
Neurobiology of Stress 21 (2022) 100496

Available online 14 October 2022
2352-2895/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

DiffBrainNet: Differential analyses add new insights into the response to 
glucocorticoids at the level of genes, networks and brain regions 

Nathalie Gerstner a,b,c,1, Anthi C. Krontira a,b,1, Cristiana Cruceanu a,e, Simone Roeh a, 
Benno Pütz a, Susann Sauer a, Monika Rex-Haffner a, Mathias V. Schmidt d, 
Elisabeth B. Binder a,1,*, Janine Knauer-Arloth a,c,1,** 

a Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany 
b International Max Planck Research School for Translational Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany 
c Institute of Computational Biology, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany 
d Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany 
e Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden   

A R T I C L E  I N F O   

Keywords: 
Glucocorticoids 
Stress response 
Transcriptomics 
Network analysis 
Mouse brain 

A B S T R A C T   

Genome-wide gene expression analyses are invaluable tools for studying biological and disease processes, 
allowing a hypothesis-free comparison of expression profiles. Traditionally, transcriptomic analysis has focused 
on gene-level effects found by differential expression. In recent years, network analysis has emerged as an 
important additional level of investigation, providing information on molecular connectivity, especially for 
diseases associated with a large number of linked effects of smaller magnitude, like neuropsychiatric disorders. 
Here, we describe how combined differential expression and prior-knowledge-based differential network analysis 
can be used to explore complex datasets. As an example, we analyze the transcriptional responses following 
administration of the glucocorticoid/stress receptor agonist dexamethasone in 8 mouse brain regions important 
for stress processing. By applying a combination of differential network- and expression-analyses, we find that 
these explain distinct but complementary biological mechanisms of the glucocorticoid responses. Additionally, 
network analysis identifies new differentially connected partners of risk genes and can be used to generate 
hypotheses on molecular pathways affected. With DiffBrainNet (http://diffbrainnet.psych.mpg.de), we provide 
an analysis framework and a publicly available resource for the study of the transcriptional landscape of the 
mouse brain which can identify molecular pathways important for basic functioning and response to glucocor-
ticoids in a brain-region specific manner.   

1. Introduction 

High-throughput transcriptomics are extensively employed to study 
healthy as well as disease-related tissue expression profiles from in vitro 
and in vivo model systems or human tissue. Traditionally, transcriptomic 
data analysis has been based on differential expression (DE) analysis and 
has focused on gene-level associations to phenotypes. In the last decade, 
gene set enrichment analysis (Subramanian et al., 2005) and network 
analysis (de la Fuente, 2010; Langfelder and Horvath, 2008; Ogris et al., 

2021) have emerged allowing the study of complex associations be-
tween sets of genes, in multiple tissues and for multiple outcomes (Bagot 
et al., 2016; Bowen et al., 2019; Geng et al., 2020; Huggett and Stallings, 
2020; Kapoor et al., 2019; Kwon et al., 2019; Labonté et al., 2017; Li 
et al., 2019; Liu et al., 2016; Parikshak et al., 2015; Pierson et al., 2015; 
Sato et al., 2019; Zimmermann et al., 2019). 

Network analysis is critical for the study of relationships between 
genes, and in turn, of molecular pathways. This is especially true for 
complex disorders for which risk is conferred by a combination of many 
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small effects. Strong DE can be expected with major genetic or envi-
ronmental impacts such as in cancer (Perduca et al., 2018; Sondka et al., 
2018). For other disorders, for example in neuropsychiatry, risk is driven 
by multiple polygenic and interlaced environmental factors that affect a 
multitude of transcripts, often with only small effect sizes (Akbarian 
et al., 2015; Li et al., 2018). A combinatorial analysis framework of DE 
and network analysis has proven very useful for unraveling additional 
biology and pathomechanisms of complex disorders (Parikshak et al., 
2015). For example, gene co-expression networks, based on Pearson 
correlations, along with DE analysis have been used to study shared and 
distinct transcriptomic profiles of five major neuropsychiatric disorders 
(autism spectrum disorder; schizophrenia, bipolar disorder, major 
depressive disorder and alcoholism) leading to the identification of gene 
modules associated with specific cell-types and disorders (Gandal et al., 
2018a). 

Besides correlation-based methods, which tend to suffer from over- 
connectivity and low specificity, several other classes of algorithms 
are used for network inference (Saint-Antoine and Singh, 2020). More 
advanced are, for example, regression-based or Bayesian methods. 
While Bayesian methods perform poorly on large datasets and are more 
suitable for small networks (Saint-Antoine and Singh, 2020), regression- 
and other machine learning-based algorithms require large amounts of 
samples to confidently infer connections in a high-dimensional input 
space. To overcome this limitation of regression-based network infer-
ence and increase the performance on datasets with small amounts of 
samples, the input space can be reduced by facilitating prior-knowledge 
(Linde et al., 2015). Prior-knowledge refers to already described func-
tional relationships between transcripts or proteins, accessible from 
publicly available databases. The Knowledge guided Multi-Omics 
Network inference approach (KiMONo) implements such a combina-
tion of prior-guided regression-based network inference and was pre-
viously shown to be a powerful approach to infer integrated multi-level 
networks (Ogris et al., 2021). 

Traditionally, the stimulus or disease impact on networks has been 
modeled by associating modules of co-expressed genes with disease 
phenotypes or comparing the number of connections a gene has in the 
control and stimulus networks. This has proven challenging given that it 
is based on the comparison of networks with different topological 
characteristics (de la Fuente, 2010). To tackle this, differential network 
(DN) analysis has emerged. DN analysis computes the differential 
co-expression and regulatory interactions of many genes in a single 
network and analyzes biological processes inferred from one DN (Kim 
Youngsoon, Jie Hao, Yadu Gautam, Tesfaye B. Mersha, 2018), thus 
eliminating the problems arising when trying to compare two or more 
networks at different stimulation paradigms. DN analysis offers the 
possibility to study the directed multivariate effects of the treatment or 
disease state on the genes’ neighborhoods. Another advantage of using 
prior-knowledge network analysis algorithms is that the inferred net-
works have the same topological characteristics which results in a more 
robust calculation of the differential connections. 

In this study, we now leverage the power of DN approaches and 
calculate regression- and prior-knowledge-based genome-wide net-
works from RNA expression data of 8 mouse brain regions following a 
vehicle or a pharmacological stimulus, and compute differential net-
works in addition to differential expression. As a stimulus we used 
dexamethasone, a synthetic glucocorticoid that is a preferential agonist 
of the glucocorticoid receptor (GR). GR is a transcription factor able to 
elicit a robust transcriptomic response when bound to its agonists 
(Weikum et al., 2017), it is an important component of the stress-axis 
and has been implicated with risk for stress-related psychiatric disor-
ders (Mcewen and Akil, 2020). The 8 brain regions were selected for 
their implication with the stress axis activation and the response to 
stress, and include a detailed segmentation of the hippocampal forma-
tion (ventral and dorsal dissections of both Cornu Ammonis 1- CA1 and 
dentate gyrus- DG), the prefrontal cortex (PFC), the amygdala (AMY), 
the cerebellar cortex (CER) and the paraventricular nucleus of the 

hypothalamus (PVN). We combined DN with DE analysis in order to 
provide an analysis framework for transcriptomic data and a resource of 
all levels of information. This public resource is named DiffBrainNet 
(DiffBrainNet access: http://diffbrainnet.psych.mpg.de). We provide 
examples of how DiffBrainNet can be used to study the molecular 
landscape of the brain and unravel biological mechanisms of response to 
dexamethasone and GR activation in a brain region-specific manner. 

2. Materials and methods 

2.1. Experimental animals 

All experiments and protocols were performed in accordance with 
the European Communities’ Council Directive 2010/63/EU and were 
approved by the committee for the Care and Use of Laboratory animals 
of the Government of Upper Bavaria. All mice were obtained from the in- 
house breeding facility of the Max Planck Institute of Psychiatry and 
kept in group housed conditions in individually ventilated cages (IVC; 
30 cm × 16 cm x 16 cm; 501 cm2) serviced by a central airflow system 
(Tecniplast, IVC Green Line – GM500). Animals had ad libitum access to 
water (tap water) and standard chow and were maintained under con-
stant environmental conditions (12:12 h light/dark cycle, 23 ± 2 ◦C and 
humidity of 55%). All IVCs had sufficient bedding and nesting material 
as well as a wooden tunnel for environmental enrichment. Animals were 
allocated to experimental groups in a semi-randomized fashion, data 
analysis and execution of experiments were performed blinded to group 
allocation. 

3-months old C57Bl/6n male mice (n = 15 animals per condition) 
were injected intraperitoneally with dexamethasone at a dose of 10 mg/ 
kg body weight (treatment) or 0.9% saline as control (vehicle). Four 
hours later the mice were sacrificed, the brain was perfused with a so-
lution of Heparin in 0.9% saline, extracted and snap-frozen in butanol on 
dry ice and kept in − 80 ◦C until further use. The brains were cut in 250 
μm coronal slices and 8 brain regions were isolated following the ste-
reotaxic coordinates of the mouse brain atlas (Paxinos and Franklin, 
2001). In detail, the following brain regions were isolated: cingulate 
cortex 1 and 2 (bregma 2.34 to − 0.22), from now on referred-to as 
prefrontal cortex (PFC); paraventricular nucleus of the hypothalamus 
(PVN; bregma − 0.58 to − 1.22); amygdala (AMY; bregma 0.02 to 
− 0.94); dorsal Cornu Ammonis 1 (dCA1; bregma − 1.22 to − 2.80); 
ventral Cornu Ammonis 1 (vCA1; bregma − 2.92 to − 3.88); dorsal 
dentate gyrus (dDG; bregma − 0.94 to − 2.80), ventral dentate gyrus 
(vDG; bregma − 2.92 to − 3.88) and cerebellar cortex (CER; bregma 
− 5.80 to − 6.24). Brain punches were kept in dry ice while cutting and 
then in − 80 ◦C until the RNA extraction was performed. 

2.2. RNA extraction 

RNA was extracted using an automated Chemagic 360◦ instrument 
with an integrated dispenser and the chemagic RNA Tissue Kit (CMG- 
1212) following manufacturer’s instructions. In short, Chemagic 360◦

RNA extraction is based on the use of magnetic beads that bind the 
nucleic acids which are then isolated using magnetized metal rods. 
Homogenization of the tissue was achieved using rotating zirconium 
beads. Washing steps and subsequent elution of the RNA was achieved 
by switching off the magnet while the rods continue to rotate in a buffer 
of preference. DNA was digested using DNase I and proteins using Pro-
teinase K. RNA concentration was measured using a Nanodrop and the 
quality was measured using Tapestation RNA ScreenTapes (High 
Sensitivity RNA ScreenTapes, Cat No. 5067–5579). 

2.3. RNA sequencing 

3′ tag RNA sequencing libraries were prepared using the QuantSeq 3′

mRNA Fwd kit (Lexogen) following manufacturer’s instructions with the 
addition of unique molecular identifiers (UMIs- UMI Second Strand 
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Synthesis Module for QuantSeq FWD) for the tagging of individual 
transcripts. Libraries were single-end sequenced on an Illumina HiSeq 
4000 sequencer using 75bp long reads for a total coverage of an average 
of 10 M reads per library. Five samples were excluded from sequencing 
and/or further analysis due to technical issues with the library prepa-
ration: two dexamethasone-treated dCA1 samples, one dexamethasone- 
treated PFC sample, one vehicle PVN sample and one vehicle vCA1 
sample. 

2.4. RNA sequencing analysis 

The quality of sequencing data was analyzed with FastQC v0.11.4 
(Andrews et al., 2019) and adapter trimming was performed with 
cutadapt v1.11 (Martin, n.d.). Unique molecular identifiers were 
extracted with UMI-tools v.0.5.4 (Smith et al., 2017), before the reads 
were aligned with the mouse reference genome (mm10, Ensembl release 
84) using STAR v2.6.0a (Dobin et al., 2013). Afterwards, reads were 
deduplicated with UMI-tools and gene expression was quantified with 
featureCounts v1.6.4 (Liao et al., 2014). The subsequent analysis was 
performed in R version 4.0.5 (“R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, Vienna, 
Austria.,” 2021). All genes that were not detected in at least one full 
treatment group were removed from the dataset leaving 12,976 genes. 
Subsequently, genes with less than 10 counts across all samples within 
each brain region were excluded (detailed numbers of genes per brain 
region in Table S1). To identify outliers, we performed a principal 
component analysis (PCA) on the samples of each brain region and 
treatment group separately. Samples with a distance of more than 2.5 
standard deviations from the mean in the first principal component were 
excluded (numbers of outliers per brain region and treatment group in 
Table S1). Surrogate variable analysis (SVA) (Leek et al., 2012) was 
applied to account for unwanted variation in the data. 

2.5. Differential expression (DE) analysis 

Significant surrogate variables (exact numbers in Table S1) were 
included as covariates in the DE analysis. The expression data was 
normalized and transformed using the vst function of DESeq2 v1.30.1 
(Love et al., 2014) for SVA and subsequent network analysis. DE analysis 
between the two treatment groups was performed for each brain region 
individually. We tested for DE with DESeq2 using the Wald test and 
reported the genes with a false discovery rate (FDR) below 10% as sig-
nificant. We used the less stringent threshold of 10% for the DE analysis 
to be able to compare our gene-level and network-level analyses across 
brain regions in a more systematic way. 

2.6. DiffBrainNet 

2.6.1. Network inference 
Networks were generated for vehicle- (referred-to as “vehicle”) and 

dexamethasone-treated (referred-to as “treatment”) samples separately 
for each brain region using the network inference method KiMONo 
(Ogris et al., 2021). KiMONo uses prior information from existing bio-
logical databases that provide the edges among the transcripts, as a basic 
network layout. Different omic layers (here only transcriptomic data) 
are then used on top of the prior basic-network layout to fit the edge 
weights in the network. Edge weights can thereby take on a value 
smaller than a predefined threshold which leads to the removal of the 
edge from the network (Fig. 1). More specifically, KiMONo uses a 
multivariate regression approach with sparse group LASSO penalization 
to model the expression levels of the transcripts. The possible predictors 
in the regression model are inferred from the gene’s connections in a 
prior network. In the inferred directed gene expression networks, the 
nodes represent transcripts of the input data and the edge weights are 
the beta coefficients (β value) fitted by the regression approach (S1B 
Fig). A β value > 0 indicates that two genes’ expression levels are 

correlated positively, while a β value < 0 indicates that two genes’ 
expression levels are correlated negatively. Significant surrogate vari-
ables identified during DE analysis were used as covariates for network 
inference and treated as a separate group in the regression penalization 
(Table S1). The R2 value assigned to each regression model is used as a 
confidence score to indicate the goodness of fit of the model. In the 
vehicle and treatment networks, all interactions with an absolute β value 
< 0.01 or an R2 value < 0.1 and the connections to the surrogate vari-
ables were excluded. 

As a prior network we used FunCoup 5 (Persson et al., 2021), a 
database which contains about 6.7 million interactions between 19,771 
genes in the mouse organism and that is provided as a framework to 
infer genome-wide functional couplings based on data of 10 different 
evidence types: physical protein interactions, mRNA co-expression, 
protein co-expression (based on the human protein atlas), genetic 
interaction profile similarities, shared regulation by transcription factor 
binding, shared regulation by miRNA targeting, subcellular colocaliza-
tion, domain interactions, phylogenetic profile similarity, quantitative 
mass spectrometry data and gene regulatory data inferred from tran-
scription factor bindings. FunCoup provides the edges of the basic 
network layout and KiMONo computes the weights of these edges fitted 
from the expression of the transcripts in each brain region and treatment 
paradigm. 

2.6.2. Differential network analysis 
A differential network (DN) for each brain region was calculated by 

combining the vehicle and treatment network using the DiffGRN 
approach (Kim Youngsoon, Jie Hao, Yadu Gautam, Tesfaye B. Mersha, 
2018) which describes differential relationships between two genes. 
Thereby, differential gene interactions were calculated from the re-
gression’s β values and their standard errors using a z test: 

zXY =
βT

XY − βV
XY̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

SE
(
βT

XY

)2
+ SE

(
βV

XY

)2
√

where βT
XY and βV

XY are the β values of genes X and Y in the treatment and 
vehicle networks, respectively. A z value > 0 indicates either a stronger 
positive correlation (0 < βV

XY < βT
XY), a weaker negative correlation (βV

XY 
< βT

XY < 0) or a switch from negative to positive correlation (βV
XY < 0 <

βT
XY) between genes X and Y from vehicle to treatment network. A z value 

< 0 indicates a stronger negative correlation (βT
XY < βV

XY < 0), a weaker 
positive correlation (0 < βT

XY < βV
XY) or a switch from positive to negative 

correlation (βT
XY < 0 < βV

XY) between genes X and Y from vehicle to 
treatment network. Z values > 0 can be described as relative changes in 
gene expression leading to a more positive correlation (termed positive 
regulatory effect), while z values < 0 can be described as relative 
changes in gene expression leading to a more negative correlation 
(termed negative regulatory effect) (S1B Fig). Differential interactions 
with an FDR adjusted p value ≥ 0.01 associated with the z score were 
excluded. 

2.6.3. Hub gene analysis 
We defined key regulators in the vehicle, treatment and differential 

networks, termed vehicle-, treatment- and differential-hub genes 
accordingly. The measure that we used to identify these key genes was 
the node-betweenness implemented in the igraph package, which de-
scribes the number of shortest paths going through a node (Csardi, 
2014). Since we build the networks on top of a prior network, the 
node-betweenness in the networks (vehicle, treatment, differential) is 
driven by the prior network. We therefore normalized the 
node-betweenness as follows, 

node-betweennessNormnetwork  A(gene X)

=
node-betweennessnetwork  A(gene X)

node-betweennessnetwork  Prior(gene X)
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Fig. 1. Schematic representation of experimental and analytical steps. DiffBrainNet is a resource of differential expression and differential networks in 8 mouse 
brain regions. (Experiment) C57Bl/6 mice were treated intraperitoneally with 10 mg/kg Dexamethasone or 0.9% saline as vehicle for 4 h. Eight different brain 
regions were isolated: amygdala – AMY, cerebellar cortex – CER, prefrontal cortex – PFC, paraventricular nucleus of the hypothalamus – PVN, dorsal Cornu Ammonis 
1 – dCA1, ventral Cornu Ammonis 1 – vCA1, dorsal dentate gyrus – dDG, ventral dentate gyrus – vDG. (Analysis) We performed RNA sequencing in the 8 brain regions, 
followed by differential expression analysis (DE) and differential prior-knowledge-based genome-wide network analysis (DN). (Results) DiffBrainNet includes dif-
ferential expression results and network results for all brain regions. DiffBrainNet logo was created with BioRender.com. 

N. Gerstner et al.                                                                                                                                                                                                                                

http://BioRender.com


Neurobiology of Stress 21 (2022) 100496

5

where node-betweennessnetwork A(gene X) is the node-betweenness of 
gene X in network A (e.g. DN of one brain region) and node-between-
nessnetwork Prior(gene X) is the node-betweenness of the same gene X in 
the prior network. We defined all genes with a node-betweenness 
greater than 10,000 and a normalized node-betweenness greater than 
1.0 as hub genes and compared them between brain regions as well as 
with the DE genes identified in the DE analysis. 

2.7. Gene set enrichment analysis 

Enrichment of DE genes or differential hub genes for biological 
processes and pathways was performed using FUMA GENE2FUNC 
(Watanabe et al., 2017) analysis based on Gene Ontology (GO (Ash-
burner et al., 2000; Carbon et al., 2021)), KEGG (Kanehisa, 2019; 
Kanehisa et al., 2021; Kanehisa and Goto, 2000), Reactome (Jassal et al., 
2020) and genes carrying single nucleotide polymorphisms (SNPs) with 
genome-wide association to a variety of traits (analysis references the 
NHGRI-EBI GWAS Catalog (Buniello et al., 2019) (https://www.ebi.ac. 
uk/gwas/) most recently updated on September 18, 2021). Default pa-
rameters were used in FUMA, with all genes expressed above threshold 
in all brain regions (n = 12,830 genes) as the background list. To ac-
count for differentially sized input gene lists, only terms with at least 
10% (unless stated otherwise) of the input genes overlapping with the 
term genes were considered and p values were corrected using the 
Benjamini-Hochberg (FDR) method (Benjamini and Hochberg, 1995) to 
account for multiple comparisons. We used an FDR cutoff of 5% for 
statistical significance. 

We tested for overrepresentation of DE and differential hub genes 
within network modules of a postmortem human brain study (ASD (n =
51), SCZ (n = 559), BD (n = 222) and Controls (n = 936)) (Gandal et al., 
2018b) using a one-sided Fisher’s exact test implemented in R (“R: A 
language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria.,” 2021). P values were FDR 
corrected (Benjamini and Hochberg, 1995) and a cutoff of 5% was 
applied to assign statistical significance. 

2.8. Shiny app 

To make these data and analyses searchable by all interested scien-
tists, we created DiffBrainNet, which is accessible online at http://diffbr 
ainnet.psych.mpg.de. The app was written in R (v4.0.5) (“R: A language 
and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria.,” 2021), uses the shiny package (v1.7.1) 
(“Shiny From RStudio,” n.d.) and several additional freely available 
packages (org.Mm.eg.db v3.14.0, shinythemes v1.2.0, ggplot 2 v3.3.5, 
plotly v4.10.0, visNetwork v2.1.0, data.table v1.14.2, dplyr v1.0.7, 
stringer 1.4.0) and is hosted with ShinyProxy (Open Analytics, n.d.). The 
source code of the app is available via github https://github.molgen. 
mpg.de/mpip/DiffBrainNet_ShinyApp. The app can also be run locally 
using a docker image available on Docker Hub https://hub.docker.com/ 
r/ngerst/diffbrainnet. 

3. Results 

3.1. DiffBrainNet: a brain-region specific resource and analysis 
framework for transcriptomic responses to glucocorticoid receptor 
activation 

In this work, we set out to provide a resource of brain-region-specific 
transcriptome analyses at the gene- and network-level exploring the 
effects of a 4 h, 10 mg/kg dexamethasone administration in 8 different 
mouse brain regions (Fig. 1 top and S1A Fig). We used RNA sequencing 
to measure gene expression across the whole transcriptome and detected 
12,976 genes across the 8 brain regions (exact numbers of transcripts per 
brain region in Table S1), with 12,830 genes being common across all 8 

brain regions (Table S2). 
Network analysis unravels the effects of relative gene expression 

changes that may not be detected at the individual DE genes. Therefore, 
gene expression networks for each condition per brain region were 
calculated with regression analysis based on a prior network using Ki-
MONo (Ogris et al., 2021). As a prior network we used FunCoup 5 
(Persson et al., 2021) which contains experimental data on about 6.7 
million interactions between 19,771 mouse genes, of which 11,083 
genes were also detectable in our dataset (5.4 million interactions). We 
inferred a DN per brain region by comparing the β values of the 
regression analysis between the vehicle and treatment networks with a z 
test, following the DiffGRN (Kim Youngsoon, Jie Hao, Yadu Gautam, 
Tesfaye B. Mersha, 2018) approach. In addition, we also performed 
differential expression (DE) analysis to assess the gene-level responses to 
glucocorticoid receptor activation between vehicle and treatment (Fig. 1 
middle). 

To examine if the DE genes are also the ones with the highest co- 
regulatory responses in the DNs we identified differential hub genes, i. 
e. genes with normalized node-betweenness above 1 (Fig. 1 bottom). 
Furthermore, to identify pathways that are regulated by DE genes and/ 
or differential hub genes we used enrichment analyses of GO terms, 
KEGG and Reactome pathways and GWAS significant genes. By applying 
this analysis framework, we were able to compare the transcriptomic 
responses across 8 brain regions on multiple complementary levels. All 
data can be explored in an interactive online resource, called Diff-
BrainNet (http://diffbrainnet.psych.mpg.de). In the following, we 
illustrate results obtained from analyses using DiffBrainNet. 

3.2. Differential network analysis provides biological information beyond 
single gene-level analysis 

We used our framework of combined DE and DN analysis to study the 
transcriptomic responses to glucocorticoids (GCs) across the eight brain 
regions in DiffBrainNet. Principal component (PC) analysis of the gene 
expression data showed that PC1 and PC2 explain 62% of the variance. 
The brain regions are separated by PC1 and PC2 whereas samples of the 
same brain region are comparable with respect to the first two PCs 
(Fig. 2A). Treatment conditions were separated by PC4 and PC5 when 
PC analysis was applied on the samples of all brain regions together 
(Fig. 2B). Over all 8 brain regions, we observed 2092 DE genes (FDR 
adjusted p value < 0.1) following dexamethasone administration of 
which 172 were shared DE across all brain regions (Fig. 2C, Table S3). 
The majority of DE genes of each brain region were regulated in more 
than one region and only the minority (5.4–26.6%) was specific to a 
single brain region (S2A Fig, Tables S4–S11). The upregulated shared DE 
genes across all brain regions (n = 129) were significantly enriched for 
biological processes related to cell death, response to stimulus, signal 
transduction and cell proliferation, whereas the downregulated ones (n 
= 43) were enriched for developmental terms such as neurogenesis, cell 
differentiation and tissue morphogenesis (S2B Fig, Table S12). 

Interestingly, the vst normalized expression of GR (gene name 
Nr3c1), the main receptor activated by dexamethasone thus triggering 
the transcriptional response, does not correlate with the number of DE 
genes in each region at vehicle condition (S3A Fig), even though GR is 
differentially downregulated in all regions (Table S3). The same is true 
for MR (gene name Nr3c2), which is another glucocorticoid receptor 
with high affinity for the endogenous glucocorticoid cortisol but lower 
affinity for dexamethasone (S3B Fig), and for the ratio of the expression 
of the two receptors (GR/MR, S3C Fig). Although there are differences in 
GR and MR vehicle expression levels across regions, the variation is 
small, possibly explaining the lack of correlation with the number of DE 
genes per brain region. 

In addition to DE analysis, we performed DN analysis across the 8 
brain regions and compared numbers and enrichment patterns of dif-
ferential hub genes. We observed a total of 755 differential hub genes. 
The majority (over 73%) of these differential hub genes were shared 
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between at least 2 brain regions (Fig. 2D and S2C, Tables S13–S20), 
however, there were 7 differential hub genes shared across all investi-
gated brain regions (Sox5, Lpar1, Thy1, Mcam, Nell2, Rab3c, Zic1) 
(Fig. 2D and S2D, Tables S21 and S22). Of all the 755 differential hub 
genes, only 174 were also DE genes in any brain region. 

To further explore how DE genes and differential hub genes may 
relate to different biology, we compared the unique sets of these genes 
for the PFC, which was the brain region with the largest fraction of 
unique DE genes (n = 920 total DE genes of which 245 (26.6%) were 
unique to PFC, Fig. 2C, Table S11). PFC, together with AMY, was also the 
brain region with the highest fraction of unique differential hub genes 
(n = 293 total differential hub genes of which 29 (9.9%) were unique in 
PFC, Fig. 2D, Table S13). None of these 29 unique differential hub genes 
was also a DE gene in the PFC. A GO enrichment analysis on the unique 

DE and unique differential hub genes of the PFC respectively indicated 
that the biological functions related to these two sets of genes are 
distinct (Tables S23 and S24). While the biological processes with the 
highest enrichment for unique DE genes were mostly related to devel-
opment and signaling (Fig. 2E), the top terms for the unique differential 
hub genes were mainly global terms related to response to stress or 
stimulus (Fig. 2F; n = 14 terms). This suggests that DE and DN analyses 
reveal different but complementary information about the transcrip-
tional response to the stimulus. 

To study the relevance of the mouse responses to dexamethasone for 
humans, we tested the overlap of the dexamethasone regulated genes in 
the mouse PFC with ASD, BD and SCZ regulated genes in the cortex of 
human postmortem brain (Gandal et al., 2018a). We found a 40.6% 
overlap of the mouse DE genes with the human disease-associated ones 

Fig. 2. Differential network analysis provides distinct biological information from differential expression: the case of PFC. (A) Principal component (PC) 
analysis plot of PCs 1 and 2 explaining variance associated with brain region. (B) PC analysis plot of PCs 4 and 5 explaining variance associated with treatment group. 
(C) Upset plot comparing differentially expressed genes with FDR adjusted p value smaller than 0.1 between 8 brain regions. (D) Upset plot comparing differential 
hub genes with a normalized node-betweenness above 1.0 between 8 brain regions. Proportions of intersection size bars colored in yellow indicate genes that are also 
significantly DE genes in at least one of the intersection’s brain regions. (E) Dot plot for the top 14 GO terms most highly enriched for the unique DE genes and (F) for 
the unique differential hub genes in the PFC. 
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(S4A Fig), underlying the importance of glucocorticoid-related tran-
scriptional changes for psychiatric disorders. The same held true when 
we compared our results with network modules inferred from post-
mortem human brain (Gandal et al., 2018b), where the stress-related DE 
genes and differential hub genes were enriched in different modules 
(S4B Fig) which are all associated with ASD, BD and/or SCZ. 

To show the added value of DN analysis we focused on Abcd1, a 
member of the ABC protein family known to actively transport GCs 
(Müller et al., 2003; Uhr et al., 2002). Abcd1 is the unique differential 
hub gene that has by far the highest normalized node-betweenness in the 
PFC (normalized node-betweenness = 5,829, second highest is 4,013 for 
Slc39a3, Table S13) and many differential correlations, though it is not a 
PFC DE gene (FDR = 0.935; Fig. 3A). However, in its DN there are 4 PFC 
DE genes (FDR < 0.1) and 7 genes that have a nominal DE p value < 0.05 
(Fig. 3B, Table S25). By focusing at the pathway level, enrichment an-
alyses of the DN of Abcd1 supports a more general role of ABC trans-
porters in the response to GCs (Fig. 3C and D, Table S26). In addition, 
Abcd1 is directly or indirectly connected to two other differential hub 
genes, Tm7sf2 and Pex5l, suggesting that it is related to large inter-
connected DNs (Fig. 3B). These smaller changes in the expression of 
genes that have in common their connectivity with Abcd1 culminate in 

this gene’s status as a differential hub gene, despite its too-subtle change 
at the individual expression level. Since biologically it is established that 
no gene works independently within a cell, these findings highlight the 
added value of network analysis to unravel distinct but complementary 
aspects of transcriptomic responses that can lead to specific molecular 
pathways identification. 

3.3. Differential network analysis supports the biological understanding of 
differentially expressed genes 

Our next aim was to utilize DN to add an extra layer of interpretation 
to DE results, especially when the number of DE genes is insufficient for 
direct pathway analysis, indicating that the individual gene-level effects 
are very small. The vCA1 region of the hippocampus had the least 
number of unique DE genes from all brain regions with only 5.4% (n =
25) of the total vCA1 DEGs (n = 466) being unique to this region 
(Figs. 2C and 4A and Table S8). Enrichment analysis at the GO level did 
not yield enriched terms (S5 Fig, FDR < 0.05 and Table S27). We next 
used these 25 unique DE genes as seeds in DiffBrainNet and found their 
differential neighbors, resulting in a DN containing 745 nodes, the 25 
unique vCA1 DE genes and 720 differential neighbors (Table S28). This 

Fig. 3. ABC transporters mediate dexamethasone response in the PFC at the network level. 
(A) Normalized expression of Abcd1 in all brain regions at vehicle and after dexamethasone administration. Abcd1 is not differentially expressed in any of the 8 
regions. (B) Abcd1 gene neighborhood in the differential network of the PFC. (C) KEGG and Reactome pathway enrichments for Abcd1 and its differential neighbors in 
PFC. Bold labeled terms highlight a more general involvement of the ABC transporters pathway in the PFC response to glucocorticoids. (D) Network representation of 
the ABC transporters differential pathway. 
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DN was enriched for genes associated via GWAS with general cognitive 
ability and depleted from genes associated with schizophrenia and 
autism spectrum disorder (Fig. 4B and Table S29). These genes were 
now significantly enriched for GO terms associated with nervous system 
processes, cell morphogenesis, ion transport and synaptic signaling 
(Fig. 4C and Table S30). This indicates that very small effects on mul-
tiple genes resulted in altered molecular connectivity in vCA1. This was 
not detected at the gene-level with DE analysis, but it was detected at the 
network-level with DN analysis. 

We next focused on the top enriched GO term based on the gene 
ratio, “regulation of trans-synaptic signaling” (FDR = 8.71 × 10− 22), and 
visualized the genes that were both part of the vCA1 DE genes network 
and associated with this term (Fig. 4D). At the center of this DN was 
Grm4, which encodes a metabotropic glutamate receptor. Grm4 showed 
many differential connections to other differential hub and DE genes, 
including Cacna1a which encodes a subunit of voltage-dependent cal-
cium channels important for communication between neurons and 
synaptic signaling (Luo et al., 2017). This trans-synaptic signaling 

network responded to dexamethasone by a number of changed corre-
lations including several differential hub genes, beyond Grm4 and Cac-
na1a, namely Cspg5, Brsk1, Nlgn3, Rab3a and Grin2b. This combination 
of DE and DN analysis was instrumental to identify potential biological 
responses to dexamethasone in the vCA1 region that were not readily 
detectable through DE analysis alone. 

3.4. DiffBrainNet can support exploring network changes related to 
candidate genes 

We next sought to use our resource and analytical framework to 
investigate biological processes and pathways regulated by genes pre-
viously associated with risk for psychiatric disorders. DiffBrainNet 
provides the opportunity to study how genes of interest are co-regulated 
in different brain regions at vehicle-treated and after a stimulus, in this 
case glucocorticoid exposure. Here, we focused on understanding which 
biological processes were co-regulated by Tcf4 (Transcription factor 4), a 
gene encoding a transcription factor with genome-wide significant 

Fig. 4. Differential network analysis supports the biological understanding of differential expression: the case of vCA1. (A) Number of unique and shared DE 
genes in vCA1 and number of unique and shared differential hub genes in vCA1. vCA1 has the least unique DE genes but the third highest percentage of unique 
differential hub genes of the eight brain regions. (B) Unique vCA1 DE genes and their differential neighbors are enriched for genes that carry SNPs associated with the 
GWAS traits schizophrenia, autism spectrum disorder or schizophrenia and general cognitive ability. (C) GO biological processes enrichment analysis of unique vCA1 
DE genes and their neighbors. (D) Differential neighborhood of the genes that are part of the GO term regulation of trans-synaptic signaling and connected with the 
vCA1 unique DE genes. (GO terms enrichment analysis is done with at least 10% of the input genes having to overlap with the genes of the term. GWAS enrichment 
analysis is done with 16 of the input genes having to overlap with the genes of the term.) 
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associations to a number of different psychiatric disorders including 
schizophrenia, major depressive disorder and autism spectrum disorders 
(Teixeira et al., 2021) and for which mutations have been shown to 
cause neurodevelopmental disorders like for example Pitt-Hopkins 
syndrome (Sirp et al., 2021). 

We used DiffBrainNet to better understand the interaction of genetics 
and environment by investigating the biological pathways co-regulated 
by Tcf4 in the DNs reflecting changes associated with GR activation. Tcf4 
showed significant DE with dexamethasone in three of the brain regions, 
the amygdala, the vDG and the dDG, but in all brain regions the direc-
tion of change was the same (decrease following dexamethasone treat-
ment; Fig. 5A). While Tcf4 did not show statistically significant DE in the 
PFC, previous work in this brain region using co-expression network 
analysis in human postmortem brain samples (Torshizi et al., 2019), has 
identified Tcf4 as a master regulator in schizophrenia. When con-
structing a DN around Tcf4 in the PFC, we identified 26 differentially 
connected genes, including connections to DE genes (n = 4) as well as 
differential hub genes (n = 3, Fig. 5B). The Tcf4 PFC DN was enriched for 
genes that have been associated in GWAS with schizophrenia, autism 
and other neurobehavioral traits (Fig. 5C and Table S31). This supports 
the observation that Tcf4 networks are relevant for schizophrenia and 
adds the additional layer of the importance of Tcf4 networks in the 
context of stress. Interestingly, the differential Tcf4 network was not 
only enriched for GO terms related to development, but also autophagy 
and chromatin organization (Fig. 5D and Table S32). 

In contrast to the PFC, Tcf4 was significantly downregulated in the 
dorsal and ventral dentate gyrus (Fig. 5A). Tcf4 is highly expressed in the 
hippocampal formation from the end of prenatal life and throughout 
adulthood (Teixeira et al., 2021). We now aimed to use DiffBrainNet to 
investigate whether Tcf4 being differentially expressed in the vDG and 
dDG of the hippocampal formation would have specific effects on each 
subregion’s molecular connectivity. From the 55 members of the Tcf4 
vDG and dDG DNs (Fig. 5E), 20 are known Tcf4 targets and/or protein 
interactors, according to the CHEA and TRANSFAC transcription factor 
targets databases (Lachmann et al., 2010; Wingender et al., 1996) and 
the Pathway commons protein-protein interactions datasets (Cerami 
et al., 2011). An additional 11 genes are predicted Tcf4 targets according 
to the MotifMap (Liu et al., 2017) and TRANSFAC (Wingender et al., 
1996) (S6 Fig and Table S33) (datasets assembled by the Harmonizome 
database (Rouillard et al., 2016)). While most of the differential con-
nections in this network were regulated in the same direction in both the 
vDG and the dDG, we also observed specific differential connections (n 
= 24) that were regulated in an opposite manner between the two brain 
regions (Table S34 and selected ones in Fig. 5F). Tcf4 connections with 
the group of Zic genes, Zic1, Zic2 and Zic3, suggested a positive regu-
latory effect (see Methods for explanation of term and S1B Fig) in vDG 
and a negative regulatory effect in dDG. Zic genes have been reported to 
play an important role in body pattern formation via the Wnt pathway 
(Nagai et al., 1997), a pathway that has been extensively associated with 
Tcf4 (Bem et al., 2019; Petherick et al., 2013). In addition, Tcf4 had a 
positive regulatory connection with Runx2, another Wnt pathway 
effector (McCarthy and Centrella, 2010), in dDG and a negative regu-
latory connection with it in vDG, suggesting that dexamethasone may 
mediate Tcf4 effects on the Wnt pathway in a DG subregion-specific way. 
These types of analyses represent a thorough approach to hypothesis 
generation for further follow-up experiments of these effects. 

4. Discussion 

The information provided by transcriptomic studies is far richer than 
a list of differentially expressed genes. Here, we have derived RNA 
expression from 8 mouse brain regions at vehicle and treatment (GCs) 
conditions and present DiffBrainNet, a resource and analytical frame-
work, that provides access to DE and DN results. DiffBrainNet allows for 
direct synthesis and comparisons of the transcriptional landscape of all 8 
brain regions at all conditions (Fig. 6A). DiffBrainNet permits the search 

of DE genes unique to one brain region or common to any region com-
bination at multiple FDR and fold-change cutoffs, the generation of plots 
and the chance to download the data (Fig. 6C and D). In addition, 
DiffBrainNet offers the possibility to visualize the control (vehicle- 
treated), treatment (dexamethasone-treated) and differential networks 
in a single brain region and in any region combination, the ability to 
compare hub genes on all treatment levels at multiple node-betweenness 
thresholds and to download the network plots and data (Fig. 6B and D). 

Comparing networks between two conditions is associated with a 
number of issues, as highlighted by De la Fuente (de la Fuente, 2010) 
and described below. Comparison of networks uses mainly the node 
degree, which is a measure of a gene’s number of connections in two 
networks. This approach is highly dependent on the threshold that is 
used for the edges that are included in the two different networks and 
has proven challenging, since it is unclear how to choose comparable 
thresholds for two different networks. We sought to overcome this 
challenge by computing a single DN. We established a two-step method 
in order to differentially analyze networks. First, we used KiMONo to 
compute prior-knowledge-based networks at vehicle-treated and 
following dexamethasone administration (treatment) conditions. Sec-
ond, DNs were computed using DiffGRN. DiffGRN uses a z test to 
calculate differential gene interactions based on the regression β values 
of gene pairs at the vehicle and treatment network (S1B Fig) (Kim 
Youngsoon, Jie Hao, Yadu Gautam, Tesfaye B. Mersha, 2018). This 
approach provides differential interactions, thus eliminating the prob-
lem of having to compare two networks. This way we could pinpoint not 
only which genes but also which interactions of specific genes mediate 
the network changes. Moreover, by using prior-knowledge guided net-
works (KiMONo) (Ogris et al., 2021), in which the expression of each 
gene is modeled by using the genes/proteins connected to it in a prior 
network as possible predictors in the regression model, we could 
compute vehicle and treatment networks of the same topological layout. 
This allowed for an even more robust comparison and reliable calcula-
tion of the z values for the DN. 

The use of biological knowledge in the form of a prior network, upon 
which the vehicle and treatment networks are built, is a substantial 
difference of KiMONo as compared to other network approaches such as 
weighted correlation network analysis (WGCNA) (Langfelder and Hor-
vath, 2008), which are built using correlation matrices without the use 
of prior-biological knowledge. DiffBrainNet is limited by a restricted 
search space, since it can only model interactions present in the prior 
network we chose to use. In the present analysis and the DiffBrainNet 
resource, we used FunCoup 5 to build our prior network (Persson et al., 
2021). FunCoup infers functional associations of genes or proteins using 
various data types and sources, including transcription factor binding 
sites, cellular and subcellular colocalization and protein-protein in-
teractions. The use of such functional associations on the gene or protein 
level inferred by a variety of experimental data as prior-knowledge for 
predicting networks reduces the risk of false positives since the search 
space is restricted to known interactions and adds functional 
protein-level information to the transcriptomic data. Since, we provide 
the source code of all analysis (https://github.molgen.mpg.de/mpip/ 
DiffBrainNet), a suitable prior network according to each research 
question can be chosen thus providing flexibility and specificity in hy-
pothesis testing. By using prior-knowledge, the network metrics 
(node-degree, node-betweenness, modularity) are influenced by the 
prior network. To overcome this, we used normalized node-betweenness 
for all our analyses, which is defined as the node-betweenness in the 
calculated network divided by the prior network node-betweenness. 

The combination of both gene- and network level analyses enriches 
our understanding of transcriptomic data and of biological implications. 
We showed that differential prior knowledge-based network analysis 
can unravel different and complementary aspects of the transcriptomic 
responses to a treatment as compared to individual gene-level analysis 
(DE). For example, we showed that in the PFC neither of the differential 
hub genes were also DE genes and that DE and DN analyses revealed 
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Fig. 5. DiffBrainNet can support exploring network changes related to candidate genes: the case of Tcf4. (A) Tcf4 is differentially expressed in the ventral and 
dorsal dentate gyrus (v/dDG) and in the AMY after 10 mg/kg intraperitoneal dexamethasone treatment for 4 h. (B) Tcf4 DN in PFC. (C) Tcf4 PFC DN is enriched for 
genes that carry SNPs associated with the GWAS traits schizophrenia, autism spectrum disorder or schizophrenia, adventureness and general risk tolerance among 
others. (D) GO biological processes enrichment analysis shows that members of the Tcf4 PFC differential network are associated with development, neuronal dif-
ferentiation, RNA biosynthetic processes and gene expression but also with regulation of autophagy (bold). (E) Differential network of Tcf4 in both vDG and dDG 
(left). Zoom-in on a highly interconnected part of the DG Tcf4 DN (right). Colored with red are all the connections with a positive regulatory effect in dDG and a 
negative regulatory effect in vDG, colored in black are all the connections with a negative regulatory effect in dDG and a positive in vDG and colored in green is one of 
the connections that has a positive regulatory effect in both areas. (F) Tcf4 molecular pathways that are co-regulated in an opposite manner in vDG and in dDG. Tcf4 
connections with the Zic transcripts and with Satb2 and Nfia have a positive regulatory effect in vDG and a negative one in dDG whereas Tcf4 connections with 
Runx2, Egr1 and R3hdm4 have a negative regulatory effect in vDG and a positive in dDG. (Enrichment analyses are done with at least 10% of the input genes having to 
overlap with the genes of the term.). 
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distinct aspects of the transcriptomic responses. The DE genes explained 
effects mainly on signaling and development whereas the members of 
the DN explained mainly the cellular responses to the stimulus. 

DNs can be used to resolve underlying biological responses that are 
not detected by DE analysis. We identified Abcd1 as the top differential 
hub gene in the PFC, which was not detected as a DE gene itself. ABC 
proteins are actively transporting GCs, including dexamethasone across 
the blood brain barrier and the placenta (Müller et al., 2003; Uhr et al., 
2002). ABC transporters, synaptic biology and neuropsychiatric phe-
notypes have been previously associated in the literature. Abcd1-defi-
cient microglia have been correlated with synaptic loss and axonopathy 
(Gong et al., 2017) pointing to an Abcd1-dysregulated network associ-
ation with synaptic signaling problems. Abcb1, another member of the 
ABC transporters family, has been associated with stress adaptation and 
potential mediation of stress-related psychiatric disorders phenotypes 
(Lopez et al., 2021). These findings highlighted that the exclusive 
analysis of transcriptomic data at the gene-level does not capture all 
aspects of the transcriptional response to a stimulus, and the DN analysis 
can unravel distinct but complementary aspects that can lead to specific 
molecular pathways identification. 

Finally, networks can be used for hypothesis generation and testing 
by choosing a suitable prior network. This approach can be exploited to 
generate hypotheses regarding the interactive effects of environmental 
exposures and the molecular underpinnings of specific genes. Using 
DiffBrainNet, we analyzed the effects of dexamethasone on the co- 
expression network of a major psychiatric risk gene, Tcf4, in 3 
different brain regions. Tcf4 is expressed in the cortex, the hippocampus 
and the hypothalamic and amygdaloid nuclei predominantly at the end 

of prenatal life decreasing to lower expression levels throughout adult-
hood (Teixeira et al., 2021) and was shown to regulate neural progenitor 
cell maintenance and proliferation (Mesman et al., 2020). Animal 
models of gain and loss of function of Tcf4 have shown its relevance for 
cognition, sensorimotor gating and neuroplasticity (Badowska et al., 
2020). In addition, gene x psychosocial stress interactions have been 
reported for Tcf4 (Volkmann et al., 2021), but little is known about 
relevant molecular pathways and brain regions for this interaction. With 
DiffBrainNet, we showed that Tcf4 mediates GC effects in two sub-
regions of the hippocampal formation, ventral and dorsal DG, at the 
gene- and at the network-level since it is DE in those but only differential 
at the network-level for the PFC where it is not a DE gene. The PFC DN of 
Tcf4 was enriched for terms that include autophagy. The connection of 
Tcf4 and autophagy has been previously described in the literature 
(Petherick et al., 2013) but this is, to our knowledge, the first report of a 
potential role of Tcf4 in stress-related regulation of autophagy. This 
approach can be extended to the investigation of a wide spectrum of 
different gene lists - produced by GWAS studies for example - both at 
vehicle and after glucocorticoid exposure in a brain region-specific 
manner using DiffBrainNet. The results can be used to design more 
focused experiments to resolve targeted molecular mechanisms impli-
cated in the pathogenesis of brain disorders. 

In summary, through DN analysis we were able to identify specific 
molecular connectivity patterns governing transcriptomic responses to 
glucocorticoids that are not unraveled when investigating the differen-
tial gene expression levels alone. In our dataset, we inferred DNs in 8 
mouse brain regions including a detailed segmentation of the hippo-
campal formation. With this work, we introduce DiffBrainNet, a 

Fig. 6. DiffBrainNet: a resource of gene expression and network data for 8 mouse brain regions. 
(A) DiffBrainNet includes gene expression and network data for 8 mouse brain regions at vehicle, dexamethasone and differential levels. (B) DiffBrainNet provides 
network data for all 8 brain regions alone or in combination at vehicle, treatment and differential levels. The data can be downloaded and plotted in the app. (C) 
DiffBrainNet provides gene expression data for all 8 brain regions. The data can be downloaded and plotted in the app. (D) The data both at the network- and the 
gene-levels can be downloaded using different thresholds of significance, fold change and node-betweenness. 
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resource and an analytical framework that includes both gene expres-
sion data and prior-guided genome-wide networks in these 8 brain re-
gions at control (vehicle-treated), following GCs stimulation and at the 
differential level. DiffBrainNet can be used to pinpoint molecular 
pathways important for the basic function and response to GCs in a 
brainregion-specific manner. It can also support the identification and 
analysis of biological processes regulated by brain and psychiatric dis-
eases risk genes at the control and differential levels. We made these 
complex datasets and analyses available to all interested researchers via 
DiffBrainNet (access: http://diffbrainnet.psych.mpg.de, Fig. 6). 
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