increases the number of IFNγ-producing conventional 
CD4+ and CD8+ effector T cells.5 However, antitumor 
effects are also observed upon depletion of CD8+ T 
cells.6 Since MALT1 inhibition, similar to partial CARD11 
deletion, converts tumor-infiltrating Treg cells into 
IFNγ-producing cells, this suggests a critical role of proin-
flammatory Treg cell reprogramming6 (figure  3). Not 
unexpectedly, the Th1 inflammatory response resulting 
from MALT1 inhibition also induces PD-L1 expression 
on cancer cells, which likely limits the treatment-induced 
antitumor effect by engaging PD-1 on activated effector 
lymphocytes. Consequently, PD-1 pathway-targeted ICT 
synergizes with MALT1 inhibition to reduce the growth 
of poorly immunogenic (’cold’) and to prevent relapse 
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following rejection of immunogenic (‘hot’) tumors in 
mice.6

Importantly, spontaneous conversion of tumor-
infiltrating Treg cells into IFNγ-secreting cells has been 
observed in human patients with cancer, for example, 
in patients with colorectal cancer, where it is correlated 
with favorable disease outcomes,110 and in glioblastoma 
patients.111 When Treg cells are rendered resistant to 
proinflammatory conversion in mouse models of cancer, 
for example, by deleting their receptors for either IL-6112 
or IFN-γ,109 otherwise potent immunotherapy regimen, 
including PD-1 targeted ICT, become ineffective. This 
suggests that spontaneous Treg cell conversion is not 
only a by-product, but in fact critical for therapeutically 
induced antitumor immunity. It needs further inves-
tigations to understand how the inhibition of MALT1 
protease or other experimental perturbations of Treg 
cells that have similar effects6 109 113 amplify basal proin-
flammatory Treg conversion on a molecular level.

In summary, MALT1 inhibitors may have clinical 
antitumor activity by reprogramming preferentially 
self-reactive, immunosuppressive Treg cells into IFNγ-se-
creting antitumor effector cells selectively in the TME 
to produce a local Th1-type autoimmune response and 
render patients responsive to PD-1/PD-L1-targeteted 
ICT. This may increase the range of patients and solid 
cancer types that respond to established forms of immu-
notherapy, a concept that is currently being evaluated 
using the MALT1 inhibitor MPT-0118 either as a single 
agent or in combination with the anti-PD1 antibody 
pembrolizumab (NCT04859777).

OPPORTUNITIES FOR SIMULTANEOUS CANCER CELL-INTRINSIC 
AND CELL-EXTRINSIC TARGETING OF MALT1
Ideally, MALT1 targeting will take advantage of both 
cancer cell-intrinsic and cell-extrinsic therapeutic effects. 
While the ongoing NHL trial primarily aims to evaluate the 
lymphoma cell-intrinsic vulnerability of MALT1 protease 
activity, MALT1 inhibition may also have beneficial effects 
on the TME of these hematological tumors. The majority 
of DLBCL are infiltrated by Treg cells, but contrary to 
most non-hematological cancers, high Treg cell density 
is generally associated with a favorable prognosis.114 
However, the presence specifically of strongly activated 
eTreg cells characterized by high CTLA-4 expression in 
the TME correlates with poor prognosis, highlighting the 
importance of the functional state of DLBCL-infiltrating 
Treg cells.114 Since MALT1 inhibition preferentially affects 
activated, suppressive eTreg cells, patients with the latter 
group of DLBCL may selectively benefit from Treg cell 
reprogramming that could synergize with ICT, which has 
otherwise so far yielded disappointing results in DLBCL.115 
Finally, increased Treg cell infiltration also correlated with 
an inferior clinical outcome specifically in non-GCB type 
DLBCL,116 which primarily represent ABC-type patients 
with elevated MALT1 protease activation. Thus, partic-
ularly in the subset of patients with MALT1-dependent 
ABC DLBCL, the simultaneous targeting of MALT1 in 
the tumor as well as in tumor-infiltrating Treg cells may 
together yield a beneficial clinical response. Unfortunately, 
the scarcity of syngeneic MALT1-dependent lymphoma 
models has made it difficult to assess the effects of MALT1 
inhibition on the TME in preclinical settings. Fully 
immune-competent mouse models of MALT1-dependent 
lymphoma, such as the cyclin D2-driven MCL-like tumor 
model,64 will be essential to assess the concurrent impact 
of MALT1 inhibition on the TME.

Figure 3  Concept of MALT1 inhibitor induced Treg cell reprogramming in the TME. Activated Treg cells (yellow) that suppress 
CTL (green) in immune-cold tumors are reprogrammed by MALT1 inhibitors (MALTi) into IFNγ-producing Treg cells (red), which 
enhance local inflammation in the TME. This and loss of Treg cell suppressive function both promote the recruitment and 
function of CTL, but also the upregulation of PD-L1 on cancer cells, causing acquired resistance that is overcome by synergistic 
anti-PD1 ICT to boost antitumor immunity. CTL, cytotoxic T cells; ICT, immune checkpoint therapy; MALT1, Mucosa-associated 
lymphoid tissue protein 1; TME, tumor microenvironment.
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Combined cancer cell-intrinsic and cell-extrinsic 
MALT1 targeting may also amplify therapeutic effects in 
non-hematological solid cancer, as best exemplified for 
breast cancer. Proliferation, survival and invasiveness of 
breast cancer relies on MALT1 proteolytic activity.86–88 
Especially in xenograft models of TNBC, MALT1 inhi-
bition reduces tumor growth and metastasis in a cell-
intrinsic manner.88 Traditionally, breast cancers have been 
considered to be poorly immunogenic, but it has become 
clear that, like many other cancers, they are embedded 
in a complex TME with a network of immunosuppres-
sive cells, including Treg cells, that cause immune escape 
and tumor progression.117–119 Treg cell infiltration is asso-
ciated with more aggressive behavior and unfavorable 
prognosis in advanced breast cancer117 and particularly 
TNBC harbor numerous activated Treg cells with potent 
suppressor function.120 While early clinical trials evalu-
ating anti-PD1 (pembrolizumab) monotherapy showed 
promising responses in patients with advanced meta-
static and PD-L1-positive TNBC, randomized controlled 
trials failed to demonstrate a significant improvement in 
overall survival of pre-treated metastatic TNBC patients 
compared with chemotherapy.121–123 Of note, there was a 
trend for improved pembrolizumab responses in TNBC 
patients to correlate with higher PD-L1 expression.124 
Since MALT1 inhibition reprograms activated eTreg cells 
to secrete IFNγ and induce expression PD-L1 on cancer 
cells,6 and given the density of highly suppressive intra-
tumoral eTreg especially in TNBC,120 proinflammatory 
Treg cell reprogramming by MALT1 inhibition may 
improve ICT responses in TNBC concurrent with cancer 
cell-intrinsic effects on progression and metastasis.88 This 
provides a rationale for the combination of MALT1 inhib-
itors and ICT especially in TNBC, but also many other 
non-hematological solid cancer types, including glioblas-
toma, melanoma, lung cancer, and ovarian cancer, with 
suggested cell-intrinsic dependence on MALT protease 
activity.

MALT1 INHIBITOR PROFILES AND CONSIDERATIONS FOR 
CANCER CELL-INTRINSIC VERSUS CELL-EXTRINSIC TARGETING
The demonstration that MALT1 confers a unique enzy-
matic activity to the CBM complex in activated lympho-
cytes and lymphoma cells has initiated an intensive quest 
for MALT1 inhibitory compounds not only for the treat-
ment of BCR-addicted lymphomas, but also for mitiga-
tion of antigen receptor-triggered immune responses 
in autoimmune and inflammatory diseases.3 4 28 29 Drug 
discovery programs in academia and industry led to 
the development of candidate drugs whose chemical 
classes and structures have recently been summarized.125 
Structure-guided drug research revealed a favorable 
allosteric mechanism of MALT1 inhibition leading to the 
development of potent, selective, and reversible MALT1 
inhibitors,50 52 126 which has yielded currently two clinical 
candidates, JNJ-6785663353 127 and MPT-0118.128 Clinical 
programs using JNJ-67856633 aim at cancer cell-intrinsic 

targeting of MALT1 in NHL and CLL as a single agent 
or in combination with the BTK inhibitor ibrutinib 
(NCT03900598 and NCT04876092). The MPT-0118 trial 
evaluates MALT1 inhibition for tumor-cell extrinsic proin-
flammatory reprogramming of Treg cells in the TME to 
boost antitumor immunity in solid cancer as a single 
agent or in combination with the anti-PD1 checkpoint 
blocker pembrolizumab (NCT04859777). Given the dual 
role of MALT1 in the cancer cells and the immune TME, 
as well as potential adverse effects on long-term MALT1 
inhibition, several considerations apply in choosing 
MALT1 inhibitors with optimal profiles for different clin-
ical settings.

For precision oncology, it is in general desirable to 
engage the target with drugs that show high in vivo potency 
and selectivity. MALT1 inhibitors such as MLT-985 or JNJ-
67856633 meet these criteria.52 53 However, even in the 
targeted therapy of lymphomas, on-target effects on the 
immune system must be considered. Although effector T 
cells maintain residual function in the absence of MALT1 
protease activity, highly potent MALT1 inhibition impairs 
T cell activation69 129 and may thus also reduce beneficial 
antitumor immunity in hematological cancers, an effect 
that would not be captured in immunodeficient xenograft 
models commonly used for drug testing in this setting. 
Second, sustained potent MALT1 inhibition may not only 
reprogram lymphoma-infiltrating Treg cells to aid the 
therapy of solid cancers, but is also expected to affect the 
systemic Treg cell pool that maintains immune homeo-
stasis. This has indeed been observed in animal studies, 
where circulating Treg cell numbers declined within a 
week and autoimmune toxicity developed soon after.130 
Thus, adverse on-target effects such as Treg cell deple-
tion need to be monitored and autoimmune toxicity may 
limit the maximal dose levels and/or duration of contin-
uous MALT1 inhibitor treatment in patients. Importantly, 
peripheral Treg cell depletion and immune pathologies 
depend on the strength of MALT1 inhibition and are fully 
reversible,129–132 suggesting that inhibitors with moderate 
potency, lower dosing, or treatment pausing between 
cycles may open a therapeutic window that avoids adverse 
effects (figure 4).

The risk of systemic autoimmune toxicity through 
systemic Treg cell depletion is also of concern when MALT1 
inhibition is intended to reprogram tumor-infiltrating 
Treg cells in solid cancers to amplify PD-1-targeted ICT 
efficacy. In this context, immune suppression through 
MALT1 inhibition in antitumor effector lymphocytes, 
whose recruitment to the TME is an intended conse-
quence of proinflammatory Treg cell reprogramming, 
would predictably also off-set treatment efficacy. However, 
since partial inactivation of the CBM complex through 
heterozygous CARD11 deficiency is well tolerated and 
suffices to reprogram tumor infiltrating Treg cells,6 
full MALT1 protease inhibition may not be required to 
achieve the desired treatment effect. Intermittent dosing 
or dose reduction of highly potent MALT1 inhibitors,129 
or the use of inhibitors with intermediate potency may 
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therefore mitigate the risk of both autoimmune toxicity 
and immune suppression without compromising on their 
antitumor activity through proinflammatory Treg cell 
reprogramming in the TME (figure 4). Thus, in contrast 
to cancer cell-intrinsic targeting, high in vivo potency of 
MALT1 inhibitors may not be the key factor, which is in 
line with the ability of moderately potent MALT1 inhibi-
tors, such as the phenothiazines mepazine or MPT-0118 to 
reprogram tumor-infiltrating Treg cells and induce effec-
tive antitumor immunity in preclinical models despite 
any potential immune-suppressive effects, and without 
detectable impact on Treg cells in blood and healthy 
tissues.6 128 130 132 The efficacy of these phenothiazines may 
in part also be owed to their pharmacokinetic properties 
that are reflected in an asymmetric distribution between 
tumor tissue and plasma and their tumor tissue retention, 
producing effective doses in the TME while likely not 
achieving the strong and persistent systemic exposures 
required to deplete circulating Treg cells.128 130 This favor-
able profile may also explain their robust activity against 
ABC-DLBCL xenografts, despite their only intermediate 
potency.1 However, since higher dosing may be required 
for MALT1 inhibitors with moderate potencies, adverse 
effects through off-target activity may be more prevalent 
and this needs to be closely monitored. On the other 
hand, it will need to be determined if dosing of highly 
potent inhibitors can be titrated to reduce systemic Treg 
depletion129 while still effectively reprogramming tumor-
infiltrating Treg cells.

Taken together, preclinical data clearly point to a ther-
apeutic window for the use of cancer cell-intrinsic or 
cell-extrinsic targeting of MALT1. However, differential 
requirements and potential adverse events emphasize 
that distinct MALT1 inhibitor profiles may be suitable 
depending on the clinical setting.

CONCLUSIONS AND OUTLOOK
The critical role of MALT1 protease activity in modulating 
immune responses and driving progression of lymphomas 
and non-hematological solid cancer has inspired inten-
sive drug research, resulting in the discovery of different 
classes of small molecule MALT1 inhibitors with distinct 
pharmacological properties. Tremendous progress has 
been made in elucidating cancer cell-intrinsic MALT1 
protease functions, but also how MALT1 activity in Treg 
cells maintains an immune-suppressive TME. Preclin-
ical evidence strongly advocates that MALT1 targeting 
in cancer cells as well as in Treg cells in the TME may 
yield beneficial antitumor responses. Especially the ability 
of MALT1 inhibitors to reprogram tumor-infiltrating 
suppressive into proinflammatory Treg cells opens a 
new avenue for converting immunologically ‘cold’ into 
‘hot’ tumors, which thereby are sensitized for ICTs. It will 
be interesting to explore synergies with immunothera-
pies other than PD-1 blockade, including those that act 
primarily in the TME, but also those that are thought to 
primarily amplify the induction of antitumor immunity 
in tumor-draining lymph nodes, such as anti-CTLA4 anti-
bodies. The latter could potentially even antagonize the 
effectiveness of proinflammatory Treg cell reprogram-
ming through their Treg cell-depleting activity reported 
in some settings.133

First-in-class MALT1 inhibitors have entered clinical 
evaluation for cancer cell-intrinsic MALT1 targeting in 
malignant lymphomas and cancer cell-extrinsic MALT1 
inhibition in solid tumors. Precise biomarkers will be 
essential to obtain clinical proof of mechanisms, to enable 
patient stratification, and to facilitate the design of combi-
natorial treatment protocols. While oncogenic lesions in 
lymphomas can provide a rationale for combining BTK 
and MALT1 inhibitors, infiltration of Treg cells in solid 
cancers implies local immune tolerance and constitutes 
the basis for combining MALT1 and immune checkpoint 
inhibitors. In all cases, appropriate biomarkers will allow 
for accurate monitoring of systemic immune alterations, 
which can serve as early signs of reversible adverse events 
that may result from efficient and long-term MALT1 
protease inhibition. Taken together, MALT1 inhibition 
can combine direct targeting of cancer cells with augmen-
tation of antitumor immunity and trials have been started 
to obtain clinical proof of concept. Beyond the utility 
specifically of MALT1 inhibitors for cancer therapy, these 
studies may validate the general concept of therapeutic 
reprogramming of suppressive into proinflammatory 
Treg cells and, more broadly, of drug-induced modula-
tion of distinct immune cell subsets based on their distinct 
metabolic and signaling dependencies in the TME, for 
enhancing antitumor immunity to improve the treatment 
of patients with cancer.
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