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Abstract 

Background: Epidemiological studies of associations between metabolites and cancer risk have typically focused on 
specific cancer types separately. Here, we designed a multivariate pan‑cancer analysis to identify metabolites poten‑
tially associated with multiple cancer types, while also allowing the investigation of cancer type‑specific associations.

Methods: We analysed targeted metabolomics data available for 5828 matched case‑control pairs from cancer‑
specific case‑control studies on breast, colorectal, endometrial, gallbladder, kidney, localized and advanced prostate 
cancer, and hepatocellular carcinoma nested within the European Prospective Investigation into Cancer and Nutri‑
tion (EPIC) cohort. From pre‑diagnostic blood levels of an initial set of 117 metabolites, 33 cluster representatives 
of strongly correlated metabolites and 17 single metabolites were derived by hierarchical clustering. The mutually 
adjusted associations of the resulting 50 metabolites with cancer risk were examined in penalized conditional logistic 
regression models adjusted for body mass index, using the data‑shared lasso penalty.

Results: Out of the 50 studied metabolites, (i) six were inversely associated with the risk of most cancer types: glu‑
tamine, butyrylcarnitine, lysophosphatidylcholine a C18:2, and three clusters of phosphatidylcholines (PCs); (ii) three 
were positively associated with most cancer types: proline, decanoylcarnitine, and one cluster of PCs; and (iii) 10 were 
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Background
Metabolomics allows the simultaneous measurement of 
a large variety of compounds present in biological sam-
ples, such as human blood [1, 2]. Circulating metabolite 
levels can reflect both endogenous and exogenous pro-
cesses, providing a snapshot of biological activity [3, 4]. 
As a result, metabolomics may facilitate the identification 
of biological mechanisms involved in the development of 
chronic diseases. For example, prior metabolomics stud-
ies have identified metabolites associated with the risk 
of various chronic conditions, including type 2 diabetes 
(T2D) [5–7], cardiovascular diseases (CVD) [8–10], and 
different site-specific cancers, including cancers of the 
breast [11], prostate [12, 13], endometrium [14], kid-
ney [15], colorectum [16–18], hepatocellular carcinoma 
(HCC) [19], and others [20, 21].

Several shared biological mechanisms are known to 
underlie multiple chronic diseases. Obesity, physical inac-
tivity, and adherence to a Western-type diet, as well as 
chronic inflammation and insulin resistance, are recog-
nized risk factors for cardio-metabolic diseases, includ-
ing T2D, CVD, and several site-specific cancers [22–24]. 
Metabolomics may help uncover novel etiological mecha-
nisms that are common to several chronic diseases as well 
as those that are disease-specific. One recent study iden-
tified metabolites associated with the risk of multimor-
bidity, defined as the simultaneous presence of multiple 
chronic conditions within one individual [25]. Focusing 
on a pre-defined panel of metabolites, a targeted metabo-
lomics study of breast, prostate, and colorectal cancers in 
a German population found that circulating levels of the 
phosphatidylcholine PC ae C30:0 and several lysophos-
phatidylcholines, including lysoPC a C18:0, were predic-
tive of the development of any of these three cancers [26], 
suggesting that some etiological mechanisms could be 
shared across multiple cancer types.

In this work, we extended this concept by leverag-
ing targeted metabolomics data available within nested 
case-control studies on eight cancer types (breast, colo-
rectal, endometrial, gallbladder and biliary tract, kidney, 
localized prostate and advanced prostate cancers, and 
HCC) previously acquired in the European Prospective 
Investigation into Cancer and Nutrition (EPIC) [11, 12, 
14, 15, 19]. The data-shared lasso [27–29], a penalized 

multivariate approach specifically designed for the inves-
tigation of a set of shared risk factors across different 
disease outcomes, was used to carry out a multivariate 
pan-cancer analysis to identify mutually adjusted metab-
olites associated with cancer risk and to identify those 
metabolites with consistent or heterogeneous patterns of 
associations across the eight cancer types.

Methods
Study population
EPIC is an ongoing multicentric prospective study with 
over 500,000 men and women recruited between 1992 
and 2000 from 23 centres in 10 European countries [30], 
originally designed to study the relationship between 
diet and cancer risk. Incident cancer cases were identi-
fied through a combination of methods, including health 
insurance records, cancer and pathology registries, and 
active follow-up through study participants and their 
next-of-kin. At recruitment, information on diet and life-
style was collected via self-administered questionnaires. 
Blood samples were collected from around 386,000 par-
ticipants according to a standardized protocol. In France, 
Germany, Greece, Italy, the Netherlands, Norway, Spain, 
and the UK, serum (except in Norway), plasma, eryth-
rocytes, and buffy coat aliquots were stored in liquid 
nitrogen (− 196 °C) in a centralized biobank at the Inter-
national Agency for Research on Cancer (IARC). In Den-
mark, blood fractions were stored locally in the vapour 
phase of liquid nitrogen containers (− 150 °C), and in 
Sweden, they were stored locally at − 80 °C in standard 
freezers. Fasting was not required.

Our analyses used a set of metabolomics measure-
ments from 15,948 EPIC participants from seven cancer-
specific matched case-control studies nested within EPIC 
(Table  1). In each study, each case was matched to one 
control selected among cancer-free participants (other 
than non-melanoma skin cancer) by risk set sampling, 
using matching factors that included study centre, sex, 
age at blood collection, time of the day of blood collection, 
fasting status, and use of exogenous hormones for women.

All participants provided written informed consent to 
participate in the EPIC study. The cancer-specific case-
control studies were all approved by the ethics committee 
of IARC and participating EPIC centres.

specifically associated with particular cancer types, including histidine that was inversely associated with colorectal 
cancer risk and one cluster of sphingomyelins that was inversely associated with risk of hepatocellular carcinoma and 
positively with endometrial cancer risk.

Conclusions: These results could provide novel insights for the identification of pathways for cancer development, in 
particular those shared across different cancer types.
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Laboratory analysis
As summarized in Table  1, pre-diagnostic blood sam-
ples were assayed at the Helmholtz Zentrum (München, 
Germany) for the second colorectal cancer study, at 
Imperial College London (UK) for the endometrial can-
cer study, and at IARC for all other studies. Data for a 
total of 171 metabolites were acquired by tandem mass 
spectrometry using either the AbsoluteIDQ p150 (for 
the second colorectal cancer study) or the AbsoluteIDQ 
p180 commercial kit (Biocrates Life Science AG, Inns-
bruck Austria). Two successive assays were used, liquid 
chromatography-tandem mass spectrometry (LC-MS/
MS) for amino acids and biogenic amines, and flow 
injection analysis-tandem mass spectrometry (FIA-
MS/MS) for the other metabolites. Samples were either 
serum or citrate plasma, and samples within each study 
were all from the same type of blood matrix, except for 
the breast cancer study (Table 1). Samples of each case-
control pair were assayed on the same batch (and in the 
same laboratory).

Selection of the metabolites and data pre‑processing
Data were pre-processed following an established pro-
cedure [31]. Briefly, metabolites with more than 25% 
missing values in any study were excluded. Samples with 
more than 25% missing values overall were excluded, as 
were those detected as outliers by a principal compo-
nent analysis (PCA)-based approach applied within each 
study separately. Then, for all metabolites measured by 
FIA with a semi-quantitative method (acylcarnitines, 
glycerophospholipids, sphingolipids, hexoses), measure-
ments below the batch-specific limit of detection (LOD) 
were imputed to half the LOD. When the batch-specific 

LOD was unknown, LOD was first set to study-specific 
medians of known batch-specific LODs. For the metabo-
lites measured with a fully quantitative approach (amino 
acids and biogenic amines), measurements below the 
lower limit of quantification (LLOQ) or above the upper 
limit of quantification (ULOQ) were imputed to half the 
LLOQ or to the ULOQ, respectively. For all metabolites, 
other missing values were imputed to the batch-specific 
median of the non-missing measurements. The result-
ing measurements were then log-transformed to improve 
symmetry.

Cancer types and exclusion criteria
We focused on eight cancer types, namely breast, colo-
rectal, endometrial, kidney, gallbladder and biliary tract 
cancers, HCC, and advanced and localized prostate. As 
detailed in the Supplementary Material (Additional file 1: 
Section 1 [12, 19]), matched case-control pairs for HCC 
and gallbladder and biliary tract cancer were extracted 
from the liver cancer study, while matched case-control 
pairs for advanced and localized prostate cancer were 
extracted from the prostate cancer study. Since hor-
mones could affect metabolite levels and their association 
with cancer risk [11], women using exogenous hormones 
(either hormone replacement therapy or oral contracep-
tive) at baseline were excluded.

Statistical analyses
All analyses were performed using R software. Charac-
teristics of cases and controls for the eight studied can-
cer types were described using the mean and standard 
deviation or frequency. Pearson correlations between the 
metabolites were computed in controls only to reduce 
collider bias.

Clustering of metabolites
The most strongly correlated metabolites were grouped 
together by applying the hierarchical clustering approach 
implemented in the ClustOfVar R package [32] to the 
control samples. For each cluster, the method defined 
its representative as the first principal component in the 
PCA of the metabolites grouped into that cluster. In our 
figures and tables, cluster representatives were labelled 
as “xxx_clus”, with “xxx” representing one particular 
metabolite that composed that cluster. We retained the 
model with the lowest number of clusters such that rep-
resentatives explained at least 80% of the total variation 
in each cluster. Cluster representatives and metabolites 
left isolated after the clustering were simply referred to as 
metabolites hereafter.

Table 1 Description of the original seven cancer‑specific matched 
case‑control studies nested within EPIC

a Except Swedish participants (n=101; EDTA plasma)
b Helmhotz Zentrum München
c Imperial College London

Cancer site Number 
of 
samples

Matrix Laboratory Kit used

Breast 3172 Citrate  plasmaa IARC p180

Colorectal (study 
1)

946 Citrate plasma IARC p180

Colorectal (study 
2)

2295 Serum HZMb p150

Endometrial 1706 Citrate plasma ICLc p180

Liver 662 Serum IARC p180

Kidney 1213 Citrate plasma IARC p180

Prostate 6020 Citrate plasma IARC p180
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Multivariate analyses
Given the number of studied metabolites, penalized con-
ditional logistic regression models were used to estimate 
mutually adjusted associations with cancer risk. Since 
body mass index (BMI) could be a strong confounder of 
the relationship between several of the examined metab-
olites [33, 34] and cancers [35–39], metabolite-specific 
linear models were used to compute residuals on BMI. To 
account for the large number of metabolites and leverage 
possible commonalities among the metabolic disorders 
preceding cancer development for different cancer types, 
estimation was based on the data-shared lasso [27–29], 
an extension of the lasso [40] allowing the analysis of 
case-control studies with multiple disease types. For each 
metabolite, the data-shared lasso decomposes its type-
specific odds ratio as the product of (i) an overall odds 
ratio capturing the overall association with cancer and 
(ii) type-specific deviations from this overall odds ratio. 
Then, the method identifies whether its overall (mutually 
adjusted) association with cancer is null or not and also 
whether some of its type-specific associations deviate 
from its (possibly null) overall association with cancer. 
Compared to more standard approaches, the data-shared 
lasso was shown to perform particularly well for the iden-
tification of features with a consistent non-null associa-
tion with multiple disease types, while also allowing for 
the identification of type-specific associations [29]. The 
data-shared lasso along with its implementation are 
described further in the Supplementary Material (Addi-
tional file 1: Section 2 [27–29, 41–45]).

To assess the robustness of the identified associations, 
the data-shared lasso was applied repeatedly on 100 
bootstrap samples generated from the original sample 
[46]. Moreover, following the rationale of the lasso-OLS 
hybrid [47], associations identified by the data-shared 
lasso were further inspected using unpenalized condi-
tional logistic regression models, (i) to quantify their 
strength and investigate possible heterogeneity among 
the type-specific associations beyond those identified by 
the data-shared lasso (see Additional file 1: Section 3 [47, 
48] for details); (ii) to assess possible departure from lin-
earity by comparing models with natural cubic splines to 
models with linear terms only; and (iii) to assess possi-
ble attenuation after excluding, in turn, first 2 and first 7 
years of follow-up (to examine potential reverse causation 
and more generally assess the impact of time to diagnosis 
on our findings), after adjustment for additional factors 
(education level, waist circumference, height, physical 
activity, smoking status, alcohol intake, use of non-steroi-
dal anti-inflammatory drugs, and, for women, menopau-
sal status and phase of menstrual cycle in premenopausal 
women), and after reintegrating the pairs comprising at 
least one hormone user. Effect modification by BMI was 

assessed under standard (i.e., non-conditional) logistic 
regression models after breaking the matching and cor-
recting metabolite measurements for batch and study 
effects [31]. Finally, to assess the impact of the exclusion 
of pairs with missing information on tumour stage in the 
prostate study, the data-shared lasso was applied to 100 
bootstrap samples generated from the sample compris-
ing all pairs from the prostate study, after considering an 
additional subtype (“unknown stage”) for prostate cancer.

Univariate analyses
For comparison, non-mutually adjusted associations with 
cancer risk were estimated for each metabolite in condi-
tional logistic regression models adjusted for BMI. Those 
analysis and subsequent results are presented in the Sup-
plementary Material (Additional file 1: Section 4 [49]).

Analysis of additional metabolites
The 16 metabolites (Additional file 2: Table S1) that were 
not acquired in the second colorectal cancer study (Abso-
luteIDQ p150 kit) were not included in our main analysis 
and were examined in a reduced sample, using the meth-
ods described above.

Results
Data pre‑processing
Among the 118 metabolites that were measured in all 
cancer type-specific studies of the main analysis, the 
acylcarnitine C4-OH (C3-DC) was the only one that was 
missing in more than 25% of the samples of at least one 
study (prostate) and was excluded. Exclusions of subjects 
are detailed in Fig.  1. Briefly, 44 samples were initially 
excluded due to being either assayed on batches with 
less than 10 samples (6 samples), identified as outlying 
samples (2 samples), or unmatched to either a case or a 
control sample (36 samples). Seventy-nine pairs from the 
liver study were also excluded, having developed a liver 
cancer other than HCC or GBC, along with 1164 pairs 
from the prostate study for which no information on the 
tumour stage was available for the case. Finally, 881 pairs 
including at least one exogenous hormone user at blood 
collection were excluded.

Description of the study population
A total of 11,656 EPIC participants were included in the 
analysis comprising 5828 matched case-control pairs. 
Cases were diagnosed at an average age of 64.4 years, 8.4 
years after blood collection. The main characteristics of 
cases and controls in each study are displayed in Table 2.

The main analysis focused on 117 metabolites that 
were retained after the pre-processing step (Additional 
file 2: Table S1). As displayed in Additional file 2: Figure 
S1, strong positive correlations were observed between 
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some metabolites, particularly between some of the 
glycerophospholipids (phosphatidylcholines, PCs, and 
lysophosphatidylcholines, lysoPCs) and sphingomyelins 
(SMs).

Clustering of metabolites
The hierarchical clustering applied to controls grouped 
100 metabolites into 33 clusters of size ranging from 
2 to 6 metabolites per cluster, while 17 metabolites 
remained isolated. As displayed in Fig.  2, clusters com-
prised metabolites of the same chemical class, and cor-
relations between metabolites and their representative 
were consistently greater than 0.83. On average, clusters’ 
representatives explained 86% of the total variation of 
their cluster (range: 80–95%), and the 33 + 17 = 50 stud-
ied metabolites together explained more than 88% of the 
total variation of the original 117 metabolites.

Multivariate analyses
As displayed in Figs. 3 and 4, the data-shared lasso identi-
fied nine metabolites with a non-null overall association 
with cancer: butyrylcarnitine (acylcarnitine C4), glu-
tamine, lysoPC a C18:2, and three clusters of PCs (those 
containing PC aa C32:2, PC aa C36:0, and PC aa C36:1, 
respectively), with an inverse overall association with 
cancer risk, and decanoylcarnitine (acylcarnitine C10), 
proline, and the cluster of PCs that included PC aa C28:1 
with a positive overall association. Cancer type-specific 

deviations from the overall association with cancer risk 
were identified for three of these metabolites: the associ-
ation between proline and breast cancer risk was inverse 
or null, while the associations between lysoPC a C18:2 
and the cluster containing PC aa C36:0 with localized 
prostate cancer were positive or null.

Several cancer type-specific associations were identi-
fied among the remaining 41 metabolites. Specifically, 
positive associations were observed between breast 
cancer risk and two clusters that included tetrade-
cenoylcarnitine (acylcarnitine C14:1) and PC aa C36:5, 
respectively. The risk of colorectal cancer was positively 
associated with arginine and PC ae C36:0 and inversely 
associated with the cluster that included histidine. The 
risk of HCC was positively associated with the cluster 
containing PC aa C40:2 and inversely associated with 
the two clusters that included lysoPC a C20:3 and SM 
C16:0, respectively. This latter cluster was also positively 
associated with endometrial cancer risk. The cluster that 
included octadecenoylcarnitine (acylcarnitine C18:1) was 
inversely associated with the risk of advanced prostate 
cancer. Finally, the risk of localized prostate cancer was 
inversely associated with hexoses (H1).

The strength of the associations identified by the data-
shared lasso was similar after excluding, in turn, the first 
2 and the first 7 years of follow-up (Additional file  2: 
Fig. S2), and after reintegrating the 881 pairs compris-
ing at least one hormone user (Additional file 2: Fig. S3). 

Fig. 1 Flowchart summarizing the exclusion criteria to derive the final sample used in our main analysis. GBC stands for gallbladder and biliary tract 
cancer and HCC for hepatocellular carcinoma
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Likewise, models adjusted for additional factors pro-
duced similar associations (Additional file  2: Fig. S2), 
except for the overall association with cancer for the 
cluster that included PC aa C28:1, whose odds ratio (OR) 
was attenuated from 1.09 (95% confidence interval: 1.01–
1.17) to 1.04 (0.98–1.12), and for the association between 
endometrial cancer risk and the cluster that included 

SM C16:0, whose OR decreased from 1.51 (1.19–1.93) to 
1.20 (0.97–1.47). For each overall association and type-
specific deviation identified by the data-shared lasso, 
linearity and absence of effect modification by BMI were 
compatible with our data (Additional file  2: Fig. S4). 
Focusing on the nine metabolites that had a non-null 
overall association with cancer, the analysis presented in 

Fig. 2 Description of the 50 “metabolites” retained for the main analysis. They include 33 clusters of strongly correlated metabolites and 17 “isolated” 
metabolites. For example, the 19th metabolite is an isolated metabolite (valine), while the 26th one is a cluster made of two phosphatidylcholines. 
For each cluster, correlations between its representative and the individual metabolites that compose that cluster are represented as a heat map 
(this correlation is 1 when the “cluster” is reduced to an isolated metabolite)
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Additional file 2: Fig. S5 suggested possible cancer type-
specific deviations from the overall associations beyond 
the three ones identified by the data-shared lasso, in par-
ticular for HCC (with acylcarnitine C4, proline, and the 
cluster that comprises PC aa C36:1) and for kidney can-
cer (with acylcarnitines C10 and C4 and the cluster that 
comprises PC aa C36:1). However, none of the compari-
sons between the models identified by the data-shared 
lasso and the nine “extended” models used to derive these 
fully cancer type-specific associations reached statistical 
significance (Additional file 2: Fig. S5).

As displayed in Table  3 (third column), 15 out of the 
22 associations identified by the data-shared lasso were 
replicated in more than 50% of the bootstrap samples. As 
displayed in Table  4, three inverse cancer type-specific 
associations that were not identified by the data-shared 
lasso on the original sample were identified in more 
than 55% of the bootstrap samples: the cluster compris-
ing glycine with endometrial cancer risk (identified in 
65% of the bootstrap samples) and the cluster containing 
decenoylcarnitine (acylcarnitine C10:1) with risk of kid-
ney cancer (56%) and lysoPC a C16:1 with risk of local-
ized prostate cancer (84%). Positive associations between 
arginine and kidney cancer risk (74%) and between the 
cluster containing lysoPC a C16:0 and localized prostate 
cancer risk (86%) were also observed in more than 55% of 
the bootstrap samples.

Results obtained on the bootstrap samples generated 
from the extended sample comprising all the pairs from 
the prostate study are presented in Additional file  2: 
Tables S2 and S3. Fifteen associations out of the 22 iden-
tified in our main analysis were replicated in more than 
50% of these bootstrap samples. A few additional overall 
and type-specific associations were identified in a large 
proportion of the bootstrap samples (see Additional 
file  2: Table  S3). In particular, an inverse association 
between acylcarnitine C10 and unknown stage prostate 
cancer was observed in 80% of the samples.

Univariate analysis
The results from the univariate analysis are presented in 
the Supplementary Material (Additional file 1: Section 4) 
and in Additional file 2: Fig. S6.

Analysis of the extended list of metabolites
After excluding 2134 samples from the second colo-
rectal cancer study which used a different platform 
that measured a lower number of metabolites, 16 addi-
tional metabolites could be evaluated (Additional file 2: 
Table  S1). Among them, the clustering step grouped 
leucine and isoleucine together. The analysis of this 
extended list of metabolites then focused on 65 metab-
olites (31 isolated metabolites and 34 cluster represent-
atives), measured in 9522 participants. As displayed in 

Fig. 3 Summary of the main results from the multivariate pan‑cancer analysis. It evaluated mutually adjusted associations between each feature 
(more precisely, their residuals after adjustment for BMI) and the risk of the eight cancer types, using a data‑shared lasso penalty. White entries 
correspond to the absence of identified associations, while green and red entries correspond to inverse and positive associations, respectively. 
The more intense the colour, the larger the absolute value of the log‑odds ratio (that were re‑estimated in multivariate unpenalized conditional 
regression models; see Additional file 1: Section 3.a for details). The x‑axis represents the 50 features (33 cluster representatives and 17 isolated 
metabolites). In the labels of the y‑axis, numbers correspond to the numbers of pairs for each type‑specific cancer, while BrC stands for breast 
cancer, CRC for colorectal cancer, EnC for endometrial cancer, KiC for kidney cancer, GBC for gallbladder and biliary tract cancer, HCC for 
hepatocellular carcinoma, and Adv.PrC and Loc.PrC for advanced and localized prostate cancers, respectively
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Table  3, 11 out of the 22 associations identified in the 
main analysis presented above were again replicated 
in more than 50% of the bootstrap samples generated 
from this reduced sample. Four associations that were 
not identified in our previous analyses were identi-
fied in more than 55% of these new bootstrap samples 
(Table 4): an overall positive association between can-
cer risk and glutamate (55% of the bootstrap samples), 
an overall inverse association between cancer risk with 
spermine (78%), and two cancer type-specific asso-
ciations between glutamate with breast cancer risk 

(inverse, 56%) and between serotonin and colorectal 
cancer risk (positive, 84%).

Discussion
Using available metabolomics data from eight cancer-
specific matched case-control studies nested within the 
EPIC cohort, we investigated the relationship between 
pre-diagnostic blood levels of over one hundred metab-
olites and risks of breast cancer, colorectal cancer, 
endometrial cancer, gallbladder and biliary tract can-
cer, HCC, kidney cancer, and localized and advanced 

Fig. 4 Summary of the mutually adjusted associations identified by the data‑shared lasso. Only the 19 features (8 isolated metabolites and 11 
cluster representatives) for which the data‑shared lasso identified an association with at least one cancer type are presented on the y-axis. Point 
estimates and 95% confidence intervals of the corresponding odds ratios were obtained through non‑penalized conditional logistic regression 
models using the design matrix derived from the positions of the non‑zero components in the data‑shared lasso vector estimate µ̂, δ̂1, · · · , δ̂K  ; 

see Additional file 1: Section 3.a for details. They have to be interpreted with caution since they are the result of post‑selection inference. In the 
labels of the columns, BrC stands for breast cancer, CRC for colorectal cancer, EnC for endometrial cancer, KiC for Kidney cancer, GBC for gallbladder 
and biliary tract cancer, HCC for hepatocellular carcinoma, and Adv.PrC and Loc.PrC for advanced and localized prostate cancers, respectively
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prostate cancers. In our main analysis, we found nine 
metabolites associated with cancer risk across different 
cancer types, suggesting the existence of shared meta-
bolic pathways, as well as fourteen cancer type-specific 
associations. These identified associations were found 
to be robust after extensive sensitivity analyses: in par-
ticular, they were not attenuated after exclusion of the 
first years of follow-up, hence were less likely to be due 
to reverse causality, were not attenuated after adjust-
ment for relevant cancer risk factors, were not modified 
by BMI, and did not deviate significantly from linear-
ity. In additional analyses, in particular those based 
on bootstrap samples, we identified several additional 

metabolites possibly associated with the risk of specific 
cancer types or with cancer risk across different cancer 
types.

Our results suggested that concentrations of glycer-
ophospholipids (phosphatidylcholines and lysophosphati-
dylcholines) could be linked to the risk of cancer overall as 
well as to specific cancer types. The role of glycerophos-
pholipids in carcinogenesis is not fully understood but 
could be related to their documented anti-inflammatory 
properties, protection from oxidative stress, inhibition 
of cell proliferation, and induction of apoptosis [50–52]. 
We observed a consistent inverse association between 
cancer risk with lysoPC a C18:2 as well as three clusters 

Table 3 Robustness of the associations identified in the main analysis. For each identified association, the proportion of bootstrap 
samples on which it was replicated is reported (in bold when ≥50%)

a BrC stands for breast cancer, CRC for colorectal cancer, EnC for endometrial cancer, HCC for hepatocellular carcinoma, and Adv. Prc and Loc.PrC for advanced and 
localized prostate cancers, respectively
b Bootstrap samples were generated from the original sample of 5828 matched case-control pairs with information on 117 metabolites (corresponding to 50 features 
after the clustering step)
c Bootstrap samples were generated from the sample which comprised 4761 matched case-control pairs with information on 133 metabolites (corresponding to 65 
features after the clustering step) after excluding the participants of the second CRC study

Feature Cancer  typea Proportion of bootstrap  samplesb Proportion 
of bootstrap 
 samplesc

Overall associations with cancer risk
 c10 Overall 62% 59%
 c4 Overall 47% 39%

 Glutamine Overall 73% 76%
 Proline Overall 65% 50%
 lysopc_a_c18_2 Overall 57% 47%

 pc_aa_c28_1_Clus Overall 57% 64%
 pc_aa_c32_2_Clus Overall 49% 71%
 pc_aa_c36_0_Clus Overall 86% 95%
 pc_aa_c36_1_Clus Overall 50% 40%

Cancer type‑specific associations
 c14_1_Clus BrC 80% 76%
 Proline BrC 77% 70%
 pc_aa_c36_5_Clus BrC 36% 47%

 Arginine CRC 88% 19%

 his_Clus CRC 81% 72%
 pc_ae_c36_0 CRC 80% 46%

 sm_c16_0_Clus EnC 85% 87%
 lysopc_a_c20_3_Clus HCC 32% 47%

 pc_aa_c40_2_Clus HCC 61% 34%

 sm_c16_0_Clus HCC 90% 78%
 c18_1_Clus Adv.PrC 40% 49%

 lysopc_a_c18_2 Loc.PrC 14% 23%

 pc_aa_c36_0_Clus Loc.PrC 49% 41%

 h1 Loc.PrC 75% 68%
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of phosphatidylcholines across all studied cancer types, 
except localized prostate cancer for which the association 
with lysoPC a C18:2 and one cluster of phosphatidylcho-
lines was absent, or positive. An inverse association was 
previously reported between lysoPC a C18:2 with T2D 
in different studies [7, 53] as well as with risks of breast, 
colorectal, and prostate cancers in the pan-cancer analysis 
conducted in the EPIC Heidelberg study [26]. Our results 
regarding the three clusters of phosphatidylcholines were 
in line with many previously reported inverse associa-
tions between cancer and phosphatidylcholines [11, 12, 15, 
16, 20, 54]. Besides, we identified a positive association 
between the cluster that included PC aa C28:1 and can-
cer risk across all studied cancer types. This cluster also 
comprised PC ae C30:0, for which a positive association 
was reported with risks of breast, colorectal, and prostate 
cancers in the EPIC Heidelberg study [26]. Cancer type-
specific positive associations were found for the cluster 
containing PC aa C36:5 with breast cancer, PC ae C36:0 
with colorectal cancer, and the cluster containing PC aa 
C40:2 with HCC. These three clusters were correlated 
with one another (Pearson correlation greater than 0.48), 
indicating that higher levels of these phosphatidylcholines 
might contribute to the development of these three cancer 
types.

We also observed robust associations between spe-
cific circulating amino acids and cancer risk. Our results 
suggested that proline was positively related to cancer 
risk across all studied cancer types, except breast can-
cer and possibly HCC (see Additional file  2: Fig. S5). A 

positive association between proline and prostate cancer 
risk was previously reported in EPIC [12]. In addition, a 
drosophila model of high-sugar diet [55] recently high-
lighted the possible role of proline in tumour growth, and 
proline was also found to distinguish colorectal cancer 
patients from those with adenomas [56] and to be asso-
ciated with metastasis formation [57]. In the body, pro-
line is generally synthesized via the glutamate/pyrroline 
5-carboxylate pathway [58]. Glutamate was also found to 
be positively related to the risk of all cancer types except 
for breast cancer in our analysis. Moreover, glutamate is 
formed from the degradation of glutamine, which was 
inversely associated with overall cancer risk. Although 
prior studies of the French E3N and SU.VI.MAX cohorts 
reported a positive association between glutamine and 
premenopausal breast cancer [59, 60], our results regard-
ing glutamine and glutamate were consistent with those 
of many previous studies that reported inverse associa-
tions between glutamine and risk of colorectal cancer 
[18], HCC [19, 61], and T2D [7, 25] and positive asso-
ciations between glutamate and risk of premenopausal 
breast cancer [60], kidney cancer [15], HCC [19, 61], 
and T2D [7]. Lower serum levels of glutamine were also 
observed in kidney cancer [62] and ovarian cancer [63] 
cases compared to controls. Glutamine is an energy sub-
strate for cancer cells and makes a major contribution to 
nitrogen metabolism. Alterations in glutamine-glutamate 
equilibrium often reflect energetic processes related to 
cancer metabolism [64]. It is possible that altered levels 
of glutamine and glutamate in individuals subsequently 

Table 4 Other associations identified in a large proportion of the bootstrap samples. Associations identified in at least 55% of both 
bootstrap analyses are reported, along with the proportion of bootstrap samples in which they were identified, and the corresponding 
average log‑odds ratio (as estimated by the data‑shared lasso on each bootstrap sample)

a BrC stands for breast cancer, CRC for colorectal cancer, EnC for endometrial cancer, KiC for kidney cancer, and Loc.PrC for localized prostate cancer
b Bootstrap samples were generated from the original sample of 5828 matched case-control pairs with information on 117 metabolites (corresponding to 50 features 
after the clustering step)
c Bootstrap samples were generated from the original sample which comprised 4761 matched case-control pairs with information on 133 metabolites (corresponding 
to 65 features after the clustering step) after excluding the participants of the second CRC study

Feature Cancer  typea Proportion of 
bootstrap  samples1

Average log‑ORb Proportion of 
bootstrap  samples2

Average log‑ORc

Overall associations with cancer risk
 Glutamate Overall ‑‑ ‑‑ 55% 0.09

 Spermine Overall ‑‑ ‑‑ 78% −0.10

Type‑specific associations
 gly_Clus EnC 65% −0.17 78% −0.14

 c10_1_Clus KiC 56% −0.18 56% −0.17

 lysopc_a_c16_1 Loc.PrC 84% −0.19 78% −0.18

 Arginine KiC 74% 0.23 71% 0.21

 lysopc_a_c16_0_Clus Loc.PrC 86% 0.24 79% 0.22

 Glutamate BrC ‑‑ ‑‑ 56% −0.14

 Serotonin CRC ‑‑ ‑‑ 84% 0.35
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diagnosed with cancer may reflect ongoing metabolic 
processes related to cancer development and as such may 
serve as an early biomarker of cancer risk. However, the 
inverse association between glutamine levels and over-
all cancer risk observed in our analysis was only slightly 
attenuated after excluding, in turn, the first 2 and the first 
7 years of follow-up suggesting that changes in the glu-
tamine-glutamate may precede cancer development.

Our analysis additionally identified two positive and 
two inverse cancer type-specific associations with circu-
lating amino acids. We observed an inverse association 
between colorectal risk and the cluster containing histi-
dine, for which previous studies reported inverse associa-
tions with risks of colorectal cancer and T2D [25], while 
a positive association was reported with breast cancer 
[60]. Also, lower serum levels of histidine were previously 
reported in ovarian cancer cases compared to controls 
[65]. Our results further suggested an inverse associa-
tion between endometrial cancer risk and the cluster 
composed of glycine and serine, in line with previous 
results from the EPIC cancer-specific study of endome-
trial cancer [14]. Previous studies also reported inverse 
associations between glycine and/or serine with risks of 
T2D [25]. Finally, our analysis suggested a positive asso-
ciation between arginine with risks of colorectal and kid-
ney cancers (Table 4). Arginine plays a key role in nitric 
oxide production and polyamines synthesis [66]. Both 
have been found to be associated with tumour growth, 
with polyamines enhancing it and nitric oxide inhibit-
ing it. Arginine’s influence on tumour growth thus might 
be related to the relative activity of those two pathways. 
For instance, arginine was previously found to be posi-
tively associated with breast cancer in the E3N cohort 
[60], while an inverse association with breast cancer was 
reported in EPIC [11].

Regarding the biogenic amines, we found a posi-
tive association between serotonin levels and colorectal 
cancer risk, consistent with previous results from the 
CORSA case-control study and a previous EPIC analysis 
of colon cancer [67]. We also found a consistent inverse 
association between spermine and the risk of the eight 
studied cancer types. Like other polyamines, spermine is 
involved in cell proliferation and differentiation and has 
antioxidant properties [68], and dysregulation of poly-
amine metabolism is characteristic of multiple types of 
tumours [69]. It was previously reported that polyamine 
supplementation, in particular spermidine, which acts as 
an intermediate in the conversion of putrescine to sper-
mine, could be related to reduced overall and cancer-spe-
cific mortality [70–72].

In our analysis, localized and advanced prostate can-
cers were considered as two different outcomes as previ-
ous results suggested that metabolic dysregulation might 
be predictive of advanced or aggressive prostate cancers 
only [12]. In fact, we observed some differences between 
the metabolites associated with risks of localized and 
advanced prostate cancers, respectively. Specifically, and 
as previously reported [12, 13], our results suggested 
that hexoses, glycerophospholipids, octadecenoylcar-
nitine (acylcarnitine C18:1), and/or octadecadienylcar-
nitine (acylcarnitine C18:2) could help differentiate the 
respective mechanisms involved in the development 
of aggressive and localized prostate tumours. On the 
other hand, the positive association with decanoylcarni-
tine (acylcarnitine C10), which was observed with risk 
of all cancer types, and in particular with both localized 
and advanced prostate cancer risk, was notably attenu-
ated when including the unknown stage prostate cancer 
pairs: it was only detected in 44% of the bootstrap sam-
ples generated from that extended sample (see Addi-
tional file 2: Table S2), in line with the inverse association 
between decanoylcarnitine and unknown stage prostate 
cancer that was observed in 80% of the samples (Addi-
tional file  2: Table  S3). Overall, these results suggested 
that the positive association between decanoylcarnitine 
and prostate cancer identified in our main analysis might 
not be real and might be due to an association between 
decanoylcarnitine and cancer stage missingness in our 
prostate cancer study.

Some metabolites identified in our study were previ-
ously associated with established cancer risk factors, such 
as obesity [33, 34]. In particular, a recent metabolomics 
study of BMI reported inverse associations with glu-
tamine, lysophosphatidylcholine a C18:2, and phosphati-
dylcholine PC aa C38:0 (which was clustered with PC 
aa C36:0 in our analysis) and a positive association with 
glutamate. Directions of the associations with BMI were 
consistent with those identified in our study with can-
cer risk after adjustment for BMI, indicating that these 
metabolites might be mediators of the obesity-cancer 
relationship.

Our study has several strengths. First, it relied on 
a large sample of pre-diagnostic metabolomics data 
acquired among 5828 case-control pairs in nested stud-
ies on eight cancer types within a large prospective 
cohort, on average 6.4 years before cases developed can-
cer. Second, in a context where some metabolites might 
be predictive of cancer risk for multiple cancer types, 
the data-shared lasso used in our analysis automatically 
accounted for or ignored cancer types when assessing 
the association between each metabolic feature with 
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cancer risk, depending on whether heterogeneity among 
the cancer type-specific associations was supported by 
the data for that particular feature. The comparison of 
results produced by the standard univariate analyses and 
the data-shared lasso illustrated the interest of the latter. 
First, the data-shared lasso benefited from the increased 
statistical power of the pooled analysis for the identi-
fication of metabolites that could be involved in cancer 
development for multiple cancer types: for example, 
butyrylcarnitine (acylcarnitine C4) was not associated 
with cancer risk in any of the cancer type-specific uni-
variate analyses, while it was in the univariate pooled 
analysis and in the data-shared lasso analysis. Moreover, 
unlike the simple pooled analysis, the data-shared lasso 
would not necessarily mask cancer type-specific asso-
ciations: for example, the data-shared lasso identified a 
positive association between the cluster containing tet-
radecenoylcarnitine (acylcarnitine C14:1) and breast 
cancer risk, as the univariate analysis of the breast cancer 
study did, while the univariate pooled analysis could not. 
Another key difference between the standard univari-
ate analyses and the data-shared lasso is that the latter 
allowed the investigation of mutually adjusted associa-
tions, hence the identification of metabolites or clusters 
of metabolites whose association with cancer risk could 
not be explained away by other metabolites included in 
our analysis. Furthermore, mutual adjustment revealed 
associations that could not be detected in minimally 
adjusted models, such as the one between arginine and 
colorectal cancer risk, which was not apparent in mod-
els not adjusted for glutamine and histidine. Another 
strength of our study stemmed from the extensive sensi-
tivity analyses that we carried out.

On the other hand, identifying cancer risk factors is 
particularly challenging when candidate risk factors 
are strongly correlated with one another. Here, we clus-
tered the most strongly correlated metabolites together 
prior to applying the data-shared lasso. As a sensitivity 
analysis, the data-shared lasso was applied to the origi-
nal set of 117 metabolites, thus ignoring the clustering 
step, and the results were largely consistent with those 
of our main analysis (Additional file  2: Fig. S7). Moreo-
ver, because strong correlations remained among some 
of the metabolites produced by the hierarchical cluster-
ing (Additional file  2: Fig. S8, Additional file  2: Fig. S9), 
we applied the data-shared lasso to multiple bootstrap 
samples to gauge the robustness and specificity of the 
associations identified in our main analysis. Although 
most of the identified associations were replicated in a 
large proportion of bootstrap samples, a few of them 
were less robust, hence more questionable. For example, 
the identified inverse association between HCC risk and 

the cluster that included lysoPC a C20:3 was replicated 
in 32% of the bootstrap samples only. This lack of robust-
ness could be due to the strong correlation between this 
cluster and the other three studied metabolites related 
to lysoPCs (Pearson correlation greater than 0.65; Addi-
tional file 2: Fig. S8). As a matter of fact, an inverse asso-
ciation between HCC risk and at least one of the four 
metabolites related to lysoPCs was identified in 78% of 
the bootstrap samples. Overall, these results were sugges-
tive of a stronger inverse association with features related 
to lysoPCs for HCC compared to the other cancer types, 
but our analysis failed to unambiguously identify which 
specific lysoPCs might underlie this stronger inverse 
association. An additional limitation for interpreting the 
lipid results is the lack of specificity for lipids measured 
with the AbsoluteIDQ p180/p150 kits as a result of the 
FIA method [73, 74], which does not allow for unambigu-
ous identification of the compounds measured since the 
signal observed could correspond to several compounds. 
Moreover, the limited sample size for some of the studied 
cancer types (in particular, gallbladder and biliary tract 
cancer and HCC) was a limitation for the identification of 
cancer type-specific deviations. In this respect, we com-
plemented our analysis by the inspection of estimates 
computed under models derived from the one identi-
fied by the data-shared lasso but that further allowed 
fully type-specific associations (Additional file 2: Fig. S5). 
Another potential limitation of our study was the lack of 
repeated measurements, yet previous studies suggested 
that blood levels of metabolites were relatively stable and 
that a single measurement might be sufficient to capture 
medium-term exposure [75–77].

Conclusions
Our results confirmed the complex link between metab-
olism and cancer risk and highlighted the potential of 
metabolomics to identify possible informative mark-
ers associated with cancer risk and to gain insights into 
the biological mechanisms leading to cancer develop-
ment. Our study indicated that specific metabolite 
families might be related to the risk of multiple cancer 
types. Some of these metabolites could reflect biological 
mechanisms underlying the carcinogenic effects of some 
established cancer risk factors, including obesity.

Abbreviations
Adv.PrC: Advanced prostate cancer; BMI: Body mass index; BrC: Breast cancer; 
CRC : Colorectal cancer; CVD: Cardiovascular diseases; EnC: Endometrial cancer; 
EPIC: European Prospective Investigation into Cancer and Nutrition; FDR: 
False discovery rate; FIA: Flow injection analysis; GBC: Gallbladder and biliary 
tract cancer; HCC: Hepatocellular carcinoma; HZM: Helmholtz Zentrum; IARC 
: International Agency for Research on Cancer; ICL: Imperial College London; 
KiC: Kidney cancer; Lasso: Least absolute shrinkage and selection operator; LC: 
Liquid chromatography; LLOQ: Lower limit of quantification; Loc.PrC: Localized 



Page 14 of 17Breeur et al. BMC Medicine          (2022) 20:351 

prostate cancer; LOD: Limit of detection; lysoPC: Lysophosphatidylcholine; MS/
MS: Tandem mass spectrometry; OLS: Ordinary least square regression; OR: 
Odds ratio; PC: Phosphatidylcholine; PCA: Principal component analysis; PrC: 
Prostate cancer; SM: Sphingomyelin; T2D: Type 2 diabetes; ULOQ: Upper limit 
of quantification.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12916‑ 022‑ 02553‑4.

Additional file 1. Supplementary material regarding (i) the definition 
of cancer cases for HCC, GBC, Adv.PrC and Loc.PrC; (ii) the definition and 
implementation of the data‑shared lasso; (iii) the models used to derive 
point estimates and confidence intervals from the model selected by 
the data‑shared lasso; and (iv) the univariate analysis conducted for 
comparison.

Additional file 2: Supplementary tables and figures. Figure S1. 
Pearson correlation between the 117 original metabolites. Figure S2. Sen‑
sitivity analyses of mutually adjusted ORs for the overall associations and 
cancer type‑specific deviations. Figure S3. Sensitivity analysis of mutually 
adjusted ORs for the overall associations and cancer type‑specific devia‑
tions with or without excluding hormone users. Figure S4. p‑values of 
tests for departure from linearity and effect modification by BMI. Figure 
S5. ORs for the overall associations identified by the data‑shared lasso 
with (i) the original model (ii) the extended type‑specific model. Figure 
S6. Results from the univariate analyses. Figure S7. Comparison of the 
associations identified by the data‑shared lasso when working with the 50 
features (as in our main analysis) or with the original 117 metabolites. Fig‑
ure S8. Pearson correlation between the 50 clusters. Figure S9. Pearson 
correlation between the 19 features related to at least one cancer site in 
our main analysis. Table S1. list of the 117 metabolites studied in the main 
analysis, and of the 16 additional metabolites studied when excluding the 
second colorectal study. Table S2. Robustness of the associations identi‑
fied in the main analysis when including all the pairs from the prostate 
cancer study. Table S3. Other associations identified in a large propor‑
tion of bootstrap samples when including all the pairs from the prostate 
cancer study.

Acknowledgements
This paper is dedicated to the memory our of colleague Dr. Bas 
Bueno‑de‑Mesquita.

IARC disclaimer
Where authors are identified as personnel of the International Agency for 
Research on Cancer/World Health Organization, the authors alone are respon‑
sible for the views expressed in this article and they do not necessarily repre‑
sent the decisions, policy, or views of the International Agency for Research on 
Cancer/World Health Organization.

Authors’ contributions
The authors’ responsibilities were as follows: PF, MJG, and VV conceived, 
designed, and supervised the research. MB and VV analysed the data. MB, PF, 
MJG, and VV were responsible for drafting the manuscript. LD, MJ1, MJ2, SR, 
RCT, and MJG conducted and supervised metabolomics analyses. LD, MJ1, 
MJ2, SR, RCT, MH, TJK, JAS, KO, AT, CK, JAR, NL, GS, RK, VK, MSB, FE, DP, SG, SP, 
RT, CS, BBdM, KSO, TMS, THN, JRQ, CB, MRB, MDC, EA, MS, JM, LV, MR, DM, KT, 
AKH, HK, JA, PKR, AS, and MJG provided the original data, information on the 
respective populations, and advice on the study design, analysis, and interpre‑
tation of the results. All authors read and approved the final manuscript.

Authors’ information
Not applicable.

Funding
The coordination of EPIC is financially supported by International Agency 
for Research on Cancer (IARC) and by the Department of Epidemiology and 

Biostatistics, School of Public Health, Imperial College London, which has 
additional infrastructure support provided by the NIHR Imperial Biomedical 
Research Centre (BRC).
The national cohorts are supported by Danish Cancer Society (Denmark); 
Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de 
l’Education Nationale, Institut National de la Santé et de la Recherche Médi‑
cale (INSERM) (France); German Cancer Aid, German Cancer Research Center 
(DKFZ), German Institute of Human Nutrition Potsdam‑Rehbruecke (DIfE), 
Federal Ministry of Education and Research (BMBF) (Germany); Associazione 
Italiana per la Ricerca sul Cancro‑AIRC‑Italy, Compagnia di SanPaolo and 
National Research Council (Italy); Dutch Ministry of Public Health, Welfare and 
Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch 
Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer 
Research Fund (WCRF), Statistics Netherlands (The Netherlands); Health 
Research Fund (FIS) ‑ Instituto de Salud Carlos III (ISCIII), Regional Govern‑
ments of Andalucía, Asturias, Basque Country, Murcia and Navarra, and the 
Catalan Institute of Oncology ‑ ICO (Spain); Swedish Cancer Society, Swedish 
Research Council and County Councils of Skåne and Västerbotten (Sweden); 
Cancer Research UK (14136 to EPIC‑Norfolk; C8221/A29017 to EPIC‑Oxford), 
Medical Research Council (1000143 to EPIC‑Norfolk; MR/M012190/1 to 
EPIC‑Oxford) (UK). IDIBELL acknowledges support from the Generalitat de 
Catalunya through the CERCA Program. The breast cancer study was funded 
by the French National Cancer Institute (grant number 2015‑166). The colo‑
rectal cancer studies were funded by World Cancer Research Fund (reference: 
2013/1002; www. wcrf. org/) and the European Commission (FP7: BBMRI‑LPC; 
reference: 313010; https:// ec. europa. eu/). The endometrial cancer study 
was funded by Cancer Research UK (grant number C19335/A21351). The 
kidney study was funded by the World Cancer Research Fund (MJ; reference: 
2014/1193; www. wcrf. org/) and the European Commission (FP7: BBMRI‑
LPC; reference: 313010; https:// ec. europa. eu/). The liver cancer study was 
supported in part by the French National Cancer Institute (L’Institut National 
du Cancer; INCa; grant numbers 2009‑139 and 2014‑1‑RT‑02‑CIRC‑1) and by 
internal funds of the IARC. For the participants in the prostate cancer study, 
sample retrieval and preparation, and assays of metabolites were supported 
by Cancer Research UK (C8221/A19170), and funding for grant 2014/1183 
was obtained from the World Cancer Research Fund (WCRF UK), as part of 
the World Cancer Research Fund International grant programme. Mathilde 
His’ work reported here was undertaken during the tenure of a postdoctoral 
fellowship awarded by the International Agency for Research on Cancer, 
financed by the Fondation ARC. The funders were not involved in design‑
ing the study; collecting, analysing, and interpreting results; or writing and 
submitting the manuscript for publication.

Availability of data and materials
The R scripts developed to implement the analyses will be made available on 
the GitHub platform, for easy access to all interested scientists. The EPIC data 
is not publicly available, but access requests can be submitted to the Steering 
Committee (https:// epic. iarc. fr/ access/ submit_ appl_ access. php).

Declarations

Ethics approval and consent to participate
The EPIC study, and in particular the seven case‑control studies nested within 
EPIC, were conducted according to the Declaration of Helsinki and approved 
by the ethics committee at the International Agency for Research on Cancer 
(IARC): on 10 April 2008 (IEC 08‑06) and on 11 February 2016 (IEC 16‑06) for 
the liver cancer study, on 7 April 2014 (IEC 14‑07) for the breast cancer study, 
on 7 April 2014 (IEC 14‑08) for the two colorectal cancer studies, on 7 April 
2014 (IEC 14‑09) for the prostate cancer study, on 25 February 2015 (IEC 15‑06) 
for the kidney cancer study, and on 28 April 2016 (IEC 16‑20) for the endome‑
trial cancer study. Written informed consent was obtained from all subjects 
involved in the study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

https://doi.org/10.1186/s12916-022-02553-4
https://doi.org/10.1186/s12916-022-02553-4
http://www.wcrf.org/
https://ec.europa.eu/
http://www.wcrf.org/
https://ec.europa.eu/
https://epic.iarc.fr/access/submit_appl_access.php


Page 15 of 17Breeur et al. BMC Medicine          (2022) 20:351  

Author details
1 Nutrition and Metabolism Branch, International Agency for Research on  
Cancer, NME Branch, 69372 CEDEX 08 Lyon, France. 2 Genetics Branch,  
International Agency for Research on Cancer, 69372 CEDEX 08 Lyon, France. 
3 Cancer Epidemiology Unit, Nuffield Department of Population Health, 
University of Oxford, Oxford OX3 7LF, UK. 4 Department of Clinical Epidemiology, 
Department of Clinical Medicine, Aarhus University Hospital and Aarhus 
University, DK‑8200 Aarhus N, Denmark. 5 Department of Public Health, 
Aarhus University, DK‑8000 Aarhus C, Denmark. 6 Danish Cancer Society 
Research Center Diet, Genes and Environment Nutrition and Biomarkers, 
DK‑2100 Copenhagen, Denmark. 7 Université Paris‑Saclay, UVSQ, Inserm, CESP 
U1018, “Exposome and Heredity” team, Gustave Roussy, 94800 Villejuif, France. 
8 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 
69120 Heidelberg, Germany. 9 Department of Molecular Epidemiology, German 
Institute of Human Nutrition, 14558 Nuthetal, Germany. 10 German Center for 
Diabetes Research (DZD), 85764 Neuherberg, Germany. 11 Institute of Cancer 
Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy. 
12 Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei 
Tumori di Milano, 20133 Milan, Italy. 13 Dipartimento di Medicina Clinica e  
Chirurgia, Federico II University, 80131 Naples, Italy. 14 Hyblean Association 
for Epidemiological Research, AIRE‑ONLUS, 97100 Ragusa, Italy. 15 Unit of 
Cancer Epidemiology Città della Salute e della Scienza University‑Hospital, 
10126 Turin, Italy. 16 Centre for Nutrition, Prevention and Health Services, 
National Institute for Public Health and the Environment (RIVM), PO Box 1, 
3720, BA, Bilthoven, The Netherlands. 17 Department of Community Medicine, 
UiT The Arctic University of Norway, N‑9037 Tromsø, Norway. 18 Public Health 
Directorate, 33006 Oviedo, Asturias, Spain. 19 Unit of Nutrition and Cancer, 
Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), 
Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat,  
08908 Barcelona, Spain. 20 Escuela Andaluza de Salud Pública (EASP), 
18011 Granada, Spain. 21 Instituto de Investigación Biosanitaria ibs. GRANADA, 
18012 Granada, Spain. 22 Centro de Investigación Biomédica en Red de 
Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain. 23 Department 
of Epidemiology, Regional Health Council, IMIB‑Arrixaca, Murcia University, 
30003 Murcia, Spain. 24 Navarra Public Health Institute, 31003 Pamplona, 
Spain. 25 IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain. 
26 Department of Clinical Sciences Malmö Lund University, SE‑214 28 Malmö, 
Sweden. 27 Departement of Surgery, Skåne University Hospital Malmö, Lund 
University, SE‑214 28 Malmö, Sweden. 28 Department of Radiation Sciences,  
Oncology Umeå University, SE‑901 87 Umeå, Sweden. 29 Department 
of Epidemiology and Biostatistics, School of Public Health, Imperial College 
London, London W2 1PG, UK. 30 Department of Surgery and Cancer, Cancer 
Metabolism and Systems Toxicology Group, Division of Cancer, Imperial 
College London, London SW7 2AZ, UK. 31 Institute of Experimental Genetics, 
Helmholtz Zentrum München, German Research Center for Environmental 
Health, 85764 Neuherberg, Germany. 32 Department of Biochemistry, Yong Loo 
Lin School of Medicine, National University of Singapore, Singapore 117597, 
Singapore. 33 Institute of Biochemistry, Faculty of Medicine, University of 
Ljubljana, 1000 Ljubljana, Slovenia. 

Received: 30 March 2022   Accepted: 5 September 2022

References
 1. Beger RD. A review of applications of metabolomics in cancer. Metabo‑

lites. 2013;3(3):552–74. https:// doi. org/ 10. 3390/ metab o3030 552.
 2. Scalbert A, Huybrechts I, Gunter MJ. The food exposome. In: Dagnino S, 

Macherone A, editors. Unraveling the exposome: Springer International 
Publishing. 2019. p. 217–45. https:// doi. org/ 10. 1007/ 978‑3‑ 319‑ 89321‑1_8.

 3. Rappaport SM, Barupal DK, Wishart D, Vineis P, Scalbert A. The blood 
exposome and its role in discovering causes of disease. Environ Health 
Perspect. 2014;122(8):769–74. https:// doi. org/ 10. 1289/ ehp. 13080 15.

 4. González‑Domínguez R, Jáuregui O, Queipo‑Ortuño MI, Andrés‑Lacueva 
C. Characterization of the human exposome by a comprehensive and 
quantitative large‑scale multianalyte metabolomics platform. Anal Chem. 
2020;92(20):13767–75. https:// doi. org/ 10. 1021/ acs. analc hem. 0c020 08.

 5. Gonzalez‑Franquesa A, Burkart AM, Isganaitis E, Patti ME. What have 
metabolomics approaches taught us about type 2 diabetes? Curr Diab 
Rep. 2016;16(8):74. https:// doi. org/ 10. 1007/ s11892‑ 016‑ 0763‑1.

 6. Ahola‑Olli AV, Mustelin L, Kalimeri M, et al. Circulating metabolites and 
the risk of type 2 diabetes: a prospective study of 11,896 young adults 
from four Finnish cohorts. Diabetologia. 2019;62(12):2298–309. https:// 
doi. org/ 10. 1007/ s00125‑ 019‑ 05001‑w.

 7. Sun Y, Gao HY, Fan ZY, He Y, Yan YX. Metabolomics signatures in type 2 
diabetes: a systematic review and integrative analysis. J Clin Endocrinol 
Metab. 2020;105(4):1000–8. https:// doi. org/ 10. 1210/ clinem/ dgz240.

 8. McGarrah RW, Crown SB, Zhang GF, Shah SH, Newgard CB. Cardiovascular 
metabolomics. Circ Res. 2018;122(9):1238–58. https:// doi. org/ 10. 1161/ 
CIRCR ESAHA. 117. 311002.

 9. Cavus E, Karakas M, Ojeda FM, et al. Association of circulating metabolites 
with risk of coronary heart disease in a European population: results from 
the biomarkers for cardiovascular risk assessment in Europe (BiomarCaRE) 
Consortium. JAMA Cardiol. 2019;4(12):1270–9. https:// doi. org/ 10. 1001/ 
jamac ardio. 2019. 4130.

 10. Müller J, Bertsch T, Volke J, et al. Narrative review of metabolomics in 
cardiovascular disease. J Thorac Dis. 2021;13(4):2532–50. https:// doi. org/ 
10. 21037/ jtd‑ 21‑ 22.

 11. His M, Viallon V, Dossus L, et al. Prospective analysis of circulating metabo‑
lites and breast cancer in EPIC. BMC Med. 2019;17(1):178. https:// doi. org/ 
10. 1186/ s12916‑ 019‑ 1408‑4.

 12. Schmidt JA, Fensom GK, Rinaldi S, et al. Pre‑diagnostic metabolite 
concentrations and prostate cancer risk in 1077 cases and 1077 
matched controls in the European Prospective Investigation into Cancer 
and Nutrition. BMC Med. 2017;15(1):122. https:// doi. org/ 10. 1186/ 
s12916‑ 017‑ 0885‑6.

 13. Schmidt JA, Fensom GK, Rinaldi S, et al. Patterns in metabolite profile 
are associated with risk of more aggressive prostate cancer: a prospec‑
tive study of 3,057 matched case‑control sets from EPIC. Int J Cancer. 
2020;146(3):720–30. https:// doi. org/ 10. 1002/ ijc. 32314.

 14. Dossus L, Kouloura E, Biessy C, et al. Prospective analysis of circulating 
metabolites and endometrial cancer risk. Gynecologic Oncol. 2021. 
https:// doi. org/ 10. 1016/j. ygyno. 2021. 06. 001.

 15. Guida F, Tan VY, Corbin LJ, et al. The blood metabolome of incident kid‑
ney cancer: a case–control study nested within the MetKid consortium. 
PLOS Med. 2021;18(9):e1003786. https:// doi. org/ 10. 1371/ journ al. pmed. 
10037 86.

 16. Shu X, Xiang YB, Rothman N, et al. Prospective study of blood metabolites 
associated with colorectal cancer risk. Int J Cancer. 2018;143(3):527–34. 
https:// doi. org/ 10. 1002/ ijc. 31341.

 17. Harlid S, Gunter MJ, Van Guelpen B. Risk‑predictive and diagnostic 
biomarkers for colorectal cancer; a systematic review of studies using 
pre‑diagnostic blood samples collected in prospective cohorts and 
screening settings. Cancers. 2021;13(17):4406. https:// doi. org/ 10. 3390/ 
cance rs131 74406.

 18. Rothwell JA, Bešević J, Dimou N, et al. Circulating amino acid levels and 
colorectal cancer risk in the European Prospective Investigation into 
Cancer and Nutrition and UK Biobank cohorts (In preparation).

 19. Stepien M, Duarte‑Salles T, Fedirko V, et al. Alteration of amino acid and 
biogenic amine metabolism in hepatobiliary cancers: findings from a 
prospective cohort study. Int J Cancer. 2016;138(2):348–60. https:// doi. 
org/ 10. 1002/ ijc. 29718.

 20. Shu X, Zheng W, Yu D, et al. Prospective metabolomics study identifies 
potential novel blood metabolites associated with pancreatic cancer risk. 
Int J Cancer. 2018;143(9):2161–7. https:// doi. org/ 10. 1002/ ijc. 31574.

 21. Zeleznik OA, Clish CB, Kraft P, Avila‑Pacheco J, Eliassen AH, Tworoger SS. 
Circulating lysophosphatidylcholines, phosphatidylcholines, ceramides, 
and sphingomyelins and ovarian cancer risk: a 23‑year prospective 
study. J Natl Cancer Inst. 2020;112(6):628–36. https:// doi. org/ 10. 1093/ 
jnci/ djz195.

 22. Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, inflammation, 
and cancer. Annu Rev Pathol. 2016;11:421–49. https:// doi. org/ 10. 1146/ 
annur ev‑ pathol‑ 012615‑ 044359.

 23. Wiebe N, Stenvinkel P, Tonelli M. Associations of chronic inflamma‑
tion, insulin resistance, and severe obesity with mortality, myocardial 
infarction, cancer, and chronic pulmonary disease. JAMA Netw Open. 
2019;2(8):e1910456. https:// doi. org/ 10. 1001/ jaman etwor kopen. 2019. 
10456.

 24. Li Y, Schoufour J, Wang DD, et al. Healthy lifestyle and life expectancy free 
of cancer, cardiovascular disease, and type 2 diabetes: prospective cohort 
study. BMJ. 2020:l6669. https:// doi. org/ 10. 1136/ bmj. l6669.

https://doi.org/10.3390/metabo3030552
https://doi.org/10.1007/978-3-319-89321-1_8
https://doi.org/10.1289/ehp.1308015
https://doi.org/10.1021/acs.analchem.0c02008
https://doi.org/10.1007/s11892-016-0763-1
https://doi.org/10.1007/s00125-019-05001-w
https://doi.org/10.1007/s00125-019-05001-w
https://doi.org/10.1210/clinem/dgz240
https://doi.org/10.1161/CIRCRESAHA.117.311002
https://doi.org/10.1161/CIRCRESAHA.117.311002
https://doi.org/10.1001/jamacardio.2019.4130
https://doi.org/10.1001/jamacardio.2019.4130
https://doi.org/10.21037/jtd-21-22
https://doi.org/10.21037/jtd-21-22
https://doi.org/10.1186/s12916-019-1408-4
https://doi.org/10.1186/s12916-019-1408-4
https://doi.org/10.1186/s12916-017-0885-6
https://doi.org/10.1186/s12916-017-0885-6
https://doi.org/10.1002/ijc.32314
https://doi.org/10.1016/j.ygyno.2021.06.001
https://doi.org/10.1371/journal.pmed.1003786
https://doi.org/10.1371/journal.pmed.1003786
https://doi.org/10.1002/ijc.31341
https://doi.org/10.3390/cancers13174406
https://doi.org/10.3390/cancers13174406
https://doi.org/10.1002/ijc.29718
https://doi.org/10.1002/ijc.29718
https://doi.org/10.1002/ijc.31574
https://doi.org/10.1093/jnci/djz195
https://doi.org/10.1093/jnci/djz195
https://doi.org/10.1146/annurev-pathol-012615-044359
https://doi.org/10.1146/annurev-pathol-012615-044359
https://doi.org/10.1001/jamanetworkopen.2019.10456
https://doi.org/10.1001/jamanetworkopen.2019.10456
https://doi.org/10.1136/bmj.l6669


Page 16 of 17Breeur et al. BMC Medicine          (2022) 20:351 

 25. Pietzner M, Stewart ID, Raffler J, et al. Plasma metabolites to profile path‑
ways in noncommunicable disease multimorbidity. Nat Med. 2021:1–9. 
https:// doi. org/ 10. 1038/ s41591‑ 021‑ 01266‑0.

 26. Kühn T, Floegel A, Sookthai D, et al. Higher plasma levels of lysophos‑
phatidylcholine 18:0 are related to a lower risk of common cancers in a 
prospective metabolomics study. BMC Med. 2016;14:13. https:// doi. org/ 
10. 1186/ s12916‑ 016‑ 0552‑3.

 27. Gross SM, Tibshirani R. Data shared lasso: a novel tool to discover uplift. 
Comput Stat Data Anal. 2016;101:226–35. https:// doi. org/ 10. 1016/j. csda. 
2016. 02. 015.

 28. Ollier E, Viallon V. Regression modelling on stratified data with the lasso. 
Biometrika. 2017;104(1):83–96. https:// doi. org/ 10. 1093/ biomet/ asw065.

 29. Ballout N, Garcia C, Viallon V. Sparse estimation for case‑control studies 
with multiple disease subtypes. Biostatistics. 2021;22(4):738–55. https:// 
doi. org/ 10. 1093/ biost atist ics/ kxz063.

 30. Riboli E, Hunt KJ, Slimani N, et al. European Prospective Investigation into 
Cancer and Nutrition (EPIC): study populations and data collection. Public 
Health Nutr. 2002;5(6B):1113–24. https:// doi. org/ 10. 1079/ PHN20 02394.

 31. Viallon V, His M, Rinaldi S, et al. A new pipeline for the normalization and 
pooling of metabolomics data. Metabolites. 2021;11(9):631. https:// doi. 
org/ 10. 3390/ metab o1109 0631.

 32. Chavent M, Kuentz‑Simonet V, Liquet B, Saracco J. ClustOfVar: an R pack‑
age for the clustering of variables. J Stat Software. 2012;50:1–16. https:// 
doi. org/ 10. 18637/ jss. v050. i13.

 33. Carayol M, Leitzmann MF, Ferrari P, et al. Blood metabolic signatures of 
body mass index: a targeted metabolomics study in the EPIC cohort. 
J Proteome Res. 2017;16(9):3137–46. https:// doi. org/ 10. 1021/ acs. jprot 
eome. 6b010 62.

 34. Kliemann N, Viallon V, Murphy N, et al. Metabolic signatures of greater 
body size and their associations with risk of colorectal and endome‑
trial cancers in the European Prospective Investigation into Cancer 
and Nutrition. BMC Med. 2021;19(1):101. https:// doi. org/ 10. 1186/ 
s12916‑ 021‑ 01970‑1.

 35. Pischon T, Nimptsch K. Obesity and cancer. Recent Results in 
Cancer Research. Cham: Springer; 2016. https:// doi. org/ 10. 1007/ 
978‑3‑ 319‑ 42542‑9.

 36. Fortner RT, Katzke V, Kühn T, Kaaks R. Obesity and breast cancer. 
Recent Results Cancer Res. 2016;208:43–65. https:// doi. org/ 10. 1007/ 
978‑3‑ 319‑ 42542‑9_3.

 37. Keum N, Giovannucci E. Global burden of colorectal cancer: emerging 
trends, risk factors and prevention strategies. Nat Rev Gastroenterol 
Hepatol. 2019;16(12):713–32. https:// doi. org/ 10. 1038/ s41575‑ 019‑ 0189‑8.

 38. Capitanio U, Bensalah K, Bex A, et al. Epidemiology of renal cell carcinoma. 
Eur Urol. 2019;75(1):74–84. https:// doi. org/ 10. 1016/j. eururo. 2018. 08. 036.

 39. Dashti SG, English DR, Simpson JA, et al. Adiposity and endometrial 
cancer risk in postmenopausal women: a sequential causal mediation 
analysis. Cancer Epidemiol Biomarkers Prev. 2021;30(1):104–13. https:// 
doi. org/ 10. 1158/ 1055‑ 9965. EPI‑ 20‑ 0965.

 40. Tibshirani R. Regression shrinkage and selection via the lasso. J Royl Stat 
Soc Series B (Methodological). 1996;58(1):267–88. https:// doi. org/ 10. 
1111/j. 2517‑ 6161. 1996. tb020 80.x.

 41. Zou H. The adaptive lasso and its oracle properties. J Am Stat Assoc. 
2006;101(476):1418–29. https:// doi. org/ 10. 1198/ 01621 45060 00000 735.

 42. Krämer N, Schäfer J, Boulesteix AL. Regularized estimation of large‑scale 
gene association networks using graphical Gaussian models. BMC Bioin‑
formatics. 2009;10(1):384. https:// doi. org/ 10. 1186/ 1471‑ 2105‑ 10‑ 384.

 43. He K, Wang Y, Zhou X, Xu H, Huang C. An improved variable selection 
procedure for adaptive Lasso in high‑dimensional survival analy‑
sis. Lifetime Data Anal. 2019;25(3):569–85. https:// doi. org/ 10. 1007/ 
s10985‑ 018‑ 9455‑2.

 44. Ballout N, Etievant L, Viallon V. On the use of cross‑validation for the 
calibration of the adaptive lasso. arXiv. 2005:10119 Published online July 
15, 2021. Accessed 1 Dec 2021. http:// arxiv. org/ abs/ 2005. 10119.

 45. Chen Y, Yang Y. The one standard error rule for model selection: does it 
work? Stats. 2021;4(4):868–92. https:// doi. org/ 10. 3390/ stats 40400 51.

 46. Bach FR. Bolasso: model consistent Lasso estimation through the boot‑
strap. In:  Proceedings of the 25th International Conference on Machine 
Learning. ICML ’08: Association for Computing Machinery. 2008. p. 33–40. 
https:// doi. org/ 10. 1145/ 13901 56. 13901 61.

 47. Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Ann 
Stat. 2004;32(2):407–99. https:// doi. org/ 10. 1214/ 00905 36040 00000 067.

 48. Taylor J, Tibshirani R. Post‑selection inference for ‑penalized likelihood 
models. Can J Stat. 2018;46(1):41–61. https:// doi. org/ 10. 1002/ cjs. 11313.

 49. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical 
and powerful approach to multiple testing. J Royl Stat Soc Series B (Meth‑
odological). 1995;57(1):289–300.

 50. Treede I, Braun A, Sparla R, et al. Anti‑inflammatory effects of phosphati‑
dylcholine. J Biol Chem. 2007;282(37):27155–64. https:// doi. org/ 10. 1074/ 
jbc. M7044 08200.

 51. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from 
sphingolipids. Nat Rev Mol Cell Biol. 2008;9(2):139–50. https:// doi. org/ 10. 
1038/ nrm23 29.

 52. Beloribi‑Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogram‑
ming in cancer cells. Oncogenesis. 2016;5:e189. https:// doi. org/ 10. 1038/ 
oncsis. 2015. 49.

 53. Klein MS, Shearer J. Metabolomics and type 2 diabetes: translating basic 
research into clinical application. J Diabetes Res. 2016;2016:3898502. 
https:// doi. org/ 10. 1155/ 2016/ 38985 02.

 54. Stepien M, Keski‑Rahkonen P, Kiss A, et al. Metabolic perturbations prior 
to hepatocellular carcinoma diagnosis: findings from a prospective 
observational cohort study. Int J Cancer. 2021;148(3):609–25. https:// doi. 
org/ 10. 1002/ ijc. 33236.

 55. Newton H, Wang YF, Camplese L, et al. Systemic muscle wasting and 
coordinated tumour response drive tumourigenesis. Nat Commun. 
2020;11:4653. https:// doi. org/ 10. 1038/ s41467‑ 020‑ 18502‑9.

 56. Gumpenberger T, Brezina S, Keski‑Rahkonen P, et al. Untargeted metabo‑
lomics reveals major differences in the plasma metabolome between 
colorectal cancer and colorectal adenomas. Metabolites. 2021;11(2):119. 
https:// doi. org/ 10. 3390/ metab o1102 0119.

 57. Elia I, Broekaert D, Christen S, et al. Proline metabolism supports metas‑
tasis formation and could be inhibited to selectively target metastasizing 
cancer cells. Nat Commun. 2017;8(1):15267. https:// doi. org/ 10. 1038/ 
ncomm s15267.

 58. Watford M. Glutamine metabolism and function in relation to proline 
synthesis and the safety of glutamine and proline supplementation. J 
Nutr. 2008;138(10):2003S–7S. https:// doi. org/ 10. 1093/ jn/ 138. 10. 2003S.

 59. Lécuyer L, Dalle C, Lyan B, et al. Plasma metabolomic signatures associ‑
ated with long‑term breast cancer risk in the SU.VI.MAX prospective 
cohort. Cancer Epidemiol Biomarkers Prev. 2019;28(8):1300–7. https:// doi. 
org/ 10. 1158/ 1055‑ 9965. EPI‑ 19‑ 0154.

 60. Jobard E, Dossus L, Baglietto L, et al. Investigation of circulating metabo‑
lites associated with breast cancer risk by untargeted metabolomics: a 
case‑control study nested within the French E3N cohort. Br J Cancer. 
2021;124(10):1734–43. https:// doi. org/ 10. 1038/ s41416‑ 021‑ 01304‑1.

 61. Fages A, Duarte‑Salles T, Stepien M, et al. Metabolomic profiles of 
hepatocellular carcinoma in a European prospective cohort. BMC Med. 
2015;13:242. https:// doi. org/ 10. 1186/ s12916‑ 015‑ 0462‑9.

 62. Gao H, Dong B, Liu X, Xuan H, Huang Y, Lin D. Metabonomic profiling of 
renal cell carcinoma: high‑resolution proton nuclear magnetic resonance 
spectroscopy of human serum with multivariate data analysis. Analytica 
Chimica Acta. 2008;624(2):269–77. https:// doi. org/ 10. 1016/j. aca. 2008. 06. 051.

 63. Plewa S, Horała A, Dereziński P, et al. Usefulness of amino acid profiling in 
ovarian cancer screening with special emphasis on their role in cancero‑
genesis. Int J Mol Sci. 2017;18(12):E2727. https:// doi. org/ 10. 3390/ ijms1 
81227 27.

 64. Yi H, Talmon G, Wang J. Glutamate in cancers: from metabolism to signal‑
ing. J Biomed Res. 2019;34(4):260–70. https:// doi. org/ 10. 7555/ JBR. 34. 
20190 037.

 65. Plewa S, Horała A, Dereziński P, Nowak‑Markwitz E, Matysiak J, Kokot 
ZJ. Wide spectrum targeted metabolomics identifies potential ovarian 
cancer biomarkers. Life Sci. 2019;222:235–44. https:// doi. org/ 10. 1016/j. lfs. 
2019. 03. 004.

 66. Wu G, Bazer FW, Davis TA, et al. Arginine metabolism and nutrition in 
growth, health and disease. Amino Acids. 2009;37(1):153–68. https:// doi. 
org/ 10. 1007/ s00726‑ 008‑ 0210‑y.

 67. Papadimitriou N, Gunter MJ, Murphy N, et al. Circulating tryptophan 
metabolites and risk of colon cancer: results from case‑control and 
prospective cohort studies. Int J Cancer. 2021;149(9):1659–69. https:// doi. 
org/ 10. 1002/ ijc. 33725.

 68. Muñoz‑Esparza NC, Latorre‑Moratalla ML, Comas‑Basté O, Toro‑Funes 
N, Veciana‑Nogués MT, Vidal‑Carou MC. Polyamines in food. Front Nutr. 
2019;6:108. https:// doi. org/ 10. 3389/ fnut. 2019. 00108.

https://doi.org/10.1038/s41591-021-01266-0
https://doi.org/10.1186/s12916-016-0552-3
https://doi.org/10.1186/s12916-016-0552-3
https://doi.org/10.1016/j.csda.2016.02.015
https://doi.org/10.1016/j.csda.2016.02.015
https://doi.org/10.1093/biomet/asw065
https://doi.org/10.1093/biostatistics/kxz063
https://doi.org/10.1093/biostatistics/kxz063
https://doi.org/10.1079/PHN2002394
https://doi.org/10.3390/metabo11090631
https://doi.org/10.3390/metabo11090631
https://doi.org/10.18637/jss.v050.i13
https://doi.org/10.18637/jss.v050.i13
https://doi.org/10.1021/acs.jproteome.6b01062
https://doi.org/10.1021/acs.jproteome.6b01062
https://doi.org/10.1186/s12916-021-01970-1
https://doi.org/10.1186/s12916-021-01970-1
https://doi.org/10.1007/978-3-319-42542-9
https://doi.org/10.1007/978-3-319-42542-9
https://doi.org/10.1007/978-3-319-42542-9_3
https://doi.org/10.1007/978-3-319-42542-9_3
https://doi.org/10.1038/s41575-019-0189-8
https://doi.org/10.1016/j.eururo.2018.08.036
https://doi.org/10.1158/1055-9965.EPI-20-0965
https://doi.org/10.1158/1055-9965.EPI-20-0965
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1198/016214506000000735
https://doi.org/10.1186/1471-2105-10-384
https://doi.org/10.1007/s10985-018-9455-2
https://doi.org/10.1007/s10985-018-9455-2
http://arxiv.org/abs/2005.10119
https://doi.org/10.3390/stats4040051
https://doi.org/10.1145/1390156.1390161
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1002/cjs.11313
https://doi.org/10.1074/jbc.M704408200
https://doi.org/10.1074/jbc.M704408200
https://doi.org/10.1038/nrm2329
https://doi.org/10.1038/nrm2329
https://doi.org/10.1038/oncsis.2015.49
https://doi.org/10.1038/oncsis.2015.49
https://doi.org/10.1155/2016/3898502
https://doi.org/10.1002/ijc.33236
https://doi.org/10.1002/ijc.33236
https://doi.org/10.1038/s41467-020-18502-9
https://doi.org/10.3390/metabo11020119
https://doi.org/10.1038/ncomms15267
https://doi.org/10.1038/ncomms15267
https://doi.org/10.1093/jn/138.10.2003S
https://doi.org/10.1158/1055-9965.EPI-19-0154
https://doi.org/10.1158/1055-9965.EPI-19-0154
https://doi.org/10.1038/s41416-021-01304-1
https://doi.org/10.1186/s12916-015-0462-9
https://doi.org/10.1016/j.aca.2008.06.051
https://doi.org/10.3390/ijms18122727
https://doi.org/10.3390/ijms18122727
https://doi.org/10.7555/JBR.34.20190037
https://doi.org/10.7555/JBR.34.20190037
https://doi.org/10.1016/j.lfs.2019.03.004
https://doi.org/10.1016/j.lfs.2019.03.004
https://doi.org/10.1007/s00726-008-0210-y
https://doi.org/10.1007/s00726-008-0210-y
https://doi.org/10.1002/ijc.33725
https://doi.org/10.1002/ijc.33725
https://doi.org/10.3389/fnut.2019.00108


Page 17 of 17Breeur et al. BMC Medicine          (2022) 20:351  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 69. Moinard C, Cynober L, de Bandt JP. Polyamines: metabolism and implica‑
tions in human diseases. Clin Nutr. 2005;24(2):184–97. https:// doi. org/ 10. 
1016/j. clnu. 2004. 11. 001.

 70. Vargas AJ, Ashbeck EL, Wertheim BC, et al. Dietary polyamine intake 
and colorectal cancer risk in postmenopausal women. Am J Clin Nutr. 
2015;102(2):411–9. https:// doi. org/ 10. 3945/ ajcn. 114. 103895.

 71. Pietrocola F, Castoldi F, Kepp O, Carmona‑Gutierrez D, Madeo F, Kroemer 
G. Spermidine reduces cancer‑related mortality in humans. Autophagy. 
2018;15(2):362–5. https:// doi. org/ 10. 1080/ 15548 627. 2018. 15395 92.

 72. Fan J, Feng Z, Chen N. Spermidine as a target for cancer therapy. Pharma‑
col Res. 2020;159:104943. https:// doi. org/ 10. 1016/j. phrs. 2020. 104943.

 73. Koelmel JP, Ulmer CZ, Jones CM, Yost RA, Bowden JA. Common cases 
of improper lipid annotation using high‑resolution tandem mass spec‑
trometry data and corresponding limitations in biological interpretation. 
Biochim Biophys Acta. 2017;1862(8):766–70. https:// doi. org/ 10. 1016/j. 
bbalip. 2017. 02. 016.

 74. Köfeler HC, Ahrends R, Baker ES, et al. Recommendations for good prac‑
tice in MS‑based lipidomics. J Lipid Res. 2021;62:100138. https:// doi. org/ 
10. 1016/j. jlr. 2021. 100138.

 75. Floegel A, Drogan D, Wang‑Sattler R, et al. Reliability of serum metabolite 
concentrations over a 4‑month period using a targeted metabolomic 
approach. PLoS One. 2011;6(6):e21103. https:// doi. org/ 10. 1371/ journ al. 
pone. 00211 03.

 76. Townsend MK, Clish CB, Kraft P, et al. Reproducibility of metabolomic 
profiles among men and women in 2 large cohort studies. Clin Chem. 
2013;59(11):1657–67. https:// doi. org/ 10. 1373/ clinc hem. 2012. 199133.

 77. Carayol M, Licaj I, Achaintre D, et al. Reliability of serum metabolites over 
a two‑year period: a targeted metabolomic approach in fasting and non‑
fasting samples from EPIC. PLoS One. 2015;10(8):e0135437. https:// doi. 
org/ 10. 1371/ journ al. pone. 01354 37.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1016/j.clnu.2004.11.001
https://doi.org/10.1016/j.clnu.2004.11.001
https://doi.org/10.3945/ajcn.114.103895
https://doi.org/10.1080/15548627.2018.1539592
https://doi.org/10.1016/j.phrs.2020.104943
https://doi.org/10.1016/j.bbalip.2017.02.016
https://doi.org/10.1016/j.bbalip.2017.02.016
https://doi.org/10.1016/j.jlr.2021.100138
https://doi.org/10.1016/j.jlr.2021.100138
https://doi.org/10.1371/journal.pone.0021103
https://doi.org/10.1371/journal.pone.0021103
https://doi.org/10.1373/clinchem.2012.199133
https://doi.org/10.1371/journal.pone.0135437
https://doi.org/10.1371/journal.pone.0135437

	Pan-cancer analysis of pre-diagnostic blood metabolite concentrations in the European Prospective Investigation into Cancer and Nutrition
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Study population
	Laboratory analysis
	Selection of the metabolites and data pre-processing
	Cancer types and exclusion criteria
	Statistical analyses
	Clustering of metabolites
	Multivariate analyses
	Univariate analyses
	Analysis of additional metabolites


	Results
	Data pre-processing
	Description of the study population
	Clustering of metabolites
	Multivariate analyses
	Univariate analysis
	Analysis of the extended list of metabolites

	Discussion
	Conclusions
	Acknowledgements
	References


