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Abstract 

Background: Whole‑body imaging has recently been added to large‑scale epidemiological studies providing novel 
opportunities for investigating abdominal organs. However, the segmentation of these organs is required beforehand, 
which is time consuming, particularly on such a large scale.

Methods: We introduce AbdomentNet, a deep neural network for the automated segmentation of abdominal 
organs on two‑point Dixon MRI scans. A pre‑processing pipeline enables to process MRI scans from different imaging 
studies, namely the German National Cohort, UK Biobank, and Kohorte im Raum Augsburg. We chose a total of 61 MRI 
scans across the three studies for training an ensemble of segmentation networks, which segment eight abdominal 
organs. Our network presents a novel combination of octave convolutions and squeeze and excitation layers, as well 
as training with stochastic weight averaging.

Results: Our experiments demonstrate that it is beneficial to combine data from different imaging studies to train 
deep neural networks in contrast to training separate networks. Combining the water and opposed‑phase contrasts 
of the Dixon sequence as input channels, yields the highest segmentation accuracy, compared to single contrast 
inputs. The mean Dice similarity coefficient is above 0.9 for larger organs liver, spleen, and kidneys, and 0.71 and 0.74 
for gallbladder and pancreas, respectively.

Conclusions: Our fully automated pipeline provides high‑quality segmentations of abdominal organs across popula‑
tion studies. In contrast, a network that is only trained on a single dataset does not generalize well to other datasets.
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Background
Whole-body magnetic resonance imaging (MRI) is 
increasingly used in large-scale imaging studies, for 
instance, in ongoing population-based studies like the 
German National Cohort (GNC) [1, 2] and the UK 
Biobank Imaging (UKB) [3], as well as earlier studies 

like the Study of Health in Pomerania (SHIP) [4] or the 
Kohorte im Raum Augsburg (KORA) [5, 6]. Whole-body 
MRI provides rich anatomical information across the 
body, which in combination with physiological, bio-
chemical, genetic, and demographic data on a large scale, 
provides unique opportunities for advancing our under-
standing of the human body. The data may provide novel 
insights into disease mechanisms or facilitate the iden-
tification of imaging measures as targets for prevention. 
Moreover, it will allow for mapping out normal anatomi-
cal variations and for detecting asymptomatic pathology 
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before disease diagnosis. A requirement for many of such 
analyses is, however, the automated extraction of quanti-
tative measures. While sophisticated pipelines have been 
developed for this task in brain MRI [7, 8], they are still 
widely lacking in abdominal MRI. Yet, with the growing 
availability of whole-body datasets, such tools will be 
needed.

Given that several whole-body datasets are emerging, 
a key concern is to have a processing pipeline that can 
not only be applied to data from a single dataset but from 
multiple datasets. Such a common segmentation model 
will support joint analyses across datasets and can there-
fore help to grow the sample size or to replicate findings. 
Previous studies have demonstrated that extracted image 
features can be subject to dataset bias, which impedes 
joint analyses across datasets [9]. Individual segmenta-
tion models that are only trained on a single dataset are 
more likely to introduce bias than a model that is trained 
across datasets. Hence, we are interested in a segmenta-
tion pipeline that operates across datasets. To address 
these challenges, we build upon recent advances in deep 
neural networks and present a segmentation pipeline that 
automatically segments eight abdominal organs across 
datasets. In a pre-processing step, we merge several MRI 
scans from the two-point Dixon sequence to cover the 
abdominal area. Moreover, inhomogeneity correction, 
stitching, resampling, and an optional intensity stand-
ardization are applied to the scans. The pipeline auto-
matically processes all four contrasts from the Dixon 
sequence and yields a standardized output across data-
sets, which will then be the input to the segmentation 
network.

At the core of the pipeline is the AbdomenNet, a deep 
neural network that is inspired from earlier fully convo-
lutional neural networks with skip connections like the 
U-Net [10] and QuickNAT [11]. The inputs to the net-
work are multiple contrasts from the Dixon sequence. 
Technical innovations of AbdomenNet are the integra-
tion of octave convolutions [12] in the network to reduce 
the spatial redundancy in convolutional neural networks 
while increasing the receptive field. Furthermore, octave 
convolutions are combined with squeeze and excite 
blocks [13, 14] for feature recalibration, which helps the 
network to focus on important features, while only mar-
ginally increasing network complexity. Finally, Abdomen-
Net uses stochastic weight averaging (SWA) [15] in the 
optimization, which can provide solutions that improve 
generalization.

As mentioned before, we are not only interested in 
processing data from a single cohort but from multiple 
cohorts to support joint analyses. Specifically, we work 
with data from GNC, UKB, and KORA. Whole-body 

scans from all three studies are pre-processed and used 
to train a joint segmentation network.

Related work
Automated methods for the segmentation of multiple 
abdominal organs have mainly been proposed for CT 
scans. The segmentation of CT scans, in comparison to 
MRI scans, is easier as the intensity values are standard-
ized in Hounsfield units and the images generally have 
higher image quality and resolution. Traditional methods 
like thresholding [16], region growing [17] or atlas based 
segmentation methods [18] have been successfully used 
in the past, but with the breakthrough in deep learning, 
the focus has shifted to using convolutional networks 
for multi-organ segmentation. Recent methods for CT 
segmentation proposed a two-stage hierarchal pipe-
line using 3D U-Net [19], the segmentation of 2D slices 
with fusion and organ-attention [20], the inclusion of 
organ size as prior [21], and the application of V-net [22]. 
Approaches for the segmentation of multiple organs in 
MRI have utilized the 2D U-Net [23] and 2D fully convo-
lutional networks [24]. In our prior work on abdominal 
segmentation, we have proposed to recalibrate feature 
maps on CT scans [14, 25] and to estimate the segmenta-
tion uncertainty for liver segmentation on MRI [26].

As self-reported results in publications are typically 
difficult to compare because of variations in the experi-
mental setup and data, the results from challenges pro-
vide a good overview of the state of the field. Multi-organ 
segmentation has been evaluated in three challenges 
over the last years: the VISCERAL challenge in 2014 
[27], the Multi-Atlas Labeling Beyond the Cranial Vault 
(MAL) challenge in 2015, and the Combined (CT-MR) 
Healthy Abdominal Organ Segmentation (CHAOS) chal-
lenge in 2019 [28]. Most relevant for application is task 5 
in CHAOS, which was on the segmentation of the liver, 
kidneys, and spleen in MRI. The winning method used 
nnU-Net [29], which is an automated and robust train-
ing scheme for U-Net. The conclusion from the CHAOS 
challenge was that networks have reached inter-expert 
variability in Dice score for liver CT segmentation, but 
multi-organ segmentation is more challenging for MRI.

Methods
Datasets
We work with data from three cohort studies that 
include whole-body MR imaging: the German National 
Cohort (GNC) [1], the UK Biobank Imaging (UKB) 
[3], and the Kohorte im Raum Augsburg (KORA) [5]. 
GNC and UKB are still in the process of acquiring data 
with the goal of scanning 30,000 and 100,000 subjects, 
respectively. KORA is already completed and includes 
400 subjects. All three studies acquired abdominal 
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images with a T1-weighted 3D volumetric interpo-
lated breath-hold examination (VIBE) two-point Dixon 
sequence with participants in supine position. The 
Dixon sequence results in four sets of images: water 
only, fat only, in-phase (IN), and opposed-phase (OPP), 
illustrated in Fig.  1. OPP scans from all three datasets 
are illustrated in Fig.  2. In our experiments, we inves-
tigate the segmentation performance on all four con-
trasts. The types of scanners differ between datasets 
with a 3T Siemens Skyra for GNC and KORA, and a 
1.5T Siemens Aera for UKB. Further, the acquisition 
details, e.g., echo time, repetition time, and field of 
view (FOV), vary between the datasets. The FOV is the 
smallest for UKB, which requires merging more MRI 
stages at different table positions to cover the region 

that contains all organs of interest. Our automated pre-
processing is described in the next section.

For training and evaluation, 61 scans have been manu-
ally segmented by a trained anatomist. These scans have 
been selected based on demographics (age, sex) and 
BMI to have a heterogeneous sample that captures the 
variability in the data. Table 1 reports the statistics of the 
selected scans for manual annotation.

Pre‑processing pipeline
The three datasets vary in image resolution, acquisition 
protocols, and the number of scanning stages, which is 
shown in the top row of Fig. 2. To facilitate the training 
of a neural network, we developed a fully automated, 
pre-processing pipeline that standardizes whole-body 

Fig. 1 Dixon contrasts: Ground truth segmentation overlayed on the OPP contrast and all four Dixon contrasts of a scan from the GNC study. OPP 
and Water contrasts provide the clearest depiction of the organs

Fig. 2 Illustration of MRI scans from different datasets. Top row: original OPP scans, with overlapping regions indicated by blue bars and regions of 
interest indicated by green boxes. Bottom row: standardized scans as output of the pre‑processing pipeline
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scans from the three datasets, where the different steps 
are shown in Fig. 3. The inputs for one subject are mul-
tiple MRI volumes from different stations. The output 
is a standardized image that is cropped to a region that 
contains the organs of interest. In detail, the images are 
loaded and all scans are transformed to a consistent scan-
ning direction. Next, an optional N4 bias correction [30] 
is computed on the in-phase scans and the bias field is 
applied on all the individual scans, as done in [31]. Using 
the information about the table position, the scans are 
then stitched together. In the overlapping region, intensi-
ties from both scans are blended using a sigmoid func-
tion, given less weight to pixels close to the boundary 
as they are rather subject to artifacts. On the combined 
volume, N4 bias field correction is computed on the in-
phase scans and the bias field is applied to all scans and 
the resolution is changed to 2× 2× 3 mm3.

The Dixon sequence covers a much larger region of 
the body, than the abdominal organs that we are seg-
menting. Hence, to facilitate the segmentation with the 
neural network, we define a cropping region across all 
datasets. To this end, we looked at the organ positions of 
the smallest/tallest and skinniest/fattest subjects and set 
the cropping region so that all organs are included. Once 
manually defined, the same cropping region is applied 
to all scans across the datasets. Optionally, we apply an 
intensity normalization as a final step, where we have 
implemented histogram matching and a linear intensity 
transform. For histogram matching, we randomly chose a 
scan from each dataset as reference when training single 
dataset models. For the joint model we chose a scan from 
the NAKO dataset, as NAKO scans have the best overall 
image quality. However, we have not noticed an improve-
ment for either of the intensity normalization methods in 
our experiments so that we have not considered it further 
in our experiments. Yet, for other applications, such an 
intensity normalization could be beneficial.

Segmentation model
For the segmentation of the pre-processed images, we 
introduce the AbdomenNet, which has an encoder/
decoder architecture similar to QuickNAT [11] and 
U-Net [10]. Figure  4 illustrates the architecture of 

AbdomenNet, which has 3 encoders, 3 decoders sepa-
rated by a bottleneck layer, and followed by a classifier 
block with a soft-max layer. The architecture includes 
skip-connections between all encoder and decoder 
blocks of the same spatial resolution. In the decoder 
stages, we use un-pooling for up-sampling the feature 
maps [32], which ensures the appropriate spatial map-
pings of activation maps. Un-pooling is particularly 
helpful for the segmentation of small structures, like 
abdominal glands. AbdomenNet can take multi-channel 
image input to process different contrasts from the two-
point Dixon sequence.

In AbdomenNet, we use dense connections [33], which 
help representation learning by promoting feature re-
usability and by providing a path for gradients to flow for 
better trainability. Each dense block consists of 3 con-
volutional layers, where a concatenation layer merges 
the outputs of the first and second convolutional layers. 
Before each convolutional layer, we use batch-normaliza-
tion layers and parametric rectifier linear unit (PReLU) 
layers [34]. We have also experimented with group- and 
instance-normalization [35, 36], but have not noted an 
improvement in our experiments. We further use drop-
out with a dropout rate of 0.2 after each dense block.

Octave convolutions with squeeze‑and‑excite
AbdomenNet combines Octave Convolutions and 
Squeeze-and-Excite blocks, which we have not yet seen 
so far. The main idea of octave convolutions (OctConvs) 
[12] is to factorize feature maps along the channel dimen-
sion by their frequencies. Thus, lower frequency compo-
nents can be stored with less resolution, which reduces 
memory and computational cost. Octave Convolutions 
can increase segmentation performance, by having a 
wider context, while reducing memory consumption. In 
our network, we replaced standard convolutions with 
Octave Convolutions in all layers of the network, except 
for the first encoder and last decoder block, as shown in 
Fig. 4.

We have further added squeeze-and-excite (SE) blocks 
[13] for the recalibration of feature maps. In particular, 
we use spatial and channel SE blocks (CSSE), which have 
been introduced for image segmentation [14]. In contrast 

Fig. 3 Our proposed pre‑processing pipeline reads abdominal MRI files from different stages, changes the read‑orientation to RAS, stitches the 
scans, performs bias field correction, resamples to a standard resolution, and crops out the ROI covering abdominal organs of interest. Optional 
steps are depicted with dashed lines
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to the original SE blocks, they do not only perform a 
channel recalibration but also a spatial recalibration. This 
is helpful for segmentation, where the objective is to find 
the spatial location of organs.

Loss function
The loss function of AbdomenNet consists of a weighted 
logistic loss and multi-class Dice loss. As we perform a 
slice-wise 2D segmentation not all organs are present 
in all slices. The Dice score for a true negative predic-
tion is defined as zero, which would be penalized, using 
the standard Dice loss. We add 1 to the numerator and 
denominator of the Dice score to handle these cases. 
Given the estimated probability pl(x) at pixel x to belong 
to the class l and the ground truth probability gl(x) , the 
loss function is

We use weight factors ω(x) , as introduced in [11], to give 
higher weight to small organs and organ boundaries.

(1)

L = −

x

ω(x)gl(x) log(pl(x))

LogisticLoss

−
2

x
pl(x)gl(x)+ 1

x
pl(x)+ x

gl(x)+ 1

DiceLoss

.

Multi‑view aggregation
The AbdomenNet consists of three 2D networks that 
operate on axial, sagittal, and coronal views, respectively. 
The results of these three networks are then combined in 
a view-aggregation step to retain more 3D information. 
An alternative to view-aggregation of 2D networks would 
be the application of a 3D network. However, due to the 
large field-of-view of abdominal scans and limited GPU 
memory, working with 2D networks allows for more 
architectural flexibility, e.g., dense blocks. In Abdomen-
Net, we give each anatomical view the same weight and 
average the probability scores of the individual networks. 
The probability score for a particular structure reflects 
the certainty of the network in the prediction, which 
depends on how well the structure is represented in the 
corresponding view. Aggregating all the votes for a voxel 
provides a regularization effect for the label prediction 
and thus reduces spurious predictions.

Model learning
We use stochastic weight averaging (SWA) [15] for train-
ing the AbdomenNet. SWA performs an equal average 
of the weights traversed by Stochastic Gradient Descent 

Fig. 4 The network architecture, based on QuickNAT [11], with additional CSSE blocks in each layer and Octave Dense Blocks
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(SGD) with a modified learning rate schedule. SWA solu-
tions end up in the center of a wide flat region of loss, 
while SGD tends to converge to the boundary of the low-
loss region, making it susceptible to the shift between 
train and test error surfaces. Hence, SWA can improve 
generalization in deep learning over SGD.

Results
Experimental setup
The AbdomenNet models have 64 convolutional filters 
with kernel size 5 in each Dense Block. The α param-
eters for Octave Convolutions, which define how to split 
up the channels into high- and low-frequency compo-
nents are set to 0.5. We implemented the network using 
PyTorch version 1.7.0. All AbdomenNet models were 
trained using SGD optimizer and SWA, with an SWA 
learning rate of 0.05. The batch size was set to 10 and we 
used PyTorch’s default weight initialization for initial-
izing all learnable weights. As the models usually con-
verged at around 70–80 epochs, we trained all models 
for 100 epochs and saved the model with the highest 
Dice Score on the validation set. For experiments vali-
dating the architecture and combination of Dixon con-
trasts, we split the annotated data randomly into training, 
validation, and testing set as follows: UKB (21/2/2), 
KORA(15/1/2), GNC(14/1/2). Each model was trained 3 
times with different random seed values to enforce differ-
ent weight initializations. We report the average perfor-
mance of those 3 models to have a reliable estimate of the 
performance. To evaluate the effect of training models on 
single datasets and combinations of the datasets, we per-
formed 10 fold cross-validation. The source code for the 
pre-processing pipeline and the segmentation network is 
available.1

Evaluation across datasets
In the first experiment, we train separate segmentation 
models for each of three datasets, combinations of 2 
datasets and a joint model. All models were trained on 
coronal, axial and sagittal views and the predictions of the 
three models were aggregated. To obtain reliable results, 
We performaed 10-fold cross-validation. The purpose 
of this experiment is to evaluate the generalizability of 
models across datasets. In Table  2, we list the training 
datasets vertically, and the test datasets horizontally and 
report average Dice coefficients and average symmetric 
surface distances. For instance, training on KORA and 
testing on KORA yields an average Dice score of 0.697, 
while training KORA and testing GNC yields 0.644. For 
the joint model, we merge the training and validation sets 

across the three datasets. The results for using a single 
dataset for training show the best results on the diago-
nal, which means that the same dataset is used for train-
ing and testing. We further observe that the transfer of 
models across datasets yields a strong decrease in accu-
racy. Particularly, when training on either KORA or GNC 
yields poor results on UKB. Next, we trained models on 
a combination of 2 datasets, and evaluated on all 3 data-
sets. We can observe, that the generalization ability of the 
networks increases over single-data models. For instance, 
The model trained on KORA+GNC yields better results 
on UKB, than models trained on KORA or GNC sepa-
rately. We observe that a model trained on KORA+GNC 
improves performance on GNC and KORA, compared to 
the single dataset models.

Finally, the joint model leads to the best performance 
across all three datasets. Noteworthy, the accuracy of the 
joint model is even higher than for the specialized mod-
els, e.g., training and testing on KORA. We show quali-
tative segmentation results comparing the model trained 
on KORA with the joint model in Fig. 5.

Evaluation of Dixon contrasts
The Dixon sequence yields four different imaging con-
trasts: fat, water, in-phase (IN), and opposed-phase 
(OPP). We trained AbdomenNet models on the axial 
view of the joint dataset for each of the four contrasts 
and present the segmentation accuracy for all organs 
in Table 3. As OPP and Water contrasts show the most 
promising results, we further evaluate the combination of 
OPP and Water, by concatenating the images in the chan-
nel dimension. Considering the results per organ, the 
combination of OPP and water can improve over using 
the contrasts separately in several cases. However, there 
are also organs, where the combination yields results in 
between the individual contrasts. Nevertheless, the com-
bination of OPP and water yields the highest mean accu-
racy. Hence, we use the combination of OPP and Water 
as input in the remaining experiments.

Evaluation of network architecture
Table  4 reports the final performance of AbdomenNet 
with view aggregation across axial, coronal, and sagit-
tal views. Note that in earlier experiments, we have only 
used models trained on axial views. To evaluate the 
impact of Octave Convolutions and CSSE blocks, we 
perform an architecture ablation study. We first train a 
model without Octave Convolutions and without CSSE, 
which results in the QuickNAT model [11]. Next, we add 
Octave Convolutions to QuickNat. The final addition of 
CSSE blocks results in AbdomenNet. We observe, that 
AbdomenNet outperforms the two other models on 5 
out of 8 organs. Octave Convolutions and CSSE blocks 1 https:// github. com/ ai- med/ Abdom enNet.

https://github.com/ai-med/AbdomenNet
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seem to have the highest impact on gallbladder seg-
mentation, where we observe an increase of 0.116 on 
the Dice score. We can observe a slight drop in perfor-
mance on some organs (kidneys, adrenal glands) when 
adding Octave Convolutions, which could be due to the 
additional downsampling step. Adding additional CSSE 
blocks can help in these cases. To validate the impact of 
training with SWA, we trained an AbdomenNet model 
with SGD instead of SWA and observed decreased per-
formance with an average Dice Score of 0.757.

Comparison with nn-UNet We compare AbdomenNet 
to nn-UNet [29], which is a state-of-the-art segmentation 
network. We have trained a 2D nn-UNet model on the 
same training data as our joint AbdomenNet. As input to 
the nn-UNet pipeline, we used the already pre-processed 
data from our pre-processing pipeline. The 2D nn-UNet 
model achieved an average DSC of 0.75, which is slightly 
worse than the performance of AbdomenNet.

Discussion
Generalization
Our results have demonstrated that the generaliza-
tion across datasets can be fairly poor. KORA and GNC 
share more similarities so that the generalization among 
those two datasets is better. Both datasets were acquired 
with 3T Siemens Skyra machines and also the scanning 

protocols were similar. In contrast, the generalization to 
UKB was clearly worse. A potential reason may, on the 
one hand, be related to the image acquisition, where a 
1.5T Siemens Aera machine was used for UKB. On the 
other hand, also differences in the population may have 
an impact, as KORA and GNC are both studies in Ger-
many. Also, the demographics presented in Table  1 are 
more similar for KORA and GNC.

Combining data from all datasets yielded the best 
results, even outperforming dataset-specific models. This 
is insofar surprising, as it is not clear that images from 
different datasets would rather cause confusion. The 
results indicate that the network has enough capacity to 
store dataset-specific information for multiple datasets, 
and therefore benefit from the increase in the size of 
the training set. Having a joint model that achieves high 
accuracy on each of the datasets is important as it sup-
ports studying diseases across datasets.

Dixon contrasts
In the comparison among the four Dixon contrasts, the 
best results were obtained for OPP and water. Also by 
visual inspection, these two contrast provided the clear-
est depiction of the organs, see Fig.  1. Considering the 
results per organ, we note a considerable variation of the 
results between the different Dixon contrasts, which can 

Fig. 5 Segmentation results of axial AbdomenNet trained on axial view on KORA and Joint dataset, with testing results on KORA, GNC, and UKB 
(rows). Red arrows point to false segmentations and missed segmentations
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also be observed in Fig. 1, e.g., it is difficult to detect the 
gallbladder in the Fat contrast. Our results have further 

shown that the combination of OPP and water as multi-
channel input to the network can further improve results. 

Table 1 Descriptive statistics of the selected subjects for the three datasets

For continuous values, we report mean, standard deviation, and min/max

KORA GNC UKB

# Subjects 18 17 25

Sex (M/F) 11/8 8/9 12/13

Age 56.9± 9.4 (40.0/72.0) 52.4± 13.7 (22.3/69.6) 66.0± 6.6 (49.3/76.4)

Height 171.9± 11.3 (151.2/186.5) 171.1± 9.3 (157.0/185.9) 167.0± 8.6 (151.0/180.0)

Weight 83.4± 13.4 (50.3/108.9) 83.5± 16.9 (57.2/127.2) 78.3± 17.3 (55.0/113.0)

BMI 28.3± 4.5 (22.0/35.9) 28.6± 5.9 (21.7/39.6) 27.9± 4.9 (21.3/40.9)

Table 2 Mean Dice Scores and average symmetric surface distance (ASSD) in mm over all classes for multi‑view AbdomenNet models 
trained on single datasets versus combinations of two and of all three datasets

Bold numbers indicate highest Dice scores and lowest ASSD scores

Dice ASSD

KORA GNC UKB KORA GNC UKB

KORA 0.697 ± 0.109 0.644 ± 0.075 0.385 ± 0.095 2.164 ± 0.758 3.287 ± 1.940 7.440 ± 3.519

GNC 0.637 ± 0.120 0.682 ± 0.089 0.311 ± 0.130 2.923 ± 1.018 2.899 ± 2.121 8.768 ± 7.267

UKB 0.433 ± 0.128 0.401 ± 0.143 0.610 ± 0.114 6.273 ± 3.074 7.831 ± 3.511 3.518 ± 3.634

KORA + GNC 0.728 ± 0.106 0.710 ± 0.073 0.498 ± 0.111 1.658 ± 0.709 2.382 ± 1.762 3.780 ± 1.468

KORA + UKB 0.712 ± 0.112 0.683 ± 0.080 0.625 ± 0.119 2.036 ± 0.932 2.674 ± 1.726 3.238 ± 3.830

UKB + GNC 0.689 ± 0.106 0.697 ± 0.088 0.622 ± 0.116 1.757 ± 0.469 2.245 ± 1.533 5.074 ± 3.630

Joint Model 0.731 ± 0.109 0.716 ± 0.077 0.637 ± 0.119 1.780 ± 0.818 2.190 ± 1.559 3.021 ± 3.666

Table 3 Dice Scores and average symmetric surface distance (ASSD) in mm over all organs for axial AbdomenNet trained on different 
Dixon contrasts together with the mean scores across all organs

Bold numbers indicate highest Dice scores and lowest ASSD scores

Liver Spleen r.Kidney l.Kidney r.Adrenal l.Adrenal Pancreas Gallbladder Mean

Dice

OPP 0.936 ± 0.035 0.913 ± 
0.036

0.845 ± 0.027 0.884 ± 0.035 0.519 ± 
0.084

0.525 ± 0.174 0.619 ± 0.187 0.667 ± 
0.229

0.739 ± 0.076

IN 0.936 ± 0.014 0.900 ± 0.036 0.901 ± 0.024 0.899 ± 0.040 0.398 ± 0.234 0.376 ± 0.192 0.538 ± 0.171 0.579 ± 0.140 0.691 ± 0.084

Fat 0.926 ± 0.020 0.849 ± 0.108 0.906 ± 0.030 0.906 ± 0.032 0.407 ± 0.235 0.409 ± 0.216 0.628 ± 0.146 0.514 ± 0.125 0.693 ± 0.081

Water 0.938 ± 0.019 0.906 ± 0.031 0.848 ± 0.048 0.846 ± 0.090 0.441 ± 0.246 0.534 ± 
0.160

0.711 ± 
0.095

0.628 ± 0.293 0.732 ± 0.082

OPP+W 0.946 ± 
0.020

0.905 ± 0.038 0.918 ± 
0.019

0.908 ± 
0.038

0.474 ± 0.187 0.466 ± 0.131 0.680 ± 0.135 0.627 ± 0.164 0.741 ± 0.083

Average symmetric surface distance (mm)

OPP 1.534 ± 1.269 1.346 ± 0.926 0.877 ± 
0.301

0.822 ± 
0.367

1.480 ± 
0.485

2.034 ± 1.446 3.217 ± 
1.571

2.286 ± 
1.784

1.700 ± 0.730

IN 1.698 ± 0.665 1.275 ± 
0.568

1.108 ± 0.273 1.077 ± 0.464 4.219 ± 6.048 4.073 ± 3.701 4.314 ± 1.497 3.275 ± 1.353 2.630 ± 1.272

Fat 2.127 ± 0.942 2.139 ± 1.294 1.023 ± 0.328 0.969 ± 0.406 2.280 ± 1.620 3.323 ± 3.092 3.558 ± 1.278 3.679 ± 1.062 2.387 ± 0.837

Water 5.246 ± 3.751 7.024 ± 5.970 8.580 ± 4.235 10.513 ± 
7.873

4.149 ± 4.130 1.840 ± 
1.235

5.026 ± 3.748 7.629 ± 6.741 6.251 ± 0.949

OPP+W 1.496 ± 
0.849

1.380 ± 0.779 1.020 ± 0.325 0.959 ± 0.300 1.550 ± 0.658 2.887 ± 1.081 3.359 ± 1.469 3.035 ± 1.897 1.964 ± 0.576
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An interesting observation is that the segmentation of 
kidneys improved significantly when using the combined 
OPP+W input, compared to single OPP or water inputs.

Performance
AbdomenNet achieved high accuracy on liver, spleen, 
and both kidneys with Dice score above 0.9. In contrast, 
only a Dice score of around 0.5 was obtained for adrenal 
glands. The adrenal glands are complicated to segment 
because they are very small organs and only cover a few 
voxels. Figure  5 shows the small size of ground truth 
adrenal gland segmentation, and also shows that Abdo-
menNet was able to detect adrenal glands, but even small 
differences in the segmentations can lead to a reduced 
Dice score.

Limitations
Our proposed pre-processing pipeline requires minimal 
human interaction by setting the cropping region once 
for each dataset. As we chose our cropping regions based 
on 3 large scale population studies, it already covers a 
variety of human body shapes, but it might need to be 
adapted for other datasets. In future work this could be 
automated, by extending the pipeline to localize relevant 
positions, e.g. as done by [37]. In this work we used man-
ual annotations by a single rater as ground-truth labels. It 
would be interesting to gather annotations from multiple 
raters, to compare our network’s prediction performance 
with human inter-rater variability.

Conclusions
We have presented a fully automated pipeline for the seg-
mentation of abdominal organs across population stud-
ies. The proposed pre-processing pipeline standardizes 
images, which is necessary as several organs are only par-
tially visible in the MRI scans from individual scanning 
stages. The standardization further reduces scanning 

artifacts in the images and therefore yields to a more 
homogeneous dataset, which facilitates learning. Abdo-
menNet achieved high accuracy for several organs, which 
supports future quantitative analyses of population stud-
ies. Our results have demonstrated the benefit of combin-
ing octave convolutions with squeeze and excite blocks in 
neural networks for organ segmentation. Finally, the joint 
segmentation model across datasets achieved higher 
accuracy than individual models per dataset.
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