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a b s t r a c t 

Background and Objectives: 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined 

with principal component analysis (PCA) has been applied to identify disease-related brain patterns in 

neurodegenerative disorders such as Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB) and 

Alzheimer’s disease (AD). These patterns are used to quantify functional brain changes at the single sub- 

ject level. This is especially relevant in determining disease progression in idiopathic REM sleep behavior 

disorder (iRBD), a prodromal stage of PD and DLB. However, the PCA method is limited in discriminating 

between neurodegenerative conditions. More advanced machine learning algorithms may provide a solu- 

tion. In this study, we apply Generalized Matrix Learning Vector Quantization (GMLVQ) to FDG-PET scans 

of healthy controls, and patients with AD, PD and DLB. Scans of iRBD patients, scanned twice with an 

approximate 4 year interval, were projected into GMLVQ space to visualize their trajectory. 

Methods: We applied a combination of SSM/PCA and GMLVQ as a classifier on FDG-PET data of healthy 

controls, AD, DLB, and PD patients. We determined the diagnostic performance by performing a ten times 

repeated ten fold cross validation. We analyzed the validity of the classification system by inspecting the 

GMLVQ space. First by the projection of the patients into this space. Second by representing the axis, that 

span this decision space, into a voxel map. Furthermore, we projected a cohort of RBD patients, whom 

have been scanned twice (approximately 4 years apart), into the same decision space and visualized their 

trajectories. 

Results: The GMLVQ prototypes, relevance diagonal, and decision space voxel maps showed metabolic 

patterns that agree with previously identified disease-related brain patterns. The GMLVQ decision space 

showed a plausible quantification of FDG-PET data. Distance traveled by iRBD subjects through GMLVQ 

space per year (i.e. velocity) was correlated with the change in motor symptoms per year (Spearman’s 

rho = 0.62, P = 0 . 004 ). 

Conclusion: In this proof-of-concept study, we show that GMLVQ provides a classification of patients 

with neurodegenerative disorders, and may be useful in future studies investigating speed of progression 

in prodromal disease stages. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Due to the aging of the population, neurodegenerative diseases 

uch as Alzheimer’s disease (AD) and Parkinson’s disease (PD) will 

ecome the second leading cause of death worldwide after can- 

er by 2040 [1] . Accurate and early diagnosis of these conditions 

s needed to develop prevention strategies and precision therapeu- 

ic measures. However, this poses a significant challenge in clinical 

ractice because neurodegenerative diseases are diagnosed based 

n clinical features. In the case of PD, motor symptoms in the early 

tages are subtle, and the distinction between PD and other dis- 

rders of the parkinsonian clinical spectrum can be difficult [2,3] . 

arly AD diagnosis and differentiation with other neurodegenera- 

ive dementias is equally challenging [4] . Furthermore, overlap ex- 

sts between parkinsonian and dementing conditions. For instance, 

any (but not all) patients with PD will develop dementia in the 

ourse of their disease. In addition, a separate entity referred to as 

ementia with Lewy Bodies (DLB) shares clinical and neuropatho- 

ogical characteristics with PD and AD. Compared with PD patients, 

LB patients have an earlier onset of severe cognitive impairments, 

ften including visual hallucinations. Compared with AD patients, 

emory functions are relatively preserved in DLB. Sometimes it is 

ot clear, clinically, whether a patient has PD-dementia, DLB, or a 

ombination of PD and AD. It is recognized that PD, DLB, and AD 

re part of a neuropathological (and clinical) spectrum, with con- 

iderable heterogeneity at the individual level [5] . Still, it is essen- 

ial to provide a correct diagnosis because these conditions require 

pecific clinical management [6] . 

New therapeutic interventions for neurodegenerative disorders 

ay have a better chance of success if initiated in the earliest dis- 

ase stages. Patients with ‘idiopathic Rapid Eye Movement sleep 

ehavior disorder (iRBD) [7] may be ideal candidates for clini- 

al trials. This sleep condition can be diagnosed accurately with 

olysomnography. Longitudinal studies have shown that > 80% of 

atients initially diagnosed with iRBD developed PD, DLB, or inci- 

entally multiple system atrophy (MSA) in the following decades 

8,9] . Patients with iRBD, by definition, have not yet developed the 

otor or cognitive symptoms and represent the earliest stage of PD 

r DLB that can be diagnosed. However, the speed of progression 

rom preclinical or prodromal to full clinical stages varies among 

atients and cannot be reliably predicted on the individual level. 

linical trials will require patients with a predictable conversion 

ithin a limited time window. 

Following from the above, it is clear that biomarkers are needed 

o confirm the presence of neurodegenerative disease in the early 

tages, provide information regarding lead time and speed of pro- 

ression, and finally that can differentiate between neurodegen- 

rative conditions. When combined with advanced computational 

lgorithms, imaging the brain with 

18 F-2-fluoro-2-deoxy-D-glucose 

ositron Emission Tomography (FDG-PET) may provide a solution. 

he radiotracer FDG provides an index for the cerebral metabolic 

ate of glucose, which is strongly associated with neuronal activ- 

ty [10] . Due to local pathology, regions with decreased FDG up- 

ake can reflect impaired neuronal function. However, regional hy- 

ometabolism in a brain region unaffected by the pathology can 

lso be secondary to dysfunction of another region if these two 

egions are organized in the same functional brain network. More 

evere changes in regional cerebral glucose metabolism can often 

e appreciated visually, which makes FDG-PET a useful ancillary 

nvestigation in the routine clinical workup of neurodegenerative 

isorders [11,12] . 

A (semi-)quantitative analysis of FDG-PET images involves cal- 

ulating average FDG uptake in pre-defined regions or a voxel- 

y-voxel comparison (a t -test) between patients and controls. 

owever, such methods disregard any interactions that may ex- 

st between brain regions. In contrast, the covariance relation- 
2

hips between voxels can provide helpful information to iden- 

ify the affected brain networks and quantify individual sub- 

ects. Spatial covariance analysis of FDG-PET images can be per- 

ormed using Scaled Subprofile Model and Principal Component 

nalysis (SSM/PCA). SSM/PCA reduces the large number of voxels 

or every subject to a limited number of orthogonal dimensions 

eigenvectors) that explain the major sources of variance in the 

ata. A disease-related pattern (or ‘network’) is identified among 

he eigenvectors that discriminate between controls and patients 

13,14] . Apart from visualizing the involved brain regions, disease- 

elated patterns can also be used to quantify FDG-PET scans of new 

ubjects, which has allowed an objective assessment of disease ac- 

ivity in individual subjects. 

The PD-related pattern (PDRP) has been identified in several 

ndependent cohorts of approximately 20 controls and 20 PD pa- 

ients with SSM/PCA. Its pattern topography is consistent across 

canning platforms, and expression of the PDRP (i.e., PDRP sub- 

ect scores) is consistently higher in PD patients than in controls 

nd increases with disease progression [15] . The PDRP is also sig- 

ificantly expressed in individuals with iRBD, especially in those 

ho phenoconvert to manifest PD within a few years of scan- 

ing [16–21] . Similarly, the AD-related pattern (ADRP; [22–25] ) and 

LB-related pattern (DLBRP; [26] ) have been determined. However, 

imply calculating subject scores for these spatial covariance pat- 

erns does not help discriminate between PD, DLB, and AD, due to 

onsiderable regional overlap between the PDRP, DLBRP, and ADRP. 

ndeed, DLB patients were shown to express the PDRP [16] and DLB 

atients also expressed the ADRP [26] . 

Consequently, there is a need for an approach to quantify and 

lassify FDG-PET scans in a system that can deal with more than 

ne disease. Machine learning approaches may provide a solution, 

nd their application to FDG-PET data in neurodegenerative disor- 

ers is becoming increasingly popular (for review in PD see [27] ; 

or review in AD, see [28] ). However, these typically involve black- 

ox methods, which are not transparent in what they learn. In 

linical practice, neurologists will require an intuitive diagnostic 

odel that points to similar cases and explains its decision process 

hen classifying a single subject [29,30] . We previously considered 

ransparent or white-box algorithms such as decision trees [31] in 

he classification of FDG-PET data. However, these are not always 

ntuitive when working with such complex and high dimensional 

eatures [31,32] . 

Learning Vector Quantization (LVQ) is a supervised learning al- 

orithm that can naturally deal with more than two classes and 

roduces interpretable systems, making it an ideal candidate [33] . 

n LVQ, prototypes are defined that represent the categories in the 

ata on which the system is trained. Predictions are made based 

n the receptive fields of these prototypes, i.e., a new sample is 

ssigned the same category or class as the closest prototype. Ad- 

anced LVQ variants, such as Generalized Matrix LVQ (GMLVQ) 

34] , improve the performance and robustness of the system by 

dditionally constructing a relevance matrix that weighs the fea- 

ures and their combinations [34,35] . An essential advantage of 

VQ (and its variants) over other machine learning algorithms is 

ts interpretability. Specifically, the relevance matrix of GMLVQ can 

e decomposed into a coordinate system (eigenvectors) that spans 

ts decision space. This ‘discriminative visualization’ can be used to 

etect outliers and groups of similar patients [36–38] . 

In a previous study, we combined FDG-PET, SSM/PCA, and GM- 

VQ to classify healthy controls and PD patients from different cen- 

ers. We showed that GMVLQ could separate data derived from dif- 

erent centers and discriminate between healthy controls and PD 

38] . The prototypes can be represented in voxel space, allowing 

nspection of the learned patterns. In addition, the PD-prototype 

as almost identical to the PDRP previously derived for each cen- 

er separately [38,39] . 
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Table 1 

Mean and standard deviation are indicated unless otherwise specified. The minimum and maximum is indicated between brackets. H&Y = Hoehn and Yahr stage, indicating 

the severity of parkinsonian symptoms. MMSE = mini-mental-state examination. n/a = not applicable or not available. ∗ Several screening instruments were used in the PD 

patients in the evaluation set: scales for outcomes in Parkinson’s disease-cognition (SCOPA-COG; cut-off for dementia 24/25), The Mini-Mental State Examination (MMSE; 

cut-off 23) and the Montreal Cognitive Assessment (MoCA; cut-off 17). Based on the scores that were obtained around the time of FDG-PET imaging, we indicate the 

number of patients who may have suffered from PD-dementia at the time of imaging. Although only three had formally dementia at the time of imaging, several had 

cognitive complaints or mild cognitive impairments, with varying severity. ∗∗ For iRBD, the MoCA was obtained. 

Age at scanning Gender, 

(n male) 

Disease duration, 

(years) 

H&Y 

(median) 

MMSE Clinical follow-up time, 

(years) 

HC ( n = 20 ) 65 . 3 ± 7 . 1 

[51 − 78] 

15 n/a n/a 29 ± 0 . 8 

[28 − 30] 

n/a 

PD ( n = 20 ) 64 . 2 ± 8 . 5 

[49 − 67] 

15 4 . 7 ± 3 . 5 

[2 − 11] 

2[1 − 2 . 5] 28 . 3 ± 1 . 2 

[26 − 30] 

(n = 13) 

10 ± 4 . 1 

[1 . 3 − 14 . 2] 

AD ( n = 20 ) 68 . 5 ± 8 . 6 

[55 − 84] 

12 2 . 9 ± 2 . 4 

[0 . 25 − 10] 

n/a 23 . 8 ± 3 . 8 

[15 − 29] 

(n = 19) 

3 . 6 ± 3 . 3 

[0 . 26 − 9 . 3] 

(a) Reference cohort. 

HC ( n = 49 ) 58 . 4 ± 11 . 6 

[20 − 78] 

17 n/a n/a n/a n/a 

PD ( n = 21 ) 66 . 1 ± 11 . 5 

[40 − 78] 

14 5 . 5 ± 5 . 3 

[1 − 22] 

1 . 95 ± 0 . 7 

[1 − 4] 

3 ∗ 6 . 8 ± 5 . 8 

[0 . 6 − 24 . 6] 

AD ( n = 36 ) 65 . 4 ± 6 . 4 

[53 − 78] 

23 3 . 4 ± 3 . 8 

[1 − 15] 

n/a 25 . 8 ± 3 . 0 

[17 − 30] 

2 . 3 ± 2 . 2 

[0 . 2 − 9 . 2] 

DLB ( n = 23 ) 72 . 1 ± 7 . 6 

[57 − 83] 

18 2 . 3 ± 1 . 1 

[1 − 4] 

1 . 7 ± 0 . 9 

[0 − 3] 

n/a 2 . 2 ± 2 . 0 

[0 . 3 − 9 . 5] 

(b) Evaluation cohort. 

iRBD ( n = 20 ) 66 . 4 ± 5 . 2 

[53 − 75] 

18 9 . 7 ± 5 . 6 

[5 − 28] 

0 27 . 9 ± 1 . 4 

[25 − 30] ∗∗
3 . 7 ± 0 . 6 

[2 . 5 − 4 . 5] 

(c) Progression cohort. 
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This current study aimed to use the combination of FDG-PET, 

SM/PCA, and GMLVQ to discriminate between healthy controls, 

D, DLB, and AD. In addition, we determined the positions and 

rajectories of 20 iRBD patients who were scanned twice (approxi- 

ately 3.7 years apart) [17] , in our GMLVQ space. Furthermore, to 

rovide insight into the GMLVQ decision process, we transformed 

he prototypes and relevance matrix back to the voxel space, sim- 

larly to our previous work [38] . In addition, we also look at the

oxel representations of the axes of the decision space. 

. Materials and methods 

.1. Patient inclusion and clinical characteristics 

We included resting state FDG-PET scans of patients with a clin- 

cal diagnosis of PD ( n = 41 ), AD ( n = 56 ), or DLB ( n = 23 ). Some of

hese data were published previously [16,24,40,41] . However, some 

ew cases were also added after evaluating a historical database 

f FDG-PET scans performed in the UMCG in the context of clini- 

al work-up of patients with a neurodegenerative disease between 

010–2018. In addition, we included FDG-PET scans of a total of 69 

ealthy controls (HC) that could be combined from previous stud- 

es [16,24,40,41] . 

According to diagnostic consensus criteria, the clinical diagno- 

is of PD, AD, or DLB was made by expert neurologists at the 

ovement disorders and memory outpatient clinics of the Univer- 

ity Medical Center Groningen (UMCG) [42–44] . Clinical informa- 

ion of each cohort is provided in Table 1 . In some cases, addi-

ional biomarkers were used to support the clinical diagnosis (see 

able A.5 in the supplementary material). This included presynaptic 

opaminergic brain imaging with 

123 I-FP-CIT SPECT (DAT-SPECT) 

r 18 F-dihydroxyphenylalanine (F-DOPA) PET in patients with sus- 

ected PD or DLB. If AD was considered, in some cases, imaging 

f cerebral amyloid- β deposits with 

11 C-labelled Pittsburgh Com- 

ound B (PiB) PET was performed, or cerebral spinal fluid analysis. 
3 
his included presynaptic dopaminergic brain imaging with 

123 I- 

P-CIT SPECT (DAT-SPECT) or 18 F-dihydroxyphenylalanine (F-DOPA) 

ET in patients with suspected PD or DLB. If AD was considered, 

n some cases, imaging of cerebral amyloid- β deposits with 

11 C- 

abelled Pittsburgh Compound B (PiB) PET was performed, or cere- 

ral spinal fluid analysis. Structural imaging of the brain was per- 

ormed in all patients to exclude other causes or major vascular 

isease, usually by magnetic resonance imaging (MRI) of the brain. 

n some cases, only Computed Tomography (CT) scans of the brain 

ere available. 

Most PD and DLB patients were retrospectively included from 

ur historical database. A FDG-PET scan was performed in those 

atients as part of the clinical workup because there was a diag- 

ostic uncertainty, and other parkinsonian syndromes were consid- 

red. Sometimes this was done in the context of a second opinion 

n our expertise center. Based on sufficiently long follow-up, a def- 

nite clinical diagnosis of PD or DLB could be made in each case. 

n the historical cohort, the clinical data were extracted from the 

atients’ charts. Several screening instruments for cognitive symp- 

oms were used for PD and DLB: scales for outcomes in Parkin- 

on’s disease-cognition (SCOPA-COG; cut-off for dementia 23/43), 

he Mini-Mental State Examination (MMSE; cut-off 23/30) and the 

ontreal Cognitive Assessment (MoCA; cut-off 17/30). Based on 

he scores obtained around the time of FDG-PET imaging, we indi- 

ate the number of PD patients who may have suffered from PD- 

ementia at the time of imaging ( n = 3 ). Although only three had

ementia formally at the time of imaging, most had a history of 

ognitive complaints with varying severity. Due to the retrospec- 

ive nature of these data, the degree of PD-MCI could not be quan- 

ified. 

Of the AD patients, 16 had mild cognitive impairment (MCI) at 

he time of FDG-PET imaging based on a more extensive battery 

f neuropsychological tests. This indicates that cognitive symp- 

oms were not severe enough to diagnose Alzheimer’s demen- 

ia. However, a diagnosis of MCI as an early disease stage of AD 
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ould be made due to a clear clinical progression over time and/or 

ther supporting biomarkers (positive PiB PET or cerebrospinal 

uid markers compatible with AD). 

Although AD is usually a primary amnestic syndrome, several 

ubtypes exist that can present differently and make a diagnosis 

hallenging. In our study, six patients had the posterior cortical at- 

ophy (PCA) subtype of AD. AD-PCA is characterized by prominent 

isuospatial dysfunction, whereas amnestic symptoms may be less 

ronounced. Two patients had the primary progressive aphasia (lo- 

openic) variant (AD-PPA), characterized by specific language prob- 

ems. 

Patients with a diagnosis of idiopathic RBD ( n = 20 ), confirmed 

ith a video-polysomnography, were included from a previous 

tudy [17] . These subjects underwent two FDG-PET brain scans ap- 

roximately 3.7 years apart, with baseline and repeated motor and 

ognitive testing. Four subjects converted to PD during follow-up. 

All subjects gave their written informed consent to participate 

n the study. The study was approved by the local ethics committee 

nd was conducted in agreement with the Declaration of Helsinki 

nd subsequent revisions. 

.2. FDG-PET imaging and preprocessing 

FDG-PET imaging was performed on a Siemens Biograph mCT64 

r mCT40 PET/CT camera (Siemens, Munich, Germany) at the 

MCG. Images were reconstructed with OSEM3D (3 iterations, 21 

ubsets), time-of-flight, point-spread-function, Gaussian 8 mm full- 

idth at-half-maximum spatial filter, and matrix size 256 (corre- 

ponding to a voxel size of 2 mm × 3.18 mm × 3.18 mm). Cen- 

ral nervous system depressants such as benzodiazepines were dis- 

ontinued in all subjects for at least 24 h before imaging, and 

opaminergic medication was not routinely withheld. 

All FDG-PET images were spatially normalized to an FDG-PET 

emplate in Montreal Neurological Institute (MNI) brain space 

45] using SPM5 software (Wellcome Centre for Human Neu- 

oimaging, London, UK) implemented in MATLAB (version R2019a; 

athWorks, Natick, MA, USA). 

.3. Definition of cohorts 

The data were divided into three cohorts. The reference co- 

ort (20 HC, 20 PD and 20 AD; Table 1 a) was used to define the

SM/PCA feature space. The evaluation cohort (49 HC, 36 21 PD, 36 

D, and 23 DLB; Table 1 b) can be considered the ‘training’ data. 

hese data were transformed using the principal components of 

he reference group and given as input to the LVQ system to train 

n. We aimed to include the most typical PD and AD patients for 

he reference cohort. Thus, PDD, AD-MCI, AD-PCI, or AD-PPA sub- 

ypes were not included in the reference group but were included 

n the evaluation group. The third cohort consists only of 20 iRBD 

atients ( Table 1 c). Two FDG-PET scans are available for these pa- 

ients: one at baseline and one approximately 3.7 years later. This 

ata was not used for training but was later projected into the dis- 

riminative space created by GMLVQ ( Section 2.5.1 ). 

.4. Definition of SSM/PCA feature space 

First, a 35% threshold of the whole-brain intensity maximum 

as applied to each FDG-PET image in the reference cohort 

 Table 1 a) to remove out-of-brain voxels. These were multiplica- 

ively combined to create one common mask that included only 

 m ) non-zero values for all subjects. This mask was applied to 

ll images. Masked images were log-transformed, and the subject 

ean was removed. Additionally, each voxel is centered around 

he mean of the healthy controls included in the reference group. 

hese actions result in a ( m × 1 ) subject residual profile denoted 
4

y r , in which a positive value indicates a higher relative FDG up- 

ake than the average healthy control, and a negative value a lower 

DG uptake. 

Principal component analysis (PCA) was applied to the resid- 

al profiles of the reference group ( n = 60 ) in voxel space, resulting

n a set of k = n − 1 principal components denoted by G ( m × k ),

ach explaining a percentage of the variance across all reference 

ubjects. The mask from the reference cohort was also applied to 

he normalized FDG-PET scans in the evaluation and progression co- 

orts. All images were log-transformed, and the subject and group 

ean (i.e., the mean from the reference healthy controls) were re- 

oved [38] . Subsequently, subject scores ( s ) were calculated for 

ach residual profile on each of the 59 principal components de- 

ermined on the reference cohort using 

 = G 

� r . (1) 

he subject scores of the training data were used in the GMLVQ 

odel. We refer to the scores of a single subject as a feature vector 

here the expression of a single PC may be referred to as a feature. 

.5. Generalized matrix learning vector quantization 

Generalized matrix learning vector quantization (GMLVQ), by 

chneider et al. [34] , employs an adaptive distance variant denoted 

y 

 

�( w j , s i ) = ( s i − w j ) 
� �( s i − w j ) , (2) 

ith w j a prototype of the size ( k × 1 ) and � = �� � a symmet-

ic positive semidefinite k × k matrix. During training the values of 

he matrix ( �) are updated in such a way that the distance from 

he closest correct prototype is decreased and the distance from 

he closest wrong prototype becomes larger [34] . Furthermore, by 

eighting every pair of features, GMLVQ is able to account for cor- 

elations of dimensions by implicit scaling and rotation of the data, 

esulting in robust performance [34,35] . 

GMLVQ was trained on the subject scores of the evaluation co- 

ort to distinguish between the four classes (HC, PD, AD, and DLB) 

sing the open-source Python package sklvq [46] . Performance was 

stimated using ten times repeated randomized ten-fold cross- 

alidation. Each system was initialized with a single prototype per 

lass and the initial relevance matrix, the identity matrix, not to 

ias any features. Optimal values for parameters such as the acti- 

ation function, solvers, and related parameters have been found 

sing a grid search. 

Initially, the classes containing less than half the majority class 

amples (the class with most samples) were oversampled. Over- 

ampling was done randomly such that the ratio with the majority 

lass is 0.5. In a second step, each other class, i.e., each class that 

tarted with more than half the samples compared to the majority 

lass, was randomly undersampled to contain the same number of 

amples as the oversampled classes. Each class that started with 

xactly the right number of subjects was left unchanged. By bal- 

ncing the data, the system will learn not to bias any classes based 

n their availability. 

In addition, each feature was transformed by subtracting the 

ean and dividing by the standard deviation of the data. This z- 

ransformation was based on the training data within each cross- 

alidation fold and applied to the testing data. Although a z- 

ransformation is not strictly necessary for GMLVQ to find a system 

ith good performance, the interpretation of the relevance matrix 

mproves as it does not need to compensate for any differences 

n the magnitude of the feature values. For the projections shown 

n the results section, the z-transformation has been reversed, such 

hat the origin in the plots corresponds to the average healthy con- 

rol expression from the reference group. 
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Table 2 

Average training and testing performance of GMLVQ on the differential di- 

agnosis problem (AD, DLB, HC, and PD). Averages and standard deviations 

are extracted from the the cross-validation procedure. 

Training Testing 

AUC, mean (std) 0.996 (0.002) 0.862 (0.091) 

Balanced accuracy (%), mean (std) 93.94 (1.66) 66.44 (14.55) 
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1 https://sklvq.readthedocs.io/en/0.1.2/api.html . 
The final GMLVQ system is chosen based on the average bal- 

nced accuracy determined over the test sets created by the cross- 

alidation procedure. Balanced accuracy is defined as the average 

f the recall obtained per class and reduces to the conventional 

ccuracy for balanced datasets [47,48] . Additionally, we report the 

rea under the receiver operating characteristic curve (AUC). We 

se the simple generalization for the multi-class AUC, i.e., the 

acro-averaged one vs. one class AUC [49] . This means that for 

ach binary problem, the AUCs are determined, which are then av- 

raged with equal weights. 

.5.1. Discriminative visualization 

After the system is trained the relevance matrix of GMLVQ can 

e used to construct a low dimensional discriminative visualization 

f the data [36–38] . We can use this type of visualization, e.g., to

dentify outliers and find similar data samples [36–38] . Note that 

similar’ is defined within the context of the data and the classifi- 

ation task. In the case of SSM/PCA it refers to patients that show 

imilar activity patterns. 

The adaptive matrix �, can be interpreted as a linear transfor- 

ation of the data and the prototypes. However, given a �, the 

atrix � is not uniquely defined. Geometrically, the distance mea- 

ure ( Eq. (2) ) is invariant under reflections or rotations so many 

olutions may exist [36] . The specific outcome of the training will 

epend on the initialization and the randomized order by which 

MLVQ learns from the examples [37] . However, we can define 

 canonical, unique solution 

ˆ � with the eigenvalue decomposi- 

ion of �. Thereby, we determine the orthonormal eigenvectors 

 1 , v 2 , . . . , v N of �, corresponding to the k ordered non-zero eigen- 

alues λ1 ≥ λ2 ≥ · · · ≥ λN and define ˆ � as: 

ˆ = [ 
√ 

λ1 v 1 , 
√ 

λ2 v 2 , . . . , 
√ 

λk v k ] . (3) 

t has been shown analytically [37] and observed empirically that 

MLVQ has a strong tendency to yield singular matrices � of very 

ow rank [34,36,37,50] , so the number of non-zero eigenvalues will 

e small. Furthermore, because � is symmetrical, the eigenvectors 

re orthogonal. The eigenvectors correspond to orthogonal combi- 

ations of features that each describe a part of the label-dependent 

ifferences in the data that are relevant for the classification. The 

orresponding eigenvalues indicate the weight of each of these 

ombinations (eigenvectors). 

Given the results of the ten times repeated ten-fold cross- 

alidation procedure of the best model [51] , we can compute the 

rthogonal ˆ � parametrization of the average � and define a new 

oordinate system. We project the subject scores of both the evalu- 

tion and progression cohorts into the discriminative decision space 

onstructed by GMLVQ similarly to Eq. (1) 

 

 = 

ˆ �� s . (4) 

he projection of the evaluation cohort ( Table 1 b is used to ver-

fy the data and model, detect clusters of interesting patients, and 

utliers. We plot the data from the progression cohort ( Table 1 c) 

ontaining two scans of 20 iRBD patients at baseline and follow-up 

approximately 3.7 years later) to study their trajectory over time. 

.5.2. Voxel representation 

The merit of GMLVQ is that its prototypes and relevance ma- 

rix can be interpreted. The relevance matrix provides a weight to 

ach feature, indicating the importance for the classification. This 

elevance information is essential as all PCs (and their combina- 

ions) may play a role in the discrimination, regardless how much 

ariance in the data they explain ( Eq. (2) ). To aid in interpretation,

he prototypes and relevance matrix can be reconstructed in voxel- 

pace. To this end, the PC transformation ( Eq. (1) ) that defines the
5 
eature space, can be approximately reversed to obtain the proto- 

ypes 

˜ 
 j = G w j , (5) 

or each included diagnosis j ∈ { HC , AD , PD , DLB } in voxel space.

imilarly to Eq. (5) , the voxel representation of the diagonal of the 

elevance matrix and the axes of the discriminative plots, i.e., the 

iscriminative space Section 2.5.1 ) can be obtained [38] . 

To aid visualization, each voxel in these 3D images was z- 

ransformed and overlaid on a T1 MRI brain template. Images were 

rbitrarily thresholded at | z > 0 . 5 | to remove near-zero values and

ase interpretation. 

.6. Projection of iRBD patients in GMLVQ space 

The normalized FDG-PET scans (at baseline and follow-up) of 

he 20 iRBD patients were masked, log-transformed and double- 

emeaned similarly to the evaluation groups’ data. These subjects 

ere not used for training of the GMLVQ model, but were pro- 

ected into the average relevance space of the GMLVQ systems to 

isualize their position in this space at baseline and follow-up, and 

o study each individual’s trajectory; especially of those subjects 

hat converted to PD. 

The (Euclidean) distances were calculated within the decision 

pace of GMLVQ. Finally, we evaluated the correlation (Spearman’s 

ho) between distance that each iRBD individual traveled in the 

elevance space of the GMLVQ system and the following clinical 

etrics: duration of RBD symptoms, age, the change in MoCA score 

er year and the change on the Unified Parkinson’s Disease Rat- 

ng Scale Part III (UPDRS-III motor examination) per year. A (uncor- 

ected) p-value of < 0 . 05 was considered statistically significant. 

. Results 

The best performing model was constructed using waypoint av- 

raged gradient descent optimization [52] . The three most recent 

pdates were used to compute the tentative average update and 

he optimization was stopped after 50 epochs. The initial step sizes 

ere set to 0.1 and 0.01 for the prototypes and relevance ma- 

rix, respectively. The best performing activation function was soft+ 

 β = 1 ) [53] . Other parameters were left to their default values. 1 

The average performance extracted from the ten times repeated 

en fold cross-validation procedure is included in Table 2 . We ob- 

erve a difference between the training and testing AUC and bal- 

nced accuracy ( Table 2 ). 

The decision space of GMLVQ can be represented by three 

igenvectors (axes) with the first two the most relevant (fig. A.9). 

ig. A.9 also shows that the residual relevance is divided over the 

emaining features that accounts for slightly less than half the ac- 

umulated relevance. The average diagonal of the relevance ma- 

rix has been included in the supplementary section (fig. A.8) and 

hows that all PCs ( Section 2.4 ) are used for the classification. 

Fig. 1 shows the average confusion matrix based on the test 

atasets from the cross-validation procedures. Healthy controls 

https://sklvq.readthedocs.io/en/0.1.2/api.html
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Fig. 1. Average testing confusion matrix of the differential diagnostics problem be- 

tween (AD, DLB, HC and PD). Averages and standard deviations are extracted from 

the the cross-validation procedure. 
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Table 3 

Table includes the age difference between the baseline and follow-up scan of the 

RBD patients ( Table 1 c). Additionally, it includes the 2D distance, i.e., the direct 

observable (euclidean) distance in the progression plot ( Fig. 3 ) as well as the 3D 

distance, i.e., the distance traveled within the three most important axes for the 

classification. The true distance is the distance traveled within the full relevance 

space. The velocity is the true distance divided by the age difference between 

the scan moments. 

Age difference 2D distance 3D distance True distance Velocity 

3.99 3.17 3.22 3.63 0.91 

4.02 4.97 5.00 6.34 1.58 

3.91 0.47 0.47 1.04 0.26 

3.91 0.69 0.69 1.65 0.42 

3.77 0.45 0.51 0.87 0.23 

2.57 0.29 0.31 0.59 0.23 

2.57 1.28 1.31 2.16 0.84 

3.43 1.03 1.12 2.22 0.65 

4.04 0.39 0.39 1.12 0.28 

4.6 1.78 1.79 2.65 0.58 

3.68 0.11 0.11 0.56 0.15 

3.68 0.23 0.31 1.19 0.32 

4.29 2.02 2.21 2.74 0.64 

2.99 3.82 3.84 5.39 1.80 

2.99 0.72 0.74 1.55 0.52 

3 0.49 0.52 0.73 0.24 

(a) The patients who did not develop PD. 

Age difference 2D distance 3D distance True distance Velocity 

3.98 4.03 4.61 5.92 1.49 

4.03 2.84 2.85 3.52 0.87 

3.92 5.88 5.93 7.09 1.81 

4.05 9.38 9.63 11.48 2.83 

(b) The patients who developed PD. 
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ere correctly classified in 87.8% of cases, and were misclassified 

s AD or PD in roughly similar percentages. None of the healthy 

ontrols were classified as DLB. AD patients were correctly classi- 

ed in 64.4% of cases; the remainder of AD were misclassified as 

LB, HC and PD in approximately equal proportions. A little over 

alf of the DLB cases were classified as DLB; approximately 30% 

as classified as PD, and 15% as AD. Performance in PD was low; 

pproximately 50% was correctly classified, 30% as DLB, 10% as AD 

nd 5% as healthy controls. 

.1. Clinical interpretation of patient clusters in GMLVQ decision 

pace 

Each participant ( Table 1 b) is plotted (see Fig. 2 ) in the GMLVQ

pace defined by the first eigenvector ( y -axis) and second eigen- 

ector ( x -axis). To understand why cases were misclassified, we 

anually identified several clusters in this plot and evaluated the 

linical information of these cases. 

Cluster 1a consists of PD patients who are close to the healthy 

ontrol space. These patients were relatively young at the time of 

canning (average of 55 years). In fact, three patients had young- 

nset PD (they were 40, 44 and 51 at the time of scanning and 38,

2 and 47 when they first experienced symptoms). Of the six pa- 

ients in this cluster, three received a full neuropsychological eval- 

ation which showed only mild cognitive impairments. The other 

hree patients were only evaluated with short screening instru- 

ents for cognition and did not appear to have severe cognitive 

ymptoms. Based on their charts and histories taken by the treat- 

ng neurologist they did not develop severe cognitive complaints at 

ollow-up. Disease duration at the time of scanning was variable, 

ost patients in this cluster had symptoms for less than 4 years 

t the time of scanning; one patient had motor symptoms for 11 

ears and was scanned in the context of a work-up for deep-brain 

timulation. 

Cluster 1b comprises PD patients who are close to the DLB 

pace. Six of these patients had some cognitive symptoms which 

id not interfere with daily living at the time of the FDG PET scan, 

ut progressed to PD-dementia at follow-up. Two patients had PD- 
6

ementia at the time of imaging. The average age of patients in 

his cluster was 75 years. 

Cluster 2a includes three AD patients who ended up in DLB 

pace. One patient received the diagnosis AD-PCA. The second pa- 

ient in this cluster had a more typical amnestic syndrome but also 

xperienced delusions and visual hallucinations. The third patient 

id not have a specific AD-subtype. Of note, outside of this cluster, 

nother patient with AD-PCA was an outlier ( ∗) in the DLB space. 

owever, the other 4 AD-PCA patients were classified in the mid- 

le of the AD space. 

Cluster 2b describes six patients, all of whom suffered from 

CI at the time of imaging. There is an outlier in AD-space ( ∗),

ho was scanned in an advanced disease stage (judging by the de- 

ree of brain atrophy, especially of the parietal lobes on MRI brain 

maging). This patient had cognitive symptoms for 15 years before 

e was seen in our expertise center at age 53. At that point, his 

europsychology exam showed a severe amnestic syndrome. He 

ad a positive PiB-PET scan. Unfortunately, genetic testing was not 

erformed. 

.2. Projection of iRBD baseline and follow-up data 

Fig. 3 shows the projection of the baseline (RBD1) and follow- 

p data (RBD2) of iRBD patients ( Table 1 c) in the GMLVQ model. 

or each patient, the two data points are connected with an arrow. 

ost patients move from the healthy control space towards the PD 

nd DLB prototypes. 

Four patients converted to PD during follow-up, these cases are 

arked by a circle. Of these four patients, one patient was in the 

D discriminative space at baseline, and traveled a distance to- 

ards the DLB prototype. The other four patients started in the 

ealthy control space, but all traveled towards the disease proto- 

ypes. 
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Fig. 2. Projection of the evaluation (training) data ( z-transform was reversed, to ensure the HCs locate around the origin), labeled according to the diagnosis. The data has 

been projected on the eigenvectors of the relevance matrix, scaled by the square root of their eigenvalues. 

Fig. 3. Projection of the iRBD patients’ (progression group, Table 1 c) data ( z-transform was reversed, to ensure the HCs locate around the origin) within the same space as 

Fig. 2 but zoomed in. The labeling RBD1 and RBD2 indicate the scans at baseline and follow-up respectively. Scans belonging to the same patient have been connected with 

an arrow. The four iRBD patients that converted to PD during follow-up are outlined with a pink circle. 
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Table 3 includes the visible and total distances traveled by the 

BD patients in between scans in the GMLVQ relevance space. 

he differences between the visible and total distance traveled 

re explained by how much accumulated discriminativeness is 

aptured by the respective number of eigenvectors. In this case, 

here are three eigenvectors (see Fig. A.9) that, combined, explain 

ost of the discriminative power, and thus going beyond three di- 

ensions does not add substantially to the distance. Additionally, 
7

able 3 shows that the difference in time between the scans varies 

etween subjects. 

The distance traveled by the iRBD subjects through the GM- 

VQ space per year correlated positively with the change in the 

PDRS-III score (rho = 0.56, p = 0 . 009 ). This indicates that patients

ho develop motor symptoms over time, which is associated with 

henoconversion to manifest PD/DLB, traveled further from the 

ealthy control prototype towards the disease discriminative space 
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Fig. 4. Scatter plot of the velocity versus UPDRS-III/year of the RBD patients 

( Table 1 c). The line indicates the significant ( P < 0 . 05 ) correlation between the two 

( r = 62 ; P = 0 . 004 ). The four iRBD patients that converted to PD during follow-up 

are outlined with a gray circle. 
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PD/DLB). There was also a positive correlation between the veloc- 

ty of each subject in GMLVQ space (distance/yr) and the UPDRS-III 

hange per year (rho = 0.62, p = 0 . 004 ; Fig. 4 ). The distances or ve-

ocities were not significantly correlated with the change in MoCA 

core, duration of RBD symptoms, or age. 

.3. Voxel representations 

In Fig. 2 it can be appreciated that patients with PD/DLB have 

 coordinate in GMLVQ space with a positive value on the y -axis 

the first eigenvector), whereas most AD patients have a negative 

alue. Thus, the first eigenvector determines, to some extent, the 

ifference between AD and PD/DLB. The voxel representation of the 

rst eigenvector is shown in Fig. 5 a. This pattern is characterized 

y negative voxel weights in the thalamus and putamen, occipital 

ortex, parietal cortex, lateral frontal cortex and anterior cingulate. 

ositive regions include the temporal lobes, the posterior cingulate 

nd the sensorimotor cortex. 

The distinction between groups based on the x -axis (the second 

igenvector) relies on the difference between controls (low or neg- 

tive x -value) and patients. Especially patients with dementia have 

 higher value for x . The voxel representation for the second eigen- 

ector is shown in Fig. 5 b. This pattern is characterized by nega- 

ive voxel weights in the temporal cortex, the parietal cortex and 

ateral frontal cortex. Regions with increased voxel weights include 

he cerebellum, thalamus, putamen, brainstem, orbitofrontal cortex 

nd (to lesser extent) the sensorimotor cortex. The voxel represen- 

ation of the third eigenvector ( z-axis) can be found in the supple- 

entary material (Fig. A.10). 

The voxel representation of the relevance diagonal is shown 

n Fig. 6 . The relevance diagonal provides a summary of all rele- 

ant features (PCs) for the classification problem and consists of 

nly positive values. In contrast to the interpretation of the pro- 

otypes the the voxel map of the relevance diagonal does not in- 

icate where difference between the diagnoses can be found but 

ndicates which differences, which can be small or large, are im- 

ortant or ‘relevant’ for the classification. 

The voxel representation for each prototype is presented in 

ig. 7 . Positive and negative values are with respect to the mean 

f the reference healthy controls. The prototypes of PD, DLB and 

D all show relatively increased metabolism in the cerebellum 

nd brainstem, the thalamus, putamen, globus pallidus, insula, or- 

itofrontal cortex and sensorimotor cortex. Relatively decreased 
8 
etabolism was seen in all three prototypes in the parietal cortex, 

ateral frontal cortex and caudate nucleus. In PD/DLB the occipital 

ortex was also involved, whereas in AD the hypometabolism was 

ore extensive in the temporal cortex. The healthy control proto- 

ype is difficult to interpret but is, to some degree, the inverse of 

he disease prototypes. 

. Discussion 

In this study, we show that FDG-PET analysis with principal 

omponent analysis and GMLVQ can be used to discriminate be- 

ween PD, DLB and AD. More importantly, we show that most iRBD 

atients who were scanned twice with FDG-PET (approximately 3.7 

ears apart), traveled through the GLMLVQ space, away from the 

ealthy control receptive field, and towards the disease prototypes. 

our patients with iRBD developed motor symptoms (parkinson- 

sm) during follow-up and were diagnosed with PD. Each of these 

our cases indeed escaped the healthy-control receptive field. In 

upport of this, severity of motor symptoms (as measured with 

he UPDRS-III) was positively correlated with the distance traveled 

hrough the GMLVQ space. Equally important, six iRBD subjects re- 

ained within the healthy control receptive field during follow-up, 

hich may indicate that these subjects are not prone for pheno- 

onversion in the short term. Some iRBD subjects traveled only a 

hort distance, which may indicate only subtle metabolic changes 

nd relatively slow disease progression. The distance traveled did 

ot correlate significantly with age, indicating that the observed 

hanges did not simply signify age difference. 

The main merit of GMLVQ is that the coordinate system of the 

odel, as well as each prototype, can be reconstructed in voxel 

pace. This allows inspection of the regional brain changes that 

ontributed to the model and its classifications of patients. As 

ould be expected, the patterns of relative hypo- and hyperme- 

abolism of each prototype are consistent with previously iden- 

ified SSM/PCA disease-related patterns and also with univariate 

tudies [15,22–26] . This means that the brain metabolic changes 

hat underlie the PD, DLB and AD conditions are consistently iden- 

ified, independent of the analytical method that is used. These 

rototypes showed considerable regional overlap, just like the 

isease-related patterns. 

The axes of the GMLVQ space determine the position of the 

raining data (and the prototypes). These axes can also be recon- 

tructed in voxel space to understand the classifications. The y -axis 

eigenvector 1) determined the separation of Lewy body disorders 

PD/DLB) and AD. Typical features of this eigenvector included hy- 

ometabolism of the occipital cortex and the frontal cortex. PD and 

LB patients had a high value on the y -axis, which indicates that 

hey matched this pattern, whereas AD patients had a negative 

alue (indicating a mismatch with the described pattern). This is in 

ine with the literature: Hypometabolism of the occipital cortex is 

 well-known specific (but less sensitive) signature of DLB [54,55] . 

ith progression of disease and the development of cognitive im- 

airment, PD patients can also develop occipital hypometablism 

56] . 18 F-FDG PET studies in autopsy-confirmed DLB and AD pa- 

ients showed comparable degrees of metabolic reductions in the 

arietotemporal and frontal association cortices, but only DLB pa- 

ients showed severe metabolic reductions in the occipital cortex 

57,58] . 

The x -axis (eigenvector 2) determined the separation of con- 

rols versus disease. The voxel representation of eigenvector 2 in- 

luded regions that the prototypes of all conditions (PD, DLB and 

D) had in common: Relative hypermetabolism of the cerebellum, 

rainstem, orbitofrontal cortex, basal ganglia, thalamus, and sen- 

orimotor cortex, and temporo-parietal hypometabolism. Note that 

he occipital cortex was not implicated in this pattern. 
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Fig. 5. This figures shows the voxel representation (patterns) of the eigenvectors defining the space as illustrated in Fig. 2 . The values indicate activation above or below the 

average healthy control from the reference group. To aid visualization, each voxel in these 3D images was z-transformed and overlaid on a T1 MRI brain template. Images 

were arbitrarily thresholded at | z > 0 . 5 | to remove near-zero values. 

Fig. 6. Voxel representation (pattern) of the diagonal of the relevance matrix. The values indicate how relevant the voxels are for the classification task. To aid visualization, 

each voxel in these 3D images was z-transformed and overlaid on a T1 MRI brain template. Images were arbitrarily thresholded at | z > 0 . 5 | to remove near-zero values. 
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Following from the above, we can understand why some sub- 

ects were misclassified, and we can understand why some cases 

re outliers. The GMLVQ system allows further inspection of diffi- 

ult cases. This could potentially aid clinical practice. For instance, 

f a patient is close to a prototype that is in agreement with the 

linical diagnosis, this confirms the clinical diagnosis. If a case is in 

etween two or more prototypes and closer to the decision bound- 

ry the diagnosis is uncertain, and further investigation or follow- 

p is necessary. Finally, if a case lies close to a prototype which has

 different label than the current clinical diagnosis, there is a mis- 

atch and both clinical information and the imaging data should 

e revisited. 

The PD subjects who were in the healthy control receptive field 

ere relatively young and also did not appear to develop cognitive 

mpairment upon clinical follow-up after scanning. Thus, they can 

e expected to have limited degrees of cortical hypometabolism 

59] . In line with this, PD patients who were in, or close to, 

he DLB receptive field were demented or developed dementia 

pon clinical follow-up. The metabolic patterns for PD-dementia 

nd DLB are known to be very similar [56] . Patients with AD- 

CA have atrophy (and thus also hypometabolism) of the poste- 

ior brain regions, which is similar to DLB. Two of the six AD- 

CA subjects in our study indeed ended up in the DLB receptive 

eld. Finally, six patients with AD-MCI were in, or close to, the 
9 
ealthy control receptive field. Patients with MCI have only mild 

ognitive complaints and typically have limited degrees of corti- 

al hypometabolism. Just like iRBD patients, they represent a very 

arly stage of neurodegeneration. It is therefore not surprising that 

ome AD-MCI patients are still considered normal by the GMLVQ 

ystem. Multiple measurements may also be necessary for MCI to 

etermine the distance traveled through the model as a proxy for 

isease progression. 

When considering the confusion matrix, the diagnostic perfor- 

ance of the GMLVQ model seems poor. However, the perfor- 

ance needs to be evaluated in the context of the clinical diag- 

oses that were included. The distinction between healthy con- 

rols and patients was good. Patients that were misclassified as 

ontrols included 6.94% of AD subjects, which was solely due to 

he MCI subjects, and 5.31% of PD patients. The misclassification of 

D subjects could be due to levodopa therapy. It has been shown 

hat levodopa causes a normalization of abnormal hyperactivity in 

he posterior putamen, globus pallidus, ventral thalamus and dor- 

al pons [60] . In our study, levodopa therapy was not routinely 

ithheld before scanning. This could have influenced results (de- 

ails are provided in the supplemental material). 

The model was also able to provide a relatively good distinction 

etween DLB and AD. 14.7% of AD cases were misclassified as DLB, 

hich may have included the AD-PCA cases. In addition, only 7.4% 
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Fig. 7. This figures shows the voxel representations (patterns) of the average prototypes, as extracted from the ten times repeated ten-fold cross-validation. The values 

indicate activation above or below the average healthy control from the reference group. To aid visualization, each voxel in these 3D images was z-transformed and overlaid 

on a T1 MRI brain template. Images were arbitrarily thresholded at | z > 0 . 5 | to remove near-zero values. 
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f DLB cases were confused as AD. A perfect separation between 

D, DLB and PD will be impossible based on the pathophysiology 

f these conditions. It is estimated that over half of patients with 

 clinical DLB diagnosis [61] and approximately one third of all PD 

ases have concurrent AD pathology. This is more pronounced in 

D patients with dementia but is also found in cognitively intact 

D patients [62] . Finally, PD and DLB were most often confused 

ut this is not surprising as these conditions are part of the same 

pectrum. However, it would be useful to repeat this analysis in a 

arger cohort of PD, AD and DLB patients where the diagnostic pro- 

ess was consistently enriched with other biomarkers (specifically 

iB PET and CSF) to further disentangle cases with a pure alpha- 

ynucleinopathy from those with overlapping pathologies. 

The difference between the training and testing performance 

ndicates that the model overfits the training data. This can be 

xplained by the amount of the diagnosis-dependent inter-patient 

ariance in these data. These inequalities in patients can be ob- 

erved in the discriminative plots in Fig. 2 as well. Overfitting for 

ur specific use case might not be a big issue, as the projections 
d

10 
f the GMLVQ systems will produce more distinct visualizations of 

he data, therefore, providing a clearer image of potential difficult 

ases. For the interpretation of these projections, though, one must 

lso consider the predictive performance of these systems. 

. Conclusion 

We wish to emphasize that our study is a proof of concept, in- 

icating that GMLVQ can be a useful tool in the analysis of FDG 

ET data in multi-class problems. So far, our study does not al- 

ow any firm conclusions concerning the diagnostic value in clini- 

al practice or prediction of phenoconversion in iRBD. However, we 

ave illustrated the potential of this method and its merit over the 

lassical SSM-PCA patterns and other ‘black box’ machine-learning 

lgorithms. In future studies, a GMLVQ model trained with larger 

umbers of HC, PD, DLB and MSA will be more intuitive to evaluate 

he disease progression and differential diagnosis in iRBD patients, 

s iRBD patients do not develop AD. That said, the AD-PD space 

id not hamper application to iRBD, possibly because the PD- and 
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D-related patterns overlap. A GMLVQ system may also be consid- 

red as an aid in the differential diagnosis of patients presenting 

ith parkinsonism (motor symptoms), i.e. PD, MSA, DLB, progres- 

ive supranuclear palsy, and corticobasal degeneration. Similarly, a 

ystem for patients presenting with cognitive impairment could be 

onstructed, including HC, AD, DLB and Frontotemporal dementia. 

he latter approach could be useful to predict the diagnosis in pa- 

ients presenting with mild cognitive impairment (MCI). In patients 

ith iRBD and MCI, future studies should investigate the relation- 

hip between distance traveled (and velocity) in GMLVQ space and 

isease progression. 
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