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Abstract: Pharmacometrics (PM) and machine learning (ML) are both valuable for drug devel-
opment to characterize pharmacokinetics (PK) and pharmacodynamics (PD). Pharmacokinetic/
pharmacodynamic (PKPD) analysis using PM provides mechanistic insight into biological processes
but is time- and labor-intensive. In contrast, ML models are much quicker trained, but offer less
mechanistic insights. The opportunity of using ML predictions of drug PK as input for a PKPD model
could strongly accelerate analysis efforts. Here exemplified by rifampicin, a widely used antibiotic,
we explore the ability of different ML algorithms to predict drug PK. Based on simulated data, we
trained linear regressions (LASSO), Gradient Boosting Machines, XGBoost and Random Forest to
predict the plasma concentration-time series and rifampicin area under the concentration-versus-time
curve from 0–24 h (AUC0–24h) after repeated dosing. XGBoost performed best for prediction of the
entire PK series (R2: 0.84, root mean square error (RMSE): 6.9 mg/L, mean absolute error (MAE):
4.0 mg/L) for the scenario with the largest data size. For AUC0–24h prediction, LASSO showed the
highest performance (R2: 0.97, RMSE: 29.1 h·mg/L, MAE: 18.8 h·mg/L). Increasing the number of
plasma concentrations per patient (0, 2 or 6 concentrations per occasion) improved model perfor-
mance. For example, for AUC0–24h prediction using LASSO, the R2 was 0.41, 0.69 and 0.97 when
using predictors only (no plasma concentrations), 2 or 6 plasma concentrations per occasion as input,
respectively. Run times for the ML models ranged from 1.0 s to 8 min, while the run time for the
PM model was more than 3 h. Furthermore, building a PM model is more time- and labor-intensive
compared with ML. ML predictions of drug PK could thus be used as input into a PKPD model,
enabling time-efficient analysis.

Keywords: machine learning; pharmacometrics; population pharmacokinetics; rifampicin;
pharmacokinetics; simulation; feature selection
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1. Introduction

Pharmacometrics (PM) and machine learning (ML) are promising approaches used in
drug discovery and development, regulatory decision making and personalized medicine.
In pharmacokinetic/pharmacodynamic (PKPD) analysis, pharmacokinetic (PK) data are
commonly used as input to drive the exposure–response relationship, which can be
both continuous drug concentrations or derived PK parameters (e.g., area under the
concentration-time curve, AUC) [1,2]. When data are sparse, utilizing classical method-
ologies such as noncompartmental analysis (NCA) is not appropriate. In this case, PKPD
modelling using the population approach is commonly applied. This requires the avail-
ability or development of a population PK model, which can be time- and labor-intensive.
Growing access to big data in recent years has increased the interest in utilization of ML
for predictions. ML, with its high computational efficiency, has significant potential and
is starting to be used in drug development [3], but is not applied as much as in discovery
yet [4].

While population PK modelling is a method very frequently used for drug PK predic-
tions, ML is less commonly utilized. There are, however, a few examples in the literature
where ML has been applied to predict PK data. Poynton et al. [5], for example, have
evaluated the performance of several ML algorithms for prediction of remifentanil PK
and compared the performance to population PK [5]. The authors show that an ensemble
model integrating both an artificial neural network (ANN) and a population PK model best
described remifentanil plasma concentration over time [5]. In addition, Woillard et al. [6,7]
have shown that the XGBoost algorithm is appropriate for predictions of tacrolimus and
mycophenolate mofetil exposure. Woillard et al. [6] and Poynton et al. [5] were some of the
first authors to apply ML to PK datasets. While ML has the advantage of being fast and
efficient, as well as being able to handle large datasets, PM models are based on biological
mechanisms, contributing to mechanistical understanding, biological interpretability of
the results and the potential to simulate in silico experiments from the model. ML car-
ries an inherent risk of returning outputs that are not clinically relevant. Thus, this is
another reason (other than time) that these two disciplines should work together. Due
to the multiple challenges faced in PM and ML, there is a continuous interest in both
communities to identify possible ways of combining expertise from both fields [4,8–10].
Attempts to combine PM and ML were made by others previously. Current work includes
improved methods for covariate selection [8], as well as research focused on combining
ML algorithms with the compartmental structure of PM models [11,12] aiming to improve
efficiency in model development. One way of combining ML and PM could be to use
PK predicted from an ML model as input for a pharmacometrics PKPD model, provided
that the predictive performance is acceptable (illustrated in Figure 1). In order to evaluate
whether ML could support PKPD modelling by fast and accurate prediction of PK data, the
aim of this case study was to investigate the ability of different ML algorithms to accurately
and precisely predict both plasma concentration over time and derived PK parameters
(such as AUC), using rifampicin as an example. Rifampicin is an antibiotic commonly used
to treat drug-susceptible tuberculosis as part of an approved four-drug regimen [13]. It is
a drug known for its complex PK, including autoinduction of elimination, concentration-
dependent nonlinear clearance and dose-dependent bioavailability [14–16], as well as a
high inter-occasion variability (IOV) [17]. Nonlinear PK sometimes leads to a complex
modelling process, increasing labor efforts and time needed. This is the key reason why we
believe that using an ML algorithm can actually assist PM in being more efficient.
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When merging both methods, it is critical to first of all understand similarities and
differences between the two fields, to uncover gaps in either methodology and to establish
a common terminology, enabling both communities to communicate with each other.

1.1. Pharmacometrics and Machine Learning
1.1.1. Pharmacometrics

PM is the science of mathematical and statistical modelling with the aim of quantifying
a drug’s PK, pharmacodynamics (PD), PKPD or disease progression. PM models can be
utilized within the entire spectrum of drug development, from discovery all the way to
life-cycle management and label updates [18–25]. According to the FDA, model-informed
drug development (MIDD) is an integral component in the development of a drug [26]. A
common method used in PM is nonlinear mixed effects (NLME) modelling, first defined
by Lindstrom and Bates [27]. It describes simultaneous model fitting to PK or PD data
from all individuals within a population. NLME models consist of fixed-effects parame-
ters describing the population as a whole and random-effects parameters describing the
variability within the population and in the individual [27,28]. A population can, e.g.,
be a group of patients, healthy volunteers, but even a set of in vitro or in vivo data. The
aim of a PM analysis is typically to quantify both the variability in the PK or PD response
between patients and within a patient, as well as to identify predictors (= covariates)
informing about the source of variability (see Figure S1), which can be endogenous (data-
driven) or exogenous (e.g., between study sites). NLME models describe (1) the general
tendency within the population at hand, (2) the variability between different patients (inter-
individual variability (IIV)), (3) variability within the same patient on different occasions
(inter-occasion variability (IOV)), (4) the remaining residual unexplained variability (RUV)
and (5) predictors descriptive of the variability between patients, termed covariates. NLME
models are defined by ordinary differential equations (ODEs) and stochastic differential
equations or analytical solutions [29,30]. They are usually expressed as compartmental
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models describing the absorption, distribution, metabolism and elimination of a drug, as
illustrated in Figure 2. Since all data are fit simultaneously, model building with sparse or
imbalanced data is possible [1,29,30]. Model building is performed in a step-wise manner
and PM models contain biological or pharmacological mechanisms in their structure, thus
allowing the derivation of parameters which are biologically sound and interpretable. The
final model parameter estimates can be used to perform simulations of “what if” scenarios,
answering research questions in order to inform future in vitro/in vivo experiments or
clinical trials regarding their chances of success [31–35], which can greatly reduce the cost
for an experiment or trial [36].
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Figure 2. Illustration of a two-compartment pharmacokinetic model for a fictive drug. AGI, amount
of drug in the gastrointestinal tract; k01, absorption rate constant; k10, elimination rate constant;
k12, rate constant describing distribution from central to peripheral compartment; k21, rate constant
describing distribution from peripheral to central compartment; V1, volume of central compartment
(e.g., blood); V2, volume of peripheral compartment (e.g., brain tissue). Drug clearance is expressed
as k10 × V1.

During and after model development, PM modellers utilize numerous diagnostics,
both quantitative and/or graphical, in order to select the final model that best describes
the observed data. For quantitative model comparison, modellers in the PM community
commonly turn to the objective function value (OFV). The likelihood of the predictions
to fit the data, i.e., the probability of the model parameters being able to describe the
data, is estimated in a maximum likelihood parameter estimation, often using differential
equation systems. The model parameters are estimated by minimizing the OFV, which is
proportional to the −2*log likelihood that the model parameter values occur from the data.
For comparison of nested models, the likelihood ratio test is used [37,38].

Graphical model evaluation is performed most commonly using visual predictive
checks (VPCs) [39–41], basic goodness-of-fit (GOF) plots and individual plots [42,43].
The VPC is a tool to investigate the predictive performance of the model and allows for
comparison between alternative models, evaluation of model fit and visualization of how
the model could be improved [39]. The observed data are compared to data simulated from
the model parameters. Commonly, the 90th percentile (sometimes lower) of the observed
data is compared to the 95% (or lower) confidence interval (CI) of the simulated 90th
percentile data. GOF plots include, for example, evaluation of population predictions or
individual predictions versus observations (see Table 1 for details regarding terminology).
In individual plots, individual observed data are compared to individual predictions.
Lastly, precision in the parameter estimates, clinical relevance and scientific plausibility are
considered during model evaluation.

1.1.2. Machine Learning

Machine learning (ML) has been defined as “a field of statistical research for training
computational algorithms that split, sort and transform a set of data to maximize the
ability to classify, predict, cluster or discover patterns in a target dataset” [44]. ML is
commonly divided into supervised, unsupervised and semi-supervised methods [45].
Supervised ML aims to predict human assigned labels or experimentally determined
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outputs based on independent variables, i.e., these models are trained to predict established
and expected outcomes based on a loss function. Algorithms belonging to supervised ML
models either solve regression and classification problems, e.g., logistic regression, neural
networks, support vector machines and decision trees [46]. In contrast, unsupervised
machine learning does not require prior knowledge regarding the outcomes, and aims to
reveal unexpected patterns in the data, i.e., clustering [47]. Semi-supervised learning is a
combination of using labelled and unlabelled data applied in situations where only parts
of the data have been labelled [48]. ML has frequently been used in drug discovery and is
now increasingly being applied to drug development. Applications in drug development
include biomarker identification, prediction of clinical outcomes and planning of clinical
trials [9,10,45,49–51].

Here, we focus on supervised ML, in which the dataset is separated into training,
validation and test datasets. Common methodologies to split the dataset are either n-fold
cross-validation or bootstrapping (for terminology, see Table 1). The training dataset is
used for learning patterns in the data, while the validation dataset determines optimal
parameterization, for instance, the number of trees in the decision tree, or epochs in a neural
network. The loss function is calculated and optimized on the validation dataset to avoid
under- or overfitting on the training dataset. Different methods for computation of the loss
function exist, such as L1 (Least Absolute Deviations) (Equation (1)) or L2 (Least Square
Errors) (Equation (2)).

L1 =
n

∑
i=1

∣∣∣Yobserved − Ypredicted

∣∣∣ (1)

L2 =
n

∑
i=1

(
Yobserved − Ypredicted

)2
(2)

In Equations (1) and (2), L1 indicates Lasso regression, L2 Ridge regression, Yobserved
observed data and Ypredicted ML prediction. For estimating generalizability to predict novel
data points [45], the test dataset is exclusively used for the final model evaluation, never
for any training or parameterization [52–54]. Data leakage of the test dataset mostly leads
to severe overestimation of the model’s predictive performance, i.e., overfitting [45].

1.1.3. Terminology

Different terminologies are used in PM and ML, often describing either the same
or a similar part of the analysis. While in PM one “builds” or “fits” a model, in ML a
model is “trained”. Both terms essentially describe the process of developing a model, its
structure and parameters of interest. When it comes to predictors used in the model, there
is a difference between ML and PM. In ML, the word “features” is used to describe all
input variables used to train the model in order to predict the desired outcome [54]. This
could in drug development, for example, include time, dose and patient characteristics
such as bodyweight, age or creatinine clearance. In PM, on the other hand, predictors are
usually termed “covariates”, which are not directly comparable to features. Covariates
describe predictors that aim to explain the sources of the PK and PD variability between
patients (IIV). Since certain variables such as time and dose are normally already part of the
structural model, they are not considered covariates [55]. Only the predictors explaining
variability between patients in addition to the variables already included in the structural
model are considered covariates, which would in this example be bodyweight, age or
creatinine clearance. In this work, we use the word “predictor” as an umbrella term for
both feature and covariate. In PM, only scientifically plausible and clinically relevant
predictors should be included in the model, which are identified in a preselection step
conducted by an expert. This can also be beneficial for ML models; however, if the dataset
is large enough, preselection of predictors is not necessary. ML can then be used to identify
unexpected associations in a data-driven manner.

The parameters of a PM model are often not comparable to those in ML. In PM,
parameters are descriptive of PK and PD processes, such as drug clearance, distribution
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volume or drug absorption, as well as drug effect (e.g., the maximal drug effect (Emax) or
the drug’s potency, such as EC50). ML parameters, however, are more mathematical and
from a biological point of view less interpretable. Parameters are configuration variables of
the model and are estimated during the model training process enabling predictions from
the final model. They are determined automatically and include, for example, weights,
coefficients and support vectors. Hyperparameters, on the other hand, are variables
defined by the modeller as they cannot be estimated from the data, but are tuned during
the learning process [56], such as the regularization parameter λ and the number of trees k
in eXtreme Gradient Boosting (XGBoost) [57]. Determination of hyperparameters is called
“hyperparameter tuning” and is often achieved by testing different hyperparameters and
then choosing the ones providing the best model fit [58,59]; however, the process can also
be automated [59].

As mentioned above, in supervised ML the data are split into a “training dataset” used
for learning general rules, a “validation dataset” for internal validation and a “test dataset”
for unbiased evaluation using cross-validation [52–54]. Separating the data is not common
practice in pharmacometrics model building, where, instead, all available data are used for
model building and only external validation is performed with new data.

The overall workflows for both PM and ML are illustrated in Figure 3.
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Figure 3. Comparison of the general model development workflow between pharmacometrics and
machine learning. The different colors represent different steps of model development. Green: data
preparation, blue: model building, red: model evaluation, orange: finalizing the model.

Table 1 provides a comprehensive overview of differences and similarities in terminol-
ogy used by the PM and ML community.
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Table 1. Overview of terminology commonly used by the pharmacometrics and/or machine learn-
ing community.

Term Description

PM ML

Covariates Features
Both terms describe predictors. Features are all input variables used to train a
model. Covariates are predictors explaining variability between patients in
addition to the variables already included in the structural pharmacometrics model.

Objective function
value (OFV) Loss

The OFV is one of the main metrics for model evaluation in pharmacometrics
model building. It is proportional to −2*log likelihood that the model parameter
values occur from the data [37,38].
In ML, the loss is used as a goodness of fit. It represents the distance between
predictions and observations which can be computed in different ways, such as
L1, L2 or MAPE.

Build/Fit a model Train a model Both terms define the process of developing a model by determining model
parameters that describe the input data in order to reach a predefined objective.

Validation dataset Validation dataset
In PM, the term validation dataset is often used for external validation. In ML,
the term is commonly used for the data that are held back for internal validation
to evaluate model performance during training.

Overparameterization Overfitting

In PM, a model can be overparameterized, meaning too many parameters are
estimated in relation to the amount of information, leading to minimization
issues. Overfitting in ML describes a phenomenon where the model has been
trained to fit the training data too well. The model is forced to predict in a very
narrow direction, which may result in poor predictive ability.

Model parameters Model parameters

Even though both communities use the same term, model parameters in PM are
different from parameters in ML. Model parameters in PM describe biological or
pharmacological processes, such as drug clearance, drug distribution volume or
rate of absorption. These parameters are directly interpretable. In ML, on the
other hand, model parameters are mathematical parameters learnt during the
model training process and are part of the final model describing the data. They
do not provide biological interpretation in the first instance at least.

Model averaging Ensemble model

An ensemble model combines multiple ML algorithms, which in most cases
leads to better predictive performance compared to single algorithms [60]. There
is a similar method used in PM called model averaging [61], where several
models are combined using weights determined by their individual fit to the data.

Shrinkage Shrinkage

The term “shrinkage” has a different meaning in the PM and ML communities.
In PM, shrinkage describes overparameterization, where 0 indicates very
informative data and no overfit, and 1 uninformative data and overfitting. In
ML, shrinkage methods in different ML models reduce the possibility of
overfitting or underfitting by providing a trade-off between bias and variance.

Bootstrapping Bootstrapping

Describes a random resampling method with replacement. In PM, it is used
during model development and evaluation for estimation of the model
performance. In ML, bootstrapping is part of some algorithms, such as XGBoost
or Random Forest, and is also used to estimate the model’s
predictive performance.

Cross-validation Cross-validation

In PM, cross-validation is used occasionally, for example, in covariate selection
procedures in order to assess the true alpha error. In ML, cross-validation is
commonly applied to prevent overfitting and to obtain robust predictions.
Cross-validation describes the process of splitting the data into a training dataset
and a test dataset. The training dataset is used for model development and the
test dataset for external model evaluation. In n-fold cross-validation, the data are
split into n non-overlapping subsets, where n − 1 subsets are used for training
and the left-out subset for evaluation. This procedure is repeated until all
subsets have been used for model evaluation. Model performance is then
computed across all test sets [45].
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Table 1. Cont.

Term Description

PM ML

- Holdout/test dataset

Describes the test/unseen dataset used for external validation. It is of great
importance that the holdout/test data is not used for model training or
hyperparameter tuning in order not to overestimate the model’s predictive
performance [45].

- Oversampling/
Upsampling

Oversampling is an approach used to deal with highly imbalanced data. Data in
areas with sparse data are resampled or synthesized using different methods, for
example, Synthetic Minority Oversampling Technique (SMOTE) [62].

Empirical Bayes
Estimates (EBEs) Bayesian optimization

EBEs in PM are the model parameter estimates for an individual, estimated
based on the final model parameters as well as observed data using Bayesian
estimation [63]. In artificial intelligence (AI), Bayesian optimization is used to
tune artificial neural networks (ANNs), particularly in deep learning.

Typical value Typical value

The typical value in PM is the most likely parameter estimate for the whole
population given a set of covariates. It could, e.g., be the drug clearance estimate
that best summarizes the clearance of the whole population. In ML, the typical
value in unsupervised learning, for example, is the center of a cluster
(e.g., k-means).

Inter-individual
variability (IIV) -

Variability between individuals in a population. Describes the difference
between typical and individual PK parameters. Often assumed to be
log-normally distributed.

Inter-occasion
variability (IOV) - Variability within an individual on different occasions (e.g., sampling or dosing

occasions). Often assumed to be log-normally distributed.

Residual error
variability (RUV) - Remaining random unexplained variability. Describes the difference between

individual prediction and observed value.

Population
prediction - The population prediction is the most likely representation of the population

given a set of covariates.

Individual prediction - Predictions for an individual using the population estimates in combination
with the observed data for this individual, computed in a Bayesian posthoc step.

L1, least absolute deviations; L2, least absolute errors; MAPE, mean absolute prediction error; ML, machine
learning; PM, pharmacometrics.

2. Materials and Methods
2.1. Data

Rifampicin PK data were simulated from a previously published population PK model
describing rifampicin plasma concentrations over time in tuberculosis patients [15], which
has been shown to perform best compared to other population PK models for rifampicin
and has undergone external validation [64]. The population PK model consists of a 1-
compartment distribution model with nonlinear elimination (described as a Michaelis–
Menten equation), autoinduction of elimination and dose-dependent bioavailability [15].
The simulated scenario was as in the original HIGHRIF1 clinical phase 2 trial [65] in order to
create clinically relevant data. PK in 83 individuals following 10, 20, 25, 30, 35 or 40 mg/kg
oral rifampicin once a day for 2 weeks was simulated. The dose group was randomly
assigned to a simulated individual. The simulated individual’s bodyweight defined the
actual dose. The dose was then rounded to the next 150 mg increment, due to availability
of tablet strength. In total, the 13 doses, which are 450, 600, 900, 1050, 1200, 1350, 1500, 1650,
1800, 1950, 2250, 2400, 2550 and 2700 mg, were randomly assigned to 8, 9, 1, 7, 8, 3, 17, 2, 13,
5, 3, 4, 1 and 2 individuals, respectively. IIV, IOV and RUV were included in the simulations.
PK sampling time-points were at pre-dose and 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12 and 24 h after dose
at two different sampling occasions (day 7 and 14 of treatment). Patient covariates were
randomly sampled from the parametric covariate distribution in the HIGHRIF1 trial [65],
taking into account the correlation between bodyweight (WT), fat-free mass (FFM) and
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gender, as described previously [17]. The covariates were sampled from either a truncated
normal distribution (WT, FFM, age, body height (HT)) or a binomial distribution (gender,
HIV-coinfection, race). Body mass index (BMI) was calculated from WT and HT.

Predictors included in the simulations to create the dataset were time after dose (TAD),
treatment week (OCC) and dose, which are part of the structural PM model, as well as
the covariate FFM. In total, 1826 (83 patients × 2 occasions × 11 samples per occasion)
rifampicin plasma concentrations were simulated. The simulated rifampicin concentrations
and the covariates included in the simulation are considered to be the true observed
concentrations and predictors, respectively. The final simulated dataset is provided in
Supplementary Materials Data S1.

2.2. ML Model Training

In this work, we evaluate ML model performance for prediction of PK data using
rifampicin as an example drug. Since either a rifampicin plasma concentration-time series
or exposure indices can be used as input for a PKPD model, it is of interest to investigate
the predictive ability of ML for either outcome. As an exposure index, the area under
the plasma concentration-time curve from 0 to 24 h (AUC0–24h) was chosen here, since
the AUC0–24h/MIC has been shown to be the best predictor of rifampicin efficacy [66].
The individual AUC0–24h values were calculated using noncompartmental analysis (NCA)
based on rich simulated profiles (20 observations per sampling occasion). For AUC0–24h
calculation, the trapezoidal rule implemented in the pmxTools R package [67] was utilized.
The derived AUC0–24h values were considered the true values.

For ML model training, features included in the training dataset were TAD, dose,
OCC, BMI, age, gender, race, WT, HT, HIV co-infection and FFM. The target was either
the rifampicin plasma concentration or the rifampicin AUC0–24h. From the whole dataset,
5 datasets each containing 80% of the data for training and 20% for testing were created
using patient identifier (ID) as a grouping variable, enabling 5-fold cross-validation. When
splitting the data, it was ensured that each of the 5 test datasets contained different IDs,
making sure that every ID was left out once, thus avoiding overlapping and bias. The
test set was solely used to evaluate final performance, never for any training or fitting
parameters of any model. The training dataset was again split in 80% training and 20%
validation for 5-fold internal cross-validation. Utilizing the training datasets as input,
different ML algorithms were trained for prediction of rifampicin PK. The predictive
performance for each of the 5 test datasets was averaged in order to compute the overall
predictive performance.

The current study deals with a regression problem; therefore, different supervised
ML algorithms included in the SuperLearner R package [68] were tested. The three top-
performing algorithms were chosen for further evaluation, which were GBM, XGBoost and
Random Forest. In addition to these three nonlinear models, a linear model (LASSO) was
evaluated for comparison.

The algorithms were optimized by testing different model parameters (hyperparame-
ter tuning). Hyperparameter tuning was performed in a grid search for LASSO, GBM and
Random Forest, where all possible parameter combinations were explored. For XGBoost,
a sequential, heuristic search was performed due to very long run times for the full grid
search. The ranges of investigated hyperparameters of the final models are presented in
Table S1.

For comparison of run times, as well as creation of a VPC, the population PK model [15]
was re-estimated in NONMEM [37] using the simulated dataset.

2.3. Feature Ranking

GBM, XGBoost, Random Forest and LASSO were compared based on their capability
to identify features. Since the dataset was created by simulating from the population PK
model, including TAD, OCC, dose and FFM, which were previously shown to influence
rifampicin PK [15], the data include a correlation between rifampicin plasma concentrations
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and these predictors. Other predictors included in the dataset, which were not used in the
simulation of the plasma concentrations, can therefore be considered noise. In contrast
to a real-world dataset, where the true predictors are unknown, in this simulation-based
study the true predictors are known. In this work, we explored whether the four different
algorithms were able to identify these true predictors, i.e., TAD, OCC, dose and FFM.
Evaluated predictors were TAD, dose, OCC, BMI, age, gender, race, WT, HT, HIV co-
infection and FFM. The machine learning model evaluates all features and assigns weights
to them in the training process, which will determine the prediction of the outcome variable.

The importance score of GBM is based on calculating the amount by which each
feature’s split point improves the efficiency in a single decision tree. The importance
scores are averaged across all decision trees. Therefore, the greater the improvement
efficiency measure of a feature on the split point (closer to the root node), the greater the
weight. This means that the more the promotion tree is selected, the higher the feature
importance. XGBoost, as the implemented method of GBM, has the same algorithms in
feature ranking, but uses a more regularized model formalization to control over-fitting
which would affect the importance scores. Random Forest calculates importance scores
by evaluating the decrease in node impurity weighted by the probability of reaching that
node. LASSO adds the L1 norm of the coefficient as a penalty term to the loss function.
Since the regularization term is non-zero, the coefficients corresponding to less important
features are therefore discarded.

2.4. PK Predictions

The amount of available clinical PK data is very different across the several stages
of drug development and thus an additional objective was to explore ML model perfor-
mance across varying data sizes. To assess the amount of information required by the ML
algorithms to predict well, scenarios including varying numbers of observed rifampicin
concentrations as input variables in addition to the weighted features included in the
model (TAD, dose, OCC, BMI, age, gender, race, WT, HT, HIV co-infection and FFM) were
investigated (see Table 2). Based on this input, a full plasma concentration-time series (at
pre-dose and 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12 and 24 h post-dose) and the AUC0–24h at treatment
days 7 and 14 were predicted (see Table 2). As an example, in scenario 2 (Table 2), the
abovementioned features, as well as 2 observed rifampicin plasma concentrations at 2 and
4 h post-dose are used as input variables to the model to predict the rifampicin plasma
concentration at pre-dose and 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12 and 24 h post-dose, i.e., a full
pharmacokinetic profile.

Table 2. Different scenarios of data sizes used for model training and predicted outcome.

Scenario Model Predictions

1 Features only Rifampicin concentration-time series c

2 Features + 2 observed rifampicin concentrations a Rifampicin concentration-time series c

3 Features + 6 observed rifampicin concentrations b Rifampicin concentration-time series c

4 Features only AUC0–24h

5 Features + 2 observed rifampicin concentrations a AUC0–24h

6 Features + 6 observed rifampicin concentrations b AUC0–24h
a Time-points of rifampicin concentrations are at 2 and 4 h post-dose at days 7 and 14, representing a sparse
sampling schedule. b Time-points of rifampicin concentrations are at 0.5, 1, 2, 4, 8 and 24 h post-dose at days 7
and 14, representing a richer sampling schedule. c At pre-dose and 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, and 24 h post-dose at
days 7 and 14. AUC0–24h, area under the rifampicin plasma concentration-time curve up to 24 h.
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2.5. Model Evaluation

Model performance was evaluated using the R2 (Equation (3)) between observations
and predictions, the root mean square error (RMSE) describing precision (Equation (4)) and
the mean absolute error (MAE) describing bias (Equation (5)).

R2 = 1 − SSres

SStot
(3)

In Equation (3), SSres are the squared residuals reflecting the fit between observed and
predicted value and SStot are the total sum of squares, reflecting the total variance. SSres is
defined as

SSres = ∑(Observedi − Predictedi)
2

where Observedi is the individual plasma concentration or AUC0–24h value simulated from
the population PK model, and Predictedi is the individual ML model-based prediction.

SStot is defined as

SStot = ∑(Observedi − mean(Observed)))2

where Observedi is the individual plasma concentration or AUC0–24h value simulated from
the population PK model.

RMSE =

√
1
n

n

∑
i=1

(Observedi − Predictedi)
2 (4)

MAE =
1
n

n

∑
i=1

∣∣∣∣∣Observedi − Predictedi

∣∣∣∣∣ (5)

In Equations (4) and (5), RMSE stands for root mean squared error describing precision,
MAE stands for mean absolute error describing bias, Observedi is the individual plasma
concentration or AUC0–24h value simulated from the population PK model and Predictedi is
the individual ML model-based prediction.

2.6. Software

For simulation of rifampicin plasma concentrations, NONMEM version 7.3.0 (Icon De-
velopment Solutions, Hanover, MD, USA) [37] assisted by PsN version 5.0.0 (Department
of Pharmacy, Uppsala University, Uppsala, Sweden) [43] was used. Dataset manipulation,
data visualization and ML model training was performed in R statistical software version
4.0.3 (R Foundation for Statistical Computing, Vienna, Austria) [69]. The computations
were performed on resources provided by the Swedish National Infrastructure for Com-
puting (SNIC) through Uppsala Multidisciplinary Center for Advanced Computational
Science (UPPMAX).

3. Results
3.1. Feature Ranking

In scenario 1, i.e., predicting a rifampicin plasma concentration-time series based
on features only, XGBoost, Random Forest and GBM selected TAD and dose as the most
important predictors as expected, since these were included in the creation of the data.
Instead of the true covariate FFM, all three algorithms selected WT and BMI as the third
and fourth most important predictors, which can be explained by the direct correlation
between WT, BMI and FFM. The linear LASSO algorithm showed poor feature selection
performance, which was not better than random. Therefore, feature importance was not
evaluated for LASSO. The importance score of each feature for the different ML algorithms
(scenario 1) is presented in Figure 4. The feature importance for the five other scenarios is
graphically presented in Figure S2.
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AGE, age (years); BMI, body mass index (kg/m2); DOSE, daily rifampicin dose (mg); FFM, fat-free 
mass (kg); HIV, HIV-coinfection; HT, body height (cm); OCC, treatment week; RACE, race; SEX, 
gender; TAD, time after dose (h); WT, bodyweight (kg). 
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model predictions and run times are presented in Table 3. For all algorithms, the run time 
was shorter (range across all algorithms: 1.0 (scenario 5 in Lasso)–508.7 s (scenario 3 in 
Random Forest)) compared to the population PK model (11,479 s) using 1 core of the UPP-
MAX cluster. 

With regards to prediction of plasma concentration over time using features as input 
only, XGBoost showed the highest R2 (0.60) and precision (RMSE: 10.6 mg/L). GBM had 
an R2 of 0.57 and RMSE of 10.9 mg/L and Random Forest had an R2 of 0.54 and RMSE of 
11.3 mg/L. The linear model LASSO had an R2 of 0.25. Using 2 rifampicin plasma concen-
trations per sampling occasion as input for prediction of the whole time series (11 time-
points per sampling occasion) substantially improved model performance compared to 
features only. In this scenario, XGBoost and GBM had the highest predictive performance 
with an R2 of 0.76, closely followed by Random Forest with an R2 value of 0.75. The use of 
6 rifampicin plasma concentrations led to the best predictive performance in all algo-
rithms. XGBoost had the highest R2 (0.84) and precision (RMSE: 6.9 mg/L). Random Forest 
and GBM showed comparable performances, with R2 values of 0.82 and 0.83, respectively. 

Figure 4. Importance scores for evaluated features shown for the different machine learning algo-
rithms. (A) GBM, (B) Random Forest and (C) XGBoost using features only (scenario 1) as input for
prediction of plasma concentration versus time. The error bars represent the standard deviation.
AGE, age (years); BMI, body mass index (kg/m2); DOSE, daily rifampicin dose (mg); FFM, fat-free
mass (kg); HIV, HIV-coinfection; HT, body height (cm); OCC, treatment week; RACE, race; SEX,
gender; TAD, time after dose (h); WT, bodyweight (kg).

3.2. Predictions of Rifampicin Plasma Concentration over Time

XGBoost, Random Forest, GBM and LASSO were trained and optimized. The fi-
nal, well-trained models were used to predict rifampicin plasma concentration over time
(11 time-points per sampling occasion) using the features in the test dataset as input. The
final model predictions and run times are presented in Table 3. For all algorithms, the run
time was shorter (range across all algorithms: 1.0 (scenario 5 in Lasso)–508.7 s (scenario 3
in Random Forest)) compared to the population PK model (11,479 s) using 1 core of the
UPPMAX cluster.
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Table 3. Model performance for prediction of plasma concentration over time using varying amounts
of information as input.

GBM XGBoost Random Forest LASSO

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

R2 0.57 0.76 0.83 0.60 0.76 0.84 0.54 0.75 0.82 0.25 0.36 0.39

Pearson
correlation 0.77 0.87 0.90 0.78 0.87 0.91 0.75 0.86 0.90 0.52 0.62 0.65

RMSE
(mg/L)

10.9
(8.9–13.3)

8.3
(6.8–8.6)

7.1
(5.1–7.3)

10.6
(8.9–13.5)

8.3
(6.7–12.4)

6.9
(5.1–11.1)

11.3
(9.8–14.1)

8.5
(6.9–12.7)

7.2
(5.3–11.8)

14.5
(13.4–19.1)

13.3
(11.5–16.6)

12.9
(11.3–15.3)

MAE
(mg/L)

7.1
(6.0–7.1)

5.2
(4.3–6.8)

4.1
(3.3–5.7)

7.0
(6.0–8.0)

5.1
(4.2–6.7)

4.0
(3.2–5.4)

7.0
(6.4–8.0)

4.9
(4.2–6.4)

3.8
(2.8–5.3)

10.2
(9.9–12.2)

9.6
(8.4–11.1)

9.3
(8.1–10.5)

Run time (s) 6.8 8.2 11.1 1.4 1.2 4.7 309.9 362.6 508.7 1.1 1.3 1.1

In scenario 1, the models were trained to predict the rifampicin plasma concentration-time series (11 time-points
at days 7 and 14) based only on features (no plasma concentrations). In scenario 2, the models were trained to
predict the rifampicin plasma concentration-time series (11 time-points at days 7 and 14) based on features and
2 plasma concentrations at time-points 2 and 4 h post-dose at days 7 and 14. In scenario 3, the models were trained
to predict the rifampicin plasma concentration-time series (11 time-points at days 7 and 14) based on features and
6 plasma concentrations at time-points 0.5, 1, 2, 4, 8 and 24 h post-dose at days 7 and 14. MAE, mean absolute
error averaged across the n-folds (range); RMSE, root mean square error averaged across the n-folds (range).

With regards to prediction of plasma concentration over time using features as input
only, XGBoost showed the highest R2 (0.60) and precision (RMSE: 10.6 mg/L). GBM had
an R2 of 0.57 and RMSE of 10.9 mg/L and Random Forest had an R2 of 0.54 and RMSE
of 11.3 mg/L. The linear model LASSO had an R2 of 0.25. Using 2 rifampicin plasma
concentrations per sampling occasion as input for prediction of the whole time series
(11 time-points per sampling occasion) substantially improved model performance com-
pared to features only. In this scenario, XGBoost and GBM had the highest predictive
performance with an R2 of 0.76, closely followed by Random Forest with an R2 value of
0.75. The use of 6 rifampicin plasma concentrations led to the best predictive performance
in all algorithms. XGBoost had the highest R2 (0.84) and precision (RMSE: 6.9 mg/L).
Random Forest and GBM showed comparable performances, with R2 values of 0.82 and
0.83, respectively. LASSO exhibited poor performance (R2: 0.39). Model performance
across all algorithms and scenarios is summarized in Table 3. The results clearly show that
increasing the amount of data per simulated patient improves the predictive performance
of all four ML algorithms, as shown in Table 3 and Figure 5. The prediction interval-based
VPC for the best performing algorithm (XGBoost) (Figure 6) shows accurate prediction of
the median but underprediction of the true variability in the population. The rifampicin
concentrations simulated from the population PK model, considered to be observations
in this study, for 15 randomly selected IDs in the test dataset and the model predictions
from the best-performing ML model (XGBoost) were compared across the dose groups,
which are presented in Figures 7 and S3. Even though XGBoost showed the best predictive
performance in scenarios 1, 2 and 3 (see Table 3), all three nonlinear algorithms exhibited ac-
ceptable predictive performance, considering the small dataset. A VPC for the re-estimated
population PK model using the simulated data is shown in VPC (Figure 8).
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Figure 5. Predictions of rifampicin plasma concentration–time series from the different ML algo-
rithms compared to the simulations from the population PK model, considered to be observations 
in this study. Panel (A) is the scenario where the model was trained to predict the rifampicin plasma 
concentration–time series using features only as input. In panel (B), the models were trained to pre-
dict the rifampicin plasma concentration–time series based on features and 2 plasma concentrations 
at time-points 2 and 4 h post-dose at days 7 and 14. In panel (C), the models were trained to predict 
the rifampicin plasma concentration–time series based on features and 6 plasma concentrations at 
time-points 0.5, 1, 2, 4, 8 and 24 h post-dose at days 7 and 14. The red dashed line represents a 
trendline through the data. The black solid line is the line of identity, indicating 100% agreement 
between true and predicted values. 

Figure 5. Predictions of rifampicin plasma concentration-time series from the different ML algorithms
compared to the simulations from the population PK model, considered to be observations in this
study. Panel (A) is the scenario where the model was trained to predict the rifampicin plasma
concentration-time series using features only as input. In panel (B), the models were trained to predict
the rifampicin plasma concentration-time series based on features and 2 plasma concentrations at
time-points 2 and 4 h post-dose at days 7 and 14. In panel (C), the models were trained to predict
the rifampicin plasma concentration-time series based on features and 6 plasma concentrations at
time-points 0.5, 1, 2, 4, 8 and 24 h post-dose at days 7 and 14. The red dashed line represents a
trendline through the data. The black solid line is the line of identity, indicating 100% agreement
between true and predicted values.

Using the best performing model (XGBoost) and 6 rifampicin concentrations as input
(scenario 3), the 95% prediction interval (PI) was −0.2–62.4 mg/L (median: 10.9 mg/L) com-
pared to the data simulated from the population PK model with a 95% PI of 0–69.4 mg/L
(median: 10.2 mg/L). Imprecision and bias were comparable between treatment week
1 (RMSE: 7.1 mg/L, MAE: 3.9 mg/L) and week 2 (RMSE: 6.6 mg/L, MAE: 4.1 mg/L),
indicating that the ML model can identify the difference in exposure between week 1 and
week 2 caused by rifampicin autoinduction.

The R code for the final models is provided in Supplementary Materials Text S2.
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Figure 6. Prediction interval visual predictive check for the best-performing model (XGBoost) trained
using 6 plasma concentrations as input (scenario 3) shown for the whole population. Open circles
are the rifampicin plasma concentrations simulated from the population PK model, considered to be
observed data in this study. The shaded area is the 95th prediction interval of the machine learning
model predictions (XGBoost) and the solid blue line is the median of the model predictions. The upper
and lower red dashed lines are the 97.5th and 2.5th percentiles of the observed data, respectively, and
the solid red line is the median of the observed data.
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Figure 7. Individual rifampicin plasma concentrations predicted from the XGBoost model (solid line 
and open circles) compared to the concentrations simulated from the population PK model, consid-
ered to be observations in this study (black closed circles) shown for scenario 3 (features and 6 
plasma concentrations used for prediction) for 15 randomly selected IDs. Panel (A) represents the 
predictions for each individual in the test dataset at day 7. Panel (B) represents the predictions for 
each individual in the test dataset at day 14. The different colors indicate the different daily rifam-
picin doses. 

Figure 7. Individual rifampicin plasma concentrations predicted from the XGBoost model (solid
line and open circles) compared to the concentrations simulated from the population PK model,
considered to be observations in this study (black closed circles) shown for scenario 3 (features and
6 plasma concentrations used for prediction) for 15 randomly selected IDs. Panel (A) represents
the predictions for each individual in the test dataset at day 7. Panel (B) represents the predictions
for each individual in the test dataset at day 14. The different colors indicate the different daily
rifampicin doses.
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tion revealed good performance across all four algorithms (Figure 9), but LASSO was su-
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Figure 8. Visual predictive check for the re-estimated population PK model based on the simulated
data. Open blue circles are the rifampicin plasma concentrations simulated from the population PK
model, considered to be observed data in this study. The upper and lower dashed lines are the 95th
and 5th percentiles of the observed data, respectively, and the solid line is the median of the observed
data. The shaded areas (top to bottom) are the 95% confidence intervals of the 95th (blue shaded
area), median (red shaded area) and 5th (blue shaded area) percentiles of the simulated data.

3.3. Predictions of Rifampicin AUC0–24h

The different ML models were trained to predict rifampicin AUC0–24h using varying
plasma concentrations of rifampicin as input (see Table 2). The R2, imprecision (RMSE), bias
(MAE) and run time for each scenario are summarized in Table 4. Graphical exploration
revealed good performance across all four algorithms (Figure 9), but LASSO was superior
in regard to precision and accuracy (Table 4).
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Table 4. Model performance for prediction of rifampicin AUC0-24h using varying amounts of infor-
mation as input.

GBM XGBoost Random Forest LASSO

Scenario 4 Scenario 5 Scenario 6 Scenario 4 Scenario 5 Scenario 6 Scenario 4 Scenario 5 Scenario 6 Scenario 4 Scenario 5 Scenario 6

R2 0.27 0.61 0.73 0.44 0.71 0.84 0.22 0.62 0.78 0.41 0.69 0.97

Pearson
correlation 0.59 0.73 0.83 0.63 0.75 0.83 0.55 0.73 0.83 0.67 0.84 0.98

RMSE
(h·mg/L)

131.7
(86.9–246.6)

103.0
(49.8–233.1)

88.2
(41.7–218.2)

121.0
(57.7–262.8)

92.6
(38.9–250.1)

69.6
(21.0–238.3)

137.1
(76.8–252.8)

103.5
(48.5–238.7)

79.9
(30.2–208.5)

117.9
(76.0–238.5)

86.8
(48.3–175.5)

29.1
(20.7–57.3)

MAE
(h·mg/L)

85.5
(74.4–121.1)

61.3
(43.2–105.8)

47.6
(21.0–238.3)

76.7
(47.1–122.3)

52.6
(30.5–110.5)

30.4
(13.3–82.8)

84.6
(63.1–118.3)

59.4
(39.6–102.6)

38.3
(22.5–74.8)

74.2
(56.5–119.7)

54.5
(38.4–87.2)

18.8
(15.2–29.2)

Run time (s) 1.3 1.6 1.8 0.7 4.7 4.1 20.5 21.9 22.8 1.1 1.0 1.1

In scenario 4, the models were trained to predict rifampicin AUC0–24h based only on features (no plasma concen-
trations) at days 7 and 14. In scenario 5, the models were trained to predict rifampicin AUC0–24h based on features
and 2 plasma concentrations at time-points 2 and 4 h post-dose at days 7 and 14. In scenario 6, the models were
trained to predict rifampicin AUC0–24h based on features and 6 plasma concentrations at time-points 0.5, 1, 2, 4, 8
and 24 h post-dose at days 7 and 14. AUC0–24h, Area under the rifampicin plasma concentration-time curve from
0 to 24 h; MAE, mean absolute error averaged across the n-folds (range); RMSE, root mean square error averaged
across the n-folds (range).
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the scenario where the model was trained using features only as input. In panel (B), the models were
trained to predict rifampicin AUC0–24h based on features and 2 plasma concentrations at time-points
2 h and 4 h post-dose at days 7 and 14. In panel (C), the models were trained to predict rifampicin
AUC0–24h based on features and 6 plasma concentrations at time-points 0.5 h, 1 h, 2 h, 4 h, 8 h and
24 h post-dose at days 7 and 14. The red dashed line represents a trendline through the data. The
black solid line is the line of identity, indicating 100% agreement between true and predicted values.

4. Discussion

When comparing PM and ML methodology in drug development in terms of phys-
iological plausibility and clinical relevance, the difference that probably stands out the
most is that PKPD models are based on statistical models as well as underlying biological
mechanisms where the models can vary from compartmental models to full mechanistic
as in physiology-based pharmacokinetic models, while ML is often a purely data-driven
approach, though not in all cases. In PM, the parameters are directly biologically inter-
pretable, which can aid in identifying underlying mechanisms. ML parameters, however,
are mathematically interpretable albeit to a lesser extent from a biological perspective.
There are, however, some artificial intelligence (AI) methodologies, such as causal AI, that
provide a better interpretability. In PM, the previous mechanistic knowledge that is used
as input can also introduce a bias into the analysis if imputed inappropriately, which is
avoided in ML. On the other hand, the previous knowledge used in PM models is crucial
for analysis of sparse datasets. There are also differences in the model-building process.
When already-available ML models are used, the modeller is less involved in the model
building but facilitates the selection of an appropriate algorithm, hyperparameter tuning
and model evaluation. In PM, a model is manually built in an iterative manner, constantly
evaluating the model’s performance at each step, based on which the modeller takes the
decision on how to proceed (Figure 3). The process is thus very time- and labor-intensive,
and can lead to different modellers developing slightly different models based on the
same dataset. This way of developing a model ensures that modelling is guided by a
physiological intent, i.e., it is easily understandable if a PK profile follows a one- or a
two-compartment model structure and how that potentially relates to the distribution of
the drug in the body and site of action. ML cannot account for that in the first instance at
least, but is a faster, more time- and labor-efficient method compared to PM. Challenges
with purely data-driven ML algorithms certainly lie in the need for rich data, as well as
the “Garbage in–Garbage out” problem, which describes the need for high-quality and
diverse data in order to build robust models [45]. One of the major advantages of PM
modelling is the ability to perform simulations of different scenarios that were not part of
the data used for model building. An example is clinical trial simulations where a drug’s
PK and/or effect is predicted in a virtual population for different scenarios, for example, to
support dose selection for a future clinical trial or for prediction of optimal doses in renal
impairment patients or pediatric populations [70]. While this can also be achieved using
ML, e.g., with reinforcement methodologies, larger amounts of data are needed to train
robust models.

In this work, we have investigated the identification of key features (Figure 4), de-
scribed the variability in the PK predictions (Figure 6) and predicted PK using time as a
continuous variable (Table 3, Figures 6 and 7).

Accurate selection of informative predictors is crucial both to obtain a high model
performance and for clinical use, as they inform about potential differences in dose adjust-
ments in special populations. This work suggests that all three nonlinear algorithms are
able to correctly identify TAD and dose as the most important predictors. Since the linear
LASSO algorithm performed very poorly, feature selection was not evaluated. Despite
the correct identification of TAD and dose, none of the nonlinear algorithms selected FFM
in third place, which is the true covariate. All three algorithms, however, selected WT
and BMI as third and fourth most important, which are directly correlated with FFM. We
hypothesize that WT was assigned a high importance instead of FFM due to the high
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correlation between the two features. The ML model assigns a high feature importance to
WT and a low importance to FFM, because the contribution of FFM is no longer needed
after inclusion of WT. In the PM model, on the other hand, FFM was selected as more
important than WT. This might be due to the fact that PM and ML are two very different
methods, which select features in a different way. However, this should not have a large
impact on the results since FFM and WT are directly correlated and assigning one a high
and the other one a low importance would likely describe the data very similarly. In PM,
the true covariate FFM would be added as a covariate on, e.g., drug clearance or drug
volume of distribution, indicating which process the covariate influences. This information,
however, is not easily obtainable from ML models, and it thus remains unknown how
exactly the exposure is influenced by a feature. Another difference is that in PM TAD,
OCC and dose are a part of the structural model, and are always used for prediction of
concentration over time in population PK modelling, while in ML these are considered
features, just like FFM.

Using ML instead of PM could be promising for prediction of PK due to its time- and
labor-efficiency in situations when the gold standard population PK cannot be used, or
there is no need for a more mechanistic understanding of the PK, or to develop a model
that can perform simulations. All the tested ML algorithms in this study outperformed
the PM model with respect to run time, being at least 22 times faster. Considering the fact
that PM model development is a manual, stepwise procedure, it is also important to note
that a PM model has to be run repeatedly, especially when performing covariate analysis.
It is often necessary to run the model 20–100 times until the final model is reached. In
ML, however, many algorithms have an embedded feature selection, i.e., the model only
has to be run once. A fairer comparison would thus be a multiple of 11,479 s (191 min)
for the PM model, depending on how many developmental steps are involved and how
many covariates are explored, versus one run time for the ML model plus the run time for
hyperparameter tuning. However, both pure run times and the model development itself
are faster using ML. Due to the stepwise, manual model building process in PM, it usually
takes several weeks for an experienced modeller to develop a population PK model, while
an ML model can most often be developed in less time. With large amounts of diverse data,
the time ratio would change even more. This increased efficiency is especially beneficial in
light of the good predictive performance of the nonlinear ML models explored in this study
when at least two plasma concentrations are used as input. In this work, we demonstrated
a good precision and accuracy in the ML predictions for both longitudinal data (XGBoost:
RMSE: 6.9 mg/L, MAE: 4.0 mg/L) and exposure indices (AUC0–24h) (LASSO: RMSE:
29.1 h·mg/L, MAE: 18.8 h·mg/L), using six concentrations as input. In both cases, the
inclusion of observed rifampicin plasma concentrations as features considerably improved
the model performance.

For prediction of the plasma concentration-time series, the predictions (Figure 5) in-
dicated that the nonlinear ML algorithms, especially XGBoost, were in good accordance
with the data simulated from the population PK model, and the shape of the concentration-
time profiles was predicted accurately (Figures 6 and 7). Despite the high complexity in
rifampicin PK, including autoinduction of elimination, concentration-dependent nonlinear
clearance, dose-dependent bioavailability [14–16] and high IOV [17], the nonlinear ML mod-
els performed well when at least two plasma concentrations were used as input. The results
showed that the best-performing model (XGBoost) was able to predict accurately at treat-
ment weeks 1 and 2 (Figure 7), suggesting that the model can handle autoinduction [14,15].
The good performance across all dose groups (Figure 7) indicated that dose-dependent
bioavailability and concentration-dependent elimination are handled properly. However,
the XGBoost predictions may have a weakness in identifying the true upper range of high
exposure (see Figure 6). When comparing the individual predicted plasma concentration-
time profiles to the data simulated from the population PK model, here considered to be
observed data, it becomes obvious that there is a larger variability in the observed data
(95% PI predictions: 62.6 mg/L, 95% PI observations: 69.4 mg/L) (see Figures 6 and 8).



Pharmaceutics 2022, 14, 1530 24 of 29

This could be due to the fact that the population PK model incorporates different sources
of variability, such as IIV, IOV and residual error, and is thus able to describe variability
between patients and within a patient well. The ML algorithms explored in this study,
however, only use the features as a source of variability and cannot account for IIV that is
not caused by any of the features. This could be important to appreciating/predicting risks
of individual patients reaching a safety threshold of exposure.

For prediction of AUC0–24h, all four algorithms performed well when at least two
plasma concentrations were used as input. The results clearly show a correlation between
the amount of data used for training and model performance. Using features only without
rifampicin plasma concentrations as input, resulted in weak model performance with
an R2 of 0.41, RMSE of 117.9 h·mg/L and MAE of 74.2 h·mg/L (LASSO). Using two
plasma concentrations at 2 h and 4 h post-dose as input, resembling a limited sampling
strategy [64], led to a higher model performance (LASSO, R2: 0.69, RMSE: 86.8 h·mg/L,
MAE: 54.5 h·mg/L). The best predictive performance was achieved when using six plasma
concentrations as input, representing a richer sampling, where LASSO performed very well
with an R2 of 0.97 (RMSE: 29.1 h·mg/L, MAE: 18.8 h·mg/L) (see also Table 4). This indicates
that predicting AUC0–24h accurately and precisely without drug plasma concentrations is
challenging. At least two concentrations are needed to reach acceptable model performance.

The generalizability of the algorithms to predict well across all test sets is important to
evaluate overfitting and identify outliers. The generalizability of the models across the test
sets obtained from the five-fold cross-validation was acceptable as the range of RMSE and
MAE was in general spread evenly around the average value (see Tables 3 and 4), with the
exception of GBM in scenario 6.

Due to the different nature of the evaluated algorithms (linear versus nonlinear), they
performed very differently for prediction of longitudinal data and AUC0–24h. While the
linear model LASSO showed excellent performance for AUC0–24h prediction using six
concentrations (R2: 0.97), it was not able to predict longitudinal data (R2: 0.39). This is likely
due to the different nature of the longitudinal data and the AUC0–24h. A concentration-time
series has a distinct shape (see, e.g., Figure 6), which a linear algorithm such as LASSO is
not able to describe. The AUC0–24h, however, is a summary variable, describing the whole
time-series in one value. This simplifies the problem and enables even a linear algorithm to
predict well. The nonlinear models performed well for both prediction of longitudinal data
as well as AUC0–24h, including at least two plasma concentrations as input. However, the
PM model using NLME methodology still performs better for prediction of longitudinal
data, as shown in Figure 8. NLME models are better able to capture the variability between
and within patients compared to the ML models investigated here (Figures 6 and 8). There
is thus a need for further studies investigating how the variability could be better captured
using ML.

PK data are naturally imbalanced due to the fact that plasma PK sampling is often
performed very sparsely. This can often lead to poor performance in areas of sparse informa-
tion, e.g., around the Cmax using ML. One approach addressing this issue is oversampling,
which is a method increasing the data size in sparse areas. Due to the fact that PK data is
not assumed to be normally distributed, we did not apply oversampling in this work, but
believe that oversampling methods appropriate for sparse PK data should be investigated.

In this work, we used an exemplary simplified case study and time efficiencies pro-
vided an example of a proof of value study. ML is a purely data-driven approach and
should thus be regarded as an assistive tool rather than a decision maker at this stage.
Richer, more diverse data will help produce a more accurate tool, but in this study, we
exemplified the potential of ML. In this study, the model performance between PM and ML
could not be directly compared, since the data were simulated from the PM model, which
might bias PM model performance. There is thus a need for further studies comparing the
performance of PM and ML directly using real patient data. In addition, the generalizability
of the ML methods should be investigated further. A limitation of this work is that data
simulated from a population PK model instead of real patient data were used as input for
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the ML model training. Even though real patient data would have reflected the real-world
scenario perfectly, we believe that using simulated data instead did not impact the results
significantly, since the population PK model used to perform the simulations [15] has been
validated externally and shown to predict real patient data accurately and precisely [64].
Moreover, in order to be able to make the simulated dataset in Supplementary Materials
Data S1 public, the patient covariates were sampled from a parametric covariate distribu-
tion of the HIGHRIF1 trial [65] and not bootstrapped. Even though bootstrap is the gold
standard method, it is assumed that the results do not vary much, since the correlations
between covariates were retained and the sampling was performed from a truncated distri-
bution using the reported ranges as minimum and maximum values. One drawback of the
ML model is that some plasma concentrations were predicted to be negative, which is not
the case in the simulated data, as the lowest possible prediction is restricted to 0 mg/L due
to scientific plausibility. Restricting the ML models or working with log-transformed data
for future work could be one way to avoid this issue. In addition, we see a need to do more
work on inflation of classifier accuracy due to data crosstalk. Furthermore, the time-points
resembling sparse PK sampling (2 and 4 h post-dose) are based on a PM study [64]. A
sparse sampling strategy in PM is often based on gaining information on exposure during
the absorption and elimination phase. This might not be the case for ML models, and thus
there is a need to investigate an optimal sampling strategy appropriate for ML.

There are few studies investigating how ML and PM could be combined to further im-
prove drug development [5,8–12]. This work is one of the most comprehensive illustrative
examples of a side-by-side comparison of the two methods. We here exemplify in a case
study the use of ML for PK predictions, which could then be used as input into a PKPD
model, enabling faster but still accurate PKPD analysis. We demonstrate that ML could be
a useful tool for PK analysis, providing fast predictions of both the full concentration time
series as well as PK exposure indices (e.g., AUC0–24h) with acceptable precision. Further
work is needed to investigate this tool using real patient data. Bridging the gap between
PM and ML seems promising considering that ML can add value to PM workflows through
increased time and labor efficiency.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14081530/s1, Data S1: Simulated dataset, Text
S2: Final model code. Figure S1. Illustration of the different types of variability in a nonlinear
mixed effects model. The plasma concentration time-curve for a fictive drug is shown. The blue
line represents the model predictions for the typical individual and the orange line the model
predictions for one specific individual. The blue dots represent the observations of all individuals in
the population and the orange dots the observations for the one specific individual. The covariates
for the blue and orange lines are consistent. The difference between typical pharmacokinetic (PK)
parameters (population PK parameters) and the individual PK parameters is expressed as inter-
individual variability (IIV), and is reflected by the difference in drug exposure between the typical
individual (blue line) and an individual (orange line). The remaining difference between individual
model predictions (orange line) and observed concentrations (orange dots) are described by residual
unexplained variability (RUV). Figure S2: Importance scores for evaluated features shown for the
machine learning algorithms GBM, Random forest, XGBoost and LASSO for (A) AUC0–24h predictions
using features only as input (scenario 4), (B) AUC0–24h predictions using 2 plasma concentrations
as input (scenario 5), (C) AUC0–24h predictions using 6 plasma concentrations as input (scenario
6), (D) prediction of the plasma concentration-time series using 2 plasma concentrations as input
(scenario 2), (E) prediction of the plasma concentration-time series using 6 plasma concentrations
as input (scenario 3). AGE, age (years); BMI, body mass index (kg/m2); DOSE, daily rifampicin
dose (mg); FFM, fat-free mass (kg); HIV, HIV-coinfection; HT, body height (cm); OCC, treatment
week, RACE, race; SEX, gender; TAD, time after dose (h); WT, bodyweight (kg); TAD, time after
dose (h); TAD_0.5, rifampicin plasma concentration at 0.5 h post-dose; TAD_1, rifampicin plasma
concentration at 1 h post-dose; TAD_2, rifampicin plasma concentration at 2 h post-dose; TAD_4,
rifampicin plasma concentration at 4 h post-dose; TAD_8, rifampicin plasma concentration at 8 h post-
dose; TAD_24, rifampicin plasma concentration at 24 h post-dose. Figure S3: Individual rifampicin
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plasma concentrations predicted from the eXtreme Gradient Boosting (XGBoost) model (solid line
and open circles) compared to the true concentrations (black closed circles). Panel (A) represents the
predictions for each individual in the test dataset at the first week of rifampicin treatment for scenario
1 (predictions based on features only). Panel (B) represents the predictions for each individual in
the test dataset at the second week of rifampicin treatment for scenario 1 (predictions based on
features only). Panel (C) represents the predictions for each individual in the test dataset at the first
week of rifampicin treatment for scenario 2 (predictions based on features and 2 rifampicin plasma
concentrations). Panel (D) represents the predictions for each individual in the test dataset at the
second week of rifampicin treatment for scenario 2 (predictions based on features and 2 rifampicin
plasma concentrations). The different colors indicate the different daily rifampicin doses. Table S1.
Final model hyperparameters for the different machine learning models.
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