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Abstract

Biological soil crusts, or “biocrusts”, are biogeochemical hotspots that can significantly

influence ecosystemprocesses in arid environments. Although they can cover large areas,

particularly in managed sites with frequent anthropogenic disturbance, their importance

in mesic environments is not well understood. As in arid regions, biocrusts in mesic

environments can significantly influence nutrient cycling, soil stabilization, and water

balance; however, their persistence may differ. We call for interdisciplinary physical, bio-

logical, microbiological, chemical, and applied soil science researchwith a special focus on

biocrusts of managed soils from mesic environments, to better understand their impact

on overall ecosystem health and resilience, particularly with regard to climate change.
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1 OVERLOOKED BIOCRUST HABITATS

Biological soil crusts (hereafter referred to as biocrusts) are hotspots

of microbial activity, characterized by large amounts of microbial

biomass, high nutrient turnover rates, and intensive biotic interactions.

This is due to the supply of numerous bioavailable organic compounds

provided by plants and/or animals (Kuzyakov & Blagodatskaya, 2015).

Biocrusts develop on and a few millimeters below the soil’s surface,

and modify their surroundings with organismal metabolites to cre-

ate new habitats. Typical biocrust biota include algae, cyanobacteria,

fungi, bacteria, archaea, protists, lichens, bryophytes, andmicroarthro-

pods (Belnap et al., 2001; Khanipour Roshan et al., 2021; Weber et al.,
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2016, 2022). Biocrusts play an important ecological role in the cre-

ation and maintenance of healthy soils, and can (1) improve nutrient

availability and fertility (Evans & Ehleringer, 1993; Gao et al., 2010; Li

et al., 2012), (2) influence plant germination (Godínez-Alvarez et al.,

2012; Havrilla et al., 2019; Zhang & Belnap, 2015), (3) increase bio-

geochemical cycling (Miralles et al., 2012; Wang et al., 2017; Xu et al.,

2013), (4) keep and enhance water availability at the soil surface

(George et al., 2003; Li et al., 2022), (5) increase soil aggregate sta-

bility (Cania et al., 2020; Riveras-Muñoz et al., 2022; Zhang et al.,

2006), and (6) protect the soil surface by counteracting soil erosion

from water (Chamizo et al., 2017; Seitz et al., 2017) or wind (Bullard

et al., 2022; Zhang et al., 2006). However, thus far, biocrusts have
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primarily been studied in arid and semiarid regions (Weber et al.,

2016).

Most studies of biocrusts in temperate regions have concentrated

on bare soils or on soils with minimal vascular plant cover. Simi-

lar to arid soils, these soils are often too poor for vascular plant

establishment and growth, with high salinity and/or low nutrient and

water availability (Corbin & Thiet, 2020). Some temperate regions

that biocrusts have been investigated include coastal areas (Khanipour

Roshan et al., 2021; Mikhailyuk et al., 2019; Schulz et al., 2016; Thiet

et al., 2014), inland dunes (Fischer, Veste, Wiehe, et al., 2010; Thiet

et al., 2005), sand plains and pine barrens (Gilbert & Corbin, 2019;

Hawkes & Flechtner, 2002), reclaimed lignite open-cast mining sites

(Fischer, Veste, Schaaf, et al., 2010;Gypser et al., 2015), and potash tail-

ings piles (Pushkareva et al., 2021; Sommer et al., 2020). Corbin and

Thiet (2020) focused their review on biocrusts in temperate environ-

ments with restricted vascular plant productivity due to challenging

soil and/or climatic conditions. While low vascular plant cover is com-

mon in arid regions, that is not reflective of most temperate regions.

These regions are largely characterized by adequate water availabil-

ity and unrestricted vascular plant growth, which can also be colonized

by biocrusts. Recent studies have also found biocrusts at mesic, man-

aged sites,whichareanthropogenically impacted, suchasmonospecific

pine forests, broadleaf-mixed forests, and agricultural fields (Baumann

et al., 2017; Gall et al., 2022; Glaser et al., 2018; Kurth et al., 2021;

Nevins et al., 2020, 2021; Ngosong et al., 2020). As the study of

biocrusts on managed soils in mesic environments is still in its infancy,

herein, we will elaborate on their dynamics, distribution, and potential

impacts on ecosystem services.

2 BIOCRUST DEVELEOPMENT ON DISTURBED
SILVI- AND AGRICULTURAL SOIL SURFACES IN
MESIC ENVIRONMENTS

The essential requirements for biocrust development include bare soil

and aminimumamount of light. These conditions act as a starting point

for biocrust establishment and succession, and can be created in mesic

environments by disturbing or removing layers of vegetation and/or lit-

ter. As a result, soil is directly exposed to sunlight and biocrusts can

rapidly colonizewithin a fewweeks (Seitz et al., 2017). Recentwork has

described biocrusts in forests (Baumann et al., 2017; Gall et al., 2022;

Glaser et al., 2018; Kurth et al., 2021; Ngosong et al., 2020) and on

agricultural fields (Nevins et al., 2020, 2021, 2022). In these environ-

ments, biocrusts are ephemeral and do not usually persist unless the

disturbance is permanent (Szyja et al., 2018).

In forests, bare soil can be natural or human induced. The total area

of natural (e.g., caused by pest insects, disease, heavy storms, drought

stress) and anthropogenic (e.g., clearcutting, forest roads, or skid trails)

disturbance amounts to 39million hectares, or 17% of the total area of

all European forests (Senf&Seidl, 2021). Biocrusts canbe found inboth

coniferous and deciduous forests of mesic environments, and are visi-

ble in the field as green cover (Baumann et al., 2017; Glaser, Albrecht,

et al., 2022; Kurth et al., 2021) (Figure 1).While they can quickly estab-

lish in disturbed areas such as skid trails, their biocrust characteristics

rapidly disappear with succession of vascular vegetation (Gall et al.,

2022). Other cryptogamic communities that host a large part of their

biomass above the soil’s surface (such as thick moss mats, which are

common in coniferous forests) are not always classified as biocrusts.

However, there is a smooth transition between these communities and

biocrusts (Belnap et al., 2003;Weber et al., 2022).

Biocrusts have also been found on agricultural soils (Figure 1), often

in conjunction with copiotrophic microorganisms (Nevins et al., 2020,

2021, 2022). Agricultural practices such as plowing or other meth-

ods of tillage create large amounts of bare soil. This bare soil provides

niches for biocrust development until crops shade the ground (limiting

the light required for biocrust development). Additionally, many crops,

such as potatoes, sugar beet, and maize, are grown in rows that allow

for solar radiation to reach the ground during the entire growing sea-

son. In Europe, this results in 12.4million hectares of potential biocrust

cover, or approximately 12.6% of total arable land (Eurostat, 2020).

As biocrusts have been documented in forests and agricultural

fields, they have the potential to colonize very large areas in mesic

environments. Considering this and the fact that biocrusts are biogeo-

chemical hotspots that can increase nutrient pools and turnover rates

(Glaser et al., 2018; Kurth et al., 2021; Nevins et al., 2020), we hypoth-

esize that they play a significant role in nutrient cycling in agri- and

silvicultural soils, but this perspective has not yet been addressed.

3 BENEFICIAL EFFECTS OF BIOCRUSTS IN
MESIC ENVIRONMENTS

A large number of beneficial ecosystem functions can be attributed to

biocrust development (Weber et al., 2016). However, there are very

few studies dealing with the beneficial effects of biocrusts in mesic

environments, and even fewer address managed soils.

In disturbed areas, biocrusts have great potential to reduce soil ero-

sion (Seitz et al., 2017), and in some cases are even more effective

than vascular plant cover (Bu et al., 2015; Gall et al., 2022). In par-

ticular, pioneer biocrust cover can protect against erosion as early as

a few weeks following timber harvest (Gall et al., 2022), a very vul-

nerable stage for soils. Three main erosion-reducing mechanisms in

biocrusts have been described. First, the sticky filamentous structure

of many pioneer microalgae and cyanobacteria can glue soil particles

together (Glaser et al., 2018; Glaser, Albrecht, et al., 2022; Glaser, Van,

et al., 2022). Second, biocrusts are able to store water and reduce the

kinetic energy of raindrops relative to bare soil (Zhao et al., 2014),

which can reduce overland runoff (Bu et al., 2015). Third, biocrusts can

increase soil organic matter (Gao et al., 2017) and improve aggregate

stability by bacterial metabolites such as exo- and lipopolysaccha-

rides (Cania et al., 2020). However, these effects depend on climatic

conditions (Kidron, Lichner, et al., 2022; Riveras-Muñoz et al., 2022)

and species composition (Gypser et al., 2016) and have been poorly

studied in mesic environments. As shown in Kidron, Lichner, et al.

(2022), biocrust-related mechanisms of runoff generation are very

complex, with significant variability documented in arid environments.
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BIOCRUSTS: OVERLOOKEDHOTSPOTSOFMANAGED SOILS 3

F IGURE 1 Overview of biocrusts onmanaged soils in mesic environments: (A, B) early successional bryophyte-dominated biocrusts on skid
trail wheel tracks in a deciduous forest; (C) bryophyte-dominated biocrust under leaf litter; (D) bryophyte- and cyanobacteria-dominated biocrusts
on arable land between sugar beet crops

Increased surface runoff from biocrusts, for example, could lead to

more soil erosion downslope, assuming an uncovered soil there. For a

better understanding of biocrust-related mechanisms of soil erosion

and runoff generation in mesic environments, more field experiments

are necessarily needed.

The impact of biocrusts on the soil water balance in arid environ-

ments has been contradictory (Kidron, Fischer, et al., 2022; Kidron,

Lichner, et al., 2022).Ononehand, they can improve infiltration into the

soil and increase water content while reducing evaporation—although

these effects can vary depending on rainfall intensity, temperature,

and soil texture (Chamizo et al., 2016). On the other hand, biocrusts

may have a negative effect on the soil water balance, due to pore

clogging by exopolysaccharides and/or water repellence (Kidron, Lich-

ner, et al., 2022; Xiao et al., 2019). Additionally, recent studies of

biocrusts in temperate environments have primarily been conducted

in challenging conditions for vascular plant growth (Gypser et al.,

2016; Thiet et al., 2005), and cannot be generalized. Therefore, further

studies in managed mesic environments are needed to fully charac-

terize the potential beneficial effects of biocrusts on the soil water

balance.

Biocrusts havebeen referred toasbiogeochemical hotspots inmesic

environments (Kuzyakov & Blagodatskaya, 2015). They host higher

microbial biomass compared to surrounding bulk soil (Glaser, Albrecht,

et al., 2022; Glaser, Van, et al., 2022; Kurth et al., 2021; Nevins et al.,

2021), exhibit more nutrient turnover, and can consequently impact

biogeochemical cycling (Glaser et al., 2018; Kurth et al., 2021). Recent

workhas founda carbonenrichment frommicrobial biomass andplant-

available nitrogen beneath biocrusts in agricultural soils (Nevins et al.,

2020), and that biocrusts play a key role in the biogeochemical phos-

phorus cycle in forests (Baumann et al., 2017, 2019; Kurth et al., 2021).

Artificially cultivated biocrusts have also been found to increase car-

bon, nitrogen, and phosphorus contents at the soil’s surface (Deng

et al., 2020; Wu et al., 2013). Kheirfam (2020) observed an increase

in carbon sequestration when soils were inoculated with bacteria,

cyanobacteria, or both, resulting in an extrapolated removal of 3.11–

3.93 t ha–1 y–1 of CO2 from the atmosphere. Several other studies

have primarily been concerned with the composition of biocrust soil

microbial communities (Glaser, Albrecht, et al., 2022; Glaser, Van, et al.,

2022; Kurth et al., 2021; Nevins et al., 2021), and their changes with

elevation and microclimates (You et al., 2021). However, further work
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F IGURE 2 Summary of the potential beneficial effects of
biocrusts in mesic environments (Illustration: Julia Dartsch)

will be required to determine which specific organisms or community

profiles contribute to these changes in biogeochemical cycling. Addi-

tionally, future investigations could determine biocrusts’ capability to

store nitrogen or phosphorus temporally in their biomass, particularly

over winter whenmicrobial activity is reduced.

Based on these ecological functions, biocrusts bear the potential as

novel tools for sustainable soil management. They have already been

explored as possible avenues for the restoration of degraded soils,

such as in the rehabilitation of salt heaps (Sommer et al., 2020) and

felled/burned forests (Chamizo et al., 2020; Olarra, 2012). In addition

to habitat restoration by loose soil particle stabilization (Grover et al.,

2020), they can also serve as a “living” fertilizer in agriculture, as they

biologically fix atmospheric nitrogen and retain nutrients and water

(Sears & Prithiviraj, 2012; Vinoth et al., 2020). Methods to facilitate

and accelerate biocrust establishment have primarily been applied in

arid environments, and include the addition of chemical or physical soil

stabilizers (Antoninka et al., 2020), improved light conditions (Zhao

et al., 2021), irrigation (Wu et al., 2013; Zhou et al., 2020), and the

inoculation of pioneer organisms with single or multispecies biocrusts

to close gaps in natural biocrust cover (Bowker, 2007). In agriculture

in particular, large-scale biocrust inoculation could be carried out by

airplane in the future (Sears & Prithiviraj, 2012). We propose these

approaches could also be applied for use in mesic environments after

modification (Figure 2).

4 OUTLOOK: BIOCRUSTS’ POTENTIAL TO
MITIGATE CLIMATE CHANGE IN MESIC
ENVIRONMENTS

Global climate change is becoming increasingly visible in mesic envi-

ronments, and will bring extreme weather events like heavy rain and

extended drought (Olsson et al., 2019). As a result, soils will be more

vulnerable and require new forms of management for their protection,

as stipulated by the UN’s “Sustainable Development Goals”. Accord-

ingly, biocrusts could make a significant contribution. Considering the

large extent of biocrust colonization in managed mesic environments,

and these areas’ projected expansion due to climate change (Gejdoš &

Michajlová, 2022; Senf & Seidl, 2021), further studieswill be necessary

to evaluate their contributions to ecosystem services and global rel-

evance (Ferrenberg et al., 2017). Interdisciplinary physical, biological,

microbiological, chemical, and applied soil research will be indispens-

able in understanding the development and influence of biocrusts in

mesic and anthropogenically impacted environments. Their inocula-

tion as an erosion control measure may be of particular importance

(Cruz de Carvalho et al., 2018; Varela et al., 2021), especially as ero-

sion rates are projected to increase due to climate change (Li & Fang,

2016). In addition, biocrusts’ ability to store carbon could help in com-

bating climate change in general (Kheirfam, 2020; Kheirfam et al.,

2017), and applied in agriculture (Vinoth et al., 2020) or restoration

(Román et al., 2018). We call for interdisciplinary research with a

focus on biocrusts of managed soils in mesic environments, in order

to better understand their multitrophic interactions, consequences on

chemical and physical soil properties, and impact on overall ecosystem

health.
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