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ABSTRACT
Background: Epidemiological studies have indicated that exposure of the heart to doses of ioniz-
ing radiation as low as 0.5Gy increases the risk of cardiac morbidity and mortality with a latency
period of decades. The damaging effects of radiation to myocardial and endothelial structures and
functions have been confirmed radiobiologically at high dose, but much less are known at low
dose. Integration of radiation biology and epidemiology data is a recommended approach to
improve the radiation risk assessment process. The adverse outcome pathway (AOP) framework
offers a comprehensive tool to compile and translate mechanistic information into pathological
endpoints which may be relevant for risk assessment at the different levels of a biological system.
Omics technologies enable the generation of large volumes of biological data at various levels of
complexity, from molecular pathways to functional organisms. Given the quality and quantity of
available data across levels of biology, omics data can be attractive sources of information for use
within the AOP framework. It is anticipated that radiation omics studies could improve our under-
standing of the molecular mechanisms behind the adverse effects of radiation on the cardiovascu-
lar system. In this review, we explored the available omics studies on radiation-induced
cardiovascular disease (CVD) and their applicability to the proposed AOP for CVD.
Results: The results of 80 omics studies published on radiation-induced CVD over the past
20 years have been discussed in the context of the AOP of CVD proposed by Chauhan et al. Most
of the available omics data on radiation-induced CVD are from proteomics, transcriptomics, and
metabolomics, whereas few datasets were available from epigenomics and multi-omics. The omics
data presented here show great promise in providing information for several key events (KEs) of
the proposed AOP of CVD, particularly oxidative stress, alterations of energy metabolism, extracel-
lular matrix (ECM), and vascular remodeling.
Conclusions: The omics data presented here shows promise to inform the various levels of the
proposed AOP of CVD. However, the data highlight the urgent need of designing omics studies to
address the knowledge gap concerning different radiation scenarios, time after exposure, and
experimental models. This review presents the evidence to build a qualitative omics-informed AOP
and provides views on the potential benefits and challenges in using omics data to assess risk-
related outcomes.
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Introduction

Experimental evidence for the cardiovascular impacts of ion-
izing irradiation has been described since the late 1890s in
poikilotherm species and the early 1920s in homeotherm

species (Desjardins 1937). The circulatory system has long
been considered to be relatively radioresistant, such that
higher doses (e.g. therapeutic radiation exposure with
40–80Gy in 1.8–2Gy daily fractions) are required to cause
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damage, in particular degenerative changes (ICRP 1984).
However, since the late 1990s, there has been mounting epi-
demiological evidence for increased risk of diseases of the cir-
culatory system (DCS) at dose and dose rates much lower
than previously thought (Kreuzer et al. 2015; Little et al. 2021;
Tapio et al. 2021). The International Commission on
Radiological Protection (ICRP), in 2011, recommends the
nominal threshold of 0.5Gy to the heart for cardiovascular
disease (CVD) and to the brain for cerebrovascular disease
(CeVD) (Stewart et al. 2012), independent of rate of dose
delivery, i.e. assuming no dose rate effect. In 2021, the United
Nations Scientific Committee on Effects of Atomic Radiation
(UNSCEAR) established an expert group to prepare a report
on the scientific basis of radiogenic DCS, and ICRP estab-
lished Task Group 119 to prepare a report on the implications
of such radiogenic DCS in the radiation protection system.

In the context of radiation protection, especially for sto-
chastic effects (i.e. cancer and heritable effects) of low linear
energy transfer radiation, the dose <0.1Gy is defined as low
dose, 0.1–1Gy as moderate dose, 1–5Gy as high dose, and
>5Gy as very high dose. For dose rate, <0.005Gy/h is
defined as low dose rate, 0.005–0.1Gy/h as moderate dose
rate, and >0.1Gy/h as high dose rate (R€uhm et al. 2015;
Little et al. 2021, 2022b). The epidemiological studies per-
formed on exposed populations such as Japanese atomic
bomb survivors serve as the basis of linear-non-threshold
(LNT) model applied in radiation risk assessment of cancer
for more than half a century. Such approach facilitates linear
extrapolation of data from high and medium doses to low
dose radiation. However, there are considerable uncertainties
in assessing the risk-related outcomes at low doses or low
dose rates (Preston 2017; Shore et al. 2018). Several national
and international organizations of radiation protection have
recommended integrating the data of radiation biology and
epidemiology to improve the radiation risk assessment pro-
cess (Hamada and Fujimichi 2014; NCRP 2020; Chauhan,
Beaton, et al. 2022; NASEM 2022). The integration of experi-
mental and epidemiological data has been introduced by sev-
eral radiation biologically based dose-response (BBDR)
models to estimate cancer risk (Preston 2015, 2017; R€uhm
et al. 2017; Preston et al. 2021). Among non-cancer endpoints
of radiation exposure, disease of the circulatory system,
including CVD, is the main domain for which radiation
experimental data (e.g. on potential biomarkers) are becoming
increasingly available and could be incorporated into epi-
demiological studies. However, compared to carcinogenesis,
only a few mechanistic risk models have been developed for
radiation-induced CVD. These early models were mainly con-
cerned with the impact of cholesterol metabolism on athero-
sclerosis but have not been fitted to radiation epidemiological
cohorts (Cobbold et al. 2002; Little et al. 2009; Mc Auley
2022). The recently developed BBDR model for late CVD risk
after radiotherapy (RT) applied to breast cancer patients aims
to address this issue using integration of experimental and
clinical data (Simonetto, Kaiser, et al. 2022).

The AOP approach has been developed in the chemical
toxicology field to assemble current knowledge on key
events (KEs) that underlie disease progression (Villeneuve

et al. 2014) and has been identified as being instrumental
for the successful implementation of mechanistic data into
research and regulatory framework (Ankley et al. 2010). An
AOP is an analytical construct that begins with a molecular
initiating event (MIE). It describes the sequential chain of
KEs and causally linked key event relationships (KERs) at
different levels of biological organization as it leads to an
adverse outcome (AO) of interest to regulatory decision-
making (Ankley et al. 2010).

In 2012, the Organization for Economic Co-operation
and Development (OECD) launched a formal framework to
provide the structure for building high-quality AOPs
(OECD 2018). The framework allows the assembly of know-
ledge across scientific disciplines using evidence streams
defined by the modified Bradford-Hill (B-H) criteria (Becker
et al. 2015). This informs the weight of evidence of an AOP,
derived from information on biological plausibility, empir-
ical evidence, the essentiality of KEs and any documented
uncertainties. As fluid documents, AOPs can continually
evolve as new data or methods become available.

Because KEs are conceptually defined by interactions of
different genes, proteins, or metabolites, omics data have the
potential to contribute to the development and evaluation of
AOP. The advances in high-throughput molecular analysis
have completely reformed our understanding of biological
processes. Mainstream omics are powerful analytical tools
for the study of various biomolecules in a biological system
at a given time and status (Vailati-Riboni et al. 2017). The
DNA, epigenetic modifications, RNA, proteins, lipids, extra-
cellular signaling molecules, and metabolites are the target
molecules for genomics, epigenomics, transcriptomics, pro-
teomics, lipidomics, secretomics, and metabolomics, respect-
ively. The application of omics is rapidly emerging in
different research areas and clinical investigations.

The first application of omics in radiation biology was
published more than two decades ago, but omics profiling is
yet young in radiation research (Azimzadeh, Gomolka, et al.
2021; Subedi et al. 2022). With the omics studies in radi-
ation biology, the researchers can address several issues
related to the biological effects of radiation exposure, radi-
ation biomarkers, the individual difference in radiation
response, and risk assessment (Pernot et al. 2012;
Amundson 2021; Hladik et al. 2022; Subedi et al. 2022).

Omics data can contribute to a deeper understanding of
molecular events associated with AOPs. The chemical and
ecological fields have recently directed efforts toward inte-
grating omics data within AOPs to refine and strengthen
their predictive utility. The results from different omics
studies have already been used in the development of AOP
in chemical risk assessment in toxicology (Ankley et al.
2010; Villeneuve et al. 2014; Brockmeier et al. 2017).
However, the applicability of omics data for regulatory pur-
poses remains debatable, mainly due to the lack of standar-
dized approaches for conducting and interpreting omics
experiments on the one hand, and the gap between quantita-
tive omics results and measurable phenotypic endpoints on
the other hand (Sauer et al. 2017).
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An optimal example for the application of omics data in
the chemical toxicology field is benchmark dose (BMD)
modeling to identify a point of departure at which a defined
change from the control occurs that signifies a relevant
phenotypic change (Filipsson et al. 2003). Studies have dem-
onstrated transcriptional BMD values to be highly correlated
with toxic doses of chemicals derived using traditional ani-
mal models. More recently, the approach has been applied
to radiation datasets and has shown promise in identifying
the point of departures of molecular pathway with reprodu-
cibility across datasets generated at different institutions
(Chauhan et al. 2016; Chauhan, Rowan-Carroll, et al. 2019).
Such an approach would be valuable to integrate within the
KERs of an AOP and could be explored through case
studies.

The AOP framework has increasingly gained attention
from the radiation community as a means to advance the
mechanistic understanding of the health effects of exposure
to ionizing radiation at low dose and low dose rates
(Chauhan, Said, et al. 2019; Chauhan, Hamada, et al. 2021;
Chauhan, Wilkins, et al. 2021; Hamada et al. 2021; Preston
et al. 2021; Chauhan, Hamada, et al. 2022; Hamada et al.
2022, in press). The overarching objective of such an
approach is to identify the sequence of critical KEs leading
to an AO and to identify robust bioindicators for the
adverse pathological events. Subsequently, the biological
dose-response data provided by bioindicators should be
combined with epidemiological data in BBDR models to
improve risk assessment.

In this context, a recent workshop on AOPs, organized
by the Multidisciplinary European Low Dose Initiative
(MELODI) and the European Radioecology Alliance associa-
tions (ALLIANCE), was held virtually on 12–16 April 2021.
A working group was formed of experts in the field of CVD
from both regulatory and research institutions, discussed the
development of an AOP network for radiation-induced
CVD (Chauhan, Hamada, et al. 2021). The group members
deliberated on various exposure scenarios, potential toxicity
mechanisms, the MIE, KEs, and their potential relationships.
Based on these initial expert discussions, the group proposed
an AOP for CVD (Chauhan, Hamada, et al. 2021). The
AOP network is preliminary and describes biologically
plausible mechanisms for cardiac toxicity at multiple levels
of organization from molecular, cellular, and tissue to organ
levels. It comprises three main branches: endothelial dys-
function, metabolic and extracellular matrix (ECM) remod-
eling leading to vascular, myocardial pathology, and fibrosis.
The potential cellular interplay in irradiated cardiac tissue
was also considered by proposing some bidirectional rela-
tionships between KEs (Chauhan, Hamada, et al. 2021). The
next steps involve a documented assessment of the literature
to support causal linkages of the KERs.

Here, we provide a summary of omics data that may
inform the proposed radiation-induced CVD AOP. In par-
ticular, we describe the characteristics of omics profiles
available in radiation research, including transcriptome,
proteome, secretome, epigenome, metabolome and those
from multi-omics analyses. We discuss the potential and

deficiencies of omics data that can be used in the develop-
ment of AOP for radiation-induced cardiovascular effects.
The review also points to scientific and analytical domains
of radiation research where sufficient omics data are not yet
generated and interpreted.

Search criteria

All searches were performed in NCBI PubMed (https://
pubmed.ncbi.nlm.nih.gov/advanced/) (accessed 25 April
2022). A combination of keywords, including the name of
the omics platform, cardiovascular, and radiation, was
searched in title/abstract of studies published from 2000 to
2022 as follows:

For genomics: (‘genome�’[Title/Abstract] OR (‘GWAS’[Title/
Abstract] AND ‘cardiovascular’[Title/Abstract] AND
(‘radiation’[Title/Abstract])

For Epigenetics: (‘epigenom�’[Title/Abstract] OR ‘dna
methylation’[Title/Abstract]) AND ‘cardiovascular’[Title/Abstract]
AND ‘radiation’[Title/Abstract])

For transcriptomics: (‘transcriptom�’[Title/Abstract] OR
‘microarray’[Title/Abstract] OR ‘rna seq’[Title/Abstract]) AND
‘cardiovascular’[Title/Abstract] AND ‘radiation’[Title/Abstract]

For miRNA array: (‘miRNA�’[Title/Abstract] AND
‘cardiovascular’[Title/Abstract] AND (‘radiation’[Title/Abstract])

For Proteomics: (‘proteom�’[Title/Abstract] AND
‘cardiovascular’[Title/Abstract] AND (‘radiation’[Title/Abstract])

For Secretome: (‘secretom�’[Title/Abstract] OR ‘exosome�’[Title/
Abstract] OR ‘extracellular vesicle’ [Title/Abstrcact]) AND
‘cardiovascular’[Title/Abstract] AND ‘radiation’[Title/Abstract]

For metabolomics and lipidomics: (‘metabolom�’[Title/Abstract]
OR ‘lipidom�’[Title/Abstract]) AND ‘cardiovascular’[Title/
Abstract] AND ‘radiation’[Title/Abstract]

To cover a full range of data, no exclusion criteria were
applied for experimental models, radiation exposure scen-
arios (e.g. dose, dose rate, and radiation quality), and time
after exposure. This is consistent with guidelines for AOP
development, whereby all studies irrespective of dose range
were included, similar to an earlier commentary (Chauhan,
Hamada, et al. 2021).

Results of the literature search

The PubMed search using the searching matrices applied in
the title/abstract returned 108 articles. These articles were
subjected to full-text review by authors to ascertain if they
had original omics analyses. Among these, 41 articles (2 epi-
genomic, 11 transcriptomic, 2 miRNA, 23 proteomic, 1
secretomic, and 2 metabolomic analyses) qualified for inclu-
sion. As the automatic PubMed search does not necessarily
identify all relevant existing articles (Little et al. 2021, 2022a,
2022b; Subedi et al. 2022), additional articles and reviews (3
epigenomics, 7 transcriptomics, 7 miRNA, 7 proteomics, 13
metabolomics, and 8 secretomics) were manually selected by
authors and included in the final list. Finally, 80 articles
were discussed in the context of AOP CVD proposed by
Chauhan, Hamada, et al. (2021). Proteomics (27 studies),
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transcriptomics (16 studies), and metabolomics (15 studies)
accounted for a large part (>70%) of all omics data included
here. Only a few profiles were available for epigenomics (3
studies), miRNA (7 studies), and secretomics (6 studies)
analyses of the cardiovascular system after irradiation. The
articles for multi-omics (5 studies), and systems biology (1
study) were also manually included indicating significant
research and knowledge gaps in these areas.

Genomics

Genomics is the analysis of an individual’s whole DNA,
such as gene variants and single nucleotide polymorphisms
(SNPs). The evolving large amount of data on human gen-
etic information provides insights into susceptibilities and
has the potential to be incorporated into risk assessments
(Mortensen et al. 2018).

Various risk factors (e.g. high cholesterol and hyperten-
sion) and genetic factors (e.g. gene variants) are strongly
recognized in CVD research. For example, the heritability of
coronary artery disease (CAD) has been estimated at 40%,
suggesting a strong genetic contribution to the disease
(McPherson and Tybjaerg-Hansen 2016). Genome-wide
association studies (GWAS) have identified �300 risk loci
for CAD and myocardial infarction (Chen Z and Schunkert
2021). Moreover, large-scale, genome-wide, and targeted
genetic association data have been combined to develop a
genomic risk score for CAD (Inouye et al. 2018). To address
the question of how the GWAS-identified risk variants func-
tion to increase the risk of CAD, Selvarajan et al. presented
an integrative genomics approach representing a compre-
hensive effort in identifying putative causal regulatory
regions and target genes that could predispose to clinical
manifestation of CAD by affecting liver function (Selvarajan
et al. 2021). The contribution of genetic predisposition to
radiation sensitivity or radiation resistance in cancer is well
accepted; however, the knowledge in the area of radiation-
induced non-cancer effects is not very advanced (Foray
et al. 2016; Rajaraman et al. 2018). In recent years, some
associations between SNPs and long-term normal tissue
radiation toxicities in the bowel, esophagus, lung, and skin
were identified (Kerns et al. 2020). However, studies on gen-
omics and radiation-induced cardiotoxicity are completely
lacking. Neither our own search strategy nor other review
work identified suitable studies (Tapio et al. 2021).

Epigenomics

Epigenetic modifications are dynamic modifications of the
genome (e.g. DNA methylation and histone modification)
that confer heritable changes in gene expression without
altering the genome sequence (Dupont et al. 2009). GWAS
analyses have identified several CAD and myocardial infarc-
tion-associated variants located in the non-coding regions of
the genome, emphasizing the role of epigenetics in patho-
genesis (€Ord et al. 2021). A series of recent systematic
reviews highlight epigenetic aspects in gene expression
linked to the pathophysiology of CVD and related risk

factors such as atherosclerosis, inflammation, hypertension,
and diabetes (Muka, Nano, et al. 2016; Gonzalez-Jaramillo
et al. 2019; Sallam et al. 2022).

Gene-specific studies suggest a higher frequency of
methylation marks in CVD for genes involved in cholesterol
transport and for mitochondrial cytochrome c oxidases but
not for mitochondrial ATP synthases (Muka, Koromani,
et al. 2016; Sallam et al. 2022). Higher frequency of methyla-
tions was also associated with myocardial infarction related
to one-carbon metabolism while stroke was associated with
lower frequency methylation at the TNF-alpha promoter
(Muka, Koromani, et al. 2016). Heart diseases were associ-
ated with a greater frequency of methylation at the F7 pro-
moter and genomic regions associated with genes for the
ATP binding cassettes, estrogen receptor-alpha, inhibitors of
metalloproteinases, and phospholipase A2 Group VII
(Muka, Koromani, et al. 2016). Functional analysis of the
differentially methylated genes (DMGs) revealed an associ-
ation with various pathophysiological mechanisms of CVD,
such as inflammatory responses, lipid metabolism, oxidative
stress, and endothelial dysfunction, as well as with signaling
pathways, such as JAK/STAT, PI3K, and interleukin (Sallam
et al. 2022). The single-cell sequencing in cells derived from
human atherosclerotic lesions demonstrated that genetic var-
iants associated with CAD are mainly enriched in vascular
endothelial and smooth muscle cell-specific open chromatin
(€Ord et al. 2021), further highlighting the importance of
gene regulation.

Radiation-induced epigenetic alterations, especially
changes in DNA methylation on both a global and a gene-
specific scale are described in several normal (fibroblasts)
and tumor (e.g. colorectal carcinoma) cells and tissues (e.g.
thymus and spleen) (Pogribny et al. 2005; Koturbash et al.
2007; Aypar et al. 2011; Goetz et al. 2011; Luzhna et al.
2015; Koturbash et al. 2016; Miousse et al. 2017). Radiation-
induced DNA methylation seems to be highly complex and
depends on several variables such as radiation quality, dose,
dose rate, time of sampling, and the biological model.

Investigation of epigenetics in radiation-induced CVD is
relatively new; however, a potential contribution of epigen-
etic mechanisms in radiation-induced CVD has been
recently proposed (Sallam et al. 2022). Among the various
types of epigenetic processes, only DNA methylation has
been investigated in a few studies on irradiated hearts
(Impey et al. 2016; Koturbash et al. 2016; Seawright
et al. 2017).

Koturbash et al. analyzed changes in cardiac DNA methy-
lation patterns in C57BL/6J male mice exposed to space
radiation: protons (0.1Gy), and iron ions (0.5Gy). The
authors described hypomethylation of retrotransposon
LINE-1 at 7 and 90 d after heavy iron irradiation. This event
is associated with alterations in the one-carbon metabolism
pathway particularly the metabolism of methionine that con-
tributes to the synthesis of S-adenosylmethionine (SAM),
the main donor of methyl groups for DNA methylation
(Koturbash et al. 2016). Seawright et al. analyzed the methy-
lation potential of cardiac tissue in female, C57BL/6J mice at
7 d, 1, 4, and 9months after exposure to low-dose-rate
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c-irradiation (4 cGy at 0.01 cGy/h). The analysis showed the
reduction in the SAM: S-adenosylhomocysteine (SAH) ratios
at 7 d and 1month after exposure suggesting impaired DNA
methylation (Seawright et al. 2017). Impey et al. showed
persistent changes in the DNA methylation pattern of the
left ventricle of 6-month-old C57BL/6J male mice, 22weeks
after total body irradiation (TBI) with 1Gy of protons. The
gene ontology analysis of these DNA regions indicated
changes in the signaling pathways enriched for genes contri-
buting to the heart development and differentiation (Impey
et al. 2016). Yao et al. have recently analyzed the changes in
cardiac DNA methylation and RNA expression profiles in a
rat model of radiation-induced fibrosis (Yao et al. 2022).
The study showed a negative regulation between methylation
changes and RNA expression levels of 44 genes in the heart
at 6months after local exposure to 18Gy suggesting a pos-
sible molecular mechanism involved in radiation-induced
heart fibrosis.

It is important to note that the CVD pathways that are
described in the context of methylation changes (Sallam
et al. 2022) are well known in the pathogenesis of irradiated
hearts (Baselet et al. 2019; Ramadan, Claessens, et al. 2021;
Tapio et al. 2021). This encourages further investigation of
DNA methylation as a possible contributor to radiation-
induced CVD.

Transcriptomics

The transcriptome is defined as the complete collection of
RNA transcripts that are produced in a cell- and circum-
stance-specific manner by the genome. Transcriptomics is
the study of this collection using various high-throughput
methods, such as microarray analysis and RNA sequencing
(Wang Z et al. 2009). The comparison of transcriptomes
allows the identification of genes that are differentially
expressed in distinct cell populations and/or conditions.

In the field of radiation-induced CVD, 16 transcriptomic
studies have thus far been published from 2005 to 2022. A
summary of these studies is presented in Table 1.

Transcriptomic studies on irradiated endothelial cells
demonstrate an acute activation of the typical DNA damage
response associated with cell cycle repression, decreased cell
proliferation, induction of oxidative stress signaling, and an
increased inflammatory state (Baselet, Belmans, et al. 2017;
Baselet et al. 2019). While it is still to be understood what
causes this pro-inflammatory reaction in endothelial cells
after radiation exposure, a plausible explanation would be
the release of damage-associated molecular patterns
(DAMPs) by stressed and dying endothelial cells (Sun et al.
2013). In the collected transcriptomic studies, only one art-
icle identified pathways linked to apoptosis after exposure to
20Gy of X-rays (Wu Q et al. 2020). Increased pro-inflam-
matory response of endothelial cells is linked to radiation-
induced chronic oxidative stress, which has been shown to
affect the endothelial function by activating redox-sensitive
transcription factors, such as NF-jB, AP-1, and Nrf2 (Marui
et al. 1993; Gaboury et al. 1994; Rahman et al. 1999;
Griendling et al. 2000; Awad et al. 2013). In good agreement

with these findings, alterations in expression levels of the
genes related to inflammatory pathways including MAPK,
TGF beta, and NF-kB-related signaling were identified in
the listed transcriptomic studies (Boerma et al. 2005; Halle
et al. 2010b; Seemann et al. 2013; Coleman et al. 2015;
Subramanian et al. 2017). In the end, this inflammatory cas-
cade could lead to the activation of leukocyte adhesion and
migration to cardiovascular tissue (Gupta and Gangenahalli
2019). Inflammation also plays a key role in the develop-
ment and progression of atherosclerosis (Libby 2002). A
comparison of the transcriptome of arterial biopsies from
irradiated patients with control subjects revealed alterations
in a group of genes involved in the NF-kB-related pathway,
suggesting persistent inflammation years after irradiation
(60.4Gy (range 50–68Gy) (Halle et al. 2010a).

Senescent endothelial cells are an emerging contributor to
the pathogenesis of atherosclerosis (Wang Y et al. 2016) and
are present in human atherosclerotic plaques (Minamino
et al. 2002). As early as 14 d after exposure to a single dose
of 2Gy X-rays, premature endothelial senescence was identi-
fied (Baselet, Belmans, et al. 2017). Different pathways con-
tribute to radiation-induced senescence, such as persistent
activation of p53 signaling after 8.5Gy (Boerma et al. 2005)
or 2Gy (Baselet, Azimzadeh, et al. 2017), which is usually
associated with persistent DNA damage (Rufini et al. 2013).
Furthermore, chronic inflammation, observed acutely after
radiation exposure, can in theory also be a cause of cellular
senescence (Freund et al. 2010; Kojima et al. 2013). In this
context, chronic inflammation may cause cellular senescence
by inducing the expression of p53 and related family mem-
bers p21, p16, and p14 by persistent NF-jB activation and
oxidative stress (Ren et al. 2009), which has also been identi-
fied by the listed transcriptomic studies. However, this can-
not explain the induction of senescence at low X-ray doses,
at which endothelial activation was not observed (Baselet,
Belmans, et al. 2017). Identification of radiation-induced
endothelial senescence at doses above 0.5Gy agreed with
other findings. Chronic low-dose-rate c radiation (4.1 mGy/
h) led to premature senescence in HUVECs by the induc-
tion of the p53/p21 pathway (Yentrapalli, Azimzadeh,
Barjaktarovic, et al. 2013). Further analysis revealed PI3K/
Akt/mTOR pathway inactivation, which may directly induce
premature senescence by increasing the expression of p21
(Yentrapalli, Azimzadeh, Sriharshan, et al. 2013). At the
gene expression level in these cells, the IGFBP5-related path-
ways were affected after irradiation (1.4 and 4.1 mGy/h),
which is known to inhibit cell proliferation through a p53-
dependent mechanism (Kim et al. 2007; Rombouts et al.
2014). Similarly, the downregulation of the genes related to
PI3K/Akt/mTOR/eNOS and alteration of several senescence-
associated genes was observed in the transcriptome profile
of the endothelial cells isolated from mouse heart 16weeks
after local exposure of the heart to 16Gy (Azimzadeh
et al. 2015).

Exposure of the Est2-immortalized human coronary
artery endothelial cells (HCAECs), to a dose of 10Gy of X-
rays has been shown to induce premature aging by epigen-
etic activation of CD44 expression (Lowe and Raj 2014).
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The target transcriptomics analysis on these cells, 14 d after
irradiation (10Gy), indicated significant changes in the set
of genes related to the interferon-mediated pathway (Philipp
et al. 2017).

The transcriptome profiles of other irradiated cardiac
cells have not been frequently studied. The transcriptomic
response of human-induced pluripotent stem cells (hiPSC)-
derived cardiomyocytes to 5Gy was also examined by RNA
sequencing. The study identified alterations in genes
involved in oxidative stress and cardiac calcium homeostasis
(Becker et al. 2018). Analysis of the genes of neonatal rat
cardiac myocytes and fibroblasts after 8.5Gy of X-ray irradi-
ation revealed alterations in the genes responsible for oxida-
tive stress, the p53 signaling pathway, as well as cholesterol
and fibrosis (Boerma et al. 2005). Fibrosis was also an iden-
tified endpoint in whole heart tissue transcriptome per-
formed on 8–12weeks old male C57BL/6 mice several weeks
after local exposure to 16Gy (Seemann et al. 2013;
Subramanian et al. 2017). The studies identified alterations
in several genes related to TGF beta signaling, leading to
increased collagen deposition and the onset of fibrosis
(Seemann et al. 2013; Subramanian et al. 2017).

The transcriptomic data showed changes in the expres-
sion levels of several genes involved in the response of the
cardiovascular system to radiation including DNA damage,
cell–cell adhesion, inflammation, fibrosis, and senescence. It
is important to note that radiation-induced changes in the
transcriptome related to dose and dose rate, as well as time
after irradiation and radiation quality, need to be further
investigated.

miRNA

Besides protein-encoding RNAs, a plethora of non-coding
RNAs is transcribed. One group are small, non-coding
microRNAs (miRNAs) involved in post-transcriptional gene
regulation. The impact of miRNAs on the cellular response
to radiation has been described (Moertl al. 2016). They have
been suggested to be predictive biomarkers of response to
RT as well as potential drug targets to modulate radiosensi-
tivity (Moertl et al. 2016). miRNAs also contribute to a
broad spectrum of physiological processes in the cardiovas-
cular system and aberrant expressions are linked with patho-
logic developments (Nouraee and Mowla 2015; Zhou et al.
2018). The role of miRNA alterations in initiation, progres-
sion, diagnosis, and prognosis of a broad range of CVD
including heart failure, acute myocardial infarction, and
arrhythmia is described (Zhou et al. 2018). Several mRNA
and proteins involved in cardiac cell biology, cell survival
and apoptosis, autophagy, and cytoskeleton organization
have been reported as targets for up- or downregulation of
miRNAs in the heart (Zhou et al. 2018).

There were 7 studies published from 2011 to 2022 that
analyzed the deregulation of miRNAs in cardiovascular cells
in in vitro or in vivo models after irradiation. A summary
of these studies is presented in Table 2. Several of these
studies investigated the role of selected CVD-related
miRNAs. Alterations in miRNAs including miRNA-1, -15 b,Tr
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-21, -208, -133, -29, -199 b, -221, -222, and -155 have been
detected in various irradiated cells/tissues of the cardiovas-
cular system (Kura et al. 2017; Chen Y et al. 2021).

Espluggas et al. analyzed the radiation-induced changes
in miRNA-146a, -155, -221, and -222 in HUVECs at 2 and
24 h after 2Gy exposure (Esplugas, Bell�es, et al. 2019). These
miRNAs are involved in CVD and contribute to endothelial
dysfunction, lipid metabolism, inflammation, oxidative
stress, apoptosis, and angiogenesis. In good agreement with
these findings, the changes in the same miRNAs were found
in the blood of RT-treated women with breast cancer
(Esplugas, Arenas, et al. 2019).

The changes in miRNA-17-5p, -21, -7 b, -125a, -146 b-5p,
and -10a were investigated in irradiated primary HCAEC at
4 and 24 h after irradiation with 0.2Gy. Among these
miRNAs, miRNA-21 was significantly downregulated at 4 h
after irradiation and miRNA-146b was significantly upregu-
lated at 24 h after irradiation (Barjaktarovic, Anastasov, et al.
2013). The authors found a negative correlation between
miR-21 levels and the structural proteins as the predicted
targets.

An increased level of miRNA-21 was identified in cardiac
mouse tissue after local high dose (16Gy) irradiation
(Subramanian et al. 2017). Kura et al. reported downregula-
tion of miRNA-1 and miRNA 15b and upregulation of
miRNA-21 in the rat heart exposed to a single dose of 25Gy
(Kura et al. 2016). Azimzadeh et al. analyzed the alterations
of miRNA in heart autopsies of plutonium enrichment plant
workers by TaqMan-miRNA assays (Azimzadeh, Azizova,
et al. 2017; Azimzadeh et al. 2020). The workers included in
the study were occupationally exposed to low and moderate

external radiation doses (<0.1Gy, 0.1–0.5Gy, and >0.5Gy)
throughout their working life and were later diagnosed and
later died with ischemic heart disease similar to the unex-
posed control group. Increased levels of miRNA-21 and
�146 as potential biomarkers of CVD were also reported in
an analysis of a group of workers exposed to the highest
chronic dose (>0.5Gy).

Only a few studies applied array platforms to analyze the
effect of irradiation on global miRNA profiles. Aryankalayil
et al. used Agilent Mouse miRNA arrays to investigate
changes in miRNA in mouse cardiac tissue at 48 h after TBI
with 1, 2, 4, 8, and 12Gy. The authors identified significant
upregulation of miR-149-3p, -6538, -8101, -7118-5p, -211-
3p, and -3960 in irradiated hearts at the highest dose
(12Gy) (Aryankalayil et al. 2021).

Wagner-Ecker et al. analyzed 315 miRNAs in human
microvascular endothelial cells (HDMEC) after 2Gy irradi-
ation. The authors found upregulated miRNA let-7g, -16, -20a,
-21, and -29c, while miR-18a, -125a, -127, -148 b, -189, and
-503 were downregulated 6h after exposure to 2Gy. Individual
analysis of miR-125a, -127, -189, and let-7g by overexpression/
inhibition identified miRNA changes as regulators of radiosen-
sitivity in HDMEC (Wagner-Ecker et al. 2010).

Kraemer et al. compared global miRNA expression of
sham-irradiated and irradiated EA.hy926 cells and HUVECs
using TaqManVR Low-Density Array A version 2 (Applied
Biosystems, Foster City, USA), at 4 and 24h after single
irradiation with 2.5Gy. The authors found a wide range of
changes in various miRNAs, including downregulation of 4
miRNAs (let-7d, -519e, -323-3p, and -517b) and upregulation
of 1 miRNA (miR-518b) both 4 and 24h after irradiation.

Table 2. List of the miRNA analyses of radiation-induced CVD.

Experimental model Radiation Dose Radiation quality
Time after
irradiation Analytical platform Main observations Reference

HDMEC 2 Gy Photon 6 h Locked nucleic acid
(LNA)-based
miRNA
microarrays

Upregulation of miRNA
let-7g, �16, �20a,
�21, and �29c, and
downregulation of miR-
18a, �125a, �127,
�148 b, �189,
and �503

Wagner-Ecker
et al. (2010)

EA.hy926 cells and
HUVECs

2.5 Gy X-rays, 0.94 Gy/min 4 and 24 h TaqManVR Low-
Density Array
A v.2

Alterations in several
miRNAs in different
time points

Kraemer
et al. (2011)

6–8-week old
female C57BL/6
J mice

1, 2, 4, 8, 12 Gy. X-rays, 1.05 Gy/min 48 h Agilent Mouse
miRNA arrays

Upregulation of miR-149-
3p, �6538, �8101,
�7118-5p, �211-3p,
and �3960 after 12 Gy

Aryankalayil
et al. (2021).

HCAEC 0.2 Gy 60Co 4 and 24 h TaqManVR miRNA
assay

Downregulation of miRNA-
21 at 4 h and
upregulation of miRNA-
146b after 24 h

Barjaktarovic,
Anastasov,
et al. (2013)

EA.hy926 2.5 Gy X-rays, 0.94 Gy/min 4, 12, and 24 h In silico interactions
between miRNA
and proteins

Overlap between
radiation-responsive
miRNAs or proteins at
different time points

Sriharshan (2014)

Human heart
autopsies

<0.1,
0.1–0.5, >0.5 Gy

TBI Chronic TaqManVR miRNA
assay

Upregulation of miRNA-21
and miNA-146a in
group exposed to
doses >0.5 Gy

Azimzadeh, Azizova,
et al. (2017)

HUVEC 2 Gy X-rays 2 and 24 h TaqManVR miRNA
assay

Time dependent-
alterations in miRNA-
146a, �155, �221, and
�222 in

Esplugas, Bell�es,
et al. (2019)
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The changes of other identified miRNA were transient at
both time points (Kraemer et al. 2011). The predicted
molecular targets of miRNAs affected by irradiation are
mainly involved in the signaling pathways contributing to
cardiac hypertrophy, fibrosis, and oxidative stress as well as
endothelial structure and function (Sriharshan 2014; Kura
et al. 2017).

The miRNA response of other cardiac cells, including
cardiomyocytes and fibroblasts, to radiation exposure,
remains to be investigated. The role of miRNA changes has
been studied in skin fibroblasts, highlighting the potential
regulatory role of miRNA in radiation response. In a micro-
array approach including 462 miRNAs, Maes et al. found
the dose- and time-dependent changes in human fibroblasts
in response to low (0.1Gy) and high (2.0Gy) X-ray doses
(Maes et al. 2008). Changed miRNAs were predicted to act
in typical radiation response pathways, such as apoptosis,
cell cycle regulation, and DNA repair but also in cell adhe-
sion or cytoskeleton biosynthesis (Maes et al. 2008).

In summary, changes in the miRNA profiles after irradi-
ation is an established component in cellular radiation
response in several cell types of the cardiovascular system.
However, the responses are highly specific for doses, time
points, and cell types. Moreover, the complexity of miRNA
functions makes the biological interpretation of their altera-
tions challenging because one miRNA may target many
mRNAs and one mRNA may be targeted by multiple
miRNAs.

Proteomics and post-translational modifications

Alteration in the proteome of cells and tissues is tightly
linked to the physiological and pathological changes in a
biological system. This makes proteomics analysis a compre-
hensive tool enabling the identification of the biological
effect of radiation exposure. The application of proteomics
approaches is well established in the radiation biology field
(Azimzadeh et al. 2014; Azimzadeh and Tapio 2017).

Among the studies reported from 2011 to 2022 that
applied proteomics platforms to investigate the cell and tis-
sue response to radiation exposure, 27 studies analyzed the
proteome response of cardiac tissue, vascular system or car-
diac cells, and cell compartments using a broad range of
quantitative proteomics platforms. A summary of these stud-
ies and their findings are presented in Table 3.

Mitochondrial proteins were the most sensitive protein
cluster affected in irradiated hearts (Barjaktarovic et al.
2011; Azimzadeh et al. 2013; Azimzadeh, Azizova, et al.
2017; Azimzadeh, Subramanian et al. 2021). The analysis of
cardiac mitochondrial proteome in C57BL/6 mice at 4 and
40weeks after local heart exposure to moderate or high
doses of X-rays (0.2 or 2Gy) showed significant downregu-
lation of several subunits of mitochondrial complexes I, III,
and V after irradiation. The number and extent of downre-
gulation increased over time (Barjaktarovic et al. 2011;
Barjaktarovic, Shyla, et al. 2013). Mitochondrial proteins
were also downregulated in the proteome profile of the mur-
ine hearts at 16 and 20weeks after a high dose (16Gy) of

local heart irradiation (Azimzadeh et al. 2013; Xu et al.
2021). Cardiac mitochondrial proteins were also mainly
affected short-term (4 and 24 h) after TBI (3Gy)
(Azimzadeh et al. 2012). The long-term effect of chronic
exposure on cardiac mitochondria proteome and acetylome
was exclusively studied in apolipoprotein E (ApoE)-deficient
C57BL/6J female mice exposed to low-dose-rate (0.02Gy/d)
gamma radiation for 300 days using label-free proteomics
(Barjaktarovic et al. 2019). This study showed that changes
in mitochondrial acetylation after irradiation were associated
with impaired cardiac metabolism (Barjaktarovic et al.
2019). The effect of chronic exposure was also analyzed in
heart autopsies of Russian Mayak nuclear workers who were
exposed only to external gamma radiation. A dose-depend-
ent downregulation of mitochondrial proteins was observed
in the heart of all exposed groups (<0.1Gy, 0.1–0.5Gy, and
>0.5Gy, chronic TBI) in comparison to the controls
(Azimzadeh, Azizova, et al. 2017). The radiation-induced
downregulation of mitochondrial proteins is accompanied
by alteration in ultrastructure and reduced activity of oxida-
tive phosphorylation subunits (Barjaktarovic et al. 2011;
Barjaktarovic, Shyla, et al. 2013; Barjaktarovic et al. 2019).

Radiation-induced mitochondrial dysfunction increases
the reactive oxygen species (ROS) production (Barjaktarovic
et al. 2011; Barjaktarovic, Shyla, et al. 2013) and the level of
oxidative stress-induced protein modifications (Azimzadeh
et al. 2013; Azimzadeh et al. 2015). Although the oxidative
stress is immediately measurable in the irradiated heart in
the form of oxidized proteins (Azimzadeh et al. 2011;
Barjaktarovic et al. 2011; Azimzadeh et al. 2013;
Barjaktarovic, Shyla, et al. 2013; Azimzadeh, Subramanian
et al. 2021), the expression of antioxidant defense proteins
differs in the cardiac proteome in a dose- and time-depend-
ent manner (Azimzadeh and Tapio 2017). Analysis of the
mouse heart proteome, short (24 h) after 3Gy TBI showed
upregulation of acute-phase proteins involved in the oxida-
tive stress response including peroxiredoxin, hemopexin, fer-
ritin, transferrin, and murinoglobulin1 (Azimzadeh et al.
2011). Proteomics analysis of mouse hearts irradiated locally
at a high dose (16Gy) showed radiation-induced upregula-
tion of proteins involved in oxidative stress response
16weeks after irradiation (Azimzadeh et al. 2013) but
downregulation after 40weeks (Subramanian et al. 2017;
Azimzadeh, Subramanian et al. 2021). The analysis of the
proteome of heart autopsies from Mayak workers showed a
dose-dependent reduction of several antioxidant defense
proteins including catalase, superoxide dismutase, peroxire-
doxins, and glutathione-S-transferase in the highest dose
group (>0.5Gy, chronic TBI) (Azimzadeh, Azizova,
et al. 2017).

Physiological cardiac function depends on consistent
energy production through oxidative phosphorylation in
mitochondria: therefore, alterations in cardiac energy metab-
olism have been reported in various cardiac diseases (Wang
Y et al. 2013; Guo et al. 2017). In good agreement with this,
alteration in the energy metabolism has been described in
the irradiated heart (Azimzadeh et al. 2012; Azimzadeh et al.
2013; Barjaktarovic, Shyla, et al. 2013; Azimzadeh, Azizova,
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et al. 2017; Subramanian et al. 2017; Xu et al. 2021).
Analysis of the formalin-fixed paraffin-embedded (FFPE)
heart proteome shortly (24 h) after (3Gy) TBI of mice
showed that several enzymes involved in fatty acid oxida-
tion, pyruvate metabolism, and citric acid cycle were signifi-
cantly downregulated in irradiated hearts (Azimzadeh et al.
2012). Similarly, lipid metabolism enzymes were downregu-
lated in the proteome of locally irradiated (2Gy) mouse
hearts at 40weeks after radiation (Barjaktarovic, Shyla, et al.
2013). The majority of the dysregulated proteins in the heart
after local high-dose irradiation (16Gy) were also associated
with the regulatory network of peroxisome proliferator-acti-
vated receptor alpha (PPAR alpha) (Azimzadeh et al. 2013),
a key regulator of cardiac fatty acid oxidation, lipoprotein
assembly and lipid transport (Watanabe et al. 2000; Finck
2007). The bioinformatic analysis of the proteome of the
irradiated heart predicted the deactivation of PPAR alpha
(Azimzadeh et al. 2013; Subramanian et al. 2017;
Azimzadeh, Subramanian et al. 2021). In good agreement
with this finding, the analysis of the cardiac proteome of the
PPAR alpha null mice, at 20weeks after exposure to the
local high dose (16Gy) showed the least changes, demon-
strating the central role of PPAR alpha in cardiac response
to ionizing radiation (Subramanian et al. 2018; Azimzadeh,
Subramanian et al. 2021). Disruption of the PPAR alpha
pathway has previously been described in a variety of heart
diseases (Dewald et al. 2005; Finck 2007). It has been
recently shown that the effect of high-dose irradiation on
the heart can be ameliorated by the activation of PPAR
alpha (Azimzadeh, Subramanian et al. 2021).

The impact of vascular injury and endothelial dysfunction
in the pathogenesis of radiation-induced CVD has been
described in animal and human data (Boerma and Hauer-
Jensen 2010; Baker et al. 2011; Seemann et al. 2012;
Azimzadeh et al. 2013). The effects of radiation exposure on
the proteome of different endothelial cell models have been
studied. Proteomics analysis of both in vivo and in vitro
models indicated significant changes in the proteins involved
in the structure and function of cardiac endothelial cells.
The Impairment of PI3K/Akt/NO signaling and alteration in
NO availability are characteristics of endothelial dysfunction
(Wiench et al. 2013). The RhoA pathway was affected in the
proteome of irradiated transformed human umbilical vein
endothelial cell line (HUVEC; EA.hy926) after high (2.5Gy)
(Sriharshan et al. 2012) and moderate-dose radiation
(0.2Gy) (Pluder et al. 2011). Both RhoGDI and PI3K/Akt/
NO signaling pathways were affected following irradiation in
the proteome of endothelial cells exposed to the dose of
0.5Gy as well as the proteome of endothelial cells isolated
directly from locally irradiated (16Gy) mouse hearts
(Azimzadeh et al. 2015; Azimzadeh, Subramanian, et al.
2017). Proteomics analysis of the chronically irradiated
HUVECs (1.4 and 2.4 mGy/h) indicated the involvement of
PI3K/Akt/mTOR pathway inhibition in the radiation-
induced endothelial senescence (Yentrapalli, Azimzadeh,
Sriharshan, et al. 2013).

Cardiac tissue integrity, as well as cardiac cell interaction
and communication is supported by the ECM (Chang et al.

2016). Changes in cardiac ECM are known to contribute to
heart pathologies (Westermann et al. 2008; Diez 2010)
including cardiac fibrosis (Westermann et al. 2008) and car-
diac remodeling (Chang et al. 2016; Lindsey et al. 2016).
Deposition of collagen, excessive fibroblast proliferation, and
upregulation of TGF beta are all characteristics of radiation-
induced heart fibrosis (Gao et al. 2012; Seemann et al. 2012;
Sun et al. 2016). The expression of ECM proteins, such as
biglycan, decorin, fibrinogen, and collagen was shown to be
increased in the cardiac proteome, at 16, 20, and 40weeks
after local heart exposure to 16Gy (Azimzadeh et al. 2013;
Subramanian et al. 2017; Azimzadeh, Subramanian et al.
2021; Xu et al. 2021). Proteomics analysis of the FFPE hearts
of Mayak workers (>500 mGy, chronical TBI) showed sig-
nificant changes in the expression of ECM proteins in the
chronically irradiated hearts. The collagen isoforms were all
upregulated in irradiated samples (Azimzadeh et al. 2020).

Taken together, the proteome response of irradiated heart
is well characterized and supports several KEs in CVD AOP
including mitochondrial dysfunction, metabolic alterations,
and structural remodeling.

Secretome

The secretome is the entirety of all biomolecules released
from a cell to the extracellular space, where it has indispens-
able functions in cell-to-cell and cell-to-ECM communica-
tion. The exploration of the secretome includes molecular
and functional effects of released factors and offers unique
insights into the molecular interactions between cells.
Autocrine, paracrine, and endocrine secretome-mediated
intercellular communication occurs by the release of individ-
ual soluble components, such as chemokines, cytokines, and
growth factors, but also by extracellular vesicles (EVs) that
transport a variety of active macromolecules, including
nucleic acids, metabolites, and lipids (Mukherjee and
Mani 2013).

For the dynamic equilibrium of cells that compose the
cardiovascular system, fine-tuned communication via the
secretome is essential (Tirziu et al. 2010; Liu Q et al. 2021).
Under stress conditions, an orchestrated crosstalk between
cardiovascular cells is of particular importance to sustain
efficient responses (Martins-Marques et al. 2021). Especially
for regenerative processes after heart injury, effects from
secreted factors are intensively discussed. In this context
EVs secreted from mesenchymal stem cells indicated high
potential (Gallina et al. 2015). Intercellular communication
is one of the proposed mechanisms of radiation-induced
atherosclerosis (Ramadan et al. 2019, 2020; Ramadan,
Baatout, et al. 2021).

The secretome is a vital component for communication
during the radiation response of cells to radiation-induced
damage as well as for mediating non-targeted effects
(Yahyapour et al. 2018; Dawood et al. 2021). A specific type
of secretome is released by radiation-induced prematurely
senescent cells and consists of a collection of cytokines, che-
mokines, proteases, and growth factors. This senescence-
associated secretory phenotype (SASP) can contribute to
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different cellular responses (Coppe et al. 2008). Amongst
others, the adoption of this phenotype is described in endo-
thelial cells, fibroblasts, and cardiomyocytes (Li M
et al. 2018).

Several studies described radiation-induced changes in
secreted chemokines and interleukins from cardiovascular
cells. For example, the interleukins IL-6 and IL-8 and the
chemokines CXCL5/8 are released from endothelial cells
after various radiation doses and timepoints (Van Der
Meeren et al. 1999; Baselet et al. 2019). Likewise, for fibro-
blasts, the secretion of individual SASP-factors, like IL-1, IL-
6, and IL-8 were described after irradiation (Coppe et al.
2008; Isermann et al. 2020). Only two studies were found
that employed an omics approach for the unbiased identifi-
cation of radiation-induced changes in the secretome. Philip
et al. quantified around 1000 secreted endothelial proteins,
from which 338 were dysregulated 14 d after exposure to
10Gy. Pathway analysis of these proteins revealed inflamma-
tory response and identified interferon Type I as the main
pathways of the radiation-deregulated proteins (Philipp et al.
2017). Proteomic data were also reported for radiation
effects on the secretome of fibroblasts where more than 500
upregulated proteins in the secretome of irradiated fibro-
blasts with 10Gy were documented in the ‘SASP atlas’
(Basisty et al. 2020). They also made a distinction between
radiation-dysregulated soluble factors and factors released
within EVs. The main pathways covered by the secreted fac-
tors included tissue and cell structure effects, such as ECM
organization, actin cytoskeleton, integrin interactions, and
peptidase regulation. In contrast to endothelial cells and
fibroblasts, there was no information on the effect of irradi-
ation on the secretome of cardiomyocytes.

Factors secreted from irradiated cardiovascular cells can
affect recipient cells. We found one study which performed
a medium transfer from irradiated endothelial cells to non-
irradiated cells followed by proteome analysis. Induction of
interferon Type I-related proteins and activation of the
STAT3 pathway were identified as the main affected path-
ways in endothelial cells 14 d after exposure to 10Gy X-rays
(Philipp et al. 2017). Most other studies were restricted to
the description of functional alterations as consequences of
secretome exposure and provided no omics data.

Radiation effects on the cardiovascular structure may also
be triggered by secreted factors from cell types that are not
the main constituents of the cardiovascular system, such as
adipocytes, mesenchymal stem cells, tumor cells, and blood
cells. For example, endothelial cells and cardiomyocytes
were recipients of EVs from mesenchymal stem cells and
tumor cells. RNA sequencing of these EVs identified a large
number of radiation-deregulated miRNAs which were
related to CVD (Jabbari et al. 2019; Luo et al. 2021). On the
other hand, several studies identified peripheral blood
mononuclear cells (PBMC)-secreted EVs as mediators of
radiation effects in cardiovascular cells. By RNA-sequencing
and label-free proteomics, Moertl et al. showed dose-
dependent changes in the miRNA and proteome cargo of
EVs derived from irradiated PBMCs. Integrated pathway
analysis of the radiation-triggered EV proteins and miRNAs

consistently predicted an association of deregulated mole-
cules with apoptosis, cell death, and survival (Moertl et al.
2020). Further omics analysis demonstrated large increases
in the miRNA and protein content of EVs secreted from
PBMCs after high dose exposure (60Gy) (Wagner et al.
2018). Consistently, both studies showed that radiation-trig-
gered EV changes induced pro-survival and angiogenic
effects on endothelial cells. In the meantime, the secretome
of irradiated PBMCs was shown to improve cardiac per-
formance in a porcine infarction model. Transcriptional
analyses of PBMC secretome effects identified the regulation
of genes that were essential for cardiomyocyte function and
the downregulation of pro-inflammatory genes (Mildner
et al. 2022).

In summary, there is very limited omics data on the
secretomes released from cardiovascular cells after irradi-
ation. However, this knowledge is an indispensable tool to
understand the crosstalk between different components of
the heart in response to radiation exposure.

Metabolomics and lipidomics

Metabolomics and its subcategory lipidomics aim to identify
and in some cases quantify small molecules called metabo-
lites in cells, tissues, and biofluids. These small molecules
can serve as the building blocks to maintain structural, gen-
etic, signaling, and metabolic integrity. Both metabolomics
and lipidomics have gained traction in radiation biology and
are now considered optimal integral-omics technology in a
systems biology approach. Targeted and untargeted
approaches in both metabolomics and lipidomics have dis-
tinct pros and cons, including positive metabolite identifica-
tion and coverage of different classes, or sensitivity and
absolute quantification levels. Although the applied detection
methods in the mainstream of metabolomics have also
evolved and become more sensitive, there are still challenges
where some methods (e.g. nuclear magnetic resonance
[NMR]) that provide important structural information need
to be yet improved as they identify only the most abundant
molecules.

Among studies that applied metabolomics or lipidomics
in radiation research from 2011 to 2022, 9 publications
(including 2 reviews) focused on profiling small molecules
related to CVD. A summary of these studies and their find-
ings is presented in Table 4.

Gramytyka et al. exposed human cardiomyocytes to 2Gy
(CLINAC 600 6MV photons, 1 Gy/min) and evaluated
metabolic levels at 48 h afterwards with high-resolution
magic-angle spinning (HR-MAS) NMR (Gramatyka et al.
2018). Significant differences were identified between
exposed and unexposed groups, specifically related to oxida-
tive stress, energy metabolism, membrane integrity, and
amino acids (Gramatyka et al. 2018). The investigators
extended their work to study mice following TBI (0.2 or
2Gy, Varian CLINAC 23006MV photons, 300MU/min)
and analyzed the heart metabolites at 48 h or 20weeks after
exposure. Metabolomic analysis with 1H NMR spectroscopy
showed that most changes occurred at the earlier time point
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with the higher dose, with pantothenate, glutamate, alanine,
malonate, acetylcarnitine, glycine, and adenosine as the most
abundant markers. Glutamine and acetylcarnitine were sig-
nificantly reduced in the 2Gy irradiated group at 20weeks
after exposure, while the exposure to 0.2Gy showed no stat-
istically significant effects on heart metabolomics. Treatment
of mice with resveratrol before exposure to 2Gy was able to
reduce effects in glycerophosphocholine and choline com-
pounds (Gramatyka et al. 2020). Rats exposed to gamma
rays (6Gy TBI with 60Co) showed that lipid peroxidation
metabolites of heart tissue were significantly increased at
24 h after exposure, although the overall levels were meas-
ured with a standard malondialdehyde (MDA) assay (de
Freitas et al. 2013). The analysis of the heart metabolites in
mice exposed to TBI at 9.6Gy (0.6Gy/min, 60Co) showed
changes in various fatty acids and inflammatory mediator
hydroxyprostaglandin E1 in the heart (Cheema A. K. et al.
2020). The heart showed significant early responses to radi-
ation, which were dampened quickly by day 9 after expos-
ure. The authors showed that the administration of the
radioprotective agent, amifostine partially corrects the effect
of TBI on the heart metabolome (Cheema A. K. et al. 2020).

A few studies have also examined the metabolome of
heart tissue of nonhuman primates (NHPs). Cheema et al.
identified increased levels of long-chain acylcarnitines, par-
ticularly sterearoylcarnitine, and linoleylcarnitine, in the
heart tissue of surviving and non-surviving NHPs following
7.2Gy of TBI (60Co, 0.6Gy/min) (Cheema A. K. et al. 2019).
Alteration of long-chain acylcarnitines was associated with
increased hypoxia and may impact both fatty acid b-oxida-
tion and proper mitochondrial function (Cheema A. K.
et al. 2019). In addition, a decrease of fatty acid amines, the
mitochondrial-regulated metabolites with anti-inflammatory
properties, strongly suggests that mitochondria are impli-
cated in radiation responses in heart tissue (Cheema A. K.
et al. 2019). Two other studies in NHPs, after partial body
irradiation of 12Gy (6MV LINAC photons, 0.8Gy/min)
identified 8 enriched metabolic pathways in the left side and
3 in the right side of the heart at 4 days after exposure, with
some changes persisting at 3weeks after exposure (Kumar
et al. 2021; Zalesak-Kravec et al. 2021). Kumar et al. showed
that fatty acid b-oxidation (short, long, and very long-chain
fatty acids), phospholipid biosynthesis, phenylacetate metab-
olism, and pyrimidine metabolism were significantly
enriched (p< .05) in the left side of the heart, while glucose-
alanine cycle, arginine, and proline metabolism, and selenoa-
mino acid metabolism were significantly enriched in the
right side (Kumar et al. 2021). Metabolomics, in combin-
ation with proteomic data from the same model at 3 weeks
after exposure, showed dysregulation of inflammatory,
energy metabolism, and myocardial remodeling pathways, as
well as retinoid homeostasis (Zalesak-Kravec et al. 2021).

These studies have focused on high doses and dose rates.
Radiation exposure and CVD remain a concern as well for
astronauts and deep space exploration. The mitochondrial-
related pathways were shown to be affected by both space-
flight (da Silveira et al. 2020) and space radiation (Vernice
et al. 2020; Barnette et al. 2021; Laiakis et al. 2021).Ta
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One study has investigated whether exposure to 16O (0.1,
0.25, or 1Gy, 600MeV/n) would alter specific metabolic
pathways in heart tissue. The investigators (Miousse et al.
2019) identified changes in the transsulfuration pathway
with high levels of cystathione, while the homocysteine
remethylation pathway was unaffected.

Taken together, the metabolomic studies reported here
highlight the involvement of mitochondrial and metabolic
alterations in cardiac injury due to radiation exposure.

Biofluid

Metabolomics analysis of minimally invasive and easily
accessible biofluids provides a reliable platform to monitor
radiation-induced biological effects including CVD. As with
tissues and cells, the vast majority of the literature on bio-
fluids (e.g. serum, plasma, urine, saliva, and feces) focuses
on high-dose exposures for biodosimetry, with increased
emphasis on connecting biomarkers of delayed effects of
acute radiation exposure (Pannkuk et al. 2017; Satyamitra
et al. 2020; Vicente et al. 2020). The metabolomic and lipi-
domic studies on radiation biomarkers in biofluids at the
low dose and low dose rates are limited. Nine studies that
analyzed biofluids following irradiation (from 2014 to 2022)
are summarized in Table 5.

McGarrah et al. (2018) reported a list of such targets in
plasma including branched-chain amino acids, branched-
chain a-ketoacids, ketone oxidation, long-chain acylcarni-
tines, tricarboxylic acid (TCA) cycle intermediates, certain
amino acids, pyrimidines, pentose phosphate pathway inter-
mediates, short-chain dicarboxylacylcarnitine, and trimethyl-
amine N-oxide (TMAO). In particular, TMAO (a gut
microbiota-derived metabolite) is emerging as a strong bio-
marker for CVD (Schiattarella et al. 2017), in addition to
changes in short-chain fatty acids and secondary bile acids
(Brown and Hazen 2018). Lipidomic changes have also been
shown in patients with CAD and coronary microvascular
dysfunction (Lindner et al. 2021) while decreased total bile
acids are consistently shown in patients and animal models
with CAD (Li, Shu et al. 2020; Chong Nguyen et al. 2021).
The majority of these metabolites, lipid species, and classes
could easily be measured with targeted metabolomic and lip-
idomic approaches.

Atherogenic lipid profiles with low high-density lipopro-
tein (HDL) cholesterol and hypertriglyceridemia were also
found in Japanese atomic bomb survivors (Akahoshi et al.
2003). These observations have been suggested as a mechan-
ism to link radiation exposure and coronary heart disease.

A select number of studies with internal contamination
(injectable 137Cs or uranium in drinking water) have
assessed biomarkers in serum, plasma, or urine. Goudarzi
et al. identified perturbations in amino acid metabolism,
fatty acids, TCA cycle, glycolysis, and phosphatidylcholines
(PCs) in mice injected with 137CsCl (2–30 d, 1.95–9.91Gy
cumulative dose) (Goudarzi et al. 2015). A similar approach
by Li et al. described oleamide and sphingosine-1-phosphate
as metabolites that were perturbed irrespective of dose rate

(varying dose rates from 0.16 to 1.36Gy/d) (Li, Lin et al.
2020). Sphingosine-1-phosphate is of particular importance
because of its significant role in vascular and immune sys-
tems and the metabolism of HDL (Proia and Hla 2015;
Jiang XC 2017; Cartier and Hla 2019). Chronic low dose
exposure to uranium on the other hand showed significant
changes in the nicotinate-nicotinamide pathway and unsat-
urated fatty acid biosynthesis, reflected in the urine of male
and female rats (Grison et al. 2019), which could be due to
the dual toxicity of uranium (radioactive and a heavy metal).
The estimated absorbed dose rate to the kidneys at 9months
of age was estimated to be 5.4� 10�7Gy/d, with a cumula-
tive dose of 0.15 mGy under the assumption of a constant
dose rate over 9months.

While internal exposures demonstrated significant
changes in metabolomics and lipidomics, external exposures
to low dose rate photons showed similar results. TCA cycle
and fatty acids were the most dysregulated pathways in the
urine of high dose rate exposed mice (3.09 mGy/min)
(Goudarzi et al. 2014), with a novel metabolite, hexosamine-
valine-isoleucine-OH (Hex-V-I), increased 150-fold in low
dose rate exposed (variable 0.1–1Gy/d) mice vs. an 80-fold
increase in mice exposed at higher dose rate (�0.8Gy/min)
(Pannkuk et al. 2021). The role of this novel metabolite
remains to be elucidated, including whether persistent
changes may have a role in the delayed effects of acute radi-
ation exposure. A common theme emerging from the pub-
lished studies is alterations in energy metabolism showing
the most significant changes in TCA and mitochondria
(Jang et al. 2016; Pannkuk et al. 2017; Kawamura et al.
2018; Livingston et al. 2020). Studies on human exposures
are limited to biofluids, focusing primarily on samples from
cancer patients with doses outside the scope of this review.

Nonetheless, mitochondrial dysregulation, and pro-
inflammatory metabolites were prominent results in bio-
fluids (serum and urine) from TBI human cohorts (Laiakis
et al. 2014; Laiakis et al. 2017; Vera et al. 2020).

Interestingly, alterations in fatty acids, various lipids, gly-
cerol, glycolate, and choline-containing phospholipids were
described in serum analysis of breast cancer and head and
neck cancer patients who received RT (Shaikh et al. 2017;
Jelonek et al. 2020; Boguszewicz et al. 2021). Changes in cir-
culating levels of lipids were reported as a biosignature of
radiation exposure in TBI patients before stem cell trans-
plantation (Laiakis et al. 2017).

In contrast to urine and blood, fecal material and saliva
were two largely unexplored biomaterials in low-dose radi-
ation research, although evidence is accumulating showing
that radiation doses as low as 0.5Gy have significant effects.
BALB/c mice exposed to photons (0.5Gy) showed micro-
biome changes linked to the glucagon signaling pathway,
central carbon metabolism in cancer, and TCA cycle
(Laiakis et al. 2014; Liu X et al. 2019), while salivary metab-
olomics in C57BL/6 mice exposed to photons (0.5, 3, or
8Gy) showed that the overall metabolic profile remained
distinct from sham-exposed animals one week after exposure
(Laiakis et al. 2016).
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Integrative multi-omics

A deep understanding of the biological effects of radiation
exposure is greatly facilitated by a systems biology multi-
omics approach. As described in the previous sections, each
omics technique provides a picture of one specific aspect of
how the biological system changes in response to radiation
exposure. To achieve a comprehensive understanding of the
systemic impact on cells or tissue, it is necessary to integrate
findings from different omics approaches to resolve the
complexity of the organization of biological processes. The
current status of the systems biology multi-omics approach
in CVD research has been recently well-reviewed, including
the limitations and advantages (Joshi et al. 2021). Currently,
specific multi-omics studies to look at radiation impact on
the cardiovascular system are lacking. Only a few studies
have so far been performed using at least two omics plat-
forms (Subramanian et al. 2017; Papiez et al. 2018; Cheema
et al. 2022). As stated above, literature exists for multi-omics
studies related to CVD in general. On the other hand,
multi-omics studies on radiation are limited but show the
power of these studies.

Papiez et al. analyzed the proteomic and RNA sequencing
data of the postmortem cardiac left ventricle samples from
Mayak workers exposed to a dose >0.5Gy (Papiez et al.
2018). The analysis revealed that a systemic response as a
function of dose caused alterations in glycolysis, oxidative
phosphorylation, the TCA cycle, and PPAR alpha signaling
pathways to be dominantly impacted in the cardiac tissue
from the Mayak nuclear workers. The study confirmed the
previous findings on Mayak heart autopsies (Azimzadeh,
Azizova, et al. 2017) where the metabolic and mitochondrial
proteins were highly impacted in the cardiac tissue from the
nuclear workers exposed to radiation.

The cardiac proteome and transcriptome were analyzed
in male C57BL/6 mice at 40weeks after an acute local high-
dose heart exposure (16Gy) (Subramanian et al. 2017).
Although the integrative analysis of gene expression array
and proteomics data showed a modest direct correlation
between gene and protein expression, it demonstrated that
cardiac TGF beta signaling and PPAR alpha signaling were
affected by irradiation at both the mRNA and protein levels
(Subramanian et al. 2017).

Proteomics and transcriptomics were also used to com-
pare the endothelial cell responses at 1 and 7 d after expos-
ure to a single 2Gy dose of X-rays or iron ions (Baselet,
Azimzadeh, et al. 2017). The analysis showed alterations in
genes and proteins involved in cell-cell adhesion, endocyto-
sis signaling, and inflammation. The inflammatory response
and adherence properties of endothelial cells were decreased
after iron ion exposure, whereas they were increased by X-
rays (Baselet, Azimzadeh, et al. 2017).

A recent study utilized a multi-omics approach with
metabolomics, proteomics, and lipidomics to assess acute
radiation injury in the serum of male and female NHP mod-
els following exposure to 6–8.5Gy with 60Co (Cheema et al.
2022). The study showed alterations in the circulating levels
of lipids, metabolites, and proteins. The analysis demon-
strated a blood-based multi-omics biomarker panel that

contained four analytes that could stratify individuals as a
function of dose. The panel of analytes was comprised of
PC (16:0/22:6), acetyl carnitine, suberyl glycine, and serpin
family A protein. Among these metabolites, acetyl carnitine
(Dundar et al. 2016), suberyl glycine (Lu et al. 2017), and
serpin family A protein (Li et al. 2016) have been previously
reported as decent cardiac toxicity markers. Interestingly, all
4 analytes are heavily related to the metabolic, mitochon-
drial, and glycolytic functions. By using this multi-omics
approach, the authors were able to provide a focused and
targeted list of biomarkers that can potentially be utilized
for therapy with further research.

The ultimate example of a comprehensive multi-omic
analysis of radiation impact on the cardiovascular system is
the NASA Twin Study which entailed studying samples
obtained from two identical twins, with one twin being
exposed to space radiation at low Earth orbit onboard the
International Space Station (ISS) compared to the identical
twin on Earth (Garrett-Bakelman et al. 2019). This is an
important example of demonstrating how a comprehensive
multi-omics approach can provide a complete map of the
systemic biological impact. In this study, Garrett-Bakelman
et al. performed transcriptomics, epigenetics, proteomics,
metabolomics, and microbiomics on multiple time points
from blood (i.e. multiple cell types isolated from the blood),
urine, and fecal samples. Although the focus of that study
was not specifically on cardiovascular health risks associated
with spaceflight, utilizing this multi-omics approach revealed
that cardiovascular changes occur during spaceflight.
Specifically, markers associated with inflammatory cytokines
and chemokines and oxidative stress were increased for the
twin in flight, while no changes occurred for the control
ground twin. In combination with the proteomic data, the
authors found alterations in the proteins involved in the vas-
cular structure and function. From this comprehensive
multi-omics study, it was determined that vascular changes
or adaptations occurring during spaceflight might have an
impact on cardiovascular health due to the combination of
space radiation and microgravity.

Discussion

Radiation omics support CVD AOP development

The application of omics in the context of hazard and risk
assessment has already been discussed in toxicology (Bridges
et al. 2017; Sauer et al. 2017; Aguayo-Orozco et al. 2019).
Omics data offer great potential for the discovery of reliable
biomarkers and biomarker arrays, as well as for integration
into weight-of-evidence approaches to interpreting the mode
of action of toxic substances (Bridges et al. 2017; Sauer et al.
2017; Aguayo-Orozco et al. 2019). Interest in the application
of the AOP approach to radiation protection has increased
greatly, drawing on experience gained in the field of chem-
ical toxicology (NCRP 2020; Chauhan, Hamada, et al. 2021;
Chauhan, Leblanc, et al. 2021; Chauhan, Sherman, et al.
2021; Chauhan, Stricklin, et al. 2021; Chauhan, Wilkins,
et al. 2021; Chauhan, Beaton, et al. 2022). This review aimed
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to describe the potential of radiation omics to be incorpo-
rated into the AOP framework.

The studies reviewed here are representative of omics
data that have been generated over the last two decades in
the context of radiation-induced CVD. The literature review
was conducted by experts in related fields and the relevance
of the findings related to adverse effects introduced in CVD
AOP (Chauhan, Hamada, et al. 2021) was highlighted. Data
discussed here collectively showed the potential to support
different KEs in the hypothetical CVD AOP previously pro-
posed by the authors (Chauhan, Hamada, et al. 2021).
However, the studies discussed here need to be comprehen-
sively evaluated to fulfill B-H criteria. The development and
progression of radiation-induced CVD is a multidimensional
phenomenon, so studying the interaction between genes,
proteins, metabolites, etc., at all levels of biological organiza-
tion is crucial.

Interestingly, some of the omics findings are consistent
following different radiation scenarios at different time
points, suggesting common AOs of radiation exposure to
the heart (Figure 1 and Supplementary Table 1). There were
several omics data showing the changes in oxidative stress,
mitochondrial dysfunction, metabolic, and ECM remodeling,
and endothelial signaling pathway. The change in cardiac
energy metabolism is known as a hallmark of different heart
pathology including those induced by irradiation.
Identification of the different genes, proteins, and metabo-
lites associated with heart metabolism offers an attractive
panel of potential candidates for biomarker profiling, diag-
nosis, and risk assessment of radiation-induced CVD.

Transcriptomics data discussed here point to the import-
ance of DNA damage in the progression of vascular

pathology and open the debate on the inclusion of these cel-
lular events as KEs in the proposed CVD AOP. Changes in
the inflammatory response have also been reported by sev-
eral radiation omics studies, but further studies are needed
to establish a relationship between inflammatory status and
biological effects of radiation exposure.

The proposed CVD AOP contains several bidirectional
relationships between major KEs emphasizing molecular and
cellular interplay in the cardiovascular system. The omics
data on secretomes and exosomes can provide evidence for
such cross-talks between pathological processes contributing
to heart injury after irradiation. Such data may fill the
knowledge gaps in the potential interplay between endothe-
lial dysfunction, and cardiac metabolic and structural
changes.

Systems biology: a path forward for comprehensive AOP

The integration of findings generated by different omics
platforms is key for a systems biology approach to gain a
full understanding of how radiation exposure impacts the
cardiovascular system. Integrating systems biology into the
AOP framework can potentially enrich AOP features by
expanding the linear abstraction behind KEs to a more com-
plex network of those biological events. To achieve a com-
prehensive picture of the radiation effect, non-omics
findings, such as pathologic images, clinical measures, and
epidemiological information as well as other biochemical
and biological assays and arrays are necessary to fill the gaps
in assessing risk-related outcomes. Figure 2 illustrates a pro-
posed multidisciplinary and multidimensional systems biol-
ogy approach, ranging from high-throughput data to

Figure 1. Categories of radiation omics studies to support proposed CVD AOP. Available types of omics data are represented across key events in the CVD AOP net-
work as colored boxes (modified from Chauhan, Hamada, et al. (2021)).
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modeling. The approach is designed to integrate omics and
non-omics results to understand the biological response of a
biosystem (e.g. cardiovascular system) to radiation exposure
(Figure 2). Applying the systems biology approach within
the established AOP framework should facilitate the devel-
opment of a reproducible bioassay to measure endpoints
relevant to risk assessment (Figure 2).

The evolving radiomics are a good example to meet such
an interactive approach (Sotoudeh et al. 2021). The platform
extracts a wide range of features of the medical images and
translates them to algorithms that can be combined with
those from other analytical platforms including omics
(Zanfardino et al. 2019). The compiled information can fur-
ther support the various components of the AOP framework
where omics results alone cannot do so.

Understanding CVD as a complex disease requires the
investigation at different biological levels of the cardiovascu-
lar system. The application of systems biology has recently
received increasing attention. The platform provides a prag-
matic but sophisticated approach to understanding the
changes in the heart tissue during the development and pro-
gression of CVD. The various cellular components of the
cardiovascular system have been studied by systems biology
(Joshi et al. 2021). The integration of omics data and non-
omics clinical findings through advanced computational
methods and mathematical algorithms provides a highly

interactive biological network that can advance our under-
standing of CVD.

Although there are not many multi-omics studies cur-
rently published on the impact of radiation on the cardio-
vascular system, there are many individual omics studies
with strong potential to be integrated into a systems biology
approach. A systems biology approach needs an optimal col-
lection of radiobiological samples and data following the
FAIR Data Principles (Findable, Accessible, Interoperable,
and Reusable) to facilitate sharing and integration of data in
the radiation research field (Subedi et al. 2022). To perform
optimal re-analysis of data, accessibility to the user-friendly
and well-designed repository is crucial. The STOREDB data-
base (https://www.storedb.org) hosted by the German
Federal Office for Radiation Protection (BfS) is one of a few
available databanks designed for such purposes which
include managing, sustaining, and sharing data generated by
different platforms of radiation research (Schofield
et al. 2019).

Although maintaining linear and simplified biological
pathways is the main philosophy behind the AOP approach,
systems biology can provide the opportunity to give more
mechanistic information, fill gaps in biological data, and
translate them at different levels of the organism from mol-
ecule to cell up to the individual organism. The integrated
approaches may facilitate profiling of the radiation response

Figure 2. The application of omics data in the development of AOP for radiation-induced CVD. The different levels of omics data obtained from the cell, animal,
and human samples can enrich the AOP framework alongside available knowledge from non-omics data, epidemiological findings, and mechanistic, and mathemat-
ical modeling. Together, this information can be integrated across biological levels of organization and provide confident bioindicators for the development of bio-
screening tools that can support radiation risk assessment. MIE: molecular initiating events; KE: key events; AO: adverse outcome. The figure is created with
BioRender.com.
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in a dose- and time-dependent manner to identify the crit-
ical exposure criteria leading to the adverse effect on indi-
viduals and populations. To fully translate this information
at a population level, further research is needed on molecu-
lar epidemiology to test and validate the proposed connec-
tions between the AOPs and actual health outcomes. Such
‘big data’ approaches would typically use information from
omics platforms, biobanks, and health registries. Such a
comprehensive platform can identify attractive genes, pro-
teins, or metabolites as measurable bioindicators for screen-
ing and risk assessment.

In this context, a recent study used a systems (radiation)
biology approach, by integrating experimental data on dif-
ferent cellular endpoints, including cellular functions, such
as proliferation, senescence, and angiogenic properties, as
well as transcriptomics and proteomics data, in order to
more comprehensively understand the mechanisms underly-
ing the endothelial response after chronic low-dose gamma
irradiation (0, 1.4, 2.1, and 4.1 mGy/h) (Babini et al. 2022).

The mathematical model applied in the study to integrate
different datasets reproduced the experimental results and
confirmed a dose-dependence for radiation-induced prema-
ture senescence, however, the molecular mechanisms dif-
fered with dose rates. The re-analysis of cell proliferation
rate and the senescence status (percentage of cells respond-
ing positively to the senescence-associated b-galactosidase)
using a mathematical model (a logistic curve) confirmed a
decreasing trend of cell proliferation and increase of senes-
cence as a function of the dose rate.

The study also found that different dose rates could trig-
ger different molecular mechanisms in cells during the onset
of senescence (e.g. the dose rate of 4.1 mGy/h affected cell-
to-cell communication, cellular adhesion, and inflammation,
while the dose rate of 2.4 mGy/h affected the expression of
cell cycle-related inhibitors such as the cyclin-dependent
kinase inhibitor p21 and the PI3K/Akt/mTOR pathway)
(Babini et al. 2022).

Toward regulatory implementation: challenges for
radiation omics to inform the AOP framework

The omics data presented here emphasized that the develop-
ment of the AOP network will need measurements at several
dose and time points and in different cell types because the
omics profiles of phenotypic alterations may differ by the
stage in the pathogenesis of the disease (NCRP 2020).
Moreover, before incorporation into the AOP framework
omics data need to be evaluated for a series of assessments
adapted to B-H criteria including persistence and signifi-
cance, reproducibility and consistency, biological plausibility,
and human health relevance (Bridges et al. 2017). To meet
regulatory expectations, omics analyses and related results
must be standardized universally and validated effectively.
Such uniform conditions enable omics science to produce
consistent, reliable, reproducible, and repeatable data to be
applied to decision-makers and regulatory applications. In
addition, there is a need to improve understanding of the
relationships between molecular changes observed in omics

data and disease outcomes, as molecular (particularly tran-
scriptional) responses are often early events that lead to
overt phenotypic (apical) effects associated with disease
progression.

As stated above, the poor availability of low-dose and
low-dose-rate data complicates investigations in this area. It
is more likely that the available high-dose data can be ini-
tially incorporated into the AOP. However, it remains debat-
able whether, in the absence of data for low dose
irradiation, this knowledge can be applied at lower dose and
dose rate/fractionation (Little 2016; Little et al. 2020).

It is important to note that ICRP recommended the nom-
inal threshold of 0.5Gy for DCS, independent of the rate of
dose delivery (Stewart et al. 2012). This recommendation
aimed basically to serve as a precaution to medical practi-
tioners for risks posed by dose to the heart and brain of the
patients. Thus far, no dose limit has been recommended for
DCS, so there is no need of discussion for regulatory imple-
mentation at this stage. Nevertheless, ICRP Task Group 119
established in 2021 considers implications of the current
knowledge on radiogenic DCS for the ICRP System of
Radiological Protection. Such discussions are ongoing as
part of the steps in preparing the next basic recommenda-
tions (Clement et al. 2021). The AOP approach is supported
by the ICRP (Laurier et al. 2021) and the UNSCEAR Expert
Group on Diseases of the Circulatory System (CircuDis),
which encourages further efforts to develop an AOP net-
work for DCS in which omics data can play a central role.

The omics studies discussed here emphasized the urgent
need to apply an optimal animal model to study radiation-
induced CVD. Such an in vivo system would be important
to improve the knowledge base for environmental radiation
protection, but should also provide transferable and transla-
tional data to apply to human health and human risk assess-
ment. Although the omics data from rodent models are very
informative, it is not always easy to correlate the affected
pathways with pathological endpoints that are measurable in
humans. The genetically modified and diseased animals are
also not the best model because they do not necessarily
reflect the changes that would be induced in normal animals
following irradiation (Chauhan, Hamada, et al. 2021). The
unexpected observations, including adaptive or suppressive
effects in these mutants at low dose and/or low dose rates,
must also be interpreted with caution (Hamada et al. 2014).

An optimal experimental model should be able to
account for individual susceptibility and sensitivity in
response to radiation exposure, a critical aspect of human
health risk assessment. Individual sensitivity to radiation
varies and is correlated with genetic factors and lifestyle (De
Stefano et al. 2021). Although the contribution of genetic
predisposition to radiation sensitivity or radiation resistance
in cancer is well accepted, the knowledge in the area of the
radiation-induced non-cancer effect is not yet very well
developed (Foray et al. 2016; Rajaraman et al. 2018; Barnard
and Hamada 2022). The background status of the biosystem
(from cell to tissue) at the time of irradiation may
also impact the biological effect of radiation exposure.
Radiation exposure is arrhythmogenic in healthy individuals
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(Azizova et al. 2022), but anti-arrhythmogenic in individuals
with cardiac arrhythmias receiving cardiac RT (Zhang
et al. 2021).

The availability of human samples for omics studies is a
well-known concern in CVD research, where the collection
of fresh-frozen biomaterial is inconvenient for ethical rea-
sons. In this context, the role of radiation biobanks is an
important consideration for future studies. Radiobiological
and clinical archives could provide a valuable source of
human biomaterial for understanding the adverse effects of
radiation exposure on the cardiovascular system. Omics
profiling of archived biomaterial in radiation research has
progressed over the past decade but still needs to be further
improved (Azimzadeh, Gomolka et al. 2021). Although only
a few omics datasets were generated on human biomaterial
(Laiakis et al. 2014; Azimzadeh, Azizova, et al. 2017; Papiez
et al. 2018; Garrett-Bakelman et al. 2019; Azimzadeh et al.
2020), these studies highlighted the impact of retrospective
analysis of archival samples to investigate the adverse effect
of clinical or occupational radiation exposure.

In the absence of sufficient frozen samples to study the
effects of radiation exposure on cardiac tissue, formalin-
fixed, paraffin-embedded (FFPE) samples may indeed repre-
sent the optimal material for such retrospective analyses
given their large number, simple storage, and plentiful diag-
nostic records. This stresses the urgent need to improve the
radiation biology biobank policy and its infrastructure
(Azimzadeh, Gomolka et al. 2021).

The application of high-throughput omics data generated
on in vitro systems is an important vision for toxicologists
to find an alternative to animal testing (Sauer et al. 2017).
However, applying an ideal cellular model to represent the
cardiovascular system is not an easy task. The available com-
mercial cellular systems (endothelial cells, fibroblasts, cardio-
myocytes, and smooth muscle cells) are not the best
alternative for complex and dynamic features of cardiac tis-
sue. Consequently, the bioindicators and biomarkers identi-
fied in the in vitro systems cannot be used directly as a
surrogate in humans. Using isolated cells from irradiated
hearts, 3D models of interactive cells and cell co-culture in
omics analysis may help to address this issue.

It is important to note that applications of omics plat-
forms are still in their infancy in radiation research.
Epigenetics, post-translational modifications (PTMs), and
the secretome of cell communication are unexplored poten-
tial that needs to be further investigated to identify early
and late health effects of radiation exposure.

Integration of biological and epidemiological data, a
vision for risk assessment

Translating the qualitative understanding of detrimental
effects into quantitative estimates of health risk remains a
pertinent challenge of the AOP framework. The epidemi-
ology-based risk assessment approach used to extrapolate
from AOs assessed at higher doses to low doses is associated
with significant uncertainties in estimating risk at low doses

and low dose rates of ionizing radiation (Preston 2017;
Preston et al. 2021).

Approaches to integrating radiation biology data and epi-
demiology findings for risk assessment, especially at low
doses are discussed in Report No. 186 of the US National
Council on Radiation Protection and Measurements (NCRP)
for cancer and CVD (NCRP 2020). The biological data gen-
erated by advanced omics technologies will not only provide
a better understanding of the cellular and molecular proc-
esses affected by low doses and low dose rates, but may also
facilitate the development of biomarkers for radiation-
related health effects. Integration of such mechanistic data
with epidemiological evidence is expected to improve risk
assessment for cancer and CVD (Hamada and Fujimichi
2014; NCRP 2020; Chauhan, Beaton, et al. 2022;
NASEM 2022).

Among epidemiological studies with biological data or
available biosamples for further examinations (reviewed in
NCRP 2020), Japanese atomic bomb survivors and Mayak
production association workers are the main cohorts to offer
potential biomarker information usable as parameters in a
predictive model for the effect of radiation on cardiovascular
system (NCRP 2020; Preston et al. 2021).

The Report has clearly emphasized the potential of AOPs
to inform conceptual designs of biologically based risk mod-
els (BBRMs). For radiation risk of cancer, the Report already
illustrated promising BBRM prototypes which were devel-
oped for organs, such as the colon, thyroid, and lung. Kaiser
et al. propose systematic approaches and appropriate study
designs to harness knowledge stored in AOPs for quantita-
tive risk assessment using (cancer-related) BBRMs as hinges
(Kaiser et al. 2021). However, for radiation-induced CVD,
the development of such BBRMs is still in its infancy.
Previous attempts focused on the impact of cholesterol
metabolism on atherosclerosis and CVD risk but did not
perform model fits against epidemiological datasets
(Cobbold et al. 2002; Little et al. 2009; Mc Auley 2022). On
the one hand, the sheer complexity of the involved patho-
genic processes prevents the development of models with a
reasonably low number of parameters. Furthermore, bio-
logical and epidemiological evidence for a response at doses
below 0.5Gy is uncertain (Little et al. 2021).

High dose, fractionated RT results in an increase in the
rate of major coronary events by 7.4% per Gy in breast can-
cer patients (Darby et al. 2013). The majority of these events
arise from atherosclerosis as the main underlying disease
(Rehammar et al. 2017). Thus, the risk projections from
BBRMs for therapeutic doses in clinical applications may be
useful. Consequently, in the EU-funded MEDIRAD project,
the development of a BBRM for acute coronary events
(ACEs) in breast cancer patients after RT has been proposed
(http://www.medirad-project.eu/work-packages; last accessed
on 25 April 2022). Motivated by the AOP framework, it was
planned to inform the conceptual model design with data at
molecular and vascular levels in a ‘bottom-up’ approach.
The molecular data consisted of epigenetic (DNA methyla-
tion) and transcriptomic (miRNAs) analyses obtained from
circulating blood cells which have been measured in animal
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experiments and the patient samples. For the characteriza-
tion of a detrimental effect at the vascular level, imaging
data from echocardiography, computed tomography (CT),
and magnetic resonance imaging (MRI) have been recorded.
Before joining them into a common database the data are
screened separately for each area of origin with standard
statistical methods such as multivariate regression of single
outcomes. More suited to unravel the complexity of causal
relationships between different levels is bioinformatical net-
work analysis (Sch€afer and Strimmer 2005; van Wieringen
and Chen 2021). This analytical tool should identify radi-
ation-induced clusters of biomarkers linking molecular and
vascular levels. Such clusters might pertain to atherogenic
processes like chronic inflammation. They generate hypothe-
ses on radiation targets in the atherogenic chain which can
be implemented and tested in BBRMs.

Starting from radiation epidemiology in a ‘top-down’
approach, the development of a BBRM was organized into
three levels. In Level I, the baseline model without risk fac-
tors described the progression and age-risk pattern of ath-
erosclerosis in a Markov chain Monte Carlo simulation with
coronary artery intimal surface area as the object of time
evolution (Simonetto et al. 2021). During aging, this area is
subsequently covered with atherosclerotic lesions of increas-
ing severity. Complicated lesions appear at the end of the
chain and the rate of myocardial infarction increases pro-
portionally to the area of these lesions. Model parameters
are derived from simultaneous fits to incidence rates in the
German KORA cohort (Kuch et al. 2008) and the age-
dependent prevalence and spatial extent of atherosclerotic
lesions in the Pathobiological Determinants of
Atherosclerosis in Youth (PDAY) (1993) study
(PDAY 1993).

In Level II, the model included classical risk factors, such
as smoking, hypertension, and dyslipidemia from the KORA
cohort (Simonetto, Heier, et al. 2022). The main target of
detriment in the chain of the atherogenic process was identi-
fied by goodness-of-fit. Whereas the impact of dyslipidemia
was realized along the whole atherogenic chain, smoking
made its strongest impact at the chain end with complicated
lesions. Finally, in Level III, the KORA cohort was replaced
by a Dutch cohort of breast cancer patients to obtain a risk
model for ACEs after RT. Using the same method of effect
identification as in Level II, therapeutic radiation released
the strongest impact on complicated lesions. Due to low
case numbers, the exact shape of the post-RT age-risk pat-
tern could not be determined. However, the risk increased
significantly already in the first five years after RT
(Simonetto, Kaiser, et al. 2022). These findings are in line
with the observation that RT doses to atherosclerotic plaques
in the left anterior descending coronary artery are enhancing
cardiac toxicity (van den Bogaard et al. 2021). Moreover,
Simonetto et al. proposed that the dose-response for rupture
of large atherosclerotic lesions might be non-linear. These
studies show that susceptibility to radiation-induced ACEs
depends markedly on the atherosclerotic state of a patient
(Simonetto et al. 2020). Thus, for risk reduction heart spar-
ing techniques or proton therapy has been proposed for

patients burdened with plaques within the volume of high
RT doses. The outlined approach of ‘Development of bio-
logically-based models to evaluate radiation-induced disease
risk’ has been added to the MEDIRAD recommendations
(http://medirad-project.eu/recommendations/).

Conclusions

There is a body of available data on the various omics
applied in radiation research that can broadly inform the
AOP framework. By comprehensive screening, omics plat-
forms provide the opportunity to identify biological path-
ways indicative for risk-related outcomes. Such valuable
information can be used to understand the mechanistic links
between dose, dose-rate, and radiation quality and disease
development and progression. Further research is needed to
clarify the issues for the application of omics for regulatory
purposes. The quality, accuracy, and reproducibility of omics
data need to be improved. The omics data needs to be uni-
versally standardized, interpreted, and validated before they
can be incorporated into the AOP framework to address
radiation protection purposes. A deeper understanding of
the molecular mechanism of the biological effects of radi-
ation offers potential measurable bioindicators of radiation
exposure, late and long-term effects, susceptibility, and sen-
sitivity. In the long term, this information proposes the
development of a reliable and universal bioassay for the
human health effects of radiation exposure. It is important
to note that the acceptance of the AOP framework in the
radiation protection community will be influenced by its
ability to improve quantitative risk assessment. Designed
mechanistic models, potentially based on different levels of
biological organization, may help in this respect.
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