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Abstract 

Background: High‑throughput live‑cell imaging is a powerful tool to study dynamic cellular processes in single cells 
but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of 
analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nev‑
ertheless, manual data validation and correction is typically still required and tools spanning the complete range of 
image analysis are still needed.

Results: We present Cell‑ACDC, an open‑source user‑friendly GUI‑based framework written in Python, for segmenta‑
tion, tracking and cell cycle annotations. We included state‑of‑the‑art deep learning models for single‑cell segmenta‑
tion of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi‑automated workflow for cell 
cycle annotation of single cells. Using Cell‑ACDC, we found that mTOR activity in hematopoietic stem cells is largely 
independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regula‑
tion of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age.

Conclusions: Cell‑ACDC provides a framework for the application of state‑of‑the‑art deep learning models to the 
analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and cor‑
rection of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart 
algorithms that make the correction and annotation process fast and intuitive. Finally, the open‑source and modular‑
ized nature of Cell‑ACDC will enable simple and fast integration of new deep learning‑based and traditional methods 
for cell segmentation, tracking, and downstream image analysis.

Source code: https:// github. com/ Schmo llerL ab/ Cell_ ACDC
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Background
Live-cell imaging is a powerful technique that allows 
studying complex cellular dynamics by providing spati-
otemporal information of subcellular events [1]. Micro-
fluidic devices that maintain constant environments 

enable parallel imaging of thousands of cells for many 
hours in a single experiment. However, downstream anal-
ysis typically involves many potentially time-consuming 
steps, e.g. cell segmentation, tracking, and pedigree 
annotation. Thus, for the large amount of data typically 
produced by a live-cell imaging experiment, downstream 
extraction of biologically relevant information becomes 
the rate-limiting step.

While traditional segmentation algorithms had low 
generalization power, recent advances in deep learning, 
and specifically in fully convolutional neural networks 
(FCNN) based on U-Net [2], have greatly enhanced 
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segmentation accuracy and degree of automation [3, 
4]. More specifically, in the case of live-cell micros-
copy of yeast and other organisms (e.g. mammalian 
stem cells), neural networks recently published (YeaZ 
[5], Cellpose [6], YeastMate [7] and StarDist [8]) drasti-
cally improved the segmentation process. However, even 
these neural networks do not achieve perfect segmenta-
tion, and—depending on the question—manual verifica-
tion or correction of segmentation and tracking is often 
still essential for high-quality microscopy image analy-
sis. Additionally, training deep learning models requires 
annotated ground-truth data.

Single-live-cell timelapse microscopy enables the study 
of cellular events happening in different phases of the cell 
cycle or even across multiple cell cycles. For this purpose, 
analysis of movies that image cells over multiple genera-
tions requires the correct annotation of pedigrees and 
cell cycle transitions. This is particularly true for bud-
ding yeast, because the bud, even though still a part of 
the mother cell, needs to be segmented as an individual 
object. This is important because bud emergence marks 
S-phase entry, a key cell cycle transition. In addition, the 
bud needs to be separated from the mother to answer sci-
entific questions related to the transport of sub-cellular 
components between the mother and the bud. Further-
more, volume estimation (see “Cell volume calculation” 
in the Material and methods section), requires separate 
mother and bud segmentation masks. To obtain infor-
mation about a full cell cycle, it is then necessary to link 
a bud to its mother cell and determine the time point of 
cell division. Importantly, budding yeast cell cycle anno-
tations can in part be performed in a label-free man-
ner based on the phase contrast signal: bud emergence 
is linked to S-phase entry, and cell division is typically 
detectable by a sudden movement of the bud that is not 
mechanically linked to the mother cell anymore. Unfor-
tunately, such pedigree and cell cycle annotations in 
budding yeast involve many manual steps (without a ded-
icated fluorescent marker) that require careful inspection 
of every single frame to identify and annotate the time 
point of cell division. Fluorescent tagging of proteins that 
locate to the bud neck connecting mother and bud, or of 
histones to monitor S-phase and observe nuclear locali-
zation, facilitates pedigree annotation and has been used 
for automation [9–12]. However, endogenous tagging 
comes with the cost of requiring genetic manipulation as 
well as one fluorescent channel that otherwise could be 
used for other purposes. Automated approaches do not 
achieve the close-to-perfect accuracy required for many 
questions and thus still require manual inspection and 
correction. While tools have been previously developed 
for automatic lineage tree construction [13–18] they 
are specific for symmetrically dividing cells or require 

a dedicated fluorescent marker for the cell cycle stage 
inference.

Although many software tools dedicated to the analysis 
of live-cell microscopy have been developed in the past 
(ImageJ/Fiji [19], MorphoLibJ [20], PhyloCell [21], Cell-
Profiler [22], Cell Tracer [23], Wood et  al. [24, 25], Cell 
Star [26], Cell Serpent [27], Tracker [28], YeastSpotter 
[29], YeastNet [30], DeepCell [31], Cellbow [32], LAB-
KIT [33], largely focussed on classification tasks CellID 
[34] and Advanced Cell Classifier [35] and, specifically 
for ageing experiments using dedicated microfluidics, 
DISCO [36], DetecDiv [37] and BABY [38]), to the best of 
our knowledge, none of them spanned the entire image 
analysis pipeline from CNN-based segmentation to cell 
cycle analysis in growing colonies, and fluorescent signal 
quantification (Table 1).

Implementation
Here we present an open-source graphical user interface 
(GUI)-based framework (written in Python 3) embedding 
state-of-the-art neural networks (YeaZ [5], Cellpose [6], 
StarDist [8] and YeastMate [7]) selectable by the user and 
smart algorithms that allow for fast, replicable, and accu-
rate microscopy image analysis. The provided tools cover 
the entire image analysis pipeline from a raw microscopy 
file to the quantification of the feature of interest. We 
named this software Cell-ACDC for Cell-Analysis of the 
Cell Division Cycle.

Cell-ACDC was developed following a community-
centred approach, where users from several research 
groups provided feedback and suggestions that were 
implemented into the pipeline. Additional segmenta-
tion models that will be developed in the future can be 
easily added in a few minutes with a drop-in approach. 
Cell-ACDC provides for the first time the possibility to 
constantly visualize and correct any segmentation, track-
ing, or cell cycle annotation error in a fast and intuitive 
way. It includes several smart algorithms and shortcuts 
that automatically propagate any change to past and 
future frames to continuously maintain data integrity 
and correctness. In essence, Cell-ACDC is a modular 
framework for cell segmentation, tracking, and cell cycle 
analysis that enables researchers to achieve near 100% 
accuracy in a reasonable amount of time. We designed 
Cell-ACDC by complementing the best tools existing 
with a complete image analysis workflow, a process that 
can otherwise take months to develop for each specific 
research question. Finally, by standardizing handling and 
analysis of live-cell microscopy data, Cell-ACDC facili-
tates data sharing between different labs.

One key advantage of Cell-ACDC is that complete ped-
igrees over multiple cell divisions can be obtained with 
reasonable manual effort. This allowed us to quantify 
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histone Htb1 protein concentrations in budding yeast 
over multiple cell cycles, revealing that Htb1 concentra-
tions decrease with replicative cell age. Moreover, going 
beyond the analysis of budding yeast, we used Cell-
ACDC to study regulatory pathways controlling cell size 
and growth in hematopoietic stem cells. We found that 
while mTOR activity is largely constant as a function of 
cell size, p38 activity is higher in small cells, consistent 
with a role of p38 in controlling cell-size-dependent cell 
cycle progression [39].

Cell-ACDC provides a framework that allows the 
implementation of the entire image analysis pipe-
line, from raw microscopy files to visualizing results 
(Fig. 1A). In the first steps, the raw microscopy files are 
converted into TIFF files (one for each channel of each 
position) using the popular Bio-Formats [40] library 
in a fully automated Python routine (opening, read-
ing, and converting from raw microscopy files is per-
formed by a dedicated Cell-ACDC sub-module). Using 
Bio-Formats allows for standardized reading of the file 

Table 1 Comparison between Cell‑ACDC and other available software

Automatic handling of real-time tracking: Cell-ACDC has real-time tracking to aid with the correction process and it automatically detects which frame was already 
visited and corrected to avoid that wrong tracking invalidates that frame again. Note that the table contains only software that either uses a deep-learning approach 
or includes tracking and downstream analysis of growing cell populations.
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metadata, such as the number of frames, the number of 
z-slices in a z-stack, or the time interval between each 
frame etc. Furthermore, we provide full support for 2D, 
3D (single z-stacks or 2D images over time) and 4D 
images (3D z-stacks over time) with multiple channels 
and multiple positions. Note that the TIFF format was 

chosen for its widespread use and compatibility with 
popular image viewers such as Fiji and napari [29].

After the conversion of the image file format, the user 
can select any of the three following steps: (a) a GUI for 
multiple data preparation steps (aligning frames, crop-
ping images, determining the area for background noise 

Fig. 1 Overview of pipeline and GUI. A Flowchart representation of the Cell‑ACDC pipeline. In the first step, the raw microscopy file(s) is/are 
automatically converted into TIFFs, the relevant metadata is extracted, and the files are arranged in the data structure required by Cell‑ACDC. Next, 
the user can launch any of the three main modules: (1) GUI‑based data prep where the user can align time‑lapse data, select a z‑slice or a projection 
for 3D z‑stacks data, and/or crop data to reduce memory usage; (2) automatic segmentation/tracking of multiple positions and/or multiple 
time‑frames (batch‑processing) using the embedded neural network models. (3) B Main user interface, where the user visualizes and corrects the 
result of automatic segmentation and tracking. Almost all the available functions (such as brush, eraser, edit ID or auto‑separate cells) are easily 
accessible from a button on the top toolbar, while sliders under the left image allow quick visualization of a specific position, frame, or z‑slice. To 
enhance visualization of the signal in the left image, the user can adjust the intensity levels with two vertical sliders on the left side of the GUI. C 
Example of the output table generated by cell cycle annotations. The annotations are saved in CSV format allowing for quick import into GUI‑ or 
script‑based spreadsheets software. The information saved includes the frame number, the cell ID, the cell cycle stage (either “G1” or “S/G2/M”), 
the generation number (automatically increased when division is annotated), the relative ID of the assigned parent cell, the relationship with the 
relative ID (either “mother” for both mother cells and cells in G1, or “bud” for buds that did not divide yet), the frame when the cell emerged and 
divided, and whether the history of the cell is fully known or not. Examples of cells with history not fully known are cells already present at frame 1 
and cells appearing at a specific time point from outside of the field of view. Note that “is_history_known” is also visually highlighted with a question 
mark on the cell (e.g. cell ID 3, which was present at frame 1)
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calculation, and selecting z-slice or projection for the 
segmentation step), (b) automated segmentation and 
tracking using state-of-the-art neural networks and (c) 
a GUI for semi-automated correction of segmentation 
and tracking errors supporting diverse model organisms/
objects, plus annotations of budding yeast cell cycle and 
pedigrees (Fig. 1B and Additional file 1 - Movie).

While it is possible to perform segmentation for single 
frames in the GUI, we highly recommend using the dedi-
cated segmentation and tracking script for whole batches. 
We embedded four neural networks that were recently 
published: YeaZ [5] and YeastMate [7] for yeast cells, and 
Cellpose [6] and StarDist [8] for multiple model organisms 
(bright-field and phase contrast). The modularity of the code 
allows for easy and quick implementation of any other seg-
mentation algorithm (traditional or deep-learning-based).

Alongside segmentation and tracking functionalities, 
the GUI has an additional working mode: pedigree and 
cell cycle annotations. These functionalities were specifi-
cally developed for the cell cycle analysis of budding yeast 
cells but can be adapted to other model organisms in the 
future to handle symmetric cell division as well. Anno-
tations of the yeast cell cycle include two main steps: 
(a) assigning the bud to the correct mother cell and (b) 
annotating the cell division event. Annotations are stored 
in a tabular format (Fig.  1C) that allows reconstruction 
of the entire pedigree of each single cell and downstream 
extraction of data of interest.

Independent of whether the user decides to use the 
cell cycle annotation functionality, Cell-ACDC pro-
duces comprehensive output data on a single-cell level. 
The extraction of metadata from raw files mentioned 
above allows for the approximation of volumes based 
on the segmentation masks. Analysis of additional (flu-
orescence) channels enables the calculation of several 

quantities, such as amount, concentration, or median 
signal strength of the fluorescent markers. For this step, 
we provide an Application Programming Interface (API) 
including calculations of custom metrics. Finally, the 
annotation of the cell cycle additionally allows analysis of 
those quantities in the context of the cell cycle and calcu-
lation of time-dependent properties such as growth rates.

Results
Overview of functionalities
The recent advancement in deep-learning-based seg-
mentation algorithms greatly reduced the segmenta-
tion error rate, but unfortunately many times it is still 
required to visually inspect and correct these errors. 
This is a tedious and time-consuming process, especially 
for live-cell imaging experiments where an error in one 
frame requires correction of all the future frames (often 
hundreds of frames, see “Benchmarking” in the “Materi-
als and methods” section). For this specific step, the GUI 
needed to be fast, intuitive, responsive, and interactive. 
To allow easy detection of potential errors, we included 
visual help directly displayed on the images and seg-
mentation masks while navigating through the frames 
(Fig. 2A and Additional file 2 - Movie) including cell con-
tours, cell ID, cell cycle information, as well as lost and 
newly appearing cells’ contours. We automated the prop-
agation of manual corrections to future and past frames 
along with continuous tracking of the segmented cells 
while maintaining consistency with already annotated 
parts of the data. We implemented automated and semi-
automated functions to allow quick and accurate correc-
tion once an error is detected. To simplify the correction 
of segmentation errors we embedded traditional segmen-
tation algorithms, such as random walker and flood fill, 
alongside manual tools such as brush and eraser. Using 

Fig. 2 Examples of Cell‑ACDC functions. A Visual help: information such as the cell ID, the cell cycle stage, and the generation number, as well as 
the segmentation contour are conveniently displayed on the cell image. Information is colour‑coded: red for newly emerged/appeared cells, white 
for cells already present in the previous frame, and yellow for disappeared cells. This allows for quick identification of tracking errors since often 
lost cells are caused by an ID misplaced due to the tracking algorithm failing. B Automatic separation: With a single click on the merged cells, the 
user can trigger automatic separation. With a combination of convexity defects detection and contour approximation, the algorithm separates the 
cells along the predicted plane. C Annotate cell as “dead”: A cell can be annotated as dead with a single click, and it is then considered dead for all 
future frames. The user can always annotate the cell as not dead at any point in future frames. D Annotate cell division: Cell division is often visible 
due to a sudden movement of the bud. The user can then click on the cell that divided to annotate it. The related information, such as generation 
number and cell cycle stage, is then automatically updated for both the mother and daughter cell. This annotation can be undone at any time point 
in past or future frames and all the information in all the involved frames is automatically updated. E Automatic mother‑bud pairing: When a new 
cell appears, an automatic assignment algorithm is triggered. Using a cost‑optimization routine, the new cell is assigned to the predicted mother. 
F Mother‑bud pairing correction: When the automatic mother‑bud pairing fails, the user can correct the assignment with a drag and drop gesture. 
This can be done at any time‑point of the life of the new cell and the pairing is automatically corrected on all the relevant past and future frames. G 
Overlay fluorescent signal from tagged histone Htb1. If available, the user can overlay a fluorescent signal. This is helpful, if, for example, the tagged 
gene is a cell cycle marker that can aid cell cycle annotations. H Overlay fluorescent signal from tagged septin ring (Cdc10). I Representative images 
of murine hematopoietic stem cells segmented based on bright‑field signal using Cell‑ACDC (based on Cellpose, using the median z‑projection). J 
Segmentation using Cell‑ACDC (based on YeaZ) of fission yeast (S. pombe). Data from [41]

(See figure on next page.)
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the segmentation masks, Cell-ACDC also computes sev-
eral single-cell numerical features based on the segmen-
tation of any loaded fluorescent channel. These features 
include cell area, estimated cell volumes (see “Cell vol-
ume calculation” in the “Materials and methods” sec-
tion), alongside mean, maximum, median and quantiles 

of the fluorescent signal. To visualize and interactively 
explore the data produced, we provide Jupyter notebooks 
(see “Downstream analysis” in the “Materials and meth-
ods” section). While we only highlight a few examples 
here, we explain each function in detail in the manual 
(Supplementary information).

Fig. 2 (See legend on previous page.)
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A typical time-consuming correction is editing the ID 
of an object when tracking fails. Since most of the track-
ing algorithms track objects based only on the previ-
ous frame, a tracking error at one frame results in the 
error being propagated through all preceding frames 
in the video. The Cell-ACDC GUI provides a real-time 
tracking mode that is activated when browsing through 
unseen frames (see “Continuous tracking” in the “Mate-
rials and methods” section). This allows for seamless 
correction of tracking errors while analysing the video 
frame-by-frame. Another typical segmentation error 
occurs when two cells are segmented as a single object 
(usually a mother cell with a small bud, Fig.  2B and 
Additional file  3 - Movie). For this specific case, we 
developed a custom algorithm for the automatic sepa-
ration of the merged cells. Based on a combination of 
convexity defects detection and contour approximation, 
the cells are automatically separated. We compared this 
method to classic distance transform followed by water-
shed separation that is implemented in YeaZ, and we 
found consistently better performance in these specific 
cases (Additional file 4: Fig. S1). Note that this function 
is triggered by the user with a mouse click on the cells 
that requires separation. If automated separation fails, 
the user can separate the cells manually with a dedicated 
function. An additional fundamental requirement is the 
possibility to annotate images. We implemented a vari-
ety of functionalities to annotate specific cell states, such 
as “dead” (Fig. 2C) or “excluded from the analysis” that 
are activated with a single click on the cell. The corrected 
annotation is automatically propagated to all future 
frames and can be undone at any time point.

After acquiring time-lapse microscopy data of pro-
liferating budding yeast, a typical analysis involves 
annotating budding events, division events, and identi-
fying mother-bud pairs (Additional file 6 - Movie). For 
these specific steps, we developed three main actions: 
(a) annotation of cell division time point (Fig. 2D), (b) 
automatic bud assignment (Fig.  2E, and “Automatic 
mother-pairing” in the “Materials and methods” sec-
tion), and (c) semi-automated bud assignment correc-
tion (Fig. 2F, and “Automatic propagation of corrections 
to future and past frames” in the “Materials and meth-
ods” section).

Without the use of a cell cycle marker, cell division is 
often visible in phase-contrast images due to a sudden 
movement of the bud. To annotate this event, the user 
simply clicks once on the mother or bud. Cell-ACDC 
will automatically update the annotations table by chang-
ing the cell cycle stage and increasing the generation 
number to keep track of how many times a cell budded. 
Many times, this event is clearly visible, but other times 
it requires careful inspection to spot a subtle movement 

indicating cell division. To spot the event in this case, 
the user must constantly jump back and forth between 
frames. Therefore, responsiveness and speed of display-
ing data are fundamental. To achieve this, we used the 
high-performance python library PyQtGraph for the 
GUI elements. Furthermore, in practice, it is often neces-
sary to correct a cell division annotation multiple times. 
Therefore, Cell-ACDC automatically propagates correc-
tions to all involved frames.

An important objective of cell cycle analysis with bud-
ding yeast is the assignment of newly emerging buds to 
the correct mother cell. Using a cost optimization rou-
tine, Cell-ACDC automatically assigns each emerging 
bud to the predicted mother cell. For all new buds, the 
algorithm calculates the cost of assigning the bud to any 
cell in G1 (i.e., cells that are not budding now). For two 
cells, the cost is defined to be the single linkage distance 
between the cells’ pixels. This cost is then minimized 
using a modified Jonker-Volgenant algorithm with no 
initialization [42]. The function solves a minimum cost 
matching problem where we define all new buds as the 
one and all G1 cells as the other bipartite set which are 
matched to each other. To quantitatively benchmark 
mother-bud pairing accuracy (percentage of correctly 
assigned buds), we tested the algorithm with time-lapse 
data in three different scenarios: (a) data automatically 
segmented with YeaZ without any correction of segmen-
tation and tracking errors, where all the cells are eligible 
mothers; (b) data with correction of segmentation and 
tracking errors, where all the cells are eligible moth-
ers; and (c) data with correction, where only cells in G1 
are eligible mother cells. Note that (c) is the scenario in 
which the algorithm is currently used. In scenario (a) and 
(b), we obtained an accuracy of 67.5% and 75.5% (n=120) 
respectively. In scenario (c), we obtained an accuracy 
of 90.5% (n=147). Note that to achieve 90.5% accuracy, 
prior knowledge of which cells are in G1 in the previ-
ous frame is required, and the mother-bud assignment 
is automatic between two consecutive frames and not 
the entire video. In some cases, the assignment fails, e.g. 
when a bud emerges close to another cell in G1 that is 
not the mother cell, or due to errors in earlier frames (e.g. 
when the correct mother cell is not annotated as being in 
G1). Three common scenarios that could result in wrong 
annotations on the next time-point are (1) buds that, as 
soon as they separate from the mother, are washed away 
from the field of view without giving the user the possi-
bility to correctly annotate the first frame after cell divi-
sion; (2) not enough cells in G1 for the number of new 
cells appearing (potential buds); and (3) trying to assign 
a bud to a cell in G1 that already has a bud assigned to it 
in the relevant past and/or future frames (it would result 
in a mother cell with two buds assigned to it). All these 
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scenarios are automatically detected by Cell-ACDC and 
the user is notified with a dialogue that allows choosing 
the best course of action. Moreover, it is sometimes not 
possible to determine the correctness of the assignment 
on the current frame, and the correct pairing is visible 
only after the bud has increased its size. Manually cor-
recting such assignments would require correcting many 
frames where the bud must be assigned to another cell in 
G1 and reverting the wrong mother’s cell cycle stage back 
to G1. Again, automated correction propagation is a key 
feature that facilitates rapid annotation.

Additionally, while it is possible to annotate the cell 
cycle stage using only phase contrast signal, this step can 
be facilitated by a fluorescent marker, such as tagged his-
tone (e.g. Htb1 in yeast, Fig. 2G) to follow the segregation 
of the nucleus from the mother to the bud [43], or the 
septin ring (e.g. Cdc10, Fig. 2H) to determine cytokinesis 
events [44]. To allow visualization of such fluorescent cell 
cycle markers, we implemented an overlay function, acti-
vated using a button on the toolbar.

Finally, Cell-ACDC also serves as a framework for 
the segmentation/tracking of other organisms such as 
hematopoietic stem cells (Fig.  2I) or the fission yeast S. 
pombe (Fig. 2J). Testing Cell-ACDC on fission yeast, we 
found that also for symmetrically dividing cells, cell cycle 
annotations and pedigree analysis are possible: after divi-
sion, the two daughter cells are automatically paired, and 
through tracking linked to their predicted mother cell. 
The user can use the already implemented features to 
annotate division and mother-daughter pairing.

Validation of the image analysis pipeline
Cell-ACDC offers full support for the segmentation and 
analysis of 3D z-stacks. Furthermore, together with the 
neural network Cellpose and StarDist, it is possible to seg-
ment cells of various model organisms other than budding 
yeast. To validate the entire image analysis pipeline includ-
ing the use of 3D z-stacks, we first analysed single time-
point images of budding yeast. Using a strain expressing the 
fluorescent protein mKate2 from an ACT1 promoter, we 
imaged both phase contrast and mKate2 signal (Fig.  3A). 
Secondly, using the Data Prep GUI (automatically called 
when segmenting 3D z-stacks), we visually selected the opti-
mal z-slices or the projection mode. Thirdly, we segmented 
cells (using batch processing capabilities of Cell-ACDC) in 
the phase-contrast signal using the neural network YeaZ, 
and the mKate2 signal using Cellpose. Finally, we calculated 
the cell volume (see the Materials and methods” section) for 
both segmentations. We found a strong correlation between 
the cell volumes calculated with the two methods (Fig. 3C, 
Pearson’s correlation = 0.98, p value <10−10), indicating a 
strong match between cell volume estimates obtained from 
two different channels using two different neural networks.

To validate the capabilities of Cell-ACDC to segment 
other model organisms, we segmented both the nucleus 
(DAPI staining) and the bright-field channel of hemat-
opoietic stem cells (HSCs). Benefitting from the flexibility 
of using multiple deep learning segmentation models, we 
chose StarDist to segment the DAPI channel and YeaZ 
for the bright-field channel. We then carefully inspected 
and corrected segmentation errors and computed cell 
and nuclear volumes using the Cell-ACDC main GUI. 
Consistent with previous reports [46–48], we found that 
the nucleus occupies a large fraction of the cell volume, 
and that nucleus and cell volume are well correlated 
(Fig. 3B, D, Pearson’s correlation = 0.86, p value<10−10). 
Our results demonstrate that for HSCs, both nucleus and 
cell volume are valid proxies for cell size.

A role of p38 MAPK pathways in cell size regulation 
of hematopoietic stem cells
Cells need to accurately control their size to maintain 
cellular functions [46, 49]. In particular, increased cell 
size can impair the function of stem cells [50]. Neverthe-
less, little is known about how stem cells regulate their 
size. To carefully quantify factors involved in size regu-
lation in hematopoietic stem cells (HSCs), we validated 
the capabilities of Cell-ACDC to segment stem cells and 
extract automatically calculated metrics from the fluo-
rescent signal to provide novel biological insights. First, 
we segmented hematopoietic stem cells (HSCs) from an 
immunofluorescence staining for phospho-S6 ribosomal 
protein (Ser240/244) using bright-field images to deter-
mine cell volume (Fig. 4A). Based on this segmentation, 
we evaluated the total Alexa 488 fluorescence intensity 
divided by cell volume, which is a readout for mTOR 
activity (Fig.  4B). Our results validate manual measure-
ments showing that mTOR activity stays largely constant 
with increasing HSC volume [46]. This result supports 
a previously proposed model that changes in cell cycle 
length, rather than variations in mTOR activity, affect 
HSC size [46]. Next, we focused on another factor, p38 
mitogen-activated protein kinase (MAPK), which was 
previously associated with cell size regulation by (i) 
affecting G1 duration [39] and (ii) regulating ion channel 
permeability [51]. As a readout for p38 activity in HSCs, 
we used immunofluorescence staining of phosphor-p38 
(Thr180/Tyr182). We found the signal to be nuclear, and 
therefore decided to normalize the total fluorescence 
intensity on the nuclear volume we obtained by segment-
ing the nucleus (DAPI staining, Fig. 4C). We found that 
small HSCs display higher p38 activity (Fig.  4D), which 
is in line with previous findings suggesting that increased 
p38 activity in small RPE1 cells prolongs their G1 phase, 
allowing cells to grow to their optimal size [39, 52]. Over-
all, these results demonstrate that Cell-ACDC enables 
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the reliable and efficient analysis of fluorescence images 
of murine stem cells. Furthermore, our data support 
models suggesting that control of cell cycle duration is a 
major mechanism of stem cells to regulate their size.

Image analysis of single‑live‑cell imaging experiments
To validate the image analysis pipeline for live-cell imag-
ing assays, we re-analysed time-course images of a yeast 
strain expressing the histone Htb1 endogenously tagged 
with a fluorescent reporter (mCitrine) that we have pre-
viously analysed using a dedicated custom Matlab-script 
[25, 53]. Histones are expressed in a cell cycle-depend-
ent manner, with expression tightly coupled to DNA 
synthesis during S-phase [54]. After aligning the frames 
with the Data Prep GUI to correct for shifts during the 
time-lapse experiment, we segmented the videos with 
the batch processing segmentation script, using YeaZ on 
the phase-contrast signal. Next, we corrected segmen-
tation and tracking errors, and we annotated cell cycle 
progression in the main GUI. Finally, we implemented 
a notebook in the popular open-source web application 
Jupyter Notebook [55] to allow interactive transfor-
mation, exploration, statistical analysis and visualiza-
tion of the Cell-ACDC output data. As expected [53], 

by plotting the Htb1-mCitrine amount over entire cell 
cycles aligned at bud emergence, we observe a strong 
cell cycle dependence of Htb1 expression and a 2-fold 
increase around DNA replication (Fig. 5A, n=137). Cell 
cycle annotations also allow comparing results at differ-
ent cell cycle stages. We show that the amount of Htb1-
mCitrine in single mother-bud pairs (before division) is 
about double the amount in single cells at birth (start of 
G1 phase). Moreover, confirming our previous analysis, 
we find that the amount of histones at a given cell cycle 
stage is largely independent of cell volume [53] (Fig. 5B). 
By additional analysis of an untagged control strain, we 
ensured that autofluorescence is negligible compared to 
the histone-specific fluorescence signal. A key advan-
tage of Cell-ACDC compared to our previous analysis 
is that it now allows us to obtain full pedigrees spanning 
the complete duration of the experiment. Thus, going 
beyond our previous analysis, Cell-ACDC enabled us 
to separately analyse new-born daughter cells during 
their first cell cycle as well as older mother cells. We 
found that at a given cell volume, histone amounts in 
new-born cells during their first cell cycle are similar to 
those in older cells during later cell cycles (Fig. 5A, B). 
We then quantified the concentration of Htb1-mCitrine 

Fig. 3 Cell‑ACDC analysis pipeline validation. A Representative images of the strain carrying ACT1pr-mKate2. B Representative image of 
hematopoietic stem cells from wild‑type mice stained for DNA (DAPI). C Correlation between budding yeast cell volume calculated from cells 
segmented with two different methods. The cell volume is calculated from 2D segmentation masks (see [45] and the “Materials and methods” 
section), which were obtained with two different methods: segmentation with YeaZ on phase‑contrast signal and segmentation with Cellpose on 
the fluorescent signal of mKate2 expressed from an additional ACT1 promoter. We observe a strong agreement between the two methods (n = 
113, Pearson’s coefficient=0.98, p value<10−10). D Correlation between the nucleus and cell volume of hematopoietic stems cells (HSCs). For the 
nuclear volume, we segmented the DAPI signal using StarDist, while for the cell volume, we segmented the bright‑field channel using YeaZ. We 
observe high correlation (n = 519, Pearson’s coefficient=0.86, p value <10−10), indicating that the nuclear volume is a valid proxy for cell size. All 
segmentation masks were carefully inspected and corrected using Cell‑ACDC
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in mother cells at the beginning of G1 as a function of 
replicative age. We found that Htb1-mCitrine con-
centrations decrease with increasing division number 
(Fig. 5C), in particular after the first complete cell cycle 
which results in a pronounced increase of cell volume. 
Taken together, our results demonstrate that at least 

during the first cell cycles, cells maintain roughly con-
stant amounts of histones, leading to a decrease of his-
tone concentration due to cell growth. This suggests 
that the increase of cell size could in part account for 
the reported decrease of histone concentrations during 
replicative ageing [45].

Fig. 4 mTOR and p38 activity in relation to cell size. A Representative image of hematopoietic stem cells from wild‑type mice stained for 
Phospho‑S6 (P‑S6, Alexa 488) and DNA (DAPI). B Values obtained from Cell‑ACDC segmentation using Cellpose on bright‑field signal: Alexa 488 total 
fluorescence intensity per cell volume (a.u., proxy for mTOR activity) of phospho‑S6 ribosomal protein (Ser240/244) staining as a function of the 
HSC volume (fL). Gates of XS‑, M‑ and XL‑sized HSCs are indicated in grey (n=1626 cells). Alexa 488 total fluorescence intensity per cell volume (a.u.) 
of phospho‑S6 ribosomal protein (Ser240/244) staining in control (no primary antibody), all HSCs, XS‑sized HSCs (n=247), M‑sized HSCs (n=493), 
and XL‑sized HSCs (n=244). C Representative image of hematopoietic stem cells from wild‑type mice stained for Phospho‑p38 (P‑p38, Alexa 488) 
and DNA (DAPI). D Values obtained from Cell‑ACDC segmentation (using StarDist on DAPI signal): Alexa 488 total fluorescence intensity per nuclear 
volume (a.u., proxy for p38 activity) of Phospho‑p38 mitogen‑activate protein kinase (MAPK, Thr180/Tyr182) staining as a function of the HSC 
nuclear volume (fL). Gates of XS‑, M‑ and XL‑sized HSCs are indicated in grey (n = 586). Alexa 488 total fluorescence intensity per cell volume (a.u.) 
of phospho‑p38 (Thr180/Tyr182) staining in control (no primary antibody, n = 196), all HSCs, XS‑sized HSCs (n = 90), M‑sized HSCs (n = 179), and 
XL‑sized HSCs (n = 77)
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Discussion
Analysis of live-cell imaging data is a complex task that 
involves several steps, some of which are often labori-
ous and time-consuming. Despite great advances in 
image analysis algorithms, such as convolutional neural 
networks, extracting useful biological information from 
microscopy images can require the implementation of 
sophisticated pipelines. Here, we presented Cell-ACDC, 
an open-source, GUI-based framework that enables fast, 
accurate and intuitive analysis of microscopy images. We 
provide tools for each step of the pipeline, from the raw 
microscopy file to the visualization of the results (Fig. 1). 
The software is written in Python, which is freely avail-
able for all users. We embedded recent neural network 
models for object detection and image segmentation, 
YeaZ, Cellpose, StarDist and YeastMate. While YeaZ and 
YeastMate were specifically developed for the segmenta-
tion of yeast cells, Cellpose and StarDist are generalist, 
enabling the segmentation of multiple model organisms.

Cell-ACDC can analyse images with different dimen-
sionalities, from a single 2D image to 3D (z-stacks or 2D 
images over time) and 4D images (3D z-stacks over time). 
We implemented building blocks which can be arranged 
to workflows tuned to each specific image type.

For time-stacks, we provide a set of tools for single-
cell tracking and annotation of the yeast cell cycle. 
Despite the great accuracy of the embedded segmen-
tation models, it is often required to visually inspect 
and correct segmentation and tracking errors. Cell-
ACDC was developed to enable fast and intuitive 
correction of these errors, with automatic handling 
of correction propagation to past and future frames 

(Fig. 2). For budding yeast live-cell imaging assays, we 
implemented a workflow to enable annotation of the 
cell cycle, either from phase-contrast signal or from a 
fluorescent cell cycle marker (e.g. Htb1, Cdc10). With 
a combination of automatic mother-bud pairing and 
semi-automatic cell division annotation, Cell-ACDC 
enables accurate and fast annotation of the cell cycle 
stage for pedigree analysis.

For z-stacks, the user can select a specific z-slice or 
a projection to use for segmentation. Converting a 
z-stack into a 2D image is required for segmentation in 
Cell-ACDC. Note that Cellpose supports segmentation 
of 3D z-stacks directly, however, images of yeast cells 
(bright-field and phase contrast) usually contain only 
a few z-slices that are in-focus and therefore usable 
for segmentation. Additionally, 3D segmentation with 
neural networks is often computationally more expen-
sive than the 2D counterpart, therefore we decided to 
develop the workflow around single z-slice segmenta-
tion. We calculated the cell volume of 228 single yeast 
cells using two methods: (a) segmentation of a specific 
z-slice of the phase contrast signal using YeaZ and (b) 
a mean z-projection of a fluorescent marker (mKate2 
expressed from an additional ACT1 promoter) using 
Cellpose. We found a strong correlation between the 
volume calculated with the two methods (Fig. 3), dem-
onstrating the flexibility of the segmentation pipeline.

To highlight the possibility to analyse multiple model 
organisms, we applied the Cell-ACDC analysis pipeline 
to stem cells. Our results demonstrate that Cell-ACDC 
provides a tool for the unbiased and efficient analysis of 
fluorescent images of hematopoietic stem cells (HSCs) 

Fig. 5 Quantitative analysis of Htb1‑mCitrine expression as a function of cell cycle and cell volume. A Total amount of Htb1‑mCitrine (total cellular 
fluorescence intensity after background subtraction) as a function of time for the first cell cycle of new‑born daughter cells (n=48) and older cells 
(n=89). Single cell traces are aligned at bud emergence (time = 0). B Amount of Htb1‑mCitrine as a function of cell volume at birth (blue) and 
directly before cytokinesis (combined signal of mother and bud, orange). Signal from untagged strains used as autofluorescence (Af ) control is 
negligible. Results from A and B are consistent with our previous analysis [35]. C Concentration of Htb1‑mCitrine retained in mother cells at cell 
division, shown as a function of division number (boxplot whiskers: 1.5 IQR)
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that is easy to use for researchers that do not have 
experience in using python. Using the automatic com-
putation of key numerical features such as total fluo-
rescence intensity and cell/nuclear volume included in 
Cell-ACDC, we showed that mTOR activity is largely 
constant with cell size, and that p38 activity is higher in 
smaller HSCs.

With the combination of sophisticated deep-learning 
algorithms and fast manual data correction, Cell-ACDC 
allows obtaining complete pedigrees over several cell 
cycles. As a proof of principle, we used this to quantify 
histone concentrations in budding yeast as a function of 
cell cycle progression, cell volume and replicative age. 
Our analysis revealed that the increase of cell volume 
during replicative ageing results in a decrease of histone 
concentrations.

Previously, developing a complete image analysis pipe-
line from existing tools required putting together differ-
ent tools, such as ImageJ/Fiji [19], CellProfiler [22], and 
napari [56], and embedding state-of-the-art segmenta-
tion algorithms required extensive programming experi-
ence. Moreover, correction of segmentation and tracking 
errors as well as cell cycle annotation could in principle 
be performed with other tools such as YeaZ [5] GUI, 
DeepCell [31], PhyloCell [21] etc., but it required creating 
output data that can be loaded into these tools. Finally, 
calculating single-cell numerical features from fluores-
cent signals can be performed in ImageJ/Fiji or with cus-
tom code. Cell-ACDC aims at unifying all these steps in 
one single pipeline, where the data structure required is 
created only once as the first step. This is a great advan-
tage not only because it speeds up the process but also 
because as the community adopts Cell-ACDC, it will 
foster collaboration and greatly reduce the complexity of 
sharing data between labs.

Conclusions
Future developments
We developed Cell-ACDC with a community-centred 
approach, by implementing suggestions from other 
research labs. We will keep this approach, and when 
adopted by a larger community, we envision a tool that 
can standardize live-cell imaging data processing and 
handling. Thanks to its modular backend, Cell-ACDC 
allows easy and fast implementation of image analysis 
models that will be developed in the future.

While initially developed for budding yeast, already 
in its current state Cell-ACDC can be used to obtain 
numerical features from images of any organism that can 
be segmented manually or using generalist models such 
as Cellpose.

In the current version of Cell-ACDC, full support for 
pedigree and cell-cycle analysis of symmetrically dividing 

cells is still missing. To address this, we plan to introduce 
a complementary automatic sister-pairing algorithm and 
division annotation in the future, which will allow lineage 
tree constructions and visualization.

Since image segmentation is often the first step in the 
image analysis pipeline, standardizing it will enable the 
development of more sophisticated downstream analysis 
methods (e.g. for sub-cellular feature extraction) that will 
be directly compatible with the output data generated by 
Cell-ACDC.

Availability and requirements
Project name: Cell-ACDC

Project home page: https:// github. com/ Schmo llerL ab/ 
Cell_ ACDC

Operating system(s): Windows, macOS, Linux
Programming language: Python
Other requirements: Python 3.7, 3.8, or 3.8, Java 8 

(optional)
Licence: BSD 3-Clause “New” or “Revised” License
Any restrictions to use by non-academis: None

Materials and methods
Software language and packages
The software is written in Python, freely available to all 
users. The code is open-source, and it is available at the 
GitHub repository https:// github. com/ Schmo llerL ab/ 
Cell_ ACDC. For automatic conversion of raw micros-
copy files into the required data structure, we embedded 
Java Runtime Environment (automatically downloaded) 
and python-bioformats to run the popular Bio-Formats 
[40] library directly from Python. Thanks to a GUI-based 
wizard, the user can automatically generate the required 
data structure. The GUI frontend is written using PyQt, 
a set of Python bindings for the Qt cross-platform C++ 
framework. Qt is a platform specifically designed for 
the development of fast and intuitive GUIs. To ensure a 
smooth user experience the images and the annotations 
are displayed using PyQtGraph, a Python library specifi-
cally designed for interactive and fast displaying of data. 
To easily add new models that will be developed in the 
future, we provide a drop-in approach, where any model 
placed in the “models” folder is automatically loaded. A 
GUI widget is automatically populated with the model 
parameters to easily adjust them. To ensure easy instal-
lation of Cell-ACDC, we provide ready to use virtual 
environments with the two most popular package install-
ers, Anaconda and Pip. Finally, we provide a Quick Start 
Guide to start using Cell-ACDC as fast as possible and 
a User Manual (Additional file 5) that extensively docu-
ments every single function available. We describe the 
output data saved by Cell-ACDC in the Supporting 
Information.

https://github.com/SchmollerLab/Cell_ACDC
https://github.com/SchmollerLab/Cell_ACDC
https://github.com/SchmollerLab/Cell_ACDC
https://github.com/SchmollerLab/Cell_ACDC
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Live cell imaging
Fig. 2C shows strain KSY306-3 (Mat a, his3::LexA-ER-
AD-TF-HIS3 whi5::kanMX6-LexApr-WHI5-ADH1term-
LEU2 exo84::EXO84-mCirine-ADH1term-cglaTRP1 
cdc10::CDC10-mNeptune2.5-ADH1term-ADE2) grow-
ing on SC media with 2% glycerol and 1% etha-
nol (SCGE) after pre-culture in SCGE with 20 nM 
β-estradiol. Data displayed in Figs.  1 and 2A, B, and 
D–G; and 5 was obtained from raw microscopy files 
included in our previous publication [53]. These fig-
ures show the strain KCY050-2. Data displayed in 
Figs.  2H and 3A was obtained from raw microscopy 
files included in our previous publication [57]. Specifi-
cally, Fig. 2H shows the strain KSY234-1; Fig. 3A shows 
strain KSY282-2. Briefly, live-cell time-lapse micros-
copy was performed using a Nikon Eclipse micro-
scope equipped with a plan-apo λ 100×/1.45NA Ph3 
oil immersion objective. Cells were imaged in a cus-
tom-made microfluidic device made of polydimethyl-
siloxane and a glass coverslip. A flow of 40 μl/min of 
synthetic complete liquid medium with 2% glucose was 
constantly applied at 30°C.

The diploid strain KCY050-2 carries endogenously 
tagged Htb1, while strain ASY020-1 was used as auto-
fluorescence control [53]. Live-cell time-lapse micros-
copy was performed using a Zeiss LSM 800 microscope 
equipped with a plan-apochromat 40×/1.3NA oil immer-
sion objective coupled to an Axiocam 506 camera. Note 
that Fig. 5B in essence reproduces the results for diploid 
cells in Fig.  1c of publication [53]. However, a different 
subset of cells from the raw data was analysed.

Fluorescence staining of hematopoietic stem cells
Murine bone marrow (BM)-derived live G0/1 HSCs 
 (Lin-, Sca1/Ly6+, CD117/cKit+, CD150/Slamf1+, CD48/
Slamf2-, 7-ADD-) were isolated as described previously 
[46]. Briefly, BM was harvested by flushing the long 
bones. Red blood cells were lysed in ammonium-chlo-
ride-potassium (ACK) buffer and samples were washed 
in Iscove’s modified Dulbecco’s medium (IMDM) con-
taining 2 % foetal bovine serum (FBS). BM cells were 
resuspended at 10 [6] cells/mL in pre-warmed IMEM 
supplemented with 2 % FBS and 6.6 μg/mL Hoe-
chst-33342 (Thermo Fisher Scientific, #H3570). After 
45 min of incubation at 37°C in a water-bath, cells were 
washed with cold IMEM with 2 % FBS and kept at 4°C. 
Lineage positive cells were depleted using a mouse line-
age cell depletion kit and the following antibodies were 
used for staining: Rat monoclonal PE anti-mouse CD150, 
BD Biosciences, Cat#562651; RRID: AB_2737705; Rat 
monoclonal APC anti-mouse CD117, BD Biosciences, 
Cat#561074; RRID: AB_10563203, Armenian hamster 
monoclonal APC/Cy7 anti-mouse CD48, BioLegend, 

Cat#103431; RRID: AB_2561462, Rat monoclonal BV711 
anti-mouse Ly-6A/E, BioLegend, Cat#108131; RRID: 
AB_2562241. Cells were sorted using an Aria cell sorter 
(Becton Dickinson).

For immunofluorescence analyses, Fisherbrand™ Super-
frost™ Plus Microscope Slides were primed with 0.1 % 
polylysine for 5 min, washed with  dH2O and air-dried. 
HSCs were distributed on slides and incubated for 1 h in 
a humidified chamber at RT. HSCs were fixed for 20 min 
at RT with freshly prepared 4% paraformaldehyde (PFA, 
pH 7.2) and then washed three times with PBS. HSCs were 
permeabilized for 20 min in 0.2 % Triton-X 100, washed 
three times with PBS, and blocked for 30 min using 10 % 
Donkey Serum (Sigma) in PBS. Cells were incubated with 
primary antibody in 10 % Donkey Serum in PBS over-
night at 4 °C: Phospho-S6 Ribosomal Protein (Ser240/244) 
Rabbit mAb (Cell Signaling Technology, Cat# 5364; 
RRID:AB_10694233) or Phospho-p38 ( Thr180/Tyr182) 
(Cell Signaling Technology, Cat #9211, RRID: AB_331641). 
After HSCs were washed three times with PBS + 0.1 % 
Tween-20, the secondary antibody solution (1:500, goat 
anti-rabbit Alexa 488, Cell Signaling Technology, 4412S) 
was added for 1 h at RT in the dark in 10 % Donkey Serum 
in PBS. Coverslips were mounted with ProLong Gold 
Antifade Reagent with (Invitrogen, Molecular Probes) and 
imaged after 12 h. Control slides were not treated with 
primary antibody. Images were acquired using a DeltaVi-
sion Elite microscope (Applied Precision) platform (GE 
Healthcare Bio-Sciences) equipped with a CoolSNAP HQ2 
camera (Roper), 250W Xenon lamps, SoftWoRx software 
(Applied Precision). Deconvolution was performed using 
SoftWoRx software with default settings. Cells that were 
2.5 times larger than the mean were excluded from the 
analysis. To analyse HSCs of a specific size, the evaluated 
the 10 % smallest (XS-HSCs), the 10 % largest (XL-HSCs) 
and +/− 10 % HSCs of mean size (M-HSCs).

Cell volume calculation
Cell volume is estimated from 2D segmentation masks as 
follows: (a) the object is aligned along its major axis, (b) 
the volume of each horizontal slice with 1 pixel height is 
calculated assuming rotational symmetry along the slice’s 
middle axis, and (c) volumes of the slices are added to 
obtain the final volume. We previously reported [57] that 
for budding yeast, this method well agrees with alterna-
tive methods, such as 3D reconstruction from z-stacks 
using confocal microscopy.

Downstream analysis
For downstream analysis, we provide a notebook, writ-
ten in python in the popular data science tool Jupyter 
Notebooks [55]. The user can select files to analyse by 
following a series of prompts and file dialogues, which 
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also enables data pooling and comparison of subsets 
such as different strains or different conditions. The files 
selected are then iteratively loaded and geometric prop-
erties (e.g. area, solidity, elongation) are calculated using 
the package scikit-image [58]. Those quantities are com-
plemented by additional parameters specific to time-
lapse experiments, including cell age at frame n, growth 
rate, G1 and S/G2/M durations, as well as the first and 
last frames of cell appearance. In addition, signal amount 
and concentration for all available fluorescence channels 
are calculated. For this, the mean signal is corrected for 
background fluorescence by subtracting the median sig-
nal of all background pixels, which are determined as 
non-cell areas based on the cell segmentation masks. We 
define signal amount as corrected mean multiplied by 
the area of the segmented object (in pixels) and the sig-
nal concentration is obtained by dividing the amount by 
cell volume (calculated as described above). Note, that 
the fluorescence-related quantities can also be calculated 
directly in the GUI upon the user’s choice by selecting 
the option “Save additional metrics”.

We then perform two data aggregations using func-
tions of the package pandas [59]. First, we connect the 
mother cell data with data of the respective buds and 
obtain single-cell time traces using the cell IDs. Second, 
we use generation number and cell cycle stage informa-
tion to calculate cell-cycle-specific data.

Figure 3 was created using the output from Cell-ACDC 
without any pre-processing. Cell volumes and Alexa 488 
concentrations were calculated as described above. In 
Fig. 5A, all individual cell cycle traces are aligned at bud 
emergence. To obtain the combined signal of mother 
cells and their buds, we summed the respective fluores-
cence signal amounts

Continuous tracking
For the continuous tracking of single cells in the main 
GUI, we developed a cost-optimization routine to deter-
mine the optimal assignment of the segmented objects 
between two consecutive frames. First, a cost matrix 
C is computed: given a list x of object IDs [x0, x1…xn1] 
in frame n − 1, and a list y of [y0, y1…yn2] in frame n, 
each element ci, j is equal to the intersection over area 
(IoA) score between yi and xj. The IoA is calculated as 
the number of intersecting pixels between yi and xj 
divided by the area of xj. Next, any object with maxi-
mal IoA score less than 0.4 is considered a new object 
(e.g. a newly emerging bud), and receives a new ID. The 
remaining objects from frame n are assigned as follows: 
each unassigned object of list y is assigned to the object 
of list x with maximum IoA score unless the object from 
list x has a higher IoA with another object from list y. 
After having assigned objects from frame n to all objects 

from frame n − 1, the remaining objects are considered 
new and receive a new ID.

Automatic separation of merged objects
Another algorithm embedded into Cell-ACDC is the 
automatic separation of merged objects. Since both 
Cellpose and YeaZ provide methods for separation, we 
developed our algorithm to provide an additional option 
for cases where Cellpose or YeaZ failed. The goal of 
the method is to separate the object along a restriction 
site. Firstly, the contour of the object is approximated 
to avoid spurious separation planes due to irregulari-
ties in the contour shape line. This is achieved with the 
OpenCV (computer-vision library for Python) [60] func-
tion approxPolyDP using 10% of the contour length as 
the epsilon parameter. Next, the convexity defects of the 
convex hull of the approximated contour are computed 
using the OpenCV function convexityDefects. Finally, if 
the number of detected defects is equal to two, then the 
object is separate along the line connecting the two con-
vexity defects.

Automatic mother‑bud pairing
When the GUI is in “cell cycle analysis” mode, every new 
object appearing in the next frame is considered as a bud 
that needs to be assigned to a cell in G1 (if not already 
assigned in a previous visit of the frame). Firstly, the algo-
rithm determines if there are enough cells in G1 for the 
new cells, and if not, a warning is triggered and the user 
can decide to automatically annotate that the history of 
these cells is not known (e.g. a cell appearing from out-
side of the field of view), or can annotate previous divi-
sions of cells to increase the number of cells in G1 (if, for 
example, a division event was missed). After this check-
point, the contour of each cell in frame n is computed. 
Then, given the lists a, b of the new cells and old cells in 
G1, respectively, a cost matrix C is calculated. Each ci, j 
element is equal to the minimum Euclidean distance 
between the pixels of the ai cell’s contour and the pixels 
of the bj cell’s contour (in clustering referred to as “sin-
gle link”). The optimal assignment is calculated using the 
minimum weight matching in bipartite graphs routine 
called the linear sum assignment problem (LSAP). To 
solve LSAP, we use a modified Jonker-Volgenant algo-
rithm [42] implemented in the linear_sum_assignment 
function of the Python package SciPy [61]. This algo-
rithm is one of the most popular variants of the “Hun-
garian algorithm”. One of the main strengths is that it is 
faster than the original implementation (O(n3) vs O(n4), 
with n being the number of objects to match). Currently, 
we solve the LSAP with information from a single frame. 
Including information from future and past frames might 
further increase the assignment accuracy.
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Automatic propagation of corrections to future 
and past frames
One of the most tedious and time-consuming processes 
is the correction of the same error when it appears in 
many consecutive frames. To speed-up this process we 
developed a series of routines to automatically propagate 
the correction to all the relevant future and past frames, 
when possible. Automatic propagation is triggered in the 
following situations: (a) mother-bud pairing correction, 
(b) cell division annotation and its correction, (c) track-
ing error correction, (d) object deletion, (e) editing a cell’s 
ID, (f ) excluding a cell from analysis, and (g) annotat-
ing a dead cell. For situations c–g, the user can choose 
between applying the same correction/annotation to all 
future frames or simply repeat tracking for all the future 
frames. For situations a and b, the propagation is com-
pletely automatic. The correction of mother-bud pair-
ing involves three cells: the bud, the wrong mother cell, 
and the correct mother cell. First, the correct mother cell 
must be a cell in G1, since the assumption is that each 
mother cell can have only one bud assigned to it. Further-
more, the correct mother must not have had any other 
bud assigned to it for all the frames in which the bud to 
be corrected is present. If the correct mother cell satisfies 
the eligibility criteria, once the user corrects the pairing, 
all the frames in which the annotation is wrong, are auto-
matically corrected: the wrong mother cell goes back to 
the state it had before the bud was assigned to it, while 
the correct mother is assigned to the bud. Since correc-
tion is automatic to both past and future frames, it can be 
performed at any time point.

The correction of cell division annotation can be done 
on both a cell in G1 or a cell in S/G2/M. If the user clicks 
on a cell in S/G2/M (annotating division) at frame n, the 
automatic routine will annotate the division event at 
frame n for both mother and bud. Then, it will check if 
there are future frames that were previously annotated as 
cell in S/G2/M and will correct them accordingly. Other-
wise, if the user clicks on a cell in G1 (undoing division 
annotation), the routine sets both the cell and the bud 
it had in the previous cycle back to S/G2/M for all the 
future (until the cell is in S/G2/M again or we reach the 
last visited frame) and past frames (until the mother cell 

is in S/G2/M again). Automatic propagation allows for 
annotating or undoing the annotation at any time point, 
which is particularly useful when toggling back and forth 
between frames is required for accurate cell division 
annotation.

Benchmarking
Since the tracking algorithm is embedded into the main 
GUI, the key aspect is the execution speed (e.g. to spot 
subtle movements of a bud that indicate a cell division 
event). Therefore, we benchmarked it with a segmen-
tation mask containing 99 cells to be tracked, and we 
calculated the average execution speed after 1000 runs. 
Our algorithm, on average, took about 45 ms, while the 
tracking algorithm embedded in the YeaZ model took 
about 260 ms. This is a considerable improvement that 
enhances the overall speed when navigating through 
frames in the main GUI. Finally, to allow the user to use 
the YeaZ tracking algorithm in real-time, we set out to 
improve YeaZ tracking speed. By optimizing the algo-
rithm, we improved the computational speed by about 
4-fold, from 260 ms down to about 60 ms.

Next, to benchmark the performance of Cell-ACDC we 
computed the widely used metric of the Multiple Object 
Tracking (MOT) challenge [62], the MOT accuracy 
(MOTA), defined as follows:

where t is the frame index,  FNt and  FPt the number of 
false negatives and false positives at frame t, IDSW is the 
number of identity switches at frame t, and  GTt is the 
number of ground-truth objects  at frame t.

To cover multiple imaging conditions, we used images 
acquired with 4 different microscopes with more than 
40,000 cells tracked. Details of the datasets are summa-
rized in Table 2.

To compare to the Yeast Image Toolkit benchmark, 
along with MOTA, we also computed the F-score as 
reported on the benchmark website. We computed the 
number of correct links, c, the number of links in the pre-
diction, R, and the number of links in the ground-truth, 

MOTA = 1− t (FNt + FPt + IDSWt)

t GTt

Table 2 a Dataset available at the URL http:// yeast‑ image‑ toolk it. org/ pmwiki. php

Test set N. of unique 
cells

Total n. of cells N. of videos Frame count Microscopes Source

ACDC_TS 494 27,922 22 1710 Nikon Eclipse Ti‑E, 
Zeiss LSM800

This manuscript

YIT_TS 960 15,662 10 250 Olympus PlanApo 
1.4NA, Zeiss Observer 
Z1

Yeast Image  Toolkita

http://yeast-image-toolkit.org/pmwiki.php
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G. A link is defined as two consecutive points in a cell 
trajectory. Finally, the F-score is computed as follows:

With these datasets, we benchmarked both YeaZ tracker 
and Cell-ACDC tracker under 3 different scenarios:

1. Uncorrected segmentation masks generated with the 
YeaZ model

2. Post-processed segmentation masks (from 1.) with 
automatic removal of false positives (more details 
below), where the optimal post-processing param-
eters were determined with a grid search

3. Segmentation masks corrected with Cell-ACDC (i.e., 
zero false positives and false negatives)

The post-processing consists of a computationally 
efficient method to remove false positives. Segmented 
objects are filtered with three parameters: minimum size, 
minimum solidity, and maximum elongation. Solidity is 
defined as the ratio of pixels in the object to pixels of the 
convex hull, while elongation is the ratio of the major to 
minor axis.

The results of the benchmark on the ACDC_TS dataset 
are summarized in Table 3.

The results indicate that while the Cell-ACDC tracker was 
developed by favouring computational speed to make it more 
suitable for real-time tracking, it scores very similar to the 
YeaZ tracker, indicating a minimal speed/accuracy trade-off.

Additionally, the post-processing introduced in Cell-
ACDC dramatically improves accuracy of the track-
ers. Note that the best post-processing parameters were 
determined for each video, to show the full potential of 
the methods.

F =
2 (precision • recall)

(precision + recall)

precision = c/R

recall =
c

G

Notably, identity switches in the MOTA score are 
counted only when the switch happens for the first time, 
which means that it does not include information about 
the duration of the switch. For example, in scenario 2, 
using the YeaZ tracker we counted 57 identity switches, 
but the total duration of the switches is 2353 frames. This 

Table 3 Multiple Object Tracking (MOT) metrics in 3 different scenarios (see main text). See main text for the MOTA formula

IDSW identity switches, FP false positives, FN false negatives, MOTA MOT accuracy

Scenario Tracker IDSW FP FN MOTA mean MOTA std.

1 Cell‑ACDC 52 11,135 1482 0.498 0.910

YeaZ 50 11,135 1482 0.498 0.909

2 Cell‑ACDC 80 2838 1620 0.864 0.124

YeaZ 57 2838 1620 0.865 0.001

3 Cell‑ACDC 129 0 0 0.995 0.002

YeaZ 11 0 0 0.999 0.001

Table 4 F1‑score for the tracking benchmark in comparison to 
the Yeast Image Toolkit benchmark

NE not evaluated

Test set Segmentation 
model

Tracker F1‑score

TS1 YeaZ Cell‑ACDC 0.9983

YeaZ 1.0000

CellStar (best YIT) 0.9921

TS2 YeaZ Cell‑ACDC 1.0000

YeaZ 1.0000

Wood (best YIT) 1.0000

TS3 Cellpose Cell‑ACDC 0.9635

YeaZ 0.9986

CellStar (best YIT) 0.9852

TS4 Cellpose Cell‑ACDC 0.9448

YeaZ 0.9979

CellStar (best YIT) 0.9797

TS5 NE NE NE

TS6 Cellpose Cell‑ACDC 0.9975

YeaZ 1.0000

Wood (best YIT) 0.9698

TS7 Cellpose Cell‑ACDC 0.9013

YeaZ 0.9105

CellStar (best YIT) 0.9610

TS8 Cellpose Cell‑ACDC 0.9928

YeaZ 0.9946

Wood (best YIT) 0.9862

TS9 YeaZ Cell‑ACDC 0.9968

YeaZ 0.9961

Wood (best YIT) 1.0000

TS10 YeaZ Cell‑ACDC 1.0000

YeaZ 1.0000

Wood (best YIT) 1.0000
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means that with a fully manual process, the user must 
manually edit 2353 cell IDs. Thanks to Cell-ACDC real-
time tracking, only 57 edits are required, reducing num-
ber of manual corrections by more than 30-fold.

Comparison to Yeast Image Toolkit dataset
To compare to the YIT benchmark, we created ground-
truth segmentation masks of the YIT dataset using 
Cell-ACDC (ground-truth segmentation masks are not 
available on the YIT website). First, we segmented using 
either YeaZ or Cellpose (see Table 4), and then we visually 
inspected and corrected every video. We then performed 
tracking on these segmentation masks (same as scenario 
3 in the MOTA benchmark), computed the F1 score and 
compared the results to the best algorithm tested on the 
YIT benchmark. The results are summarized in Table 4.

Abbreviations
ACDC: Analysis of the Cell Division Cycle; LSAP: Linear sum assignment prob‑
lem; FCNN: Fully convolutional neural networks; HSCs: Hematopoietic stem 
cells; MAPK: Mitogen‑activated protein kinase.
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Additional file 1: Movie. Video of a fully annotated position with cells 
disappearing due to suboptimal channel width.

Additional file 2: Movie. Visual help (rotating cell) in the main GUI. Cell 18 
rotates at frame n + 1 resulting in a tracking error. Thanks to the annota‑
tions on the images, the user detects that cell 31 disappears, while a new 
cell 37 appears. To fix this, the user can manually assign ID 31 to cell 37. If 
the user does not see this and tries to continue to the next frame anyway, 
a warning message (pop‑up window) will warn the user that cell 31 was 
lost and he/she can decide to continue or not.

Additional file 3: Movie. Automatic separation of merged mother‑bud. 
After activating the “Automatic separation mode” with a button on the 
toolbar (or key shortcut), the user right‑clicks on the merged objects to 
automatically separate them.

Additional file 4: Figure S1. Comparison between Cell‑ACDC automatic 
separation algorithm and classic distance transform plus watershed.

Additional file 5. Cell‑ACDC User manual. User manual with detailed 
explanation on how to use every module of Cell‑ACDC.

Additional file 6: Movie S4. Cell cycle annotations example. When anno‑
tating cell cycle information, the user must keep an eye on two events: 
correctness of the automatic mother‑pairing and division event. In this 
video, the user navigates through the frames and at a specific time‑point 
the bud with ID=4 is automatically assigned to mother with ID=1. Next, 
when a sudden movement of bud with ID=4 is visible, the user clicks on 
the mother or bud to automatically annotate the division event.
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