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Abstract 

In the neonatal lung, exposure to both prenatal and early postnatal risk factors converge into the development of 
injury and ultimately chronic disease, also known as bronchopulmonary dysplasia (BPD). The focus of many studies 
has been the characteristic inflammatory responses provoked by these exposures. Here, we review the relationship 
between immaturity and prenatal conditions, as well as postnatal exposure to mechanical ventilation and oxygen 
toxicity, with the imbalance of pro- and anti-inflammatory regulatory networks. In these conditions, cytokine release, 
protease activity, and sustained presence of innate immune cells in the lung result in pathologic processes contribut-
ing to lung injury. We highlight the recruitment and function of myeloid innate immune cells, in particular, neutro-
phils and monocyte/macrophages in the BPD lung in human patients and animal models. We also discuss dissimilari-
ties between the infant and adult immune system as a basis for the development of novel therapeutic strategies.

Keywords: Neonate, Lung, Chronic lung disease, Bronchopulmonary dysplasia, Inflammation, Neutrophil, Monocyte, 
Macrophage

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Background
Bronchopulmonary dysplasia (BPD) is the neonatal form 
of chronic lung disease occurring in the context of pre-
maturity and is characterized by impaired pulmonary 
development [1]. The consequences of misdirected lung 
development persist into adulthood, and although the 
advances in neonatal intensive care decreased the rate of 
overall mortality after premature birth, the prevalence of 
chronic complications like BPD remained [2, 3]. Differ-
ent prenatal and postnatal factors have been introduced 
as contributors to BPD development, including genetic/
epigenetic risk factors, intrauterine hypoxia and growth 
retardation, infection, mechanical ventilation (MV), and 
oxygen supplementation [4, 5]. Clinically, BPD is clas-
sified into three severity grades according to the need 
for oxygen supplementation or MV 28 days after birth 

and near term age, i.e., 36 weeks gestational age (GA) 
[6]. More than half of the preterm infants that require 
life-saving postnatal treatment with MV or oxygen sup-
plementation develop subsequent complications such 
as failure of alveolo- and angiogenesis [7, 8]. Premature 
babies born before 32 weeks of GA present with a struc-
tural and functional immaturity of the lung that includes 
an immune system not yet equipped to sufficiently 
respond to environmental insults. The subsequent vul-
nerability to infections and injury together with the mis-
directed role of immune functions in organ development 
highlights the importance of better understanding—and 
potentially targeting—immune-related phenomena [9]. 
Inflammation is a vital element of host defense [10]. 
Excessive or persistent inflammation, however, is known 
to interfere with organ development including the lung, 
and thus, a key contributor to the emergence and patho-
genesis of BPD indicating disease progression [11, 12]. 
Inflammation can be triggered by both prenatal as well as 
postnatal factors including hyperoxia, MV, and infections 
[13–16] that act beyond the background, e.g., immaturity 
and gender [16]. Preterm labor per se is associated with 
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intrauterine infections with ureaplasma and mycoplasma 
infections holding a specific role in BPD development 
[13]. In consequence, intrauterine and early postnatal 
infections and the respective inflammation are common 
in premature infants [17].. The immune system in prema-
ture infants is still undeveloped with a lower number of 
neutrophils and monocytes in the cord blood, resulting 
in a greater vulnerability to infections and a significant 
imbalance of pro-and anti-inflammatory mechanisms 
upon injury [18, 19].

The later development of BPD is then characterized 
by the accumulation and activation of myeloid leuko-
cytes cells in the lung, which in turn drive pathophysi-
ological processes such as an enhanced permeability of 
the endothelial and epithelial barrier (“leakage”) [20, 21]. 
Recently, studies specifically focused on the impact of the 
accumulation of inflammatory cells, myeloid neutrophils, 
and monocytes in particular, on misguided alveolar and 
pulmonary vascular development as the hallmark of BPD 
[22–24] However, the bidirectional role of resident and 
recruited myeloid cells in development and injury has 
been targeted for the development of treatment strate-
gies. This review provides an overview of the current 
state of knowledge available on the known and potential 
role of neutrophils, monocyte/macrophages, and their 
crosstalk with resident cells in BPD development, side 
by side with a discussion about the main challenges con-
cerning modeling the disease and future perspectives in 
the field. The important differences in immune functions 
when compared to adults are highlighted.

Innate immunity in the development of neonatal chronic 
lung disease
Due to the limited exposure to foreign antigens in utero, 
the newborn infant relies on innate immunity-depend-
ent defense strategies as the adaptive immune response 
is still naïve [25–27]. Also, the shortened time for the 
prenatal development of immune functions in preterm 
infants impacts immune responses immediately after 
birth [28]. Circulating and resident myeloid immune cells 
such as neutrophils and monocytes are at the forefront 
of the innate immune response and act as potential trig-
gers of inflammatory signals including cytokines and 
chemokines [29], which mediate immune activation as 
well as the transition from innate to adaptive immunity 
[30, 31].

Environmental assaults not only encompass bacterial 
or viral infections but exposure to toxins and mechani-
cal stress as initiated by MV and oxygen supplementa-
tion all triggering inflammation involving both innate 
and adaptive immune responses [32, 33] (see Fig.  1). 
The airway epithelium is an immunologically active bar-
rier and the main source of pro-inflammatory cytokines 

[34, 35]. Upon the airway epithelial injury and local 
release of the classical pro-inflammatory cytokines of the 
innate immune defense such as interleukin-1, -6, -8 (IL-
1, IL-6, IL-8), and tumor necrosis factor-alpha (TNFα), 
blood neutrophils immediately migrate into the lung 
tissue, subsequently followed by monocytes which—
once recruited—rapidly differentiate into macrophages 
[36–38]. This monocyte-to-macrophage differentiation 
is initiated after the emigration from the circulation into 
the tissue in association with gaining different functional 
phenotypes dependent on the local tissue environment 
[39]. Depending on the micro-environmental signals, 
macrophages develop distinct functions represented in 
the concept of their differentiation into classical acti-
vated, inflammatory (M1) or activated, anti-inflamma-
tory, or fibrotic (M2) states [38]. Furthermore, neonatal 
and adult alveolar macrophages (AMs) differ from each 
other and present their unique transcriptome profile 
under the impact of micro-environmental signals [40].

Studies on BPD research during the last few decades 
primarily focused on the association between cytokine 
and chemokine expression patterns and disease onset 
or progress [41]. Researchers found high expression lev-
els of specific cytokines stemming from classical mac-
rophage activation such as monocyte chemoattractant 
protein-1 (MCP-1/CCL2), macrophage inflammatory 
proteins (MIP), the neutrophil chemokine IL-8, and low 
expression of IL-10 in association with BPD develop-
ment [12, 42–45] while expression other cytokines, for 
example, IL-4 and IL-13 did not correlate with BPD [46]. 
In addition to the myeloid lineage, an increase in type 
3 innate lymphoid cells (ILC3) have been reported for 
their pro-inflammatory role in BPD development, mainly 
through the secretion of IL-17, which is known as a key 
factor in the recruitment of neutrophils via stimulation 
of IL-8 including neutrophils and CXCL1 and CXCL2 
chemokines [47, 48]. In contrast, levels of granulocyte 
colony-stimulating factor (G-CSF), responsible for the 
stimulation of granulocyte production in the bone mar-
row (BM), were found to be reduced in preterm when 
compared to term infants, which indicates the defective 
function of neutrophils during infection [49]. Thus, a 
potential therapeutic approach to treat or prevent BPD 
has been proposed by inhibiting the unsolicited expres-
sion of cytokine and chemokine [50, 51], which plays a 
critical role in preterm infants innate immunity and BPD 
development.

To delineate specific cellular functions engaged in 
the innate immune response, we, in the following, 
specifically outline neutrophil and monocyte/mac-
rophage functions and interactions in light of the 
sequential order of immune events.
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Neonatal neutrophils and their activation in BPD
Neutrophils play an indispensable role in acute lung 
inflammation in both mature and developing organ-
isms [52–54]. During the initiation phase of inflamma-
tion, neutrophils undergo a variety of changes in gene 
expression and functional properties [55]. Neutrophilic 
granulocytes originate in the BM and are released into 
circulation [56], where they act as the first line of cellu-
lar immune defense when getting recruited to the site of 
injury [57]. This first wave of inflammation is followed 
by the recruitment of monocytes in a later stage. Neu-
trophils eliminate pathogens through phagocytosis and 
via releasing proteases, reactive oxygen species (ROS), 
and bioactive membrane vesicles through a function 
called degranulation [58]. ROS are highly reactive spe-
cies formed from  O2, such as hydroperoxyl and hydrogen 
peroxide, and can be transformed into radicals [57, 59]. 
The sudden postnatal exposure of the immature lung to 
oxygen and MV is currently seen as the inducer of ROS-
dependent local and systemic neutrophilic inflammatory 
responses [60–62], that in turn can cause the release and 
activation of neutrophils and increased ROS production 
[63, 64]. Next to the ROS-induced effects that restrict 

lung development and contribute to BPD, another 
destructive role of activated neutrophils in the process 
of alveolar formation is likely related to the release of 
exosomes that can increase the proliferation of airway 
smooth muscle cells, induce remodeling and extracellu-
lar matrix (ECM) destruction—all being features of BPD 
[65–68]. In addition, the release of neutrophil elastase 
(NE) and metalloproteinases (MMP) like MMP-9 can 
cleave fibronectin and increase ECM degradation in the 
alveoli, thereby contributing to scaffold remodeling and 
BPD progress [69, 70]. Alternatively, these factors can 
be released by the ECM itself, thereby perpetuating the 
vicious cycle of damaging the alveolar niche [68]. In line 
with this, endogenous protease inhibitors, such as serine 
protease inhibitor (SERPIN)B1 have been demonstrated 
to hold protective functions against neutrophil protease-
induced tissue damage in BPD [71].

In comparison to adult immune functions, term 
and preterm newborn infants show fewer peripheral 
blood neutrophil counts [72]. At 22–23 weeks of gesta-
tion, only 2% of all leukocytes in the peripheral blood 
are neutrophils, while these counts increase to 60% in 
term-born infants [55] and about 60–70% in adults [73]. 

Fig. 1 Schematic represents the innate immune signals related to lung inflammation culminating in the BPD development and progression. 
Preterm infants suffer from BPD due to the impact of various risk factors including genetic background, prenatal and postnatal infections, nutrition, 
oxygen toxicity, and mechanical ventilation. Exposure of the structurally and functionally immature lung to these risk factors provokes oxidative 
stress and results in the increased expression of pro-inflammatory cytokines by resident cells in the alveolar niche. Subsequently, innate immune 
cells are recruited including neutrophils as the first-line defense. These events are followed by the extravasation of monocytes which eventually 
differentiate into macrophages in the tissue context. Neutrophil and monocyte signaling is associated with pulmonary tissue damage including 
impairment of epithelial and vascular function and progression of inflammatory processes. Black arrows indicate the elevating events during BPD
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Functionally, neonatal neutrophils show the deficiency 
to form neutrophil extracellular traps (NETs) [74] as well 
as a lower cell surface expression of L-selectin [72]. Fol-
lowing injury, endothelial cells express leucocyte adhe-
sion molecules on their luminal side, particularly P- and 
E-selectins, together with several integrin members 
of the ICAM family, to allow adhesion of neutrophils 
through their respective selectin ligands and integrins, 
e.g., CD18 and CD11b [75]. Neonatal neutrophils, how-
ever, express lower levels of CD11b and subsequently 
display only attenuated abilities for adhesion as com-
pared to adult cells. Also, reduced neutrophil CD18 and 
L-Selectin expression levels have even been described 
for their predictive value in BPD [76] while it has been 
reported that the ratio of blood neutrophil to lympho-
cyte has been increased 72 h after birth [12]. The latter 
points to an inflammatory stimulation in utero encom-
passing the lung. Nevertheless, reduced blood neutrophil 
levels have to be viewed in light of a potential imbalance 
of tissue accumulation and BM production [77]. The vul-
nerability of the newborn lung towards inflammatory 
injury is highlighted by findings in bronchoalveolar lav-
age fluid (BALF) demonstrating the combination of MV, 
hyperoxia, and inflammation to trigger the expression 
of acute-phase cytokines and chemokines in newborn 
infants [78] together with increased neutrophil apopto-
sis where intact neutrophils are phagocytosed by AMs 
before degranulation [79]. These findings might reflect a 
mechanism contributing to sustained inflammation and 
tissue damage. Neutrophil-related events as a therapeutic 
approach are still being explored.

The second wave of inflammation, induced by the 
neutrophil through releasing chemoattractants, 
involves the recruitment of other immune cells, spe-
cifically monocytes/macrophages.

Monocytes/macrophages and their response in BPD 
developing infants
Since the lung is the interface to the external environ-
ment and related immunological challenges [80], mono-
nuclear phagocytic cells are dedicated to confronting 
these challenges. Therefore, in response to environmen-
tal insults, circulating monocytes migrate into the alveo-
lar space and contribute to the process of alveolar injury 
and remodeling [81, 82]. Monocyte/monocyte-derived 
alveolar macrophages (Mo-AMs) recruitment to the lung 
is a characteristic process in BPD [83], even in light of a 
reduced number of monocytes in the neonatal peripheral 
tissue per se [84] and their lower adherence and transmi-
gration capacity when facing the non-inflamed endothe-
lium [84].

The process seems to mark chronification in BPD 
despite the potential to contribute to the resolution of 
inflammation in the first place. Like neutrophils, mono-
cytes originate from the granulocyte monocyte pro-
genitor (GMP) in the BM and play a key role in innate 
immune responses which are closely related to vascular 
homeostasis [85, 86] and contribute to processes such 
as phagocytosis and lung regeneration at the same time. 
These functions have in part been attributed to modulat-
ing alveolar stem cells [87, 88].

Current concepts relate to three human mono-
cyte subsets: classical  (CD14+CD16−), non-classical 
 (CD14-CD16+), and intermediate  (CD14+CD16+) mono-
cytes [89]. Each subset holds unique functions repre-
sented by different surface markers [90]. The differing 
abilities regarding recruitment, cytokine production, 
and capability of endothelial activation [91] relate to 
the grouping introduced above. Whereas nonclassical/
intermediate monocytes secrete higher levels of TNFα 
and demonstrate an increased capacity for endothelial 
transmigration, classical monocytes secrete high lev-
els of IL-6, and assist neutrophil recruitment [91]. In 
mice—in relation to the human concept—main types 
of monocytes are identified according to three subsets 
including classical  (Ly6C++,  CCR2++,  CD43+), nonclas-
sical  (Ly6C+,  CCR2+,  CD43++,  CX3CR1+), and interme-
diate  (Ly6C++,Treml4+,  CD43++) monocytes [92–95]. 
Here, Ly6C+ nonclassical monocytes continuously scan 
the endothelium for injury and infections [96] and are 
thereby involved in maintaining endothelial barrier integ-
rity, regeneration, and repair [97–99].

Monocytes respond to chemokine signals with the 
adhesion to endothelial cells following a multistep 
adhesion cascade involving the interaction of leuko-
cyte adhesion molecules for instance L-selectin, PSGL1, 
LFA1, MAC1, VLA4, and their respective receptors on 
endothelial cells from the selectin and immunoglobulin 
superfamily [85, 86, 100–102]. Adhesion dynamics and 
homeostatic extravasation is depending on CD31 and 
CD54 expression levels [84]. Monocytes from preterm 
infants, however, show a lower surface expression of 
the CD11b/CD18 and CD31 adhesion receptors, result-
ing in a reduced ability for extravasation and greater 
susceptibility to infections [84, 103]. Necessary for the 
subsequent differentiation of fetal monocytes into pre-
AMs during embryonic development, the transforming 
growth factor (TGF)-β1 is simultaneously a key player 
in lung development. Its dual role next in inflammation 
and apoptosis [104, 105] and the dynamic regulation 
during alveolarization renders the prenatal regulation of 
TGF-β during in utero inflammation an interesting target 
[106, 107]. TGF-β1 is an important factor for AM matu-
ration after birth as well as for the homeostasis of adult 
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AMs [108] and provides important signals for monocyte 
recruitment [109] and their activation. Whereas CD14+ 
monocytes stimulate the TGF-β1 pathway through the 
expression of the integrin αvβ8, this is not observed for 
CD16+ monocytes [110].

After exiting the circulation, blood-derived mono-
cytes rapidly differentiate into highly phagocytic 
active macrophages which are innate immune cells 
that are abundant in tissues [111]. In many organs, 
including the lung, they are divided into tissue-resi-
dent macrophages (TRMs) and “monocyte-derived” 
macrophages (Mo-Ms) [38, 82, 111]. While the lat-
ter are continuously generated and replaced from the 
BM hematopoietic system, TRMs are derived during 
embryonic development from erythro-myeloid pro-
genitors of the yolk sac (YS) and fetal liver monocytes 
[112, 113]. TRMs are abundant in lung alveoli and con-
tribute to the formation of the alveolar niche in the first 
week of life [114]. TRMs can develop from fetal mono-
cytes by gaining an established phenotype shortly after 
birth in response to instructive cytokines. Furthermore, 
they are able to self-maintain throughout life [115]. YS-
derived macrophages and fetal monocytes can arise as 
identical alveolar macrophages, while mostly the fetal 
monocytes colonize the alveolar area [116]. Tissue-
resident alveolar macrophages (TRM-AM) play a cen-
tral role in lung development, tissue homeostasis, and 
immune responses. Their absence leads to infections 
and alveolar proteinosis due to loss of protein clear-
ance [115]. Their contribution to the formation of the 
alveolar niche in the first weeks of life as well as to 
disease development is of current interest [112–115, 
117, 118]. Although the exact contribution of the mac-
rophage lung in the pathogenesis of BPD has not been 
elucidated yet, adequate early macrophage activation 
of macrophages is shown to be crucial to protecting 
infants lungs from the development of BPD [119].

Several studies have shown that Mo-AMs play an 
important role in endotoxin-induced, acute lung 
inflammation [52, 120–122]. However, as the matura-
tion of the lung macrophages is a postnatal process, 
preterm and term newborns are rendered more sus-
ceptible to disease until a “catch up” is achieved if at 
all [123], further aggravated by the reduced number of 
lung TRM-AM [124]. Monocytes and Mo-AMs from 
preterm infants less than 30 weeks of gestation, even 
show impaired pro-inflammatory cytokine production, 
i.e., IL-8, IL-1β, IL-6, and TNFα [9, 125–127], together 
with a deficient pathogen response in comparison to 
adults, enhancing the infection and damage susceptibil-
ity further [128].

Both MV and oxygen exposure of the underdeveloped 
lung provokes oxidative stress [63, 129], in turn leading 

to increased expression of pro-inflammatory cytokines 
such as TNFα, IL-8, IL-1β, and IL-6 tracheobronchial 
aspirates [130–132]. These multiple-hit events are self-
perpetuating when adding the crosstalk with the epithe-
lial cells engaged in cytokine expression, NF-κB activity, 
and ROS production which results in monocyte recruit-
ment and macrophage differentiation [133].

Disease modeling of BPD by focusing on innate immune 
cells
The role of neutrophils and monocytes in BPD onset and 
progression is studied using different methods and mod-
els, mainly relying on 2D cell cultures and measurement 
in clinical samples to complex animal models (Table 1). 
Several studies addressed the innate immune system 
in the lung compartment by the use of BAL, TA speci-
mens, cord blood cells, and serum from preterm and 
term neonates in the first week of life [24, 45, 134–136]. 
Patient-derived samples are valuable pre-clinical tools 
for defining predictive biomarkers in disease develop-
ment. However, isolating the untouched innate immune 
cells for in vitro studies can significantly affect their phe-
notype [137]. Several non-human species studies, which 
used mice, sheep, and baboons have been performed 
to study the BPD [13, 71, 124]. The experimental use of 
both prenatal and postnatal lung injury including MV 
and oxygen exposure in wild-type and transgenic animals 
attempts to investigate the cellular and molecular mecha-
nisms of the development of disease in a preclinical set-
ting [8, 13, 124, 138]. Differences between animal and 
human development of immune functions render these 
studies challenging. In addition, different in vitro models 
using primary cells or primary cell lines are added to gain 
insight into injury-relevant mechanisms of the innate 
immune cell [49, 139]. However, to the best of our knowl-
edge, realistic in  vitro models which mimic the physio-
logical and pathophysiological of the lung with a focus on 
the migration of neutrophils and monocytes under static 
or dynamic conditions have not been employed in the 
field of BPD research thus far [139–141].

To provide an overview, we summarized relevant 
models for studying neutrophil and monocyte func-
tions in the injured developing lung in chronological 
order in Table 1.

Conclusions and outlook
In summary, the immature lung undergoing injury is 
characterized by increased concentrations of proin-
flammatory cytokines as exemplified by measurements 
in TA obtained from very premature infants in the first 
days of life. While infections, oxygen exposure, and MV 
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contribute to BPD development, the affected innate 
immune functions play a critical role in this complex dis-
ease of prematurity. During the past few years, significant 
efforts have been made to examine the role of inflamma-
tion-induced lung injury considering both prenatal and 
postnatal conditions while using human samples and ani-
mal models. Studies showed that a preterm neonate with 
a structurally and functionally immature lung, paired 
with an underdeveloped immune response exhibit an 
increased pro-inflammatory response when BPD devel-
ops. Therefore, targeting the inflammatory process is 
considered a therapeutic or preventive approach for BPD.

Nonetheless, many conflicting results remain. Pre-
maturity as such results in a smaller pool of neutrophils 
and monocyte/macrophages and a subsequently lower 
capacity to secrete cytokines and reach pathogen clear-
ance. In BPD, however, elevated numbers of neutrophils 

and monocytes, and their inflammatory cytokines can be 
detected in the diseased lung. The differences in local and 
systemic concentrations may relate to mechanisms driv-
ing tissue accumulation despite reduced BM production 
rates. Targeting the number of peripheral blood immune 
cells has been suggested as a therapeutic strategy in BPD. 
Nevertheless, this approach neglects the developmental 
functions, the same innate immune cells, and their sign-
aling molecules hold.

Concerning cell-specific effects and their interplay, 
neutrophil presence and activation marking the first line 
of defense hold a crucial function in the BPD lung and 
correlate with the severity of symptoms. Detection and 
characterization of a pronounced monocyte-centered 
inflammatory response in preterm infants with later BPD 
mark the “second wave” of events. However, the chal-
lenging question is how physiologic defense signaling is 

Table 1 Selected research on the role of neutrophils and monocytes in BPD

Year Model/specimen Main findings on the role of neutrophils and monocytes in BPD Ref

1984 Human neonatal BAL Neutrophil influx and imbalance between elastase and alpha 1-proteinase inhibitor contribute 
to BPD development.

[134]

2001 Human neonatal TA MCP-1 and IL-8 increase describes BPD and is correlated to oxygen exposure and duration of 
MV.

[135]

2003 Fetal and neonatal lamb Monocytes from preterm and term lambs differ from the adult cells regarding inflammation 
initiation and resolution.

[124]

2004 Human neonatal cells Decreased CD18 expression on neutrophils and monocytes and CD62L on neutrophils are early 
predictors of BPD.

[76]

2004 Neonatal rat The combination of hyperoxia exposure and neutrophil accumulation has a pivotal role in the 
development of BPD.

[67]

2007 Human placenta and cord blood Neonatal monocytic IL-10 production is below the needed for inhibition of release of IL-8. Sug-
gesting exogenous IL-10 as a BPD treatment strategy.

[136]

2008 Human neonatal blood Low neutrophil counts in the systemic circulation might predict BPD severity. [142]

2009 Neonatal sheep Prenatal inflammation affects fetal immune responses including the maturation of monocytes 
to AMs.

[13]

2011 Neonatal mice MV-O2 leads to an increased accumulation of neutrophils and monocytes/macrophages in the 
lung.

[143]

2013 Neonatal mice Perinatal inflammation and postnatal hyperoxia mark the activation of the macrophages which 
can be enhanced by IL-1Ra.

[144]

2015 Neonatal mice Increased TGFβ1 expression in leads to apoptosis and monocyte and macrophage infiltration. [145]

2016 Neonatal mice MV increases the infiltrating monocytes and cytokine expression in the lungs of TNFα-/- mice in 
comparison to the WT.

[138]

2018 Neonatal mice Csf1r expressing monocyte/macrophage lineage are critical mediators of arrested alveolariza-
tion.

[83]

2019 Human neonatal blood The elevated neutrophil-to-lymphocyte ratio is an early predictor of BPD. [12]

2019 Neonatal mice and human neonatal TA The presence of neutrophil-derived pathogenic in BPD lung secretion promotes extracellular 
matrix destruction.

[66]

2019 Human neonatal TA Association between early changes in monocyte-specific IL-1 cytokine and evolving BPD. [24]

2019 Neonatal mice and human neonatal TA Inhibition of miR199a-5p improves lung vascular leak and decreased BALF total cell counts 
including macrophages and neutrophil influx.

[146]

2020 Neonatal rat Long-term hyperoxia exposure reduced the number of peripheral blood neutrophils in BPD. [77]

2020 Human neonatal TA Identify higher expression of inflammatory mediator genes on the first day of life as a predictive 
BPD signature.

[123]

2021 Neonatal rat Upregulated monocyte and neutrophil chemotaxis genes and involvement of the pulmonary T 
cell receptor signaling pathway in BPD.

[147]
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changed into an immune reaction while infection clear-
ing and termination of inflammation are not reached. 
The subsequent release of damage signals initiates the 
detrimental cascade of alveolar and airway injury.

Future studies need to overcome current limitations 
that exist due to a variety of reasons. First of all—given 
the nature of the patient collective—only a limited num-
ber of preterm infants can be enrolled in the majority of 
studies. Secondly, volume restrictions of clinical samples 
obtained from preterm infants limit the experimental 
settings in addition to the non-physiological activation of 
primary cells during isolation and culture. Hence, reliable 
analysis techniques and the avoidance of solely targeted 
approaches need to be combined with optimized “pre-
clinical” in vitro models to overcome the described chal-
lenges. The establishment of large datasets standardized 
or harmonized between centers and groups including 
single-cell analysis will help to provide valuable resources 
for studies to come regarding both developmental and 
injury functions of the innate immune system. Preclini-
cal animal models—despite the differences in immune 
regulation processes and marker expression when com-
paring mice and men—should be combined to tackle 
context-related knowledge gaps putting in vitro findings 
into perspective concerning cellular crosstalk and spatial 
resolution.

In the future, our understanding of the role of the 
immune system in BPD will become increasingly impor-
tant as more sophisticated therapeutic and diagnostic 
possibilities emerge that may allow targeted approaches 
to treat and monitor disease-relevant processes in a pop-
ulation tackling critical steps of organ development.
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