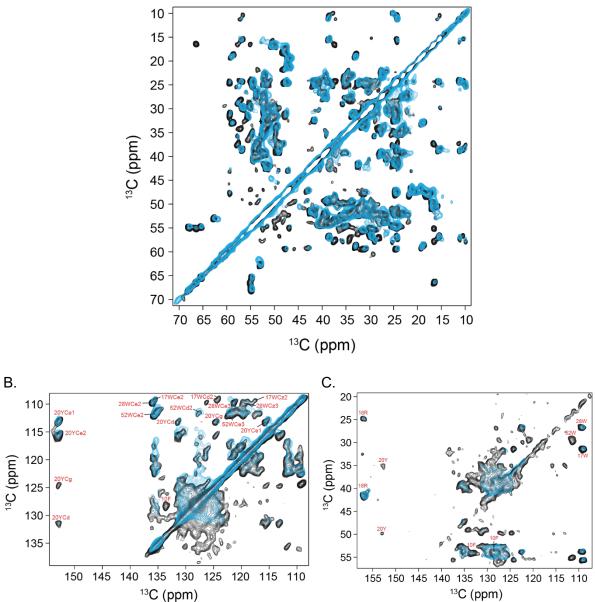
Supplementary Information for the Manuscript

SAA fibrils involved in AA amyloidosis are similar in bulk and by single particle reconstitution: A MAS solid-state NMR study


by

Arpita Sundaria,^{a,b} Falk Liberta,^c Dilan Savran,^d Riddhiman Sarkar,^{a,b} Nadine Schwierz,^d Christian Haupt,^c Matthias Schmidt, ^c and Bernd Reif ^{a,b*}

 ^a Bayerisches NMR Zentrum (BNMRZ) at the Department of Chemistry, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
^b Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany

 $^{\circ}$ Institute of Protein Biochemistry, Ulm University, Helmholtzstr. 8/1, 89081 Ulm, Germany

^d Institute of Physics, Computational Biology, University of Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany

Figure S1. Reproducibility of SAA fibrils. (A) Overlay of ¹³C, ¹³C DARR correlation of SAA fibrils sample 1 (black) and sample 2 (blue). (B, C) Overlay of the aromatic region of the DARR experiment. The amount of material in sample 2 is smaller in comparison to sample 1.

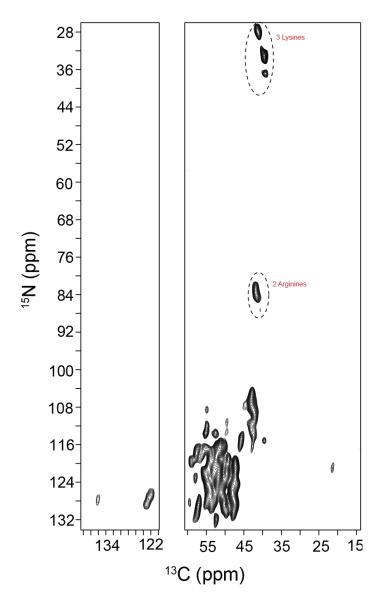
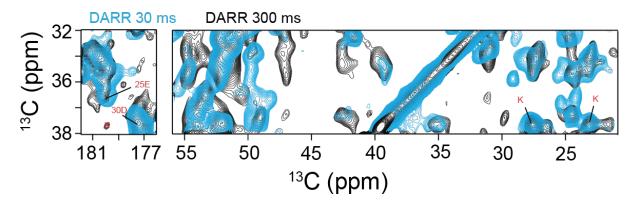
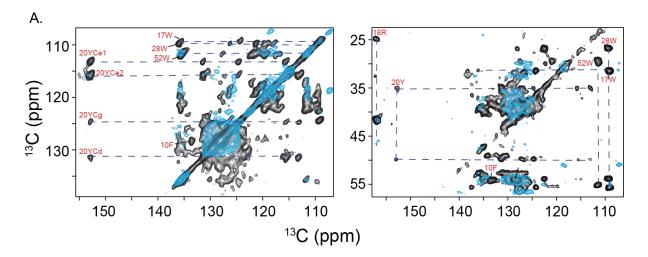




Figure S2. TEDOR of SAA fibrils. The TEDOR experiment was recorded using a mixing time of 1.9 ms.

Figure S3. Long-range restraint from long-mixing DARR. Overlay of DARR 30 ms (blue) and 300 ms (black) displays long-range interaction with an unassigned lysine to E25 and D30.

Figure S4. Aromatic region of in-vitro non-seeded SAA fibrils. Overlay of aromatic region of the 2D ¹³C, ¹³C DARR correlation spectrum recorded for seeded SAA fibrils (black) and non-seeded SAA fibrils (blue).