
Padovani et al. BMC Biology (2022) 20:174
https://doi.org/10.1186/s12915-022-01372-6

SOFTWARE

Segmentation, tracking and cell cycle
analysis of live-cell imaging data with Cell-ACDC
Francesco Padovani1* , Benedikt Mairhörmann1,2 , Pascal Falter‑Braun2,3 , Jette Lengefeld4,5 and
Kurt M. Schmoller1,6*

Abstract

Background: High‑throughput live‑cell imaging is a powerful tool to study dynamic cellular processes in single cells
but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of
analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nev‑
ertheless, manual data validation and correction is typically still required and tools spanning the complete range of
image analysis are still needed.

Results: We present Cell‑ACDC, an open‑source user‑friendly GUI‑based framework written in Python, for segmenta‑
tion, tracking and cell cycle annotations. We included state‑of‑the‑art deep learning models for single‑cell segmenta‑
tion of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi‑automated workflow for cell
cycle annotation of single cells. Using Cell‑ACDC, we found that mTOR activity in hematopoietic stem cells is largely
independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regula‑
tion of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age.

Conclusions: Cell‑ACDC provides a framework for the application of state‑of‑the‑art deep learning models to the
analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and cor‑
rection of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart
algorithms that make the correction and annotation process fast and intuitive. Finally, the open‑source and modular‑
ized nature of Cell‑ACDC will enable simple and fast integration of new deep learning‑based and traditional methods
for cell segmentation, tracking, and downstream image analysis.

Source code: https:// github. com/ Schmo llerL ab/ Cell_ ACDC

Keywords: Live‑cell imaging, Deep‑learning cell segmentation, Cell tracking, Cell cycle analysis, Bioimage analysis

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Live-cell imaging is a powerful technique that allows
studying complex cellular dynamics by providing spati-
otemporal information of subcellular events [1]. Micro-
fluidic devices that maintain constant environments

enable parallel imaging of thousands of cells for many
hours in a single experiment. However, downstream anal-
ysis typically involves many potentially time-consuming
steps, e.g. cell segmentation, tracking, and pedigree
annotation. Thus, for the large amount of data typically
produced by a live-cell imaging experiment, downstream
extraction of biologically relevant information becomes
the rate-limiting step.

While traditional segmentation algorithms had low
generalization power, recent advances in deep learning,
and specifically in fully convolutional neural networks
(FCNN) based on U-Net [2], have greatly enhanced

Open Access

*Correspondence: francesco.padovani@helmholtz‑muenchen.de; kurt.
schmoller@helmholtz‑muenchen.de

1 Institute of Functional Epigenetics (IFE), Molecular Targets and Therapeutics
Center (MTTC), Helmholtz Center Munich, 85764 Munich‑Neuherberg, Germany
6 German Center for Diabetes Research (DZD), 85764,
Munich‑Neuherberg, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2540-8240
http://orcid.org/0000-0001-8012-9303
http://orcid.org/0000-0003-2012-6746
http://orcid.org/0000-0001-6021-7613
http://orcid.org/0000-0001-5790-5204
https://github.com/SchmollerLab/Cell_ACDC
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12915-022-01372-6&domain=pdf

Page 2 of 18Padovani et al. BMC Biology (2022) 20:174

segmentation accuracy and degree of automation [3,
4]. More specifically, in the case of live-cell micros-
copy of yeast and other organisms (e.g. mammalian
stem cells), neural networks recently published (YeaZ
[5], Cellpose [6], YeastMate [7] and StarDist [8]) drasti-
cally improved the segmentation process. However, even
these neural networks do not achieve perfect segmenta-
tion, and—depending on the question—manual verifica-
tion or correction of segmentation and tracking is often
still essential for high-quality microscopy image analy-
sis. Additionally, training deep learning models requires
annotated ground-truth data.

Single-live-cell timelapse microscopy enables the study
of cellular events happening in different phases of the cell
cycle or even across multiple cell cycles. For this purpose,
analysis of movies that image cells over multiple genera-
tions requires the correct annotation of pedigrees and
cell cycle transitions. This is particularly true for bud-
ding yeast, because the bud, even though still a part of
the mother cell, needs to be segmented as an individual
object. This is important because bud emergence marks
S-phase entry, a key cell cycle transition. In addition, the
bud needs to be separated from the mother to answer sci-
entific questions related to the transport of sub-cellular
components between the mother and the bud. Further-
more, volume estimation (see “Cell volume calculation”
in the Material and methods section), requires separate
mother and bud segmentation masks. To obtain infor-
mation about a full cell cycle, it is then necessary to link
a bud to its mother cell and determine the time point of
cell division. Importantly, budding yeast cell cycle anno-
tations can in part be performed in a label-free man-
ner based on the phase contrast signal: bud emergence
is linked to S-phase entry, and cell division is typically
detectable by a sudden movement of the bud that is not
mechanically linked to the mother cell anymore. Unfor-
tunately, such pedigree and cell cycle annotations in
budding yeast involve many manual steps (without a ded-
icated fluorescent marker) that require careful inspection
of every single frame to identify and annotate the time
point of cell division. Fluorescent tagging of proteins that
locate to the bud neck connecting mother and bud, or of
histones to monitor S-phase and observe nuclear locali-
zation, facilitates pedigree annotation and has been used
for automation [9–12]. However, endogenous tagging
comes with the cost of requiring genetic manipulation as
well as one fluorescent channel that otherwise could be
used for other purposes. Automated approaches do not
achieve the close-to-perfect accuracy required for many
questions and thus still require manual inspection and
correction. While tools have been previously developed
for automatic lineage tree construction [13–18] they
are specific for symmetrically dividing cells or require

a dedicated fluorescent marker for the cell cycle stage
inference.

Although many software tools dedicated to the analysis
of live-cell microscopy have been developed in the past
(ImageJ/Fiji [19], MorphoLibJ [20], PhyloCell [21], Cell-
Profiler [22], Cell Tracer [23], Wood et al. [24, 25], Cell
Star [26], Cell Serpent [27], Tracker [28], YeastSpotter
[29], YeastNet [30], DeepCell [31], Cellbow [32], LAB-
KIT [33], largely focussed on classification tasks CellID
[34] and Advanced Cell Classifier [35] and, specifically
for ageing experiments using dedicated microfluidics,
DISCO [36], DetecDiv [37] and BABY [38]), to the best of
our knowledge, none of them spanned the entire image
analysis pipeline from CNN-based segmentation to cell
cycle analysis in growing colonies, and fluorescent signal
quantification (Table 1).

Implementation
Here we present an open-source graphical user interface
(GUI)-based framework (written in Python 3) embedding
state-of-the-art neural networks (YeaZ [5], Cellpose [6],
StarDist [8] and YeastMate [7]) selectable by the user and
smart algorithms that allow for fast, replicable, and accu-
rate microscopy image analysis. The provided tools cover
the entire image analysis pipeline from a raw microscopy
file to the quantification of the feature of interest. We
named this software Cell-ACDC for Cell-Analysis of the
Cell Division Cycle.

Cell-ACDC was developed following a community-
centred approach, where users from several research
groups provided feedback and suggestions that were
implemented into the pipeline. Additional segmenta-
tion models that will be developed in the future can be
easily added in a few minutes with a drop-in approach.
Cell-ACDC provides for the first time the possibility to
constantly visualize and correct any segmentation, track-
ing, or cell cycle annotation error in a fast and intuitive
way. It includes several smart algorithms and shortcuts
that automatically propagate any change to past and
future frames to continuously maintain data integrity
and correctness. In essence, Cell-ACDC is a modular
framework for cell segmentation, tracking, and cell cycle
analysis that enables researchers to achieve near 100%
accuracy in a reasonable amount of time. We designed
Cell-ACDC by complementing the best tools existing
with a complete image analysis workflow, a process that
can otherwise take months to develop for each specific
research question. Finally, by standardizing handling and
analysis of live-cell microscopy data, Cell-ACDC facili-
tates data sharing between different labs.

One key advantage of Cell-ACDC is that complete ped-
igrees over multiple cell divisions can be obtained with
reasonable manual effort. This allowed us to quantify

Page 3 of 18Padovani et al. BMC Biology (2022) 20:174

histone Htb1 protein concentrations in budding yeast
over multiple cell cycles, revealing that Htb1 concentra-
tions decrease with replicative cell age. Moreover, going
beyond the analysis of budding yeast, we used Cell-
ACDC to study regulatory pathways controlling cell size
and growth in hematopoietic stem cells. We found that
while mTOR activity is largely constant as a function of
cell size, p38 activity is higher in small cells, consistent
with a role of p38 in controlling cell-size-dependent cell
cycle progression [39].

Cell-ACDC provides a framework that allows the
implementation of the entire image analysis pipe-
line, from raw microscopy files to visualizing results
(Fig. 1A). In the first steps, the raw microscopy files are
converted into TIFF files (one for each channel of each
position) using the popular Bio-Formats [40] library
in a fully automated Python routine (opening, read-
ing, and converting from raw microscopy files is per-
formed by a dedicated Cell-ACDC sub-module). Using
Bio-Formats allows for standardized reading of the file

Table 1 Comparison between Cell‑ACDC and other available software

Automatic handling of real-time tracking: Cell-ACDC has real-time tracking to aid with the correction process and it automatically detects which frame was already
visited and corrected to avoid that wrong tracking invalidates that frame again. Note that the table contains only software that either uses a deep-learning approach
or includes tracking and downstream analysis of growing cell populations.

Page 4 of 18Padovani et al. BMC Biology (2022) 20:174

metadata, such as the number of frames, the number of
z-slices in a z-stack, or the time interval between each
frame etc. Furthermore, we provide full support for 2D,
3D (single z-stacks or 2D images over time) and 4D
images (3D z-stacks over time) with multiple channels
and multiple positions. Note that the TIFF format was

chosen for its widespread use and compatibility with
popular image viewers such as Fiji and napari [29].

After the conversion of the image file format, the user
can select any of the three following steps: (a) a GUI for
multiple data preparation steps (aligning frames, crop-
ping images, determining the area for background noise

Fig. 1 Overview of pipeline and GUI. A Flowchart representation of the Cell‑ACDC pipeline. In the first step, the raw microscopy file(s) is/are
automatically converted into TIFFs, the relevant metadata is extracted, and the files are arranged in the data structure required by Cell‑ACDC. Next,
the user can launch any of the three main modules: (1) GUI‑based data prep where the user can align time‑lapse data, select a z‑slice or a projection
for 3D z‑stacks data, and/or crop data to reduce memory usage; (2) automatic segmentation/tracking of multiple positions and/or multiple
time‑frames (batch‑processing) using the embedded neural network models. (3) B Main user interface, where the user visualizes and corrects the
result of automatic segmentation and tracking. Almost all the available functions (such as brush, eraser, edit ID or auto‑separate cells) are easily
accessible from a button on the top toolbar, while sliders under the left image allow quick visualization of a specific position, frame, or z‑slice. To
enhance visualization of the signal in the left image, the user can adjust the intensity levels with two vertical sliders on the left side of the GUI. C
Example of the output table generated by cell cycle annotations. The annotations are saved in CSV format allowing for quick import into GUI‑ or
script‑based spreadsheets software. The information saved includes the frame number, the cell ID, the cell cycle stage (either “G1” or “S/G2/M”),
the generation number (automatically increased when division is annotated), the relative ID of the assigned parent cell, the relationship with the
relative ID (either “mother” for both mother cells and cells in G1, or “bud” for buds that did not divide yet), the frame when the cell emerged and
divided, and whether the history of the cell is fully known or not. Examples of cells with history not fully known are cells already present at frame 1
and cells appearing at a specific time point from outside of the field of view. Note that “is_history_known” is also visually highlighted with a question
mark on the cell (e.g. cell ID 3, which was present at frame 1)

Page 5 of 18Padovani et al. BMC Biology (2022) 20:174

calculation, and selecting z-slice or projection for the
segmentation step), (b) automated segmentation and
tracking using state-of-the-art neural networks and (c)
a GUI for semi-automated correction of segmentation
and tracking errors supporting diverse model organisms/
objects, plus annotations of budding yeast cell cycle and
pedigrees (Fig. 1B and Additional file 1 - Movie).

While it is possible to perform segmentation for single
frames in the GUI, we highly recommend using the dedi-
cated segmentation and tracking script for whole batches.
We embedded four neural networks that were recently
published: YeaZ [5] and YeastMate [7] for yeast cells, and
Cellpose [6] and StarDist [8] for multiple model organisms
(bright-field and phase contrast). The modularity of the code
allows for easy and quick implementation of any other seg-
mentation algorithm (traditional or deep-learning-based).

Alongside segmentation and tracking functionalities,
the GUI has an additional working mode: pedigree and
cell cycle annotations. These functionalities were specifi-
cally developed for the cell cycle analysis of budding yeast
cells but can be adapted to other model organisms in the
future to handle symmetric cell division as well. Anno-
tations of the yeast cell cycle include two main steps:
(a) assigning the bud to the correct mother cell and (b)
annotating the cell division event. Annotations are stored
in a tabular format (Fig. 1C) that allows reconstruction
of the entire pedigree of each single cell and downstream
extraction of data of interest.

Independent of whether the user decides to use the
cell cycle annotation functionality, Cell-ACDC pro-
duces comprehensive output data on a single-cell level.
The extraction of metadata from raw files mentioned
above allows for the approximation of volumes based
on the segmentation masks. Analysis of additional (flu-
orescence) channels enables the calculation of several

quantities, such as amount, concentration, or median
signal strength of the fluorescent markers. For this step,
we provide an Application Programming Interface (API)
including calculations of custom metrics. Finally, the
annotation of the cell cycle additionally allows analysis of
those quantities in the context of the cell cycle and calcu-
lation of time-dependent properties such as growth rates.

Results
Overview of functionalities
The recent advancement in deep-learning-based seg-
mentation algorithms greatly reduced the segmenta-
tion error rate, but unfortunately many times it is still
required to visually inspect and correct these errors.
This is a tedious and time-consuming process, especially
for live-cell imaging experiments where an error in one
frame requires correction of all the future frames (often
hundreds of frames, see “Benchmarking” in the “Materi-
als and methods” section). For this specific step, the GUI
needed to be fast, intuitive, responsive, and interactive.
To allow easy detection of potential errors, we included
visual help directly displayed on the images and seg-
mentation masks while navigating through the frames
(Fig. 2A and Additional file 2 - Movie) including cell con-
tours, cell ID, cell cycle information, as well as lost and
newly appearing cells’ contours. We automated the prop-
agation of manual corrections to future and past frames
along with continuous tracking of the segmented cells
while maintaining consistency with already annotated
parts of the data. We implemented automated and semi-
automated functions to allow quick and accurate correc-
tion once an error is detected. To simplify the correction
of segmentation errors we embedded traditional segmen-
tation algorithms, such as random walker and flood fill,
alongside manual tools such as brush and eraser. Using

Fig. 2 Examples of Cell‑ACDC functions. A Visual help: information such as the cell ID, the cell cycle stage, and the generation number, as well as
the segmentation contour are conveniently displayed on the cell image. Information is colour‑coded: red for newly emerged/appeared cells, white
for cells already present in the previous frame, and yellow for disappeared cells. This allows for quick identification of tracking errors since often
lost cells are caused by an ID misplaced due to the tracking algorithm failing. B Automatic separation: With a single click on the merged cells, the
user can trigger automatic separation. With a combination of convexity defects detection and contour approximation, the algorithm separates the
cells along the predicted plane. C Annotate cell as “dead”: A cell can be annotated as dead with a single click, and it is then considered dead for all
future frames. The user can always annotate the cell as not dead at any point in future frames. D Annotate cell division: Cell division is often visible
due to a sudden movement of the bud. The user can then click on the cell that divided to annotate it. The related information, such as generation
number and cell cycle stage, is then automatically updated for both the mother and daughter cell. This annotation can be undone at any time point
in past or future frames and all the information in all the involved frames is automatically updated. E Automatic mother‑bud pairing: When a new
cell appears, an automatic assignment algorithm is triggered. Using a cost‑optimization routine, the new cell is assigned to the predicted mother.
F Mother‑bud pairing correction: When the automatic mother‑bud pairing fails, the user can correct the assignment with a drag and drop gesture.
This can be done at any time‑point of the life of the new cell and the pairing is automatically corrected on all the relevant past and future frames. G
Overlay fluorescent signal from tagged histone Htb1. If available, the user can overlay a fluorescent signal. This is helpful, if, for example, the tagged
gene is a cell cycle marker that can aid cell cycle annotations. H Overlay fluorescent signal from tagged septin ring (Cdc10). I Representative images
of murine hematopoietic stem cells segmented based on bright‑field signal using Cell‑ACDC (based on Cellpose, using the median z‑projection). J
Segmentation using Cell‑ACDC (based on YeaZ) of fission yeast (S. pombe). Data from [41]

(See figure on next page.)

Page 6 of 18Padovani et al. BMC Biology (2022) 20:174

the segmentation masks, Cell-ACDC also computes sev-
eral single-cell numerical features based on the segmen-
tation of any loaded fluorescent channel. These features
include cell area, estimated cell volumes (see “Cell vol-
ume calculation” in the “Materials and methods” sec-
tion), alongside mean, maximum, median and quantiles

of the fluorescent signal. To visualize and interactively
explore the data produced, we provide Jupyter notebooks
(see “Downstream analysis” in the “Materials and meth-
ods” section). While we only highlight a few examples
here, we explain each function in detail in the manual
(Supplementary information).

Fig. 2 (See legend on previous page.)

Page 7 of 18Padovani et al. BMC Biology (2022) 20:174

A typical time-consuming correction is editing the ID
of an object when tracking fails. Since most of the track-
ing algorithms track objects based only on the previ-
ous frame, a tracking error at one frame results in the
error being propagated through all preceding frames
in the video. The Cell-ACDC GUI provides a real-time
tracking mode that is activated when browsing through
unseen frames (see “Continuous tracking” in the “Mate-
rials and methods” section). This allows for seamless
correction of tracking errors while analysing the video
frame-by-frame. Another typical segmentation error
occurs when two cells are segmented as a single object
(usually a mother cell with a small bud, Fig. 2B and
Additional file 3 - Movie). For this specific case, we
developed a custom algorithm for the automatic sepa-
ration of the merged cells. Based on a combination of
convexity defects detection and contour approximation,
the cells are automatically separated. We compared this
method to classic distance transform followed by water-
shed separation that is implemented in YeaZ, and we
found consistently better performance in these specific
cases (Additional file 4: Fig. S1). Note that this function
is triggered by the user with a mouse click on the cells
that requires separation. If automated separation fails,
the user can separate the cells manually with a dedicated
function. An additional fundamental requirement is the
possibility to annotate images. We implemented a vari-
ety of functionalities to annotate specific cell states, such
as “dead” (Fig. 2C) or “excluded from the analysis” that
are activated with a single click on the cell. The corrected
annotation is automatically propagated to all future
frames and can be undone at any time point.

After acquiring time-lapse microscopy data of pro-
liferating budding yeast, a typical analysis involves
annotating budding events, division events, and identi-
fying mother-bud pairs (Additional file 6 - Movie). For
these specific steps, we developed three main actions:
(a) annotation of cell division time point (Fig. 2D), (b)
automatic bud assignment (Fig. 2E, and “Automatic
mother-pairing” in the “Materials and methods” sec-
tion), and (c) semi-automated bud assignment correc-
tion (Fig. 2F, and “Automatic propagation of corrections
to future and past frames” in the “Materials and meth-
ods” section).

Without the use of a cell cycle marker, cell division is
often visible in phase-contrast images due to a sudden
movement of the bud. To annotate this event, the user
simply clicks once on the mother or bud. Cell-ACDC
will automatically update the annotations table by chang-
ing the cell cycle stage and increasing the generation
number to keep track of how many times a cell budded.
Many times, this event is clearly visible, but other times
it requires careful inspection to spot a subtle movement

indicating cell division. To spot the event in this case,
the user must constantly jump back and forth between
frames. Therefore, responsiveness and speed of display-
ing data are fundamental. To achieve this, we used the
high-performance python library PyQtGraph for the
GUI elements. Furthermore, in practice, it is often neces-
sary to correct a cell division annotation multiple times.
Therefore, Cell-ACDC automatically propagates correc-
tions to all involved frames.

An important objective of cell cycle analysis with bud-
ding yeast is the assignment of newly emerging buds to
the correct mother cell. Using a cost optimization rou-
tine, Cell-ACDC automatically assigns each emerging
bud to the predicted mother cell. For all new buds, the
algorithm calculates the cost of assigning the bud to any
cell in G1 (i.e., cells that are not budding now). For two
cells, the cost is defined to be the single linkage distance
between the cells’ pixels. This cost is then minimized
using a modified Jonker-Volgenant algorithm with no
initialization [42]. The function solves a minimum cost
matching problem where we define all new buds as the
one and all G1 cells as the other bipartite set which are
matched to each other. To quantitatively benchmark
mother-bud pairing accuracy (percentage of correctly
assigned buds), we tested the algorithm with time-lapse
data in three different scenarios: (a) data automatically
segmented with YeaZ without any correction of segmen-
tation and tracking errors, where all the cells are eligible
mothers; (b) data with correction of segmentation and
tracking errors, where all the cells are eligible moth-
ers; and (c) data with correction, where only cells in G1
are eligible mother cells. Note that (c) is the scenario in
which the algorithm is currently used. In scenario (a) and
(b), we obtained an accuracy of 67.5% and 75.5% (n=120)
respectively. In scenario (c), we obtained an accuracy
of 90.5% (n=147). Note that to achieve 90.5% accuracy,
prior knowledge of which cells are in G1 in the previ-
ous frame is required, and the mother-bud assignment
is automatic between two consecutive frames and not
the entire video. In some cases, the assignment fails, e.g.
when a bud emerges close to another cell in G1 that is
not the mother cell, or due to errors in earlier frames (e.g.
when the correct mother cell is not annotated as being in
G1). Three common scenarios that could result in wrong
annotations on the next time-point are (1) buds that, as
soon as they separate from the mother, are washed away
from the field of view without giving the user the possi-
bility to correctly annotate the first frame after cell divi-
sion; (2) not enough cells in G1 for the number of new
cells appearing (potential buds); and (3) trying to assign
a bud to a cell in G1 that already has a bud assigned to it
in the relevant past and/or future frames (it would result
in a mother cell with two buds assigned to it). All these

Page 8 of 18Padovani et al. BMC Biology (2022) 20:174

scenarios are automatically detected by Cell-ACDC and
the user is notified with a dialogue that allows choosing
the best course of action. Moreover, it is sometimes not
possible to determine the correctness of the assignment
on the current frame, and the correct pairing is visible
only after the bud has increased its size. Manually cor-
recting such assignments would require correcting many
frames where the bud must be assigned to another cell in
G1 and reverting the wrong mother’s cell cycle stage back
to G1. Again, automated correction propagation is a key
feature that facilitates rapid annotation.

Additionally, while it is possible to annotate the cell
cycle stage using only phase contrast signal, this step can
be facilitated by a fluorescent marker, such as tagged his-
tone (e.g. Htb1 in yeast, Fig. 2G) to follow the segregation
of the nucleus from the mother to the bud [43], or the
septin ring (e.g. Cdc10, Fig. 2H) to determine cytokinesis
events [44]. To allow visualization of such fluorescent cell
cycle markers, we implemented an overlay function, acti-
vated using a button on the toolbar.

Finally, Cell-ACDC also serves as a framework for
the segmentation/tracking of other organisms such as
hematopoietic stem cells (Fig. 2I) or the fission yeast S.
pombe (Fig. 2J). Testing Cell-ACDC on fission yeast, we
found that also for symmetrically dividing cells, cell cycle
annotations and pedigree analysis are possible: after divi-
sion, the two daughter cells are automatically paired, and
through tracking linked to their predicted mother cell.
The user can use the already implemented features to
annotate division and mother-daughter pairing.

Validation of the image analysis pipeline
Cell-ACDC offers full support for the segmentation and
analysis of 3D z-stacks. Furthermore, together with the
neural network Cellpose and StarDist, it is possible to seg-
ment cells of various model organisms other than budding
yeast. To validate the entire image analysis pipeline includ-
ing the use of 3D z-stacks, we first analysed single time-
point images of budding yeast. Using a strain expressing the
fluorescent protein mKate2 from an ACT1 promoter, we
imaged both phase contrast and mKate2 signal (Fig. 3A).
Secondly, using the Data Prep GUI (automatically called
when segmenting 3D z-stacks), we visually selected the opti-
mal z-slices or the projection mode. Thirdly, we segmented
cells (using batch processing capabilities of Cell-ACDC) in
the phase-contrast signal using the neural network YeaZ,
and the mKate2 signal using Cellpose. Finally, we calculated
the cell volume (see the Materials and methods” section) for
both segmentations. We found a strong correlation between
the cell volumes calculated with the two methods (Fig. 3C,
Pearson’s correlation = 0.98, p value <10−10), indicating a
strong match between cell volume estimates obtained from
two different channels using two different neural networks.

To validate the capabilities of Cell-ACDC to segment
other model organisms, we segmented both the nucleus
(DAPI staining) and the bright-field channel of hemat-
opoietic stem cells (HSCs). Benefitting from the flexibility
of using multiple deep learning segmentation models, we
chose StarDist to segment the DAPI channel and YeaZ
for the bright-field channel. We then carefully inspected
and corrected segmentation errors and computed cell
and nuclear volumes using the Cell-ACDC main GUI.
Consistent with previous reports [46–48], we found that
the nucleus occupies a large fraction of the cell volume,
and that nucleus and cell volume are well correlated
(Fig. 3B, D, Pearson’s correlation = 0.86, p value<10−10).
Our results demonstrate that for HSCs, both nucleus and
cell volume are valid proxies for cell size.

A role of p38 MAPK pathways in cell size regulation
of hematopoietic stem cells
Cells need to accurately control their size to maintain
cellular functions [46, 49]. In particular, increased cell
size can impair the function of stem cells [50]. Neverthe-
less, little is known about how stem cells regulate their
size. To carefully quantify factors involved in size regu-
lation in hematopoietic stem cells (HSCs), we validated
the capabilities of Cell-ACDC to segment stem cells and
extract automatically calculated metrics from the fluo-
rescent signal to provide novel biological insights. First,
we segmented hematopoietic stem cells (HSCs) from an
immunofluorescence staining for phospho-S6 ribosomal
protein (Ser240/244) using bright-field images to deter-
mine cell volume (Fig. 4A). Based on this segmentation,
we evaluated the total Alexa 488 fluorescence intensity
divided by cell volume, which is a readout for mTOR
activity (Fig. 4B). Our results validate manual measure-
ments showing that mTOR activity stays largely constant
with increasing HSC volume [46]. This result supports
a previously proposed model that changes in cell cycle
length, rather than variations in mTOR activity, affect
HSC size [46]. Next, we focused on another factor, p38
mitogen-activated protein kinase (MAPK), which was
previously associated with cell size regulation by (i)
affecting G1 duration [39] and (ii) regulating ion channel
permeability [51]. As a readout for p38 activity in HSCs,
we used immunofluorescence staining of phosphor-p38
(Thr180/Tyr182). We found the signal to be nuclear, and
therefore decided to normalize the total fluorescence
intensity on the nuclear volume we obtained by segment-
ing the nucleus (DAPI staining, Fig. 4C). We found that
small HSCs display higher p38 activity (Fig. 4D), which
is in line with previous findings suggesting that increased
p38 activity in small RPE1 cells prolongs their G1 phase,
allowing cells to grow to their optimal size [39, 52]. Over-
all, these results demonstrate that Cell-ACDC enables

Page 9 of 18Padovani et al. BMC Biology (2022) 20:174

the reliable and efficient analysis of fluorescence images
of murine stem cells. Furthermore, our data support
models suggesting that control of cell cycle duration is a
major mechanism of stem cells to regulate their size.

Image analysis of single‑live‑cell imaging experiments
To validate the image analysis pipeline for live-cell imag-
ing assays, we re-analysed time-course images of a yeast
strain expressing the histone Htb1 endogenously tagged
with a fluorescent reporter (mCitrine) that we have pre-
viously analysed using a dedicated custom Matlab-script
[25, 53]. Histones are expressed in a cell cycle-depend-
ent manner, with expression tightly coupled to DNA
synthesis during S-phase [54]. After aligning the frames
with the Data Prep GUI to correct for shifts during the
time-lapse experiment, we segmented the videos with
the batch processing segmentation script, using YeaZ on
the phase-contrast signal. Next, we corrected segmen-
tation and tracking errors, and we annotated cell cycle
progression in the main GUI. Finally, we implemented
a notebook in the popular open-source web application
Jupyter Notebook [55] to allow interactive transfor-
mation, exploration, statistical analysis and visualiza-
tion of the Cell-ACDC output data. As expected [53],

by plotting the Htb1-mCitrine amount over entire cell
cycles aligned at bud emergence, we observe a strong
cell cycle dependence of Htb1 expression and a 2-fold
increase around DNA replication (Fig. 5A, n=137). Cell
cycle annotations also allow comparing results at differ-
ent cell cycle stages. We show that the amount of Htb1-
mCitrine in single mother-bud pairs (before division) is
about double the amount in single cells at birth (start of
G1 phase). Moreover, confirming our previous analysis,
we find that the amount of histones at a given cell cycle
stage is largely independent of cell volume [53] (Fig. 5B).
By additional analysis of an untagged control strain, we
ensured that autofluorescence is negligible compared to
the histone-specific fluorescence signal. A key advan-
tage of Cell-ACDC compared to our previous analysis
is that it now allows us to obtain full pedigrees spanning
the complete duration of the experiment. Thus, going
beyond our previous analysis, Cell-ACDC enabled us
to separately analyse new-born daughter cells during
their first cell cycle as well as older mother cells. We
found that at a given cell volume, histone amounts in
new-born cells during their first cell cycle are similar to
those in older cells during later cell cycles (Fig. 5A, B).
We then quantified the concentration of Htb1-mCitrine

Fig. 3 Cell‑ACDC analysis pipeline validation. A Representative images of the strain carrying ACT1pr-mKate2. B Representative image of
hematopoietic stem cells from wild‑type mice stained for DNA (DAPI). C Correlation between budding yeast cell volume calculated from cells
segmented with two different methods. The cell volume is calculated from 2D segmentation masks (see [45] and the “Materials and methods”
section), which were obtained with two different methods: segmentation with YeaZ on phase‑contrast signal and segmentation with Cellpose on
the fluorescent signal of mKate2 expressed from an additional ACT1 promoter. We observe a strong agreement between the two methods (n =
113, Pearson’s coefficient=0.98, p value<10−10). D Correlation between the nucleus and cell volume of hematopoietic stems cells (HSCs). For the
nuclear volume, we segmented the DAPI signal using StarDist, while for the cell volume, we segmented the bright‑field channel using YeaZ. We
observe high correlation (n = 519, Pearson’s coefficient=0.86, p value <10−10), indicating that the nuclear volume is a valid proxy for cell size. All
segmentation masks were carefully inspected and corrected using Cell‑ACDC

Page 10 of 18Padovani et al. BMC Biology (2022) 20:174

in mother cells at the beginning of G1 as a function of
replicative age. We found that Htb1-mCitrine con-
centrations decrease with increasing division number
(Fig. 5C), in particular after the first complete cell cycle
which results in a pronounced increase of cell volume.
Taken together, our results demonstrate that at least

during the first cell cycles, cells maintain roughly con-
stant amounts of histones, leading to a decrease of his-
tone concentration due to cell growth. This suggests
that the increase of cell size could in part account for
the reported decrease of histone concentrations during
replicative ageing [45].

Fig. 4 mTOR and p38 activity in relation to cell size. A Representative image of hematopoietic stem cells from wild‑type mice stained for
Phospho‑S6 (P‑S6, Alexa 488) and DNA (DAPI). B Values obtained from Cell‑ACDC segmentation using Cellpose on bright‑field signal: Alexa 488 total
fluorescence intensity per cell volume (a.u., proxy for mTOR activity) of phospho‑S6 ribosomal protein (Ser240/244) staining as a function of the
HSC volume (fL). Gates of XS‑, M‑ and XL‑sized HSCs are indicated in grey (n=1626 cells). Alexa 488 total fluorescence intensity per cell volume (a.u.)
of phospho‑S6 ribosomal protein (Ser240/244) staining in control (no primary antibody), all HSCs, XS‑sized HSCs (n=247), M‑sized HSCs (n=493),
and XL‑sized HSCs (n=244). C Representative image of hematopoietic stem cells from wild‑type mice stained for Phospho‑p38 (P‑p38, Alexa 488)
and DNA (DAPI). D Values obtained from Cell‑ACDC segmentation (using StarDist on DAPI signal): Alexa 488 total fluorescence intensity per nuclear
volume (a.u., proxy for p38 activity) of Phospho‑p38 mitogen‑activate protein kinase (MAPK, Thr180/Tyr182) staining as a function of the HSC
nuclear volume (fL). Gates of XS‑, M‑ and XL‑sized HSCs are indicated in grey (n = 586). Alexa 488 total fluorescence intensity per cell volume (a.u.)
of phospho‑p38 (Thr180/Tyr182) staining in control (no primary antibody, n = 196), all HSCs, XS‑sized HSCs (n = 90), M‑sized HSCs (n = 179), and
XL‑sized HSCs (n = 77)

Page 11 of 18Padovani et al. BMC Biology (2022) 20:174

Discussion
Analysis of live-cell imaging data is a complex task that
involves several steps, some of which are often labori-
ous and time-consuming. Despite great advances in
image analysis algorithms, such as convolutional neural
networks, extracting useful biological information from
microscopy images can require the implementation of
sophisticated pipelines. Here, we presented Cell-ACDC,
an open-source, GUI-based framework that enables fast,
accurate and intuitive analysis of microscopy images. We
provide tools for each step of the pipeline, from the raw
microscopy file to the visualization of the results (Fig. 1).
The software is written in Python, which is freely avail-
able for all users. We embedded recent neural network
models for object detection and image segmentation,
YeaZ, Cellpose, StarDist and YeastMate. While YeaZ and
YeastMate were specifically developed for the segmenta-
tion of yeast cells, Cellpose and StarDist are generalist,
enabling the segmentation of multiple model organisms.

Cell-ACDC can analyse images with different dimen-
sionalities, from a single 2D image to 3D (z-stacks or 2D
images over time) and 4D images (3D z-stacks over time).
We implemented building blocks which can be arranged
to workflows tuned to each specific image type.

For time-stacks, we provide a set of tools for single-
cell tracking and annotation of the yeast cell cycle.
Despite the great accuracy of the embedded segmen-
tation models, it is often required to visually inspect
and correct segmentation and tracking errors. Cell-
ACDC was developed to enable fast and intuitive
correction of these errors, with automatic handling
of correction propagation to past and future frames

(Fig. 2). For budding yeast live-cell imaging assays, we
implemented a workflow to enable annotation of the
cell cycle, either from phase-contrast signal or from a
fluorescent cell cycle marker (e.g. Htb1, Cdc10). With
a combination of automatic mother-bud pairing and
semi-automatic cell division annotation, Cell-ACDC
enables accurate and fast annotation of the cell cycle
stage for pedigree analysis.

For z-stacks, the user can select a specific z-slice or
a projection to use for segmentation. Converting a
z-stack into a 2D image is required for segmentation in
Cell-ACDC. Note that Cellpose supports segmentation
of 3D z-stacks directly, however, images of yeast cells
(bright-field and phase contrast) usually contain only
a few z-slices that are in-focus and therefore usable
for segmentation. Additionally, 3D segmentation with
neural networks is often computationally more expen-
sive than the 2D counterpart, therefore we decided to
develop the workflow around single z-slice segmenta-
tion. We calculated the cell volume of 228 single yeast
cells using two methods: (a) segmentation of a specific
z-slice of the phase contrast signal using YeaZ and (b)
a mean z-projection of a fluorescent marker (mKate2
expressed from an additional ACT1 promoter) using
Cellpose. We found a strong correlation between the
volume calculated with the two methods (Fig. 3), dem-
onstrating the flexibility of the segmentation pipeline.

To highlight the possibility to analyse multiple model
organisms, we applied the Cell-ACDC analysis pipeline
to stem cells. Our results demonstrate that Cell-ACDC
provides a tool for the unbiased and efficient analysis of
fluorescent images of hematopoietic stem cells (HSCs)

Fig. 5 Quantitative analysis of Htb1‑mCitrine expression as a function of cell cycle and cell volume. A Total amount of Htb1‑mCitrine (total cellular
fluorescence intensity after background subtraction) as a function of time for the first cell cycle of new‑born daughter cells (n=48) and older cells
(n=89). Single cell traces are aligned at bud emergence (time = 0). B Amount of Htb1‑mCitrine as a function of cell volume at birth (blue) and
directly before cytokinesis (combined signal of mother and bud, orange). Signal from untagged strains used as autofluorescence (Af) control is
negligible. Results from A and B are consistent with our previous analysis [35]. C Concentration of Htb1‑mCitrine retained in mother cells at cell
division, shown as a function of division number (boxplot whiskers: 1.5 IQR)

Page 12 of 18Padovani et al. BMC Biology (2022) 20:174

that is easy to use for researchers that do not have
experience in using python. Using the automatic com-
putation of key numerical features such as total fluo-
rescence intensity and cell/nuclear volume included in
Cell-ACDC, we showed that mTOR activity is largely
constant with cell size, and that p38 activity is higher in
smaller HSCs.

With the combination of sophisticated deep-learning
algorithms and fast manual data correction, Cell-ACDC
allows obtaining complete pedigrees over several cell
cycles. As a proof of principle, we used this to quantify
histone concentrations in budding yeast as a function of
cell cycle progression, cell volume and replicative age.
Our analysis revealed that the increase of cell volume
during replicative ageing results in a decrease of histone
concentrations.

Previously, developing a complete image analysis pipe-
line from existing tools required putting together differ-
ent tools, such as ImageJ/Fiji [19], CellProfiler [22], and
napari [56], and embedding state-of-the-art segmenta-
tion algorithms required extensive programming experi-
ence. Moreover, correction of segmentation and tracking
errors as well as cell cycle annotation could in principle
be performed with other tools such as YeaZ [5] GUI,
DeepCell [31], PhyloCell [21] etc., but it required creating
output data that can be loaded into these tools. Finally,
calculating single-cell numerical features from fluores-
cent signals can be performed in ImageJ/Fiji or with cus-
tom code. Cell-ACDC aims at unifying all these steps in
one single pipeline, where the data structure required is
created only once as the first step. This is a great advan-
tage not only because it speeds up the process but also
because as the community adopts Cell-ACDC, it will
foster collaboration and greatly reduce the complexity of
sharing data between labs.

Conclusions
Future developments
We developed Cell-ACDC with a community-centred
approach, by implementing suggestions from other
research labs. We will keep this approach, and when
adopted by a larger community, we envision a tool that
can standardize live-cell imaging data processing and
handling. Thanks to its modular backend, Cell-ACDC
allows easy and fast implementation of image analysis
models that will be developed in the future.

While initially developed for budding yeast, already
in its current state Cell-ACDC can be used to obtain
numerical features from images of any organism that can
be segmented manually or using generalist models such
as Cellpose.

In the current version of Cell-ACDC, full support for
pedigree and cell-cycle analysis of symmetrically dividing

cells is still missing. To address this, we plan to introduce
a complementary automatic sister-pairing algorithm and
division annotation in the future, which will allow lineage
tree constructions and visualization.

Since image segmentation is often the first step in the
image analysis pipeline, standardizing it will enable the
development of more sophisticated downstream analysis
methods (e.g. for sub-cellular feature extraction) that will
be directly compatible with the output data generated by
Cell-ACDC.

Availability and requirements
Project name: Cell-ACDC

Project home page: https:// github. com/ Schmo llerL ab/
Cell_ ACDC

Operating system(s): Windows, macOS, Linux
Programming language: Python
Other requirements: Python 3.7, 3.8, or 3.8, Java 8

(optional)
Licence: BSD 3-Clause “New” or “Revised” License
Any restrictions to use by non-academis: None

Materials and methods
Software language and packages
The software is written in Python, freely available to all
users. The code is open-source, and it is available at the
GitHub repository https:// github. com/ Schmo llerL ab/
Cell_ ACDC. For automatic conversion of raw micros-
copy files into the required data structure, we embedded
Java Runtime Environment (automatically downloaded)
and python-bioformats to run the popular Bio-Formats
[40] library directly from Python. Thanks to a GUI-based
wizard, the user can automatically generate the required
data structure. The GUI frontend is written using PyQt,
a set of Python bindings for the Qt cross-platform C++
framework. Qt is a platform specifically designed for
the development of fast and intuitive GUIs. To ensure a
smooth user experience the images and the annotations
are displayed using PyQtGraph, a Python library specifi-
cally designed for interactive and fast displaying of data.
To easily add new models that will be developed in the
future, we provide a drop-in approach, where any model
placed in the “models” folder is automatically loaded. A
GUI widget is automatically populated with the model
parameters to easily adjust them. To ensure easy instal-
lation of Cell-ACDC, we provide ready to use virtual
environments with the two most popular package install-
ers, Anaconda and Pip. Finally, we provide a Quick Start
Guide to start using Cell-ACDC as fast as possible and
a User Manual (Additional file 5) that extensively docu-
ments every single function available. We describe the
output data saved by Cell-ACDC in the Supporting
Information.

https://github.com/SchmollerLab/Cell_ACDC
https://github.com/SchmollerLab/Cell_ACDC
https://github.com/SchmollerLab/Cell_ACDC
https://github.com/SchmollerLab/Cell_ACDC

Page 13 of 18Padovani et al. BMC Biology (2022) 20:174

Live cell imaging
Fig. 2C shows strain KSY306-3 (Mat a, his3::LexA-ER-
AD-TF-HIS3 whi5::kanMX6-LexApr-WHI5-ADH1term-
LEU2 exo84::EXO84-mCirine-ADH1term-cglaTRP1
cdc10::CDC10-mNeptune2.5-ADH1term-ADE2) grow-
ing on SC media with 2% glycerol and 1% etha-
nol (SCGE) after pre-culture in SCGE with 20 nM
β-estradiol. Data displayed in Figs. 1 and 2A, B, and
D–G; and 5 was obtained from raw microscopy files
included in our previous publication [53]. These fig-
ures show the strain KCY050-2. Data displayed in
Figs. 2H and 3A was obtained from raw microscopy
files included in our previous publication [57]. Specifi-
cally, Fig. 2H shows the strain KSY234-1; Fig. 3A shows
strain KSY282-2. Briefly, live-cell time-lapse micros-
copy was performed using a Nikon Eclipse micro-
scope equipped with a plan-apo λ 100×/1.45NA Ph3
oil immersion objective. Cells were imaged in a cus-
tom-made microfluidic device made of polydimethyl-
siloxane and a glass coverslip. A flow of 40 μl/min of
synthetic complete liquid medium with 2% glucose was
constantly applied at 30°C.

The diploid strain KCY050-2 carries endogenously
tagged Htb1, while strain ASY020-1 was used as auto-
fluorescence control [53]. Live-cell time-lapse micros-
copy was performed using a Zeiss LSM 800 microscope
equipped with a plan-apochromat 40×/1.3NA oil immer-
sion objective coupled to an Axiocam 506 camera. Note
that Fig. 5B in essence reproduces the results for diploid
cells in Fig. 1c of publication [53]. However, a different
subset of cells from the raw data was analysed.

Fluorescence staining of hematopoietic stem cells
Murine bone marrow (BM)-derived live G0/1 HSCs
 (Lin-, Sca1/Ly6+, CD117/cKit+, CD150/Slamf1+, CD48/
Slamf2-, 7-ADD-) were isolated as described previously
[46]. Briefly, BM was harvested by flushing the long
bones. Red blood cells were lysed in ammonium-chlo-
ride-potassium (ACK) buffer and samples were washed
in Iscove’s modified Dulbecco’s medium (IMDM) con-
taining 2 % foetal bovine serum (FBS). BM cells were
resuspended at 10 [6] cells/mL in pre-warmed IMEM
supplemented with 2 % FBS and 6.6 μg/mL Hoe-
chst-33342 (Thermo Fisher Scientific, #H3570). After
45 min of incubation at 37°C in a water-bath, cells were
washed with cold IMEM with 2 % FBS and kept at 4°C.
Lineage positive cells were depleted using a mouse line-
age cell depletion kit and the following antibodies were
used for staining: Rat monoclonal PE anti-mouse CD150,
BD Biosciences, Cat#562651; RRID: AB_2737705; Rat
monoclonal APC anti-mouse CD117, BD Biosciences,
Cat#561074; RRID: AB_10563203, Armenian hamster
monoclonal APC/Cy7 anti-mouse CD48, BioLegend,

Cat#103431; RRID: AB_2561462, Rat monoclonal BV711
anti-mouse Ly-6A/E, BioLegend, Cat#108131; RRID:
AB_2562241. Cells were sorted using an Aria cell sorter
(Becton Dickinson).

For immunofluorescence analyses, Fisherbrand™ Super-
frost™ Plus Microscope Slides were primed with 0.1 %
polylysine for 5 min, washed with dH2O and air-dried.
HSCs were distributed on slides and incubated for 1 h in
a humidified chamber at RT. HSCs were fixed for 20 min
at RT with freshly prepared 4% paraformaldehyde (PFA,
pH 7.2) and then washed three times with PBS. HSCs were
permeabilized for 20 min in 0.2 % Triton-X 100, washed
three times with PBS, and blocked for 30 min using 10 %
Donkey Serum (Sigma) in PBS. Cells were incubated with
primary antibody in 10 % Donkey Serum in PBS over-
night at 4 °C: Phospho-S6 Ribosomal Protein (Ser240/244)
Rabbit mAb (Cell Signaling Technology, Cat# 5364;
RRID:AB_10694233) or Phospho-p38 (Thr180/Tyr182)
(Cell Signaling Technology, Cat #9211, RRID: AB_331641).
After HSCs were washed three times with PBS + 0.1 %
Tween-20, the secondary antibody solution (1:500, goat
anti-rabbit Alexa 488, Cell Signaling Technology, 4412S)
was added for 1 h at RT in the dark in 10 % Donkey Serum
in PBS. Coverslips were mounted with ProLong Gold
Antifade Reagent with (Invitrogen, Molecular Probes) and
imaged after 12 h. Control slides were not treated with
primary antibody. Images were acquired using a DeltaVi-
sion Elite microscope (Applied Precision) platform (GE
Healthcare Bio-Sciences) equipped with a CoolSNAP HQ2
camera (Roper), 250W Xenon lamps, SoftWoRx software
(Applied Precision). Deconvolution was performed using
SoftWoRx software with default settings. Cells that were
2.5 times larger than the mean were excluded from the
analysis. To analyse HSCs of a specific size, the evaluated
the 10 % smallest (XS-HSCs), the 10 % largest (XL-HSCs)
and +/− 10 % HSCs of mean size (M-HSCs).

Cell volume calculation
Cell volume is estimated from 2D segmentation masks as
follows: (a) the object is aligned along its major axis, (b)
the volume of each horizontal slice with 1 pixel height is
calculated assuming rotational symmetry along the slice’s
middle axis, and (c) volumes of the slices are added to
obtain the final volume. We previously reported [57] that
for budding yeast, this method well agrees with alterna-
tive methods, such as 3D reconstruction from z-stacks
using confocal microscopy.

Downstream analysis
For downstream analysis, we provide a notebook, writ-
ten in python in the popular data science tool Jupyter
Notebooks [55]. The user can select files to analyse by
following a series of prompts and file dialogues, which

Page 14 of 18Padovani et al. BMC Biology (2022) 20:174

also enables data pooling and comparison of subsets
such as different strains or different conditions. The files
selected are then iteratively loaded and geometric prop-
erties (e.g. area, solidity, elongation) are calculated using
the package scikit-image [58]. Those quantities are com-
plemented by additional parameters specific to time-
lapse experiments, including cell age at frame n, growth
rate, G1 and S/G2/M durations, as well as the first and
last frames of cell appearance. In addition, signal amount
and concentration for all available fluorescence channels
are calculated. For this, the mean signal is corrected for
background fluorescence by subtracting the median sig-
nal of all background pixels, which are determined as
non-cell areas based on the cell segmentation masks. We
define signal amount as corrected mean multiplied by
the area of the segmented object (in pixels) and the sig-
nal concentration is obtained by dividing the amount by
cell volume (calculated as described above). Note, that
the fluorescence-related quantities can also be calculated
directly in the GUI upon the user’s choice by selecting
the option “Save additional metrics”.

We then perform two data aggregations using func-
tions of the package pandas [59]. First, we connect the
mother cell data with data of the respective buds and
obtain single-cell time traces using the cell IDs. Second,
we use generation number and cell cycle stage informa-
tion to calculate cell-cycle-specific data.

Figure 3 was created using the output from Cell-ACDC
without any pre-processing. Cell volumes and Alexa 488
concentrations were calculated as described above. In
Fig. 5A, all individual cell cycle traces are aligned at bud
emergence. To obtain the combined signal of mother
cells and their buds, we summed the respective fluores-
cence signal amounts

Continuous tracking
For the continuous tracking of single cells in the main
GUI, we developed a cost-optimization routine to deter-
mine the optimal assignment of the segmented objects
between two consecutive frames. First, a cost matrix
C is computed: given a list x of object IDs [x0, x1…xn1]
in frame n − 1, and a list y of [y0, y1…yn2] in frame n,
each element ci, j is equal to the intersection over area
(IoA) score between yi and xj. The IoA is calculated as
the number of intersecting pixels between yi and xj
divided by the area of xj. Next, any object with maxi-
mal IoA score less than 0.4 is considered a new object
(e.g. a newly emerging bud), and receives a new ID. The
remaining objects from frame n are assigned as follows:
each unassigned object of list y is assigned to the object
of list x with maximum IoA score unless the object from
list x has a higher IoA with another object from list y.
After having assigned objects from frame n to all objects

from frame n − 1, the remaining objects are considered
new and receive a new ID.

Automatic separation of merged objects
Another algorithm embedded into Cell-ACDC is the
automatic separation of merged objects. Since both
Cellpose and YeaZ provide methods for separation, we
developed our algorithm to provide an additional option
for cases where Cellpose or YeaZ failed. The goal of
the method is to separate the object along a restriction
site. Firstly, the contour of the object is approximated
to avoid spurious separation planes due to irregulari-
ties in the contour shape line. This is achieved with the
OpenCV (computer-vision library for Python) [60] func-
tion approxPolyDP using 10% of the contour length as
the epsilon parameter. Next, the convexity defects of the
convex hull of the approximated contour are computed
using the OpenCV function convexityDefects. Finally, if
the number of detected defects is equal to two, then the
object is separate along the line connecting the two con-
vexity defects.

Automatic mother‑bud pairing
When the GUI is in “cell cycle analysis” mode, every new
object appearing in the next frame is considered as a bud
that needs to be assigned to a cell in G1 (if not already
assigned in a previous visit of the frame). Firstly, the algo-
rithm determines if there are enough cells in G1 for the
new cells, and if not, a warning is triggered and the user
can decide to automatically annotate that the history of
these cells is not known (e.g. a cell appearing from out-
side of the field of view), or can annotate previous divi-
sions of cells to increase the number of cells in G1 (if, for
example, a division event was missed). After this check-
point, the contour of each cell in frame n is computed.
Then, given the lists a, b of the new cells and old cells in
G1, respectively, a cost matrix C is calculated. Each ci, j
element is equal to the minimum Euclidean distance
between the pixels of the ai cell’s contour and the pixels
of the bj cell’s contour (in clustering referred to as “sin-
gle link”). The optimal assignment is calculated using the
minimum weight matching in bipartite graphs routine
called the linear sum assignment problem (LSAP). To
solve LSAP, we use a modified Jonker-Volgenant algo-
rithm [42] implemented in the linear_sum_assignment
function of the Python package SciPy [61]. This algo-
rithm is one of the most popular variants of the “Hun-
garian algorithm”. One of the main strengths is that it is
faster than the original implementation (O(n3) vs O(n4),
with n being the number of objects to match). Currently,
we solve the LSAP with information from a single frame.
Including information from future and past frames might
further increase the assignment accuracy.

Page 15 of 18Padovani et al. BMC Biology (2022) 20:174

Automatic propagation of corrections to future
and past frames
One of the most tedious and time-consuming processes
is the correction of the same error when it appears in
many consecutive frames. To speed-up this process we
developed a series of routines to automatically propagate
the correction to all the relevant future and past frames,
when possible. Automatic propagation is triggered in the
following situations: (a) mother-bud pairing correction,
(b) cell division annotation and its correction, (c) track-
ing error correction, (d) object deletion, (e) editing a cell’s
ID, (f) excluding a cell from analysis, and (g) annotat-
ing a dead cell. For situations c–g, the user can choose
between applying the same correction/annotation to all
future frames or simply repeat tracking for all the future
frames. For situations a and b, the propagation is com-
pletely automatic. The correction of mother-bud pair-
ing involves three cells: the bud, the wrong mother cell,
and the correct mother cell. First, the correct mother cell
must be a cell in G1, since the assumption is that each
mother cell can have only one bud assigned to it. Further-
more, the correct mother must not have had any other
bud assigned to it for all the frames in which the bud to
be corrected is present. If the correct mother cell satisfies
the eligibility criteria, once the user corrects the pairing,
all the frames in which the annotation is wrong, are auto-
matically corrected: the wrong mother cell goes back to
the state it had before the bud was assigned to it, while
the correct mother is assigned to the bud. Since correc-
tion is automatic to both past and future frames, it can be
performed at any time point.

The correction of cell division annotation can be done
on both a cell in G1 or a cell in S/G2/M. If the user clicks
on a cell in S/G2/M (annotating division) at frame n, the
automatic routine will annotate the division event at
frame n for both mother and bud. Then, it will check if
there are future frames that were previously annotated as
cell in S/G2/M and will correct them accordingly. Other-
wise, if the user clicks on a cell in G1 (undoing division
annotation), the routine sets both the cell and the bud
it had in the previous cycle back to S/G2/M for all the
future (until the cell is in S/G2/M again or we reach the
last visited frame) and past frames (until the mother cell

is in S/G2/M again). Automatic propagation allows for
annotating or undoing the annotation at any time point,
which is particularly useful when toggling back and forth
between frames is required for accurate cell division
annotation.

Benchmarking
Since the tracking algorithm is embedded into the main
GUI, the key aspect is the execution speed (e.g. to spot
subtle movements of a bud that indicate a cell division
event). Therefore, we benchmarked it with a segmen-
tation mask containing 99 cells to be tracked, and we
calculated the average execution speed after 1000 runs.
Our algorithm, on average, took about 45 ms, while the
tracking algorithm embedded in the YeaZ model took
about 260 ms. This is a considerable improvement that
enhances the overall speed when navigating through
frames in the main GUI. Finally, to allow the user to use
the YeaZ tracking algorithm in real-time, we set out to
improve YeaZ tracking speed. By optimizing the algo-
rithm, we improved the computational speed by about
4-fold, from 260 ms down to about 60 ms.

Next, to benchmark the performance of Cell-ACDC we
computed the widely used metric of the Multiple Object
Tracking (MOT) challenge [62], the MOT accuracy
(MOTA), defined as follows:

where t is the frame index, FNt and FPt the number of
false negatives and false positives at frame t, IDSW is the
number of identity switches at frame t, and GTt is the
number of ground-truth objects at frame t.

To cover multiple imaging conditions, we used images
acquired with 4 different microscopes with more than
40,000 cells tracked. Details of the datasets are summa-
rized in Table 2.

To compare to the Yeast Image Toolkit benchmark,
along with MOTA, we also computed the F-score as
reported on the benchmark website. We computed the
number of correct links, c, the number of links in the pre-
diction, R, and the number of links in the ground-truth,

MOTA = 1− t (FNt + FPt + IDSWt)

t GTt

Table 2 a Dataset available at the URL http:// yeast‑ image‑ toolk it. org/ pmwiki. php

Test set N. of unique
cells

Total n. of cells N. of videos Frame count Microscopes Source

ACDC_TS 494 27,922 22 1710 Nikon Eclipse Ti‑E,
Zeiss LSM800

This manuscript

YIT_TS 960 15,662 10 250 Olympus PlanApo
1.4NA, Zeiss Observer
Z1

Yeast Image Toolkita

http://yeast-image-toolkit.org/pmwiki.php

Page 16 of 18Padovani et al. BMC Biology (2022) 20:174

G. A link is defined as two consecutive points in a cell
trajectory. Finally, the F-score is computed as follows:

With these datasets, we benchmarked both YeaZ tracker
and Cell-ACDC tracker under 3 different scenarios:

1. Uncorrected segmentation masks generated with the
YeaZ model

2. Post-processed segmentation masks (from 1.) with
automatic removal of false positives (more details
below), where the optimal post-processing param-
eters were determined with a grid search

3. Segmentation masks corrected with Cell-ACDC (i.e.,
zero false positives and false negatives)

The post-processing consists of a computationally
efficient method to remove false positives. Segmented
objects are filtered with three parameters: minimum size,
minimum solidity, and maximum elongation. Solidity is
defined as the ratio of pixels in the object to pixels of the
convex hull, while elongation is the ratio of the major to
minor axis.

The results of the benchmark on the ACDC_TS dataset
are summarized in Table 3.

The results indicate that while the Cell-ACDC tracker was
developed by favouring computational speed to make it more
suitable for real-time tracking, it scores very similar to the
YeaZ tracker, indicating a minimal speed/accuracy trade-off.

Additionally, the post-processing introduced in Cell-
ACDC dramatically improves accuracy of the track-
ers. Note that the best post-processing parameters were
determined for each video, to show the full potential of
the methods.

F =
2 (precision • recall)

(precision + recall)

precision = c/R

recall =
c

G

Notably, identity switches in the MOTA score are
counted only when the switch happens for the first time,
which means that it does not include information about
the duration of the switch. For example, in scenario 2,
using the YeaZ tracker we counted 57 identity switches,
but the total duration of the switches is 2353 frames. This

Table 3 Multiple Object Tracking (MOT) metrics in 3 different scenarios (see main text). See main text for the MOTA formula

IDSW identity switches, FP false positives, FN false negatives, MOTA MOT accuracy

Scenario Tracker IDSW FP FN MOTA mean MOTA std.

1 Cell‑ACDC 52 11,135 1482 0.498 0.910

YeaZ 50 11,135 1482 0.498 0.909

2 Cell‑ACDC 80 2838 1620 0.864 0.124

YeaZ 57 2838 1620 0.865 0.001

3 Cell‑ACDC 129 0 0 0.995 0.002

YeaZ 11 0 0 0.999 0.001

Table 4 F1‑score for the tracking benchmark in comparison to
the Yeast Image Toolkit benchmark

NE not evaluated

Test set Segmentation
model

Tracker F1‑score

TS1 YeaZ Cell‑ACDC 0.9983

YeaZ 1.0000

CellStar (best YIT) 0.9921

TS2 YeaZ Cell‑ACDC 1.0000

YeaZ 1.0000

Wood (best YIT) 1.0000

TS3 Cellpose Cell‑ACDC 0.9635

YeaZ 0.9986

CellStar (best YIT) 0.9852

TS4 Cellpose Cell‑ACDC 0.9448

YeaZ 0.9979

CellStar (best YIT) 0.9797

TS5 NE NE NE

TS6 Cellpose Cell‑ACDC 0.9975

YeaZ 1.0000

Wood (best YIT) 0.9698

TS7 Cellpose Cell‑ACDC 0.9013

YeaZ 0.9105

CellStar (best YIT) 0.9610

TS8 Cellpose Cell‑ACDC 0.9928

YeaZ 0.9946

Wood (best YIT) 0.9862

TS9 YeaZ Cell‑ACDC 0.9968

YeaZ 0.9961

Wood (best YIT) 1.0000

TS10 YeaZ Cell‑ACDC 1.0000

YeaZ 1.0000

Wood (best YIT) 1.0000

Page 17 of 18Padovani et al. BMC Biology (2022) 20:174

means that with a fully manual process, the user must
manually edit 2353 cell IDs. Thanks to Cell-ACDC real-
time tracking, only 57 edits are required, reducing num-
ber of manual corrections by more than 30-fold.

Comparison to Yeast Image Toolkit dataset
To compare to the YIT benchmark, we created ground-
truth segmentation masks of the YIT dataset using
Cell-ACDC (ground-truth segmentation masks are not
available on the YIT website). First, we segmented using
either YeaZ or Cellpose (see Table 4), and then we visually
inspected and corrected every video. We then performed
tracking on these segmentation masks (same as scenario
3 in the MOTA benchmark), computed the F1 score and
compared the results to the best algorithm tested on the
YIT benchmark. The results are summarized in Table 4.

Abbreviations
ACDC: Analysis of the Cell Division Cycle; LSAP: Linear sum assignment prob‑
lem; FCNN: Fully convolutional neural networks; HSCs: Hematopoietic stem
cells; MAPK: Mitogen‑activated protein kinase.

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s12915‑ 022‑ 01372‑6.

Additional file 1: Movie. Video of a fully annotated position with cells
disappearing due to suboptimal channel width.

Additional file 2: Movie. Visual help (rotating cell) in the main GUI. Cell 18
rotates at frame n + 1 resulting in a tracking error. Thanks to the annota‑
tions on the images, the user detects that cell 31 disappears, while a new
cell 37 appears. To fix this, the user can manually assign ID 31 to cell 37. If
the user does not see this and tries to continue to the next frame anyway,
a warning message (pop‑up window) will warn the user that cell 31 was
lost and he/she can decide to continue or not.

Additional file 3: Movie. Automatic separation of merged mother‑bud.
After activating the “Automatic separation mode” with a button on the
toolbar (or key shortcut), the user right‑clicks on the merged objects to
automatically separate them.

Additional file 4: Figure S1. Comparison between Cell‑ACDC automatic
separation algorithm and classic distance transform plus watershed.

Additional file 5. Cell‑ACDC User manual. User manual with detailed
explanation on how to use every module of Cell‑ACDC.

Additional file 6: Movie S4. Cell cycle annotations example. When anno‑
tating cell cycle information, the user must keep an eye on two events:
correctness of the automatic mother‑pairing and division event. In this
video, the user navigates through the frames and at a specific time‑point
the bud with ID=4 is automatically assigned to mother with ID=1. Next,
when a sudden movement of bud with ID=4 is visible, the user clicks on
the mother or bud to automatically annotate the division event.

Acknowledgements
We thank Rodaria Roussou, Jacob Kim, Jordan Xiao, Christian Everett Wright,
Yagya Chadha, Dimitra Chatzitheodoridou, Igor Kukhtevich, María Rocha
Acevedo, Marlet Morales Franco, Lea Schuh, Arohi Khurana, Namisha Rakesh,
Maria Bordukova, Leonardo Bolcato, Masaru Shimasawa, Joana Troka, and
Soham Bharadwaj for testing Cell‑ACDC and providing valuable feedback.
We thank Igor Kukthevich for imaging KSY306‑3, and Fred Chang, Benjamin
D. Knapp and Kerwyn Casey Huang for providing fission yeast data. We thank
Ciro Salinno for implementing the StarDist model into Cell‑ACDC.

Authors’ contributions
FP conceived the software. FP and BM designed the software architecture and
wrote the code. JL performed experiments. FP, BM and JL analysed the data. PFB,
JL and KMS supervised the study. FP, BM and KMS wrote the paper and received
input from all authors. All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was
supported by the DFG through projects 416098229 and 431480687, by the
Human Frontier Science Program (career development award to KMS), by the
Helmholtz Association, and by the Free State of Bavaria’s AI for Therapy (AI4T)
Initiative through the Institute of AI for Drug Discovery (AID). BM is supported
by the Helmholtz Association under the joint research school Munich School
for Data Science ‑ MUDS. JL is supported by the Academy of Finland.

Availability of data and materials
The source code is available on Zenodo [42] and on the GitHub repository
at the following link: https:// github. com/ Schmo llerL ab/ Cell_ ACDC. All data
generated or analysed during this study are included in this published article,
its supplementary information files and publicly available repositories [63]. The
repository also includes a smaller dataset for testing purposes.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Institute of Functional Epigenetics (IFE), Molecular Targets and Therapeutics
Center (MTTC), Helmholtz Center Munich, 85764 Munich‑Neuherberg, Germany.
2 Institute of Network Biology (INET), Molecular Targets and Therapeutics Center
(MTTC), Helmholtz Center Munich, 85764 Munich‑Neuherberg, Germany.
3 Microbe‑Host Interactions, Faculty of Biology, Ludwig‑Maximilians‑University
(LMU) München, 82152, Planegg‑, Martinsried, Germany. 4 Institute of Biotechnology,
HiLIFE, University of Helsinki, Biocenter 2, P.O.Box 56 (Viikinkaari 5 D), 00014
Helsinki, Finland. 5 Department of Biosciences and Nutrition (BioNut), Karolinska
Institutet, Huddinge, Sweden. 6 German Center for Diabetes Research (DZD),
85764, Munich‑Neuherberg, Germany.

Received: 25 March 2022 Accepted: 8 July 2022

References
 1. Cuny AP, Schlottmann FP, Ewald JC, Pelet S, Schmoller KM. Live cell

microscopy: From image to insight. Biophys Rev. 2022;3:21302.
 2. Ronneberger O, Fischer P, Brox T. U‑Net: Convolutional Networks for Bio‑

medical Image Segmentation. Lect Notes Comput Sci (including Subser
Lect Notes Artif Intell Lect Notes Bioinformatics). 2015;9351:234–41.

 3. Moen E, et al. Deep learning for cellular image analysis. Nat Methods.
2019;16:1233–46.

 4. Van Valen DA, et al. Deep Learning Automates the Quantitative Analysis
of Individual Cells in Live‑Cell Imaging Experiments. PLoS Comput Biol.
2016;12:e1005177.

 5. Dietler N, et al. A convolutional neural network segments yeast micros‑
copy images with high accuracy. Nat Commun. 2020;11:1–8.

 6. Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist
algorithm for cellular segmentation. Nat Methods. 2021;18:100–6.

 7. Bunk D, et al. YeastMate: Neural network‑assisted segmentation of mating
and budding events in S. cerevisiae. bioRxiv. 2021:2021.10.13.464238.
https:// doi. org/ 10. 1101/ 2021. 10. 13. 464238.

https://doi.org/10.1186/s12915-022-01372-6
https://doi.org/10.1186/s12915-022-01372-6
https://github.com/SchmollerLab/Cell_ACDC
https://doi.org/10.1101/2021.10.13.464238

Page 18 of 18Padovani et al. BMC Biology (2022) 20:174

 8. Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell Detection with Star‑
Convex Polygons. in Medical Image Computing and Computer Assisted
Intervention ‑ {MICCAI} 2018 ‑ 21st International Conference, Granada,
Spain, September 16‑20, 2018, Proceedings, Part {II} 265–273. 2018.
https:// doi. org/ 10. 1007/ 978‑3‑ 030‑ 00934‑2_ 30

 9. Garmendia‑Torres C, Tassy O, Matifas A, Molina N, Charvin G. Multiple
inputs ensure yeast cell size homeostasis during cell cycle progression.
Elife. 2018;7:e34025.

 10. Mayhew MB, Robinson JW, Jung B, Haase SB, Hartemink AJ. A generalized
model for multi‑marker analysis of cell cycle progression in synchrony
experiments. Bioinformatics. 2011;27:i295.

 11. Bean JM, Siggia ED, Cross FR. Coherence and timing of cell cycle start
examined at single‑cell resolution. Mol Cell. 2006;21:3–14.

 12. Soifer I, Barkai N. Systematic identification of cell size regulators in bud‑
ding yeast. Mol Syst Biol. 2014;10:761.

 13. Ulicna K, Vallardi G, Charras G, Lowe AR. Automated Deep Lineage Tree
Analysis Using a Bayesian Single Cell Tracking Approach. Front Comput
Sci. 2021;3:734559.

 14. Sigal A, et al. Dynamic proteomics in individual human cells uncovers
widespread cell‑cycle dependence of nuclear proteins. Nat Methods.
2006;3:525–31.

 15. Handfield L‑F, Chong YT, Simmons J, Andrews BJ, Moses AM. Unsupervised
clustering of subcellular protein expression patterns in high‑throughput
microscopy images reveals protein complexes and functional relation‑
ships between proteins. PLoS Comput Biol. 2013;9:e1003085.

 16. Balomenos AD, et al. Image analysis driven single‑cell analytics for sys‑
tems microbiology. BMC Syst Biol. 2017;11:43.

 17. Buck TE, et al. Cell cycle dependence of protein subcellular location
inferred from static, asynchronous images. Annu Int Conf IEEE Eng Med
Biol Soc IEEE Eng Med Biol Soc Annu Int Conf. 2009;2009:1016–9.

 18. Tinevez J‑Y, et al. TrackMate: An open and extensible platform for single‑
particle tracking. Methods. 2017;115:80–90.

 19. Schindelin J, et al. Fiji: An open‑source platform for biological‑image
analysis. Nat Methods. 2012;9:676–82.

 20. Legland D, Arganda‑Carreras I, Andrey P. MorphoLibJ: Integrated library
and plugins for mathematical morphology with ImageJ. Bioinformatics.
2016;32:3532–4.

 21. Goulev Y, et al. Nonlinear feedback drives homeostatic plasticity in H2O2
stress response. Elife. 2017;6:e23971.

 22. McQuin C, et al. CellProfiler 3.0: Next‑generation image processing for
biology. PLoS Biol. 2018;16:e2005970.

 23. Wang Q, Niemi J, Tan CM, You L, West M. Image segmentation and
dynamic lineage analysis in single‑cell fluorescence microscopy. Cytom
Part A. 2010;77:101–10.

 24. Wood NE, Doncic A. A fully‑automated, robust, and versatile algorithm for long‑
term budding yeast segmentation and tracking. PLoS One. 2019;14:e0206395.

 25. Doncic A, Eser U, Atay O, Skotheim JM. An Algorithm to Automate Yeast
Segmentation and Tracking. PLoS One. 2013;8:e57970.

 26. Versari C, et al. Long‑term tracking of budding yeast cells in brightfield micros‑
copy: CellStar and the Evaluation Platform. J R Soc Interface. 2017;14:20160705.

 27. Bredies K, Wolinski H. An active‑contour based algorithm for the
automated segmentation of dense yeast populations on transmission
microscopy images. Comput Vis Sci. 2011;14:341–52.

 28. Uhlendorf J, et al. Long‑term model predictive control of gene expression at the
population and single‑cell levels. Proc Natl Acad Sci U S A. 2012;109:14271–6.

 29. Lu AX, Zarin T, Hsu IS, Moses AM. YeastSpotter: Accurate and parameter‑
free web segmentation for microscopy images of yeast cells. Bioinformat‑
ics. 2019;35:4525–7.

 30. Salem D, et al. Yeastnet: Deep‑learning‑enabled accurate segmentation
of budding yeast cells in bright‑field microscopy. Appl Sci. 2021;11:2692.

 31. Bannon D, et al. DeepCell Kiosk: scaling deep learning–enabled cellular
image analysis with Kubernetes. Nat Methods. 2021;18:43–5.

 32. Ren H, et al. Cellbow: a robust customizable cell segmentation program.
Quant Biol. 2020;8:245–55.

 33. Arzt M, et al. LABKIT: Labeling and Segmentation Toolkit for Big Image
Data. Front Comput Sci. 2022;4:10.

 34. Gordon A, et al. Single‑cell quantification of molecules and rates using
open‑source microscope‑based cytometry. Nat Methods. 2007;4:175–81.

 35. Piccinini F, et al. Advanced Cell Classifier: User‑Friendly Machine‑Learning‑
Based Software for Discovering Phenotypes in High‑Content Imaging
Data. Cell Syst. 2017;4:651–655.e5.

 36. Bakker E, Swain PS, Crane MM. Morphologically constrained and data informed
cell segmentation of budding yeast. Bioinformatics. 2018;34:88–96.

 37. Aspert T, Hentsch D, Charvin G. DetecDiv, a deep‑learning platform for
automated cell division tracking and replicative lifespan analysis. bioRxiv.
2021:2021.10.05.463175. https:// doi. org/ 10. 1101/ 2021. 10. 05. 463175.

 38. Pietsch JMJ, et al. A label‑free method to track individuals and lineages of
budding cells. bioRxiv. 2022:2022.05.11.491488. https:// doi. org/ 10. 1101/
2022. 05. 11. 491488.

 39. Liu S, et al. Size uniformity of animal cells is actively maintained by a p38
MAPK‑dependent regulation of G1‑length. Elife. 2018;7:e26947.

 40. Linkert M, et al. Metadata matters: Access to image data in the real world.
J Cell Biol. 2010;189:777–82.

 41. Knapp BD, et al. Decoupling of Rates of Protein Synthesis from Cell
Expansion Leads to Supergrowth. Cell Syst. 2019;9:434–445.e6.

 42. Padovani F, Mairhörmann B, Schmoller K, Lengefeld J, Falter‑Braun P. Cell‑
ACDC: segmentation, tracking, annotation and quantification of microscopy
imaging data; 2022. https:// doi. org/ 10. 5281/ zenodo. 66851 70.

 43. Crouse DF. On implementing 2D rectangular assignment algorithms. IEEE
Trans Aerosp Electron Syst. 2016;52:1679–96.

 44. Ivanova T, et al. Budding yeast complete DNA synthesis after chromo‑
some segregation begins. Nat Commun. 2020;11:1–13.

 45. Dobbelaere J, Barral Y. Spatial coordination of cytokinetic events by
compartmentalization of the cell cortex. Science. 2004;305:393–6.

 46. Hu Z, et al. Nucleosome loss leads to global transcriptional up‑regulation
and genomic instability during yeast aging. Genes Dev. 2014;28:396–408.

 47. Lengefeld J, et al. Cell size is a determinant of stem cell potential during
aging. Sci Adv. 2021;7:eabk0271.

 48. Viana MP, et al. Robust integrated intracellular organization of
the human iPS cell: where, how much, and how variable. bioRxiv.
2021:2020.12.08.415562. https:// doi. org/ 10. 1101/ 2020. 12. 08. 415562.

 49. Ribeiro, A. J. S. & Dahl, K. N. The nucleus as a central structure in defining
the mechanical properties of stem cells. in 2010 Annual International
Conference of the IEEE Engineering in Medicine and Biology 831–834
(IEEE, 2010). https:// doi. org/ 10. 1109/ IEMBS. 2010. 56267 85

 50. Neurohr GE, et al. Excessive Cell Growth Causes Cytoplasm Dilution And
Contributes to Senescence. Cell. 2019;176:1083–1097.e18.

 51. Feranchak AP, et al. p38 MAP kinase modulates liver cell volume through
inhibition of membrane Na+ permeability. J Clin Invest. 2001;108:1495–504.

 52. Tan C, et al. Cell size homeostasis is maintained by CDK4‑dependent
activation of p38 MAPK. Dev Cell. 2021;56:1756–1769.e7.

 53. Claude KL, et al. Transcription coordinates histone amounts and genome
content. Nat Commun. 2021;12:1–17.

 54. Eriksson PR, Ganguli D, Nagarajavel V, Clark DJ. Regulation of histone
gene expression in budding yeast. Genetics. 2012;191:7–20.

 55. Kluyver T, et al. Jupyter Notebooks—a publishing format for reproducible
computational workflows. Position. Power Acad. Publ. Play. Agents Agen‑
das ‑ Proc. 20th Int. Conf. Electron. Publ. ELPUB. 2016;2016:87–90. https://
doi. org/ 10. 3233/ 978‑1‑ 61499‑ 649‑1‑ 87.

 56. napari contributors. napari: a multi‑dimensional image viewer for python.
2019. https:// doi. org/ 10. 5281/ zenodo. 35556 20.

 57. Kukhtevich IV, Lohrberg N, Padovani F, Schneider R, Schmoller KM. Cell
size sets the diameter of the budding yeast contractile ring. Nat Com‑
mun. 2020;11:1–15.

 58. Van Der Walt S, et al. Scikit‑image: Image processing in python. PeerJ.
2014;2014:e453.

 59. McKinney, W. Data Structures for Statistical Computing in Python. in
Proceedings of the 9th Python in Science Conference 56–61 (SciPy, 2010).
https:// doi. org/ 10. 25080/ majora‑ 92bf1 922‑ 00a

 60. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools. 2000;120:122–5.
 61. Virtanen P, et al. SciPy 1.0: fundamental algorithms for scientific comput‑

ing in Python. Nat Methods. 2020;17:261–72.
 62. Dendorfer, P. et al. MOT20: A benchmark for multi object tracking in

crowded scenes. (2020).
 63. Padovani F, Mairhörmann B, Lengefeld J, Falter‑Braun P, Schmoller K. Cell‑

ACDC: segmentation, tracking, annotation and quantification of microscopy
imaging data (dataset); 2022. https:// doi. org/ 10. 5281/ ZENODO. 67951 24.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1007/978-3-030-00934-2_30
https://doi.org/10.1101/2021.10.05.463175
https://doi.org/10.1101/2022.05.11.491488
https://doi.org/10.1101/2022.05.11.491488
https://doi.org/10.5281/zenodo.6685170
https://doi.org/10.1101/2020.12.08.415562
https://doi.org/10.1109/IEMBS.2010.5626785
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.5281/zenodo.3555620
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.5281/ZENODO.6795124

	Segmentation, tracking and cell cycle analysis of live-cell imaging data with Cell-ACDC
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation

	Results
	Overview of functionalities
	Validation of the image analysis pipeline
	A role of p38 MAPK pathways in cell size regulation of hematopoietic stem cells
	Image analysis of single-live-cell imaging experiments

	Discussion
	Conclusions
	Future developments

	Availability and requirements
	Materials and methods
	Software language and packages
	Live cell imaging
	Fluorescence staining of hematopoietic stem cells
	Cell volume calculation
	Downstream analysis
	Continuous tracking
	Automatic separation of merged objects
	Automatic mother-bud pairing
	Automatic propagation of corrections to future and past frames
	Benchmarking
	Comparison to Yeast Image Toolkit dataset

	Acknowledgements
	References

