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BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has been successfully translated to clinical practice for the
treatment of B cell malignancies. The suppressive microenvironment of many malignancies is a bottleneck preventing treatment
success of CAR T cells in a broader range of tumours. Among others, the immunosuppressive metabolite adenosine is present in
high concentrations within many tumours and dampens anti-tumour function of immune cells and consequently therapeutic
response.
METHODS: Here, we present the impact of the selective adenosine A2A and A2B receptor antagonist AB928/etrumadenant on CAR
T cell cytokine secretion, proliferation, and cytotoxicity. Using phosphorylation-specific flow cytometry, we evaluated the capability
of AB928 to shield CAR T cells from adenosine-mediated signalling. The effect of orally administered AB928 on CAR T cells was
assessed in a syngeneic mouse model of colon carcinoma.
RESULTS: We found that immunosuppressive signalling in CAR T cells in response to adenosine was fully blocked by the small
molecule inhibitor. AB928 treatment enhanced CAR T cell cytokine secretion and proliferation, granted efficient cytolysis of tumour
cells in vitro and augmented CAR T cell activation in vivo.
CONCLUSIONS: Together our results suggest that combination therapy with AB928 represents a promising approach to improve
adoptive cell therapy.
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BACKGROUND
Immunotherapy has become a new pillar of cancer therapy
improving the clinical outcome of many patients with solid and
haematological malignancies. Immune checkpoint blockade (ICB)
has changed clinical practice and demonstrated the clinical utility
of T cells in oncology [1]. ICB can lead to durable clinical responses
in a variety of cancer types by reactivating suppressed or
exhausted T effector cells [2, 3]. Currently, approved checkpoint
inhibitors target mainly the programmed cell death protein 1 (PD-
1) axis or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) to
reinvigorate anti-tumour immunity [1]. However, a significant
number of patients will either fail to respond or relapse after an
initial response. Frequently, this can be attributed to an
immunosuppressive environment, which is not overcome by
conventional ICB [4]. Extracellular adenosine acts as soluble
immune checkpoint and has emerged as a promising target for
immunotherapy [5–7]. Within solid tumours, extracellular ATP
levels are elevated due to high cellular turnover and active
secretion [8, 9]. In the canonical pathway of extracellular

adenosine generation, the ectonucleotidases CD39 and CD73
lead to the sequential dephosphorylation of extracellular ATP [10].
Expression of CD39 and CD73 on tumour cells, immune cells,
fibroblasts, endothelial cells, and stromal cells is upregulated by
hypoxia and TGF-β in the tumour microenvironment (TME)
[6, 11, 12]. Other mechanisms such as extracellular AMP
generation from NAD+ via CD38 and dysregulation of adenosine
consuming pathways further contribute to extracellular adenosine
accumulation within solid tumours [7, 13]. High concentrations of
extracellular adenosine dampen anti-tumour immunity [5, 6, 14].
Upon binding of extracellular adenosine, the G-protein coupled
adenosine A2A and A2B receptors (A2AR and A2BR) (Kd of 100 nM
and 15 µM, respectively) [15] mediate an intracellular build-up of
cAMP that compromises T cell effector functions [14, 16–19].
Owing to the predominant expression and higher affinity of A2AR,
T cell suppression is primarily mediated by signalling downstream
of A2AR [20, 21]. Besides direct suppression of effector cells, A2AR
and A2BR activation promotes the generation and suppressive
capacity of myeloid cells and regulatory T cells (Tregs) [22–26].
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Several agents counteracting the immunosuppressive adeno-
sine axis have been developed and have shown promising
preclinical anti-tumour activity [5–7]. The small molecule AB928/
etrumadenant (for short, AB928) is a highly selective antagonist,
targeting the A2A and A2B receptor [27, 28]. Importantly, results
from early clinical trials in healthy volunteers and in patients
demonstrated safety and favourable pharmacological properties
of the new drug, potentially hinting at its potential for
combinatorial treatments [27, 29, 30].
Another immunotherapeutic axis leveraging T cell function at

the forefront of development in oncology are chimeric antigen
receptor (CAR) T cells. These are autologous T cells, genetically
engineered to stably express a synthetic receptor targeting a
specific antigen [31]. While CAR T cell therapy is highly efficacious
in the treatment of some haematological malignancies [32–34], it
still lacks efficacy in the vast majority of tumours [35, 36]. Three
major mechanisms for CAR T cell failure in solid tumours have
been identified: Lack of T cell access to tumour sites, antigen
heterogeneity and importantly immune suppression [37]. In fact,
the immunosuppressive TME limits CAR T cell responses against
solid tumours [31] and anti-tumour CAR T cell responses are
suppressed by adenosine. Recent preclinical evidence suggests
that pharmacological as well as genetic targeting of A2AR may
improve CAR T cell efficacy [20, 21, 38–40]. However, targeting has
thus far been limited to the A2AR pathway and mainly to anti-
CD19, anti-mesothelin and anti-Her2 CAR T cells [20, 21, 38–40].
Whether A2BR co-targeting yields similar or better results is
unclear. Given the high complexity of CAR function and design
[36], it also remains to be determined if the approach is broadly
applicable across different models. These considerations and the
advanced clinical development stage of AB928 become important
when considering implementing adenosine receptor blockade
into cell therapy trials. Thus, we asked the question if AB928-
mediated blockade of A2AR and A2BR synergises both with murine
and human CAR T cells for optimised functionality against a range
of murine and human cancer cell lines.

MATERIALS AND METHODS
Mice
Wild-type C57BL/6 and BALB/c mice were purchased from Janvier (St.
Bertevin, France) or Charles River (Sulzfeld, Germany).

Animal experiments
All experimental studies were approved and performed in accordance with
guidelines and regulations of the local regulatory agency (Regierung von
Oberbayern). The experiments were randomised and conducted with
adequate controls. The investigators were not blinded during the experi-
ments. Tumours were induced by subcutaneous injection of 106 CT26-
EpCAM tumour cells. Daily oral treatment with 10mg AB928 formulated in
100 µl PEG/solutol (70/40) or control treatment was initiated, once the
tumour was palpable. Mice were injected intravenously with 107T cells the
following day. In accordance with the animal experiment application, tumour
growth and health status of mice were checked at least every other day.

Cell lines
Murine Panc02-EpCAM, 4T1, T110299 and CT26-EpCAM have been
previously described [41–43]. Murine LL/2 were purchased from the
European Collection of Authenticated Cell Cultures (ECACC). The T110299
and LL/2 cell lines were modified to stably express full-length murine
EpCAM (UNIPROT entry Q99JW5), to generate the cell lines T110299-
EpCAM and LL/2-EpCAM. Human SUIT-2-MSLN have been previously
described [41]. 293Vec-Galv, 293Vec-Eco, and 293Vec-RD114 have been
previously described [44]. The virus producing cell lines 293Vec-Eco for
anti-EpCAM-CAR-28z and 293Vec-RD114 for anti-MSLN-CAR-28z have been
previously described [45]. 293Vec-RD114 for anti-MSLN-CAR-4-1BBz were
generated as previously described [46]. All cell lines were cultured as
previously described [41, 42]. All cell lines were periodically tested for
mycoplasma contamination with the commercial testing kit MycoAlertTM

(Lonza, Basel, Switzerland). Authentication of human cell lines by short
tandem repeat DNA profiling was conducted in-house.

Murine T cell culture and transduction
The transduction using the retroviral vector pMP71 and culture of primary
murine T cells has been previously described [47]. In brief, 1.2 × 106 virus
producing 293Vec-Eco cells were seeded into a 6-well plate 24 h prior to
splenocyte isolation. After 48 and 72 h, the virus-containing supernatant
was used to transduce murine T cells. Murine T cells were expanded from
murine splenocytes by activation with anti-CD3 and anti-CD28 antibodies
(clones 145-2C11 and 37.51, Thermo Fisher Scientific, Waltham, MA, USA)
and human IL-2 (10 IU/ml, Novartis, Basel, Switzerland) for 24 h. Subse-
quently murine T cells were stimulated Dynabeads™ Mouse T-Activator
CD3/CD28 (Thermo Fisher Scientific) and human IL-15 (50 ng/ml,
Peprotech). Prior to some experiments Dynabeads™ were removed.

Human T cell culture and transduction
The transduction using the retroviral vector pMP71 and culture of primary
human T cells has been previously described [48]. In brief, 1.2 × 106 virus
producing 293Vec-RD114 cells were seeded into a 6-well plate and virus
containing supernatant was harvested and used for transduction after 48
and 72 h. After approval by the institutional review board of the Ludwig-
Maximilians-Universität (Munich, Germany), peripheral blood samples were
collected from healthy donors. Peripheral blood mononuclear cells (PBMC)
were isolated by density gradient centrifugation using Histopaque®-1077
(Sigma-Aldrich, St. Louis, MO, USA). T cells were isolated from PBMCs by
magnetic cell separation with CD3 Microbeads (Miltenyi Biotec, Bergisch
Gladbach, Germany). T cells were activated with Dynabeads™ Human
T-Activator CD3/CD28 (Thermo Fisher Scientific) and T cell culture was
supplemented with human IL-2 (200 IU/ml) and human IL-15 (5 ng/ml).
Prior to experiments Dynabeads™ were removed.

Flow cytometry
Multicolour flow cytometry was carried out according to previously
published protocols [49]. Samples were analysed with a CytoFLEX LX flow
cytometer (Beckmann Coulter, Brea, CA, USA) and BD FACSCanto™ II and
BD LSRFortessa™ II flow cytometers (BD Biosciences, Franklin Lakes, NJ,
USA). Cells were stained with Fixable Viability Dye eFluor™ 780 (Thermo
Fisher Scientific) to exclude dead cells. Surface staining of murine T cells
was performed with the following antibodies: anti-CD3 (BV510 or BV421,
clone 17A2, Biolegend San Diego, CA, USA), anti-CD4 (BV785 or AF700,
clone GK1.5, Biolegend), anti-CD8a (Pacific Blue or FITC, clone 53-6.7,
Biolegend), anti-CD25 (APC, clone PC61, Biolegend), anti-CD44 (PerCP/
Cy5.5, clone IM7, Biolegend), anti-CD69 (PE-Cy7 or BV510, clone H1.2F3,
Biolegend), anti-CD62L (Pacific Blue or PE/Cy5, clone MEL-14, Biolegend),
anti-PD-1 (BV421 or BV650, clone 29F.1A12, Biolegend), anti-TIM3 (BV605
or APC, clone RMT3-23, Biolegend), anti-LAG3 (PerCP/Cyanine5.5, clone
C9B7W, Biolegend), anti-TIGIT (APC, clone 1G9, Biolegend). Anti-EpCAM
CAR expression on T cells was confirmed by mCherry tag detection.
Surface staining of human T cells was performed with the following
antibodies: anti-CD3 (PerCP, clone OKT3, Biolegend), anti-CD4 (AF700,
clone A161A1, Biolegend), anti-CD8 (BV785, clone RPA-T8, Biolegend), anti-
CD45RO (PE-Cy7, clone UCHL1, Biolegend), anti-CCR7 (BV412, clone
G043H7, Biolegend), anti-PD-1 (APC, clone EH12.2H7, Biolegend), anti-
TIM3 (PE/Dazzle™ 594, clone F38-2E2, Biolegend), anti-LAG3 (BV605,
11C3C65, Biolegend). Anti-MSLN-28z CAR or Anti-MSLN-4-1BBz CAR
expression on T cells was detected by staining for the c-myc tag included
in the receptors using anti-c-myc (FITC, clone SH1-26E7.1.3, Miltenyi
Biotec). For intracellular staining, anti-EpCAM CAR T cells were stimulated
by plate bound recombinant EpCAM-Fc chimera protein (1 µg/ml coated
overnight, R&D Systems, Minneapolis, MN, USA) for 18 h. For the last 4 h BD
GolgiStop™ (BD Biosciences) was added. Cells were fixed and permeabi-
lised using BD Cytofix/Cytoperm™ (BD Biosciences) and subsequently
stained for IFN-γ (PE-Cy7, clone XMG1.2, Biolegend). For phospho-specific
flow cytometry of p-CREB, T cells were pretreated with AB928 (titration
from 10 nM to 10 µM) for 1 h, then 5 µM NECA was added for 1 h. Cells
were fixed and permeabilised using BD Cytofix™ and BD Phosflow™ Perm
Buffer III (both BD Biosciences) according to the manufacturer’s instruc-
tions. Cells were then stained for CREB (pS133) / ATF-1 (pS63) (AF647,
Clone J151-21, BD Biosciences).

Cytotoxicity assay
Impedance-based real-time killing assays were performed using an
xCELLigence system (ACEA Biosciences, San Diego, CA, USA), as previously
described [41]. Briefly, 2.5 ×104 Panc02-EpCAM, 4T1, or SUIT-2-MSLN
tumour cells were seeded per well in a 96-well plate. A total of 5 ×104 anti-
EpCAM CAR T cells or 2.5 ×104 anti-MSLN-28z CAR T cells and the indicated
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treatments were added to the tumour cells when the cell index reached
approximately 1. The cell index is a measure of the relative change in the
electrical impedance to represent the cell status and was normalised to the
timepoint of treatment.

Cytokine and granzyme B release assay
CAR T cells were treated and stimulated as indicated in the figure legends.
Protein concentrations in the supernatant were determined by commer-
cially available ELISA (human and murine IFN-γ and IL-2 by BD Biosciences
and murine TNF-α and murine granzyme B (GzmB) by R&D Systems).

Proliferation assay
In a 96-well plate, 105 anti-EpCAM CAR T cells per well were activated by
plate bound recombinant EpCAM-Fc chimera protein (0.5 µg/ml coated
overnight, R&D Systems) over a period of 48 h. Before the experiment
Dynabeads™ were removed. Cell numbers were determined by flow
cytometry with CountBright™ Absolute Counting Beads (Thermo Fisher
Scientific) at the beginning and end of the assay to calculate fold
proliferation of T cells.

Statistical analysis
The flow cytometry data were analysed with FlowJo V10.3 software.
Statistical analysis was performed with the GraphPad Prism 9 software.
Data are presented as indicated in the figure legends. Statistical analysis
was performed as indicated in the figure legends. The Bonferroni
correction was used to account for multiple comparisons. P < 0.05 was
considered statistically significant and represented as *P < 0.05, **P < 0.01,
and ***P < 0.001. No statistical methods were used to predetermine
sample size.

RESULTS
Adenosine inhibits CAR T cell activation
Extracellular adenosine suppresses T cell and CAR T cell activation
[5, 7, 38]. We hypothesised that combination therapy with AB928
may enhance CAR T cell function by blocking immunosuppressive
signalling in response to extracellular adenosine, thereby main-
taining effective CAR T cell responses (Fig. 1a). To confirm the
suppressive effect of adenosine in our murine anti-EpCAM CAR T
cell model, we cocultured said CAR T cells with tumour cells of the
pancreatic ductal adenocarcinoma cell line Panc02-EpCAM.
Cocultures were performed in the presence or absence of the
stable adenosine receptor agonist 5’-N-ethylcarboxamide adeno-
sine (NECA) or adenosine (combined with erythron-9-(2-hydroxy-
3-nonyl)adenine (EHNA) to prevent adenosine deaminase

mediated degradation of adenosine) in serial titrations to mimic
high concentrations of extracellular adenosine in the TME. After
24 h the coculture supernatants, representing T cell activation and
degranulation, were collected, and subjected to ELISA readouts. As
hypothesised, NECA dampened IFN-γ, IL-2 and TNF-α release in a
dose dependent manner (Fig. 1b). Also, adenosine itself resulted in
a decreased protein concentration of IFN-γ in the supernatants
(Fig. 1c). These results are in concordance with previously
published data and highlight the susceptibility of CAR T cells to
adenosine-mediated suppression, supporting the rationale for
studying the combination therapy with AB928 [20, 21, 38–40].

AB928 protects CAR T cell activation from adenosine-
mediated suppression
To investigate whether AB928 can shield CAR T cells from
adenosine-mediated suppression, we cocultured anti-EpCAM CAR
T cells and Panc02-EpCAM tumour cells in the presence or
absence of inhibiting concentrations of NECA and serially titrated
AB928. While NECA impaired IFN-γ, IL-2 and TNF-α secretion as
described above, addition of AB928 in concentrations ranging
from 100 nM to 10 μM fully restored cytokine secretion (Fig. 2a). To
rule out cell line-specific effects, cocultures were performed with a
panel of murine cancer cell lines (namely the mammary carcinoma
cell line 4T1, the lung carcinoma cell line LL/2-EpCAM, the
pancreatic ductal adenocarcinoma cell line T110299-EpCAM and
the colon carcinoma cell line CT26-EpCAM). The data (Fig. 2b) are
consistent among all cell lines, corroborating the overarching
principle of adenosine suppression and CAR T cell disinhibition by
AB928.
Next, we used flow cytometry to analyse the effect of NECA and

AB928 on anti-EpCAM CAR T activation upon stimulation with
recombinant EpCAM. We found that NECA reduced the amount of
IFN-γ+ cells in the population of CD4+ and CD8+ CAR T cells,
whereas AB928 reversed NECA-mediated suppression (Figs. 2c
and S1a). Activation markers CD25 and CD69 were downregulated
after NECA treatment and AB928 reversed this effect, both for
cocultures with antigen expressing tumour cells or recombinant
EpCAM stimulation. Interestingly, upregulation of CD25 and CD69
in the AB928 containing condition was more pronounced than in
the vehicle control condition when CAR T cells were activated by
antigen-expressing tumour cells, but not when activated with
recombinant protein (Fig. S1b). Overall, these findings demon-
strate the capability of AB928 to counteract adenosine-mediated
suppression of CAR T cells.
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Fig. 1 Adenosine inhibits CAR T cell activation. a Schematic illustration of the rationale of combining CAR T cell therapy and AB928. b, c In
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coculture supernatant were determined by ELISA. b, c Data are shown as mean ± SEM of n= 3 independent experiments with each dot
representing the mean value of an individual experiment. *P < 0.05 by two-sided t test.
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AB928 enables efficient CAR T cell effector responses
To test if AB928 can improve the anti-tumour efficacy of CAR T cells,
we performed cytotoxicity assays using real time cell analysis
(RTCA). In the control condition, anti-EpCAM CAR T cells efficiently
lysed Panc02-EpCAM tumour cells. Addition of inhibiting concen-
trations of NECA resulted in diminished tumour cell lysis, whereas
AB928 rescued CAR T cell-mediated cytotoxicity (Fig. 3a). In line with
this, AB928 also enabled the efficient cytolysis of 4T1 breast cancer
cells, despite inhibiting concentrations of adenosine being present
(Fig. S2a). Granzymes are important mediators of CAR T cell killing
[50]. Consistent with our data on cytotoxicity, we observed that
AB928 augmented GzmB release from CAR T cells in the presence of
NECA (Fig. 3b). To determine the effect of NECA and AB928 on CAR T
cell phenotype and proliferation, we performed flow cytometry.
Staining for CD44 and CD62L expression, we observed a transition
towards an effector-like (CD44+/CD62L−) CAR T cell phenotype
upon stimulation. NECA-mediated drifting of this phenotype was
blocked by AB928 (Figs. 3c and S2b). Activation-induced upregula-
tion of the inhibitory receptors PD-1 and TIM3 was inhibited by
NECA and restored by AB928. LAG3 and TIGIT expression was not
influenced by NECA or AB928 (Fig. 3d). CAR T cell proliferation in the

presence of inhibiting NECA concentrations was also augmented by
AB928 (Fig. 3e). Thus, AB928 efficiently blocks adenosine-mediated
suppression of crucial CAR T cell effector functions.

AB928 shields CAR T cells from immunosuppressive signalling
in response to adenosine
A2AR and A2BR signalling promotes the activity of adenylyl cyclases,
leading to elevated levels of cAMP. Intracellular cAMP accumulation
then activates protein kinase A, resulting in the phosphorylation of
cAMP response element-binding protein (CREB) which promotes
FoxP3 expression and thus Treg generation [51, 52]. To investigate the
effect of AB928 on adenosine-mediated signalling in anti-EpCAM CAR
T cells, we performed phosphorylation-specific flow cytometry,
staining for p-CREB. Likewise, basal p-CREB levels were increased in
CD4+ and CD8+ CAR T cells upon incubation with saturating
concentrations of NECA (5 μM). When preincubated with AB928 at
concentrations higher than 1 μM, the addition of NECA did not result
in any detectable increase in CREB phosphorylation (Fig. 4a, b). These
data indicate that AB928 is capable of effectively shielding CAR T cells
from immunosuppressive signalling even in the presence of high
concentrations of extracellular adenosine.
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by one-way ANOVA.
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Orally administered AB928 augments CAR T cell activation
in vivo
We next evaluated the effect of AB928 on CAR T cells in vivo. BALB/c
mice were subcutaneously injected with 106 CT26-EpCAM tumour
cells. Once tumours were established, daily oral treatment with
10mg AB928 or control treatment was initiated. In all, 107 anti-
EpCAM CAR T cells were intravenously injected the following day.
Forty-eight hours later, the CAR T cell phenotype was assessed by
flow cytometry (Fig. 5a). In line with our previous findings, AB928
treatment resulted in increased expression of CD69, and CAR T cells
presented a more effector-like (CD44+/CD62L−) phenotype (Fig. 5b,
c). Expression of the inhibitory receptors PD-1, TIM3, and LAG3 was
not influenced by AB928 treatment (Fig. 5d). These results indicate
that orally administered AB928 boosts CAR T cell activation in vivo.

AB928 ameliorates activation of human CAR T cells in the
presence of adenosine
We generated human CAR T cells expressing a second-generation
anti-mesothelin (MSLN) CAR with an intracellular CD3ζ domain and
either a CD28 (anti-MSLN-28z CAR) or 4-1BB (anti-MSLN-4-1BBz
CAR) costimulatory domain (Fig. S3) to confirm AB928 effects in

different CAR designs in the human system. Anti-MSLN CAR T cells
were cocultured with SUIT-2-MSLN tumour cells in the presence or
absence of NECA and serially titrated AB928. NECA dampened IFN-γ
and IL-2 release of both anti-MSLN-28z (Fig. 6a) and anti-MSLN-4-
1BBz (Fig. 6b) CAR T cells. Interestingly, IFN-γ release was affected by
NECA to a lesser extent than IL-2. AB928 in turn restored cytokine
release (Fig. 6a, b). Thus, AB928 blocks adenosine mediated
suppression of cytokine production by human CAR T cells,
independently of CAR design. To further analyse the effect of NECA
and AB928 on human anti-MSLN-28z CAR T cells, we determined
the CAR T cell phenotype by flow cytometry and performed RTCA-
based cytotoxicity assays. AB928 restored activation dependent
upregulation of PD-1, whereas TIM3, LAG3 and CD45RO/CCR7
expression were not influenced by NECA or AB928 (Figs. 6c and
S4b). Neither NECA nor AB928 modulated CAR T cell cytotoxicity of
anti-MSLN-28z CAR T cells (Fig. S4a).

DISCUSSION
Among other aspects, insufficient T cell trafficking to the tumour
[53, 54], antigen heterogeneity [46] and the immunosuppressive
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TME [49] are major factors preventing treatment success of CAR T
cell therapy in a broader range of tumours [35, 37]. Extracellular
adenosine acts as a soluble immune suppressant in the TME,
limiting effective anti-tumour T cell responses [14]. Many
strategies targeting the adenosine axis have been developed
and investigated. Among others, targeting the adenosine-
producing ectonucleotidases CD39 and CD73 and the adenosine
receptors A2AR and A2BR to improve the efficacy of immunothera-
pies or conventional chemotherapies has been explored [5, 6].
Blockade of A2AR has been brought forward as a strategy to
enhance CAR T cells but it remained unclear if co-blockade of A2BR
would yield similar or better results and if the effect would be
conserved across different CAR designs. In the present study, the
impact of the A2AR and A2BR antagonist AB928 on efficacy of
different second-generation CAR T cells was assessed.
It has been described that extracellular adenosine specifically

acts by dampening T cell receptor-mediated signalling [55]. This
lack of adequate T cell stimulation is partly responsible for
diminished effector functions, T cell anergy and generation of Tregs
in the presence of high concentrations of adenosine [22]. In our
model of murine anti-EpCAM CAR T cells, cytokine secretion,
upregulation of activation markers and proliferation in response to
antigen-dependent stimulation were markedly impaired in the
presence of adenosine or its analogue NECA. In contrast, addition
of AB928 led to improved IFN-γ, IL-2 and TNF-α secretion as well as
restored upregulation of PD-1, TIM3, CD25 and CD69 in response
to antigen-stimulus, indicating adequate T cell activation. Beyond
being a surrogate marker for T cell functionality, this is of critical
importance as IFN-γ and TNF-α have been described to play a
critical role for treatment success of ACT against solid tumours by
inducing anti-tumour immunity from bystander immune cells and
by evoking antigen-independent destruction of tumour and
stroma cells [56–59]. Similarly, IL-2 promotes T cell proliferation
and effector functions [60, 61]. Consistently, AB928 also reversed
NECA mediated inhibition of T cell proliferation. We observed that
IFN-γ production of both CD4+ and CD8+ CAR T cells was
enhanced in the presence of AB928. This finding is of interest
considering recent findings highlighting the significant role
played by CD4+ T cell in establishing and sustaining anti-tumour

immunity [61–64]. While the effect on PD-1 and TIM3 expression is
in line with results by Giuffrida et al. [21], it contrasts some
previously reported data suggesting that adenosine signalling
enhances exhaustion and anergy of T cells, evidenced by the
upregulation of checkpoint molecules [20, 65]. However, in our
experimental setting, there was no chronic stimulation, thus
anergy and exhaustion were unlikely to occur. Instead, upregula-
tion of PD-1 and TIM3 is a physiological consequence of acute T
cell activation [66, 67] and in consequence of adenosine-mediated
inhibition of T cell activation any markers associated with
activation will be reduced and likewise reinstalled upon inhibition
of adenosine signalling.
Previous studies have extensively characterised the effect of

adenosine on adoptively transferred T cells [14, 21, 38]. Impor-
tantly, genetic ablation of adenosine receptors leads to an
effector-like phenotype, enhanced activation, and effector func-
tion of CAR T cells, ultimately resulting in better survival [21, 38].
Here we found that daily oral dosing of AB928 is efficacious in
improving CAR T cell activation and promotes an effector-like
phenotype of CAR T cells in tumour bearing mice, confirming
previous findings, and demonstrating functionality of the adeno-
sine receptor inhibitor on CAR T cells in an in vivo setting.
Moreover, AB928 also protected second-generation human

anti-MSLN-28z and anti-MSLN-4-1BBz CAR T cells from adenosine-
mediated suppression of cytokine release. Of note, cells bearing
second-generation CARs with different costimulatory motives for
the same antigen were comparably suppressed by adenosine,
indicating that neither CD28 nor 4-1BB costimulatory domains can
overcome adenosine-mediated effects.
The effect of adenosine on direct CAR T cell killing is

controversial. Masoumi et al. observed reduced cytolytic function
of human CAR T cells in the presence of NECA in a flow cytometry-
based cytotoxicity assay [39]. Interestingly A2AR knockdown, but
not SCH58261, a small molecule A2AR antagonist, protected CAR
T cells. Here we used RTCA to assess CAR T cell killing. We
observed impaired cytotoxic function of murine anti-EpCAM CAR
T cells in the presence of NECA or adenosine. Of note, AB928
protected CAR T cell killing capacity from inhibition, highlighting
its potential utility. This also calls attention to the advantages that
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dual targeting of adenosine receptors might have over single
targeting, although further work is still required to fully
demonstrate this observation. In contrast, we did not observe
suppression of human anti-MSLN-28z CAR T cell cytotoxicity by
NECA. Importantly, this is in line with previously published
evidence by Beavis et al. and Giuffrida et al. reporting that NECA
had negligible impact on murine and human CAR T cell
cytotoxicity in a chromium release assays [21, 38]. Thus, it seems,
that adenosine does not hamper the killing abilities of CAR T cells
in certain settings, possibly because of the strength of CAR T cells
in vitro. However, we cannot disregard the possibility that in other
settings, such as long-term exposure to adenosine, the cytotoxic
potential of these CAR T cells would be suppressed by adenosine.
Overall, the factors determining to what extend adenosine
influences CAR T cell cytotoxicity have yet to be defined.
T cells are highly sensitive to adenosine-mediated suppression,

with Giuffrida et al. recently suggesting that genetic or
pharmacological targeting of A2AR should prevent more than
50% of the adenosine-mediated effect on T cells [21]. A2AR and
A2BR activation leads to signalling via the cAMP-PKA-CREB axis
[51]. We have shown that NECA-induced CREB phosphorylation in
anti-EpCAM CAR T cells was abrogated in the presence of 1 µM
AB928. This result demonstrates that AB928 can effectively and
efficiently block immunosuppressive signalling in response to
adenosine. Importantly, AB928 plasma levels of 1 µM and higher
are feasible and safe in patients [27]. We found that signalling was
blocked in both CD4+ and CD8+ CAR T cells. This is important, as it
has been previously shown that A2AR and A2BR activation on
CD4+ T cells may promote the generation of Tregs [23, 26].
Putatively CAR-transduced Tregs [68] could be potentially boosted
by adenosine but not so if AB928 is present, although this would
need to be formally demonstrated.
It remains to be determined how AB928 compares to other

strategies targeting adenosine receptors to overcome suppression

of adoptively transferred T cells. The immunosuppressive effect of
adenosine on T cells is primarily mediated by the predominantly
expressed A2AR, making it an attractive target to improve T cell-
mediated anti-tumour immunity [20, 21]. The small molecule A2AR
antagonists SCH58261 [38–40], CPI-444 [65] and KW6002 [69], as
well as approaches genetically targeting A2AR with shRNA
knockdown [38, 39] or CRISPR/Cas9-mediated knockout [20, 21]
have successfully been used to enhance ACT in preclinical studies.
However, growing evidence suggests that A2BR also plays an
important role in adenosine-mediated suppression of anti-tumour
responses by indirectly suppressing T cell function. It has been
shown, that A2BR antagonism reduces differentiation and
suppressive capacity of Tregs and suppressive myeloid cells,
leading to an increased presence of tumour-infiltrating CD8+

T cells in vivo [23, 25, 26, 70]. Recently, Chen et al. showed that
pharmacological A2BR antagonism prior to adoptive T cell transfer
improves treatment efficacy [71]. Among small molecule inhibitors
targeting adenosine receptors, AB928 is the first dual A2AR and
A2BR antagonist in clinical development. However, we have not
yet formally proven the advantage of dual over single targeting.
Genetic targeting is an elegant way to render CAR T cells

resistant to one or more immunosuppressive factors [72]. It
provides continuous protection from suppression and therefore
allows single dosing of the T cell product. However, safety
concerns regarding off-target editing and the administration of
CAR T cells with permanent deletion of immune checkpoints
remain [72]. Small molecule inhibitors in turn may suffer from
variable pharmacokinetics (PK) and require repeated dosing,
which in turn can be beneficial in case of unwanted serious
adverse events [73]. Further, they may also enable improved
recruitment of endogenous anti-tumour responses by acting on
other immune cells [74, 75]. The combination therapy of CAR
T cells with cell intrinsic or extrinsic ICB has already been explored
in more detail for the PD-1 axis and is currently being investigated
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in clinical trials. Thus far it is unclear which approach provides the
best results regarding clinical outcome and safety [76].
AB928 is currently under evaluation in phase 1 and 2 clinical

trials testing the efficacy, safety, PK, and pharmacodynamics (PD)
of AB928-based combination therapies for tumour indications
(NCT03846310, NCT04262856, NCT04381832, NCT03720678,
NCT04660812). AB928 can be orally administered by daily dosing.
Promising preliminary results and results from previous studies
suggest beneficial safety, PK, and PD profiles of the drug in
patients [27, 29, 30].
Overall, AB928 reliably protected murine and human CAR T cells

from all suppressive adenosine-mediated effects observed in this
study, and when administered similarly to regimens currently
under investigation in clinical trials, AB928 improved CAR T cell
activation in vivo. Thus, we reason that the combination therapy
with AB928 has high translational potential and may be a
promising approach to enhance CAR T cell efficacy.

However, given the fact that other limitations of CAR T cell
therapy such as limited trafficking to the tumour remain, we
believe that multimodal approaches targeting more than one
bottleneck of CAR T cell therapy are necessary to enable treatment
of a broader range of tumours. We recently found that combined
tumour-directed trafficking and expression of a dominant-
negative receptor (DNR) to shield CAR T cells from TGF-β in the
immunosuppressive TME synergistically improves CAR T cell
efficacy in solid tumours [45]. Similar approaches combining
tumour-directed recruitment and protection from the immuno-
suppressive TME may also be applicable for the combination
therapy of AB928 and CAR T cells in the future.
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