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Abstract. Reconstructing 3D objects from 2D images is both challeng-
ing for our brains and machine learning algorithms. To support this spa-
tial reasoning task, contextual information about the overall shape of an
object is critical. However, such information is not captured by estab-
lished loss terms (e.g. Dice loss). We propose to complement geometrical
shape information by including multi-scale topological features, such as
connected components, cycles, and voids, in the reconstruction loss. Our
method uses cubical complexes to calculate topological features of 3D
volume data and employs an optimal transport distance to guide the
reconstruction process. This topology-aware loss is fully differentiable,
computationally efficient, and can be added to any neural network. We
demonstrate the utility of our loss by incorporating it into SHAPR, a
model for predicting the 3D cell shape of individual cells based on 2D
microscopy images. Using a hybrid loss that leverages both geometri-
cal and topological information of single objects to assess their shape,
we find that topological information substantially improves the quality
of reconstructions, thus highlighting its ability to extract more relevant
features from image datasets.

Keywords: topological loss · cubical complex · 3D shape prediction

1 Introduction

Segmentation and reconstruction are common tasks when dealing with imaging
data. Especially in the biomedical domain, segmentation accuracy can have a
substantial impact on complex downstream tasks, such as a patient’s diagnosis
and treatment. 3D segmentation is a complex task in itself, requiring the as-
sessment and labelling of each voxel in a volume, which, in turn, necessitates
a high-level understanding of the object and its context. However, complexity
rapidly increases when attempting to reconstruct a 3D object from a 2D pro-
jection since 3D images may often be difficult to obtain. This constitutes an
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inverse problem with intrinsically ambiguous solutions: each 2D image permits
numerous 3D reconstructions, similar to how a shadow alone does not neces-
sarily permit conclusions to be drawn about the corresponding shape. When
addressed using machine learning, the solution of such inverse problems can be
facilitated by imbuing a model with additional inductive biases about the struc-
tural properties of objects. Existing models supply such inductive biases to the
reconstruction task mainly via geometry-based objective functions, thus learning
a likelihood function f : V → R, where f(x) for x ∈ V denotes the likelihood
that a voxel x of the input volume V is part of the ground truth shape [18]. Loss
functions to learn f are evaluated on a per-voxel basis, assessing the differences
between the original volume and the predicted volume in terms of overlapping
labels. Commonly-used loss functions include binary cross entropy (BCE), Dice
loss, and mean squared error (MSE). Despite their expressive power, these loss
terms do not capture structural shape properties of the volumes.

Our contributions. Topological features, i.e. features that characterise data pri-
marily in terms of connectivity, have recently started to emerge as a powerful
paradigm for complementing existing machine learning methods [13]. They are
capable of capturing shape information of objects at multiple scales and along
multiple dimensions. In this paper, we leverage such features and integrate them
into a novel differentiable ‘topology-aware’ loss term LT that can be used to reg-
ularise the shape reconstruction process. Our loss term handles arbitrary shapes,
can be computed efficiently, and may be integrated into general deep learning
models. We demonstrate the utility of LT by combining it with SHAPR [29], a
framework for predicting individual cell shapes from 2D microscopy images. The
new hybrid variant of SHAPR, making use of both geometry-based and topology-
based objective functions, results in improved reconstruction performance along
multiple metrics.

2 Related Work

Several deep learning approaches for predicting 3D shapes of single objects from
2D information already exist; we aim to give a brief overview. Previous work
includes predicting natural objects such as air planes, cars, and furniture from
photographs, creating either meshes [11,30], voxel volumes [3], or point clouds [9].
A challenging biomedical task, due to the occurrence of imaging noise, is tackled
by Waibel et al. [29], whose SHAPR model predicts the shape and morphology of
individual mammalian cells from 2D microscopy images. Given the multi-scale
nature of microscopy images, SHAPR is an ideal use case to analyse the impact of
employing additional topology-based loss terms for these reconstruction tasks.

Such loss terms constitute a facet of the emerging field of topological ma-
chine learning and persistent homology, its flagship algorithm (see Section 3.1
for an introduction). Previous studies have shown great promise in using topo-
logical losses for image segmentation tasks or their evaluation [25]. In contrast



Capturing Shape Information with Multi-Scale Topological Loss Terms 3

2D Input Model 3D Prediction

LG

Geometrical loss 3D Ground Truth

0 0.5 1

0

0.5

1

Creation

D
es

tr
uc

ti
on

d = 0

d = 1

d = 2

Topological features

LT

Topological loss

0 0.5 1

0

0.5

1

Creation

D
es

tr
uc

ti
on

Topological features

⊕

Fig. 1: Given a predicted object and a 3D ground truth object, we calculate
topological features using cubical persistent homology, obtaining a set of persis-
tence diagrams. Each point in a persistence diagram denotes the creation and
destruction of a d-dimensional topological feature of the given object. We com-
pare these diagrams using LT, our novel topology-based loss, combining it with
geometrical loss terms such as binary cross entropy (BCE). Dotted components
can be swapped out.

to our loss, existing work relies on prior knowledge about ‘expected’ topolog-
ical features [4], or enforces a pre-defined set of topological features based on
comparing segmentations [15,16].

3 Our Method: A Topology-Aware Loss

We propose a topology-aware loss term based on concepts from topological ma-
chine learning and optimal transport. The loss term works on the level of indi-
vidual volumes, leveraging a valid metric between topological descriptors, while
remaining efficiently computable. Owing to its generic nature, the loss can be
easily integrated into existing architectures; see Fig. 1 for an overview.

3.1 Assessing the Topology of Volumes

Given a volume V, i.e. a d-dimensional tensor of shape n1×n2×· · ·×nd, we repre-
sent it as a cubical complex C. A cubical complex contains individual voxels of V
as vertices , along with connectivity information about their neighbourhoods
via edges , squares , and their higher-dimensional counterparts.4 Cubi-
cal complexes provide a fundamental way to represent volume data and have
proven their utility in previous work [24,28]. Topological features of different di-
mensions are well-studied, comprising connected components (0D), cycles (1D),
4 Expert readers may recognise that cubical complexes are related to meshes and
simplicial complexes but use squares instead of triangles as their building blocks.
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and voids (2D), for instance. The number of k-dimensional topological features
is also referred to as the kth Betti number βk of C. While previous work has
shown the efficacy of employing Betti numbers as a topological prior for image
segmentation tasks [4,15], the reconstruction tasks we are considering in this pa-
per require a multi-scale perspective that cannot be provided by Betti numbers,
which are mere feature counts. We therefore make use of persistent homology,
a technique for calculating multi-scale topological features [8]. This technique is
particularly appropriate in our setting: our model essentially learns a likelihood
function f : V → R. To each voxel x ∈ V, the function f assigns the likelihood
of x being part of an object’s shape. For a likelihood threshold τ ∈ R, we obtain
a cubical complex C(τ) := {x ∈ V | f(x) ≥ τ} and, consequently, a different
set of topological features. Since volumes are finite, their topology only changes
at a finite number of thresholds τ1 ≥ . . . ≥ τm, and we obtain a sequence of
nested cubical complexes ∅ ⊆ C(τ1) ⊆ C(τ2) ⊆ · · · ⊆ C(τm) = V, known as a
superlevel set filtration. Persistent homology tracks topological features across
all complexes in this filtration, representing each feature as a tuple (τi, τj), with
τi ≥ τj , indicating the cubical complex in which a feature was being ‘created’ and
‘destroyed,’ respectively. The tuples of k-dimensional features, with 0 ≤ k ≤ d,
are stored in the kth persistence diagram D(k)

f of the data set.5 Persistence di-
agrams thus form a multi-scale shape descriptor of all topological features of a
dataset. Despite the apparent complexity of filtrations, persistent homology of
cubical complexes can be calculated efficiently in practice [28].

Structure of persistence diagrams. Persistent homology provides information be-
yond Betti numbers: instead of enforcing a choice of threshold τ for the likeli-
hood function, which would result in a fixed set of Betti numbers, persistence
diagrams encode all thresholds at the same time, thus capturing additional ge-
ometrical details about data. Given a tuple (τi, τj) in a persistence diagram, its
persistence is defined as pers(τi, τj) := |τj − τi|. Persistence indicates the ‘scale’
over which a topological feature occurs, with large values typically assumed to
correspond to more stable features. The sum of all persistence values is known
as the degree-p total persistence, i.e. Persp(Df ) :=

∑
(τi,τj)∈Df

|pers(τi, τj)p|. It
constitutes a stable summary statistic of topological activity [7].

Comparing persistence diagrams. Persistence diagrams can be endowed with a
metric by using optimal transport. Given two diagrams D and D′ containing
features of the same dimensionality, their pth Wasserstein distance is defined as

Wp(D,D′) :=

(
inf

η : D→D′

∑
x∈D
‖x− η(x)‖p∞

) 1
p

, (1)

where η(·) denotes a bijection. Since D and D′ generally have different cardinal-
ities, we consider them to contain an infinite number of points of the form (τ, τ),
5 We use the subscript f to indicate the corresponding likelihood function; we will
drop this for notational convenience when discussing general properties.
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i.e. tuples of zero persistence. A suitable η(·) can thus always be found. Solving
Eq. (1) is practically feasible using modern optimal transport algorithms [10].

Stability. A core property of persistence diagrams is their stability to noise.
While different notions of stability exist for persistent homology [7], a recent
theorem [27] states that the Wasserstein distance between persistence diagrams
of functions f, f ′ : V → R is bounded by their p-norm, i.e.

Wp

(
D(k)
f ,D(k)

f ′

)
≤ C‖f − f ′‖p for 0 ≤ k ≤ d, (2)

with C ∈ R>0 being a constant that depends on the dimensionality of V.
Eq. (2) implies that gradients obtained from the Wasserstein distance and other
topology-based summaries will remain bounded; we will also use it to accelerate
topological feature calculations in practice.

Differentiability. Despite the discrete nature of topological features, persistent
homology permits the calculation of gradients with respect to parameters of
the likelihood function f , thus enabling the use of automatic differentiation
schemes [14,19,22]. A seminal work by Carrière et al. [2] proved that optimi-
sation algorithms converge for a wide class of persistence-based functions, thus
opening the door towards general topology-based optimisation schemes.

3.2 Loss Term Construction

Given a true likelihood function f and a predicted likelihood function f ′, our
novel generic topology-aware loss term takes the form

LT(f, f
′, p) :=

d∑
i=0

Wp

(
D(i)
f ,D(i)

f ′

)
+ Pers

(
D(i)
f ′

)
. (3)

The first part of Eq. (3) incentivises the model to reduce the distance between
f and f ′ with respect to their topological shape information. The second part
incentivises the model to reduce overall topological activity, thus decreasing the
noise in the reconstruction. This can be considered as the topological equivalent
of reducing the total variation of a function [23]. Given a task-specific geometrical
loss term LG,6 such as a Dice loss, we obtain a combined loss term as L :=
LG +λLT, where λ ∈ R>0 controls the impact of the topology-based part. We
will use p = 2 since Eq. (2) relates LT to the Euclidean distance in this case.

Calculations in practice. To speed up the calculation of our loss term, we utilise
the stability theorem of persistent homology and downsample each volume to
M ×M ×M voxels using trilinear interpolation. We provide a theoretical and
empirical analysis of the errors introduced by downsampling in the Supplemen-
tary Materials. In our experiments, we set M = 16, which is sufficiently small to
have no negative impact on computational performance while at the same time
resulting in empirical errors ≤ 0.1 (measured using Eq. (2) for p = 2).
6 We dropped all hyperparameters of the loss term for notational clarity.
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4 Experiments

We provide a brief overview of SHAPR before discussing the experimental setup,
datasets, and results. SHAPR is a deep learning method to predict 3D shapes
of single cells from 2D microscopy images [29]. Given a 2D fluorescent image
of a single cell and a corresponding segmentation mask, SHAPR predicts the 3D
shape of this cell. The authors suggest to train SHAPR with a combination of
Dice and BCE loss, with an additional adversarial training step to improve the
predictions of the model. We re-implemented SHAPR using PyTorch [21] to ensure
fair comparisons and the seamless integration of our novel loss function LT,
employing ‘Weights & Biases’ for tracking experiments [1]. Our code and reports
are publicly available.7

Data. For our experiments, we use the two datasets published with the original
SHAPR manuscript [29]. The first dataset comprises 825 red blood cells, imaged
in 3D with a confocal microscope [26]. Each cell is assigned to one of nine pre-
defined classes: sphero-, stomato-, disco-, echino-, kerato-, knizo-, and acantho-
cytes, as well as cell clusters and multilobates. The second dataset contains 887
nuclei of human-induced pluripotent stem cells (iPSCs), counterstained and im-
aged in 3D with a confocal microscope. Cells were manually segmented to create
ground truth objects. Both datasets include 3D volumes of size 64× 64× 64, 2D
segmentation masks of size 64× 64, and fluorescent images of size 64× 64.

4.1 Training and Evaluation

We trained our implementation of SHAPR for a maximum of 100 epochs, using
early stopping with a patience of 15 epochs, based on the validation loss. For
each run, we trained five SHAPR models in a round-robin fashion, partitioning the
dataset into five folds with a 60%/20%/20% train/validation/test split, making
sure that each 2D input image appears once in the test set. To compare the
performance of SHAPR with and without LT, we used the same hyperparameters
for all experiments (initial learning rate of 1×10−3, β1 = 0.9, and β2 = 0.999 for
the ADAM optimiser). We optimised λ ∈ {1× 10−3, 1× 10−2, . . . , 1× 102}, the
regularisation strength parameter for LT, on an independent dataset, resulting
in λ = 0.1 for all experiments. We also found that evaluating Eq. (3) for each
dimension individually leads to superior performance; we thus only calculate
Eq. (3) for i = 2. Finally, for the training phase, we augmented the data with
random horizontal or vertical flipping and 90◦ rotations with a 33% chance for
each augmentation to be applied for a sample. The goal of these augmentations
is to increase data variability and prevent overfitting.

Following Waibel et al. [29], we evaluated the performance of SHAPR by calcu-
lating (i) the intersection over union (IoU) error, (ii) the relative volume error,
(iii) the relative surface area error, and (iv) the relative surface roughness error

7 See https://github.com/marrlab/SHAPR_torch.

https://github.com/marrlab/SHAPR_torch
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Fig. 2: (a) Examples of predictions without (top row) and with (middle row)
LT, our topological loss term. The third row shows ground truth images. (b) LT
improves predictions in relevant metrics, such as the IoU error, the relative
volume error, relative surface area error, and relative surface roughness error.

with respect to the ground truth data, applying Otsu’s method [20] for thresh-
olding predicted shapes. We calculate the volume by counting non-zero voxels,
the surface area as all voxels on the surface of an object, and the surface rough-
ness as the difference between the surface area of the object and the surface area
of the same object after smoothing it with a 3D Gaussian [29].

4.2 Results

To evaluate the benefits of our topology-aware loss, we perform the same exper-
iment twice: first, using a joint BCE and Dice loss [29], followed by adding λLT.
Without LT, we achieve results comparable to the original publication (IoU, red
blood cell data: 0.63± 0.12%; IoU, nuclei data: 0.46± 0.16%); minor deviations
arise from stochasticity and implementation differences between PyTorch and
Tensorflow. We observe superior performance in the majority of metrics for
both datasets when adding LT to the model (see Fig. 2 and Table 1); the perfor-
mance gains by LT are statistically significant in all but one case. Notably, we
find that LT increases SHAPR’s predictive performance unevenly across the classes
of the red blood cell dataset (see Fig. 2a). For spherocytes (round cells), only
small changes in IoU error, relative volume error, relative surface area error, and
relative surface roughness error (7% decrease, 2% decrease, and 3% decrease, re-
spectively) occur, whereas for echinocytes (cells with a spiky surface), we obtain
a 27% decrease in IoU error and 7% decrease in relative volume error. Finally,
for discocytes (bi-concave cells) and stomatocytes, we obtain a 2% decrease in
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Table 1: Median, mean (µ) and standard deviation (σ) of several relative error
measures for two datasets (lower values are better; winner shown in bold). The
LT column indicates whether our new loss term was active. We also show the
p-value of a paired Wilcoxon signed-rank test between error distributions.

Red blood cell (n = 825) Nuclei (n = 887)

Relative error LT Median µ± σ p Median µ± σ p

1− IoU
7 0.48 0.49 ± 0.09 1.1 × 10−19 0.62 0.62 ± 0.11 0.5
3 0.47 0.47 ± 0.10 0.61 0.61 ± 0.11

Volume 7 0.31 0.35 ± 0.31 1.2 × 10−47 0.34 0.48 ± 0.47 4.6 × 10−14
3 0.26 0.29 ± 0.27 0.32 0.43 ± 0.42

Surface area 7 0.20 0.24 ± 0.20 39.5 × 10−13 0.21 0.27 ± 0.25 1.7 × 10−8
3 0.14 0.18 ± 0.16 0.18 0.25 ± 0.24

Surface roughness 7 0.35 0.36 ± 0.24 9.1 × 10−4 0.17 0.18 ± 0.12 1.5 × 10−6
3 0.24 0.29 ± 0.22 0.18 0.19 ± 0.13

IoU error, a 3% decrease in volume error, a 11% decrease in surface area error,
and a 25% decrease in surface roughness error upon adding LT.

5 Discussion

We propose a novel topology-aware loss term LT that can be integrated into
existing deep learning models. Our loss term is not restricted to specific types
of shapes and may be applied to reconstruction and segmentation tasks. We
demonstrate its efficacy in the reconstruction of 3D shapes from 2D microscopy
images, where the results of SHAPR are statistically significantly improved in
relevant metrics whenever LT is jointly optimised together with geometrical
loss terms. Notably, LT does not optimise classical segmentation/reconstruction
metrics, serving instead as an inductive bias for incorporating multi-scale in-
formation on topological features. LT is computationally efficient and can be
adapted to different scenarios by incorporating topological features of a specific
dimension. Since our experiments indicate that the calculation of Eq. (3) for a
single dimension is sufficient to achieve improved reconstruction results in prac-
tice, we will leverage topological duality/symmetry theorems [6] in future work
to improve computational efficiency and obtain smaller cubical complexes.

Our analysis of predictive performance across classes of the red blood cell
dataset (see Table 1) leads to the assumption that the topological loss term shows
the largest reconstruction performance increases on shapes that have complex
morphological features, such as echinocytes or bi-concavely shaped cells (dis-
cocytes and stomatocytes). This implies that future extensions of the method
should incorporate additional geometrical descriptors into the filtration calcu-
lation, making use of recent advances in capturing the topology of multivariate
shape descriptors [17].



Capturing Shape Information with Multi-Scale Topological Loss Terms 9

Acknowledgements. We thank Lorenz Lamm, Melanie Schulz, Kalyan Varma
Nadimpalli, and Sophia Wagner for their valuable feedback to this manuscript.
The authors also are indebted to Teresa Heiss for discussions on the topological
changes induced by downsampling volume data.

Funding. Carsten Marr received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 Research and Innovation
Programme (Grant Agreement 866411).

Author contributions. DW and BR implemented code and conducted exper-
iments. DW, BR, and CM wrote the manuscript. DW created figures and BR
the main portrayal of results. SA and MM provided the 3D nuclei dataset. BR
supervised the study. All authors have read and approved the manuscript.

A Discussion: The Effects of Interpolation

As outlined in the main paper, we downsample our volumes from 643 voxels
to 163 voxels using trilinear interpolation. To assess the impact this has on
the calculation of persistent homology, we can make use of recent work on the
topological impact of changing image resolutions [12]. Following Heiss et al. [12],
we treat downsampling as a general function that transforms a volume of side
length r1 ∈ N into a volume of side length r2 ∈ N. Assuming that r1 > r2 > 0
and r2 | r1, we refer to a := r1/r2 as the compression factor. In d dimensions,
every voxel of size r2 contains ad voxels of size r1, making it possible to compare
the two volumes by repeating the values of the smaller volume.

While the bounds given by Heiss et al. [12] make use of the bottleneck distance
instead of the Wasserstein distance, we can still use the equivalence of norms to
obtain bounds. To this end, we first observe that the likelihood function f that
we use in the paper is Lipschitz continuous with Lipschitz constant L = 1. This
is a direct consequence of the image of the function being restricted to [0, 1].
Corollary III.4 of Heiss et al. [12] now states the following:8

Corollary 1. If f : Rd → R is Lipschitz continuous with Lipschitz constant L,
then dB(Dfr1 ,Dfr2 ) ≤ Lr1

√
d, where dB(·, ·) refers to the bottleneck distance be-

tween two persistence diagrams, and Dfr1 ,Dfr2 denote the persistence diagrams
of the likelihood functions for volumes with side lengths r1 and r2, respectively.

This corollary makes use of the fact that ‖fr1 − fr2‖∞ ≤ Lr1
√
d, such that the

bound follows as a consequence of the stability theorem of persistent homol-
ogy [5,27]. Using the equivalence of norms in finite-dimensional vector spaces,
we know that for every x ∈ Rn,

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞. (4)

8 We use a slightly different formulation that is aligned with the notation of our main
paper. Moreover, we consider r1 to refer to the larger side length, as outlined above.
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Fig. 3: Empirical observation errors for a small test data set. We show that
error with respect to the secondWasserstein distanceW2 between the persistence
diagrams generated from the original function (r1) and a lower-resolution version
with side length r2. The mean error for r2 ∈ {16, 32} is bounded by ≈ 0.1, which
we deem satisfactory for subsequent calculations.

Treating the values of our likelihood function as a vector in n := rd1 dimensions,
we obtain an upper bound according to Eq. (4) as

‖fr1 − fr2‖2 ≤ Lr1
√
d
√
rd1 . (5)

This is a worst-case bound; it does not incorporate the fact that as r2 approaches
r1, interpolation errors decrease. Moreover, the bound does not incorporate the
structure of the interpolation scheme; for specific types of interpolation schemes,
tighter bounds can be derived.

Empirical errors. In practice, we observe substantially smaller errors. Fig. 3
depicts empirical interpolation errors in terms of the Wasserstein distance be-
tween persistence diagrams arising from the original space and an interpolated
variant. The computational performance gains that we get from using only 163

voxels (instead of 643 voxels) for the topological calculations are shown to be
accompanied by small approximation errors.

Code. Along with our model, we also publish an additional script for readers
interested in reproducing these plots. To run the analysis for s = 8, for instance,
you may use the following call:

python -m scripts.analyse_interpolation -s 8 -p config/small-0D.json

Please refer to our code repository9 for more details.

9 See https://github.com/marrlab/SHAPR_torch.

https://github.com/marrlab/SHAPR_torch
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