
 

Supplementary information. 

 
1.1 Description of datasets. 

Datasets 1 and 2: Cells and chloroplasts were plunge frozen using a Vitrobot Mark IV (FEI Thermo Fisher) and stored 
in liquid nitrogen. Cryo-FIB milling was performed using a Quanta dual-beam FIB/SEM (Chlamydomonas, Dataset 2) 
or Aquilos dual-beam FIB/SEM (Spinach, Dataset 1) instrument (FEI, Thermo Fisher Scientific), as previously described 
in [24]. Tomographic data was acquired on a 300 kV Titan Krios microscope (FEI, Thermo Fisher Scientific), equipped 
with a post-column energy filter (Quantum, Gatan) and a direct detector camera (K2 Summit, Gatan). Dose-
symmetric (Dataset 1) or bidirectional tilt-series (Dataset 2) were acquired with SerialEM software [31] using 2° steps 
between -60° and +60°. Individual tilts were recorded in movie mode with 12 frames per second, at an image pixel 
size of 3.42Å (42000x magnification). The total accumulated dose for the tilt-series was kept around 100 e-/Å2. The 
Chlamydomonas tilt-series (Dataset 2) [12] were acquired with a Volta Phase Plate at -0.5 μm defocus [30], while the 
spinach tilt-series (Dataset 1) were acquired with a standard objective aperture and defocus values from -2.5 to -4.5 
μm. Using IMOD software [32], tilt-series were aligned with patch tracking and reconstructed with weighted back 
projection. Additionally, Dataset 1 was dose weighted with TOMOMAN software [33] and denoised with cryo-CARE 
[25]. 

 
Dataset 3: Rod outer segments were isolated, vitrified on EM grids, thinned by cryo-FIB milling, and imaged by cryo-
ET as described in [26]. Tilt-series were acquired on the same Titan Krios microscope as Datasets 1 and 2. Bidirectional 
tilt-series were collected between +50° and -50°, starting at 20° with a tilt increment of 2° and a total dose of 100 e-

/Å2. The individual projection images were recorded at an image pixel size of 2.62 Å (53000x magnification) in movie 
mode with 6 frames per tilt at tilt angle α = 0°. The number of frames per tilt was increased at higher tilts according 
to the 1/cos(α) as implemented in SerialEM. Standard objective aperture imaging was used, with a target defocus of 
-3 μm. The acquired tilt-series were aligned using Platinum particles on the lamella surface as fiducial markers [26] 
and reconstructed in IMOD software. Furthermore, dose weighting was performed with TOMOMAN software and 
denoising was performed with cryo-CARE, similar to Dataset 1. 
 

Fig. S1. Graphical assistance provided by the MemBrain program. White segmentations represent given membrane 

segmentations. A: Membrane selection interface. The user should click on the side of the membrane where they want to detect 

proteins. B: Membrane segmentation and resulting selected side of the membrane (grey: thresholded neighborhood used to 

estimate normal vectors), visualized using MemBrain’s membrane side inspection script, which can be used to verify that the 

correct sides were picked. 



 

 
1.2 PySeg protein picking 

Protein picking in PySeg was performed using the default parameters. The only exception was that the vertex 
density during the calculation of the graphs was set to 0.01 per nm, a value much higher than expected, to assure 
that all possible densities were picked. The minimum allowed distance between adjacent proteins was set to 4 nm. 
Refinement of the membrane normal vectors and the alignment of the membranes was done in STOPGAP (v.0.7.1) 
[29]. The star-file output by PySeg protein picking was converted into a STOPGAP motive list, subvolumes were 
extracted from 4x binned non-CTF-corrected tomograms (box size = 64 voxel, voxel size = 1.048 nm) and aligned 
with shifts only allowed perpendicular to the membrane. Subvolumes were re-extracted at the refined positions 
with a smaller box size of 32 voxels, and the refined motive list was converted into a star-file for PySeg. Afterwards, 
PySeg’s plane_align_class.py script was used for two successive rounds of 2D classification (Affinity propagation, 
preference = -10, pp 3D = False). Here, a mollified cylinder mask (radius = 10 voxel, height = 10 voxel) focused the 
classification on the cytosol adjacent to the membrane without including the membrane signal itself. In the first 
round (referred to as PySegclean in the manuscript), all picked proteins were processed in batches of 30k 
subvolumes, and those classes that indicated a density in contact with the membrane irrespective of its size were 
selected (see Figure S2). In a second round, all selected proteins were classified together and only those classes 
with reasonably large density were selected (these picks were not used for the evaluation in this paper). 

 
1.3 Configurations of comparison methods 
 DeepFinder: 
 Ground truth protein positions and orientations were used to map a thresholded volumetric model of PSII into the 

tomograms. This gave us an accurate segmentation mask, where, for all training protein positions, all voxels that 
were occupied by a protein density were labeled as 1. The remaining voxels were labeled as background (i.e., 0). 
We trained DeepFinder using the same data split as we did for MemBrain (28 membranes training set, 7 validation 
set). In addition to DeepFinder’s default settings, we also performed hyper-parameter tuning for learning rate and 
random shifts range, and found the best performance on the validation set for a learning rate of 1 × 10-4, and 
random shifts in the range of 11.  
As preprocessing for our tomograms, we used the default preprocessing suggested in EMAN: low- and high-pass 
filtering, followed by normalization (to mean 0 with standard deviation 1) of the tomogram. Finally, values were 
clamped between -3 and 3 to remove outliers. 
 

 EMAN (v.2.91): 
We used the same ground truth segmentation masks from DeepFinder to generate the ground truth for EMAN. 

Fig. S2. Selection of 2D rotational average classes when using PySeg on Dataset 3. 270k particles were extracted, split into 

batches of 30k particles each, and clustered into several classes using PySeg’s 2D rotational average clustering. From the 

resulting classes, those with a density in contact with the membrane were selected (green). 



 
Because EMAN requires annotated 2D slices, we extracted 2D slices (size 64 x 64) from the 3D annotated volumes, 
each centered around a protein position to ensure that the patches contain proteins. We performed the default 
preprocessing (as described in the DeepFinder section), and also did hyperparameter tuning. EMAN’s architecture is 
very shallow, which can avoid overfitting on the training data. Nevertheless, we wanted to rely on more information 
than only the training loss. Therefore, we trained several models to the end, and then performed tuning of the 
extraction parameters on the validation set to find the best models and setting: we trained models for varying 
numbers of epochs and different learning rates. Then, for each model, we tuned the protein extraction parameters 
for the density threshold, and the mass threshold (size of an object to be considered a true object). Here, we found 
the best model with a learning rate of 1 × 10-5, trained for 5000 epochs. For the extraction, we used a mass threshold 
of 2.0 and a density threshold of 0.5. 

 
 crYOLO (v.1.8.0): 
 Instead of volumetric segmentation masks, crYOLO requires only the positions of the ground truth particles. 

Therefore, we converted our manually picked positions into the required format. crYOLO requires the user to label a 
protein in a 2D slice, even if only a small portion of it can be seen. Therefore, we experimented with transferring 
ground truth positions also to adjacent slices, but did not find an improvement in performance. Again, we performed 
hyper-parameter tuning. For training the neural network, we tuned the parameter “object_scale”, determining the 
weight of true positive samples in the loss function (compared to the weight of false positives). Furthermore, we 
tuned parameters for the extraction of protein positions: the threshold for the network-assigned scores, the 
minimum distance between boxes, and the minimum number of boxes in one trace to be considered a protein. The 
best settings we found were an object scale of 50 (very high, probably necessary due to the sparse annotations), a 
score threshold of 0.05, a minimum distance of 5, and a minimum number of boxes in a trace of 2.  

 
 Template matching: 

Template matching experiments were performed in STOPGAP [29]. A previously obtained average of PSII [12] was 
used as the template for detection of this protein in Datasets 1 and 2 using an angular search step of 20 degrees in 
bin4 tomograms (pixel size: 13.68 Å). Wedge lists containing information on electron exposure, defocus and tilt 
angle were obtained from the IMOD reconstruction metadata [32] for each tomogram. This information was used 
to properly weight the Fourier transform of the template rotated in each orientation and constrain the cross-
correlation only to the areas where information is present. To avoid overfitting, the template was low-pass filtered 
to ~40 Å during search. For performance analysis, we visually tuned the number of extracted picks, as well as the 
minimum distance between two picks. We arrived at values of 400 picks per tomogram, and a minimum distance of 
13 voxels, giving the best performance on the test tomograms. 

 
1.4 Subtomogram averaging for Dataset 3.  

To create the averages in Figure 5 and Figure S4 we utilized the following procedure: We extracted protein positions 
using MemBrain and compared them to the ones obtained by PySeg (see section S.1.2). We subdivided the picks into 
nine subsets, as can be seen in Table S1 For subsets 1, 3, 4, and 5, we used the normal voting procedure described in 
Section 2.2 to receive membrane normal vectors for each position. Then, from the normal vectors, we computed the 
Euler angles that describe the rotation to align the membrane horizontally. For subsets 2 and 6, we used the Euler 
angles that were computed by PySeg. Then, we used STOPGAP [29] to create averages of the picked positions in bin4 
(pixel size: 10.48Å). First, we created an initial average. Subsequently, we refined this average in 3 rounds of 
subtomogram alignment, with the goal of refining the membrane alignment. For this, we used a cylindrical mask to 
focus the alignment only on the current membrane and the density on top of it. We allowed only small shifts in x-, y, 
and z-direction (2 voxels in each direction, bin4) and used a strong symmetry constraint (C20). For subset 6, we 
further performed subtomogram classification into 3 classes (classes 7, 8, 9) using STOPGAP’s “ali_multiref” function. 
We performed this classification step for 10 rounds in order to investigate if there is a class corresponding mainly to 
membrane-embedded proteins.  

 
  



 
 

Subset name Description # positions 

1 MemBrainrod_outer All MemBrain picks 27906 

2 PySegclean All PySeg picks after round 1 65614 
3 MemBrain \ PySegall MemBrain picks, missed by PySeg before round 1 2163 

4 MemBrain \ PySegclean MemBrain picks, missed by PySeg after round 1 15899 

5 MemBrain ∩ PySegclean MemBrain picks, coinciding with PySeg picks after round 
1 

12007 

6 PySegclean \ MemBrain PySeg picks after round 1, missed by MemBrain 49562 

7 PySegclean \ MemBrain 
Class 1 

Classified using subtomogram classification in STOPGAP 9665 

8 PySegclean \ MemBrain 
Class 2 

Classified using subtomogram classification in STOPGAP 21678 

9 PySegclean \ MemBrain 
Class 3 

Classified using subtomogram classification in STOPGAP 18219 

 
 

 

  

Table S1. The number of particles in different subsets of Dataset 3 picks used for averaging comparison. “Round 1” corresponds to the first 

PySeg pick cleaning step, where only averages containing membranes with densities were selected. 

 



 
 

Layer Type # Filters Size 

1 Conv (valid) 32 3x3x3 

 BN   
 ReLU   

2 Conv (same) 32 3x3x3 

 BN   
 ReLU   

3 Conv (valid) 32 3x3x3 

 BN   

 ReLU   

4 Conv (same) 32 3x3x3 

 BN   
 ReLU   

5 Linear 1  (box_size – 4)3 * 32 

 

  

Table S2. Overview of our MemBrain network architecture. Conv=Convolutional layer; BN=Batch normalization 



 

  

Method Required inputs Preprocessing 
time 

Training 
time 

Inference time Particle 
extraction time 

MemBrain 1mb Particle positions (training) 
Membrane segmentations 

(training + inference) 

2-5 min / mb ~20 min 1.5s / mb* 1.5s / mb* 

MemBrain 8mb 2-5 min / mb ~30 min 1.5s / mb* 1.5s / mb* 

MemBrain 28mb 2-5 min / mb ~2h 1.5s / mb* 1.5s / mb* 

DeepFinder Particle positions (training) ** ~2h 5 min / tomo 1-2h / tomo 

CrYOLO Particle positions (training) ** 4-5h 1 min / tomo 

EMAN2 Particle positions (training) ** 1h 20min 15 min / tomo 1 min / tomo 

Template 
matching 
(STOPGAP) 

Template structure - - 45 min / 
tomo*** 

<1 
min/tomo*** 

Table S3. Comparison of required preprocessing, training, inference and extraction times. Training and prediction of 

neural networks was performed using a Nvidia Quadro RTX 5000 GPU. Preprocessing time for MemBrain includes 

sampling of points, extraction of subvolumes and normalization of subvolumes. Inference time for all methods is the time 

needed to apply the trained network. Particle extraction time gives the time required for extracting the final particle 

positions from the neural network output. Note that crYOLO already outputs particle positions. 

For the required inputs, we did not give any times, as it is very difficult to estimate them: they highly depend on which 

software is used, how accurate it is, and how skilled the manual annotator is.  

* Time depends largely on the density of sampled points on the membranes. The times for standard settings are shown. 

** DeepFinder, CrYOLO and EMAN2 don’t require preprocessing by default. However, it is recommended to normalize 

tomograms and optionally also band-pass filter them.  

*** Timing provided for the following settings: template size 16 x 16 x 16, tomogram size 928 x 928 x 464, angular search 

step 20 degrees (number of orientations: 2052), CPU cores: 80. Extraction time depends on CC threshold selected (here: 

0.15) and minimum distance between points (here: 4 pixels). 



 
  

                          F1 Score 
Method             1 mb        8 mbs       28 mbs 

 
Table S4. Extended ablation study. We tested our default MemBrain settings against several other design choices. More 

augmentation angles: Instead of rotating our subvolumes only for 90°, we allow for all angles (computationally more expensive). No 

augmentation: No augmentation (rotation, flipping or random noise) was used. Note that, although results are comparable to the 

default model, training is more stable when using augmentation; see Figure S5. Volume size 8 / Volume size 16: Instead of the 

default subvolume size of 12, we used sizes of 8 and 16. Uniform Sampling: In order to account for unbalances in our dataset with 

respect to GT distances, we split all distances into evenly sized bins, and sampled subvolumes from all bins with equal frequency 

during training. 



 
  

Fig. S3. Visualization of the score assignment using Euclidean vs. Mahalanobis distance. The white density represents a PSII 

particle, mapped into its ground truth position and orientation. Distance values are represented by colors: blue points 

correspond to points with low distances. Red points have a higher assigned distance. A: Visualization of the Euclidean distance. 

B: Visualization of the Mahalanobis distance. 

Fig. S4. Rotationally symmetrized subtomogram averages generated from different subsets of picked positions from 

Dataset 3. A: MemBrain positions that were missed by PySeg (before cleaning steps). B-D: Subtomogram classification 

results for subdividing (PySegclean \ MemBrain) into 3 classes. For more details on how the averages were created, see 

S.1.4. and Table S1. 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. S5. Training and validation curves of example training runs using one single membrane for training. The red curve 

corresponds to a training run with data augmentation, the gray curve is a training run without data augmentation. From 

iteration ~330 on, the gray curve starts indicating overfitting, as the validation loss increases while the training loss further 

decreases. 
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