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Deep-Learning-Based Electrical Noise Removal
Enables High Spectral Optoacoustic
Contrast in Deep Tissue

Christoph Dehner™, Ivan Olefir”, Kaushik Basak Chowdhury™, Dominik Justel™,
and Vasilis Ntziachristos

Abstract—Image contrast in multispectral optoacoustic
tomography (MSOT) can be severely reduced by electrical
noise and interference in the acquired optoacoustic signals.
Previously employed signal processing techniques have
proven insufficient to remove the effects of electrical noise
because they typically rely on simplified models and fail
to capture complex characteristics of signal and noise.
Moreover, they often involve time-consuming processing
steps that are unsuited for real-time imaging applications.
In this work, we develop and demonstrate a discrimina-
tive deep learning approach to separate electrical noise
from optoacoustic signals prior to image reconstruction.
The proposed deep learning algorithm is based on two
key features. First, it learns spatiotemporal correlations in
both noise and signal by using the entire optoacoustic
sinogram as input. Second, it employs training on a large
dataset of experimentally acquired pure noise and synthetic
optoacoustic signals. We validated the ability of the trained
model to accurately remove electrical noise on synthetic
data and on optoacoustic images of a phantom and the
human breast. We demonstrate significantenhancements of
morphological and spectral optoacoustic images reaching
19% higher blood vessel contrast and localized spectral
contrast at depths of more than 2 cm for images acquired
in vivo. We discuss how the proposed denoising framework
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is applicable to clinical multispectral optoacoustic tomog-
raphy and suitable for real-time operation.

Index Terms—Breast cancer, denoising, dynamic
MSOT, photoacoustic tomography, signal decomposition,
sinogram.

|. INTRODUCTION

LECTRICAL noise is a key source of signal corruption

in optoacoustic imaging and arises due to thermal effects
(thermal noise) and from electromagnetic interference (para-
sitic noise); the latter possibly generated by the optoacoustic
system itself or the environment [1]. While thermal noise
can be modeled as white Gaussian noise [2], parasitic noise
entails complex spatiotemporal correlations, and thus cannot
be efficiently captured by an analytical model [1]. Both
thermal and parasitic noise cause artifacts in reconstructed
optoacoustic images that severely decrease morphological and
spectral contrast. Whereas shielding hardware can suppress
some parasitic noise, this solution is device-specific and often
incomplete [1]. Therefore, additional computational denoising
techniques, which are applicable across platforms, are needed
to remove both parasitic and thermal noise.

Noise in optoacoustic images hinders the detection and
identification of fine structures in tissue, particularly as the
signal-to-noise ratio (SNR) in the data decreases with increas-
ing depth [3]. Besides the reduction of image contrast, noise
also challenges the quantification and spectral un-mixing of
optoacoustic images acquired at multiple wavelengths [4], [5].
In particular, corrupted spectral information decreases the
spatial resolution of multispectral optoacoustic tomography
(MSOT) because it necessitates averaging the spectra obtained
from large tissue regions for reliable quantification [6]-[8].
Efficient noise reduction algorithms are therefore critical for
improving the performance of spectral optoacoustics.

Frequency filtering using band-pass filters cannot adequately
separate thermal and parasitic noise from optoacoustic signals
because the frequency content of optoacoustic signals and
noise overlap significantly. For this reason, data averaging and
regularization methods have been more commonly considered
to minimize the effects of electrical noise from optoacoustic
tomographic images [3], [7]-[12]. While data averaging effec-
tively reduces zero-mean electrical noise, combining multiple
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acquisitions reduces imaging rates and increases vulnerability
to motion artifacts, particularly in clinical applications or
when using a handheld system. Regularization of model-based
reconstructions may decrease the effects of electrical noise,
but this reduction is either limited to the noise character-
istics captured by the regularization functional or realized
at the cost of data fidelity, thereby corrupting the mean-
ingfulness of the reconstructed image. Furthermore, iterative
model-based reconstruction is computationally intensive, and
therefore unsuitable for applications that require real-time
feedback [4], [13], [14]. Another approach to reduce noise is
based on sparse (typically Wavelet-based) representations for
optoacoustic signals [1], [15], [16]. Noise is assumed to distort
the sparsity properties of optoacoustic signals, which enables
its removal, e.g., via thresholding techniques. However, the
denoising performance of such methods is limited by their
reliance on oversimplified models of noise and optoacoustic
signals.

Recently, discriminative deep neural network models
have achieved state-of-the-art performance on general image
denoising tasks, like Gaussian denoising, deblocking, super-
resolution, inpainting, and dehazing [17]-[20]. These deep
neural network models capture the required data transforma-
tions for denoising in a data-driven way by utilizing large
ground truth training datasets. In this way, discriminative
deep neural networks are capable of more accurate, robust,
and fast denoising than traditional methods that rely on rigid
analytical models because they can adjust to complex data
characteristics during training and are evaluated in real-time
on modern GPUs. Similar deep-learning-based approaches
have also been applied to remove reconstruction [21], [22]
and reflection artifacts [23], [24] from optoacoustic images,
and to enhance contrast of images acquired with low energy
illumination elements such as LED-based systems [25]-[27].

In this work, we examine whether discriminative deep
learning can separate thermal and parasitic noise from optoa-
coustic signals. We show that the modeling capabilities and the
computational efficiency of a deep neural network facilitates
denoising in optoacoustic tomography that is both precise
enough to remove noise with complex characteristics and
fast enough for real-time imaging applications. We design
a deep neural network model to simultaneously denoise the
entire sinogram of an optoacoustic scan, i.e. the complete
dataset acquired from all transducers. Entire sinogram denois-
ing enables the network to capture spatiotemporal correlations
within both parasitic noise and true optoacoustic responses,
and thus more efficiently separate the two. Exploiting the inde-
pendence of electrical noise and optoacoustic signals, we train
the network on a large ground truth dataset of experimentally
acquired pure noise and synthetic optoacoustic sinograms.
We validate that the model removes thermal and parasitic noise
from both synthetic sinograms and optoacoustic images of a
phantom. We lastly apply the trained model to clinical MSOT
images of breast tissue and show significant enhancements in
morphological and spectral contrast. The improved contrast
allows for tissue components to be more accurately localized
and quantified and yields more meaningful correlations with
the spectra of known absorbers in tissue, thereby increasing

access to endogenous biomarkers in deep tissue, such as breast
vasculature or hemoglobin contrast inside a cancerous tumor.

Il. METHODS

In the following, we formalize our methodology for
removing electrical noise from optoacoustic sinograms. First,
we reformulate the denoising problem as a decomposition task.
Based on this formulation, we derive a discriminative deep
learning framework for denoising optoacoustic sinograms.
At the end of the chapter, we explain the experiments that
we use to validate this approach.

A. Denoising via Decomposition

In this section, we formalize the rationale for reformulat-
ing denoising of optoacoustic sinograms as a decomposition
task and conclude that 1) electrical noise in optoacoustic
tomography is an additive component that is independent from
the optoacoustic signals, and 2) for denoising, an acquired
optoacoustic sinogram s can be decomposed into a component
SoA containing the true optoacoustic sinogram and an electrical
noise component Sppise: S = SOA + Snoise-

An optoacoustic scan at a fixed excitation wavelength con-
sists of measured optoacoustic pressure signals sy [#], indexed
by time samples t € [1,2,..., Namples] and transducer
locations d € [1,2,..., Nyansducers]- The collection of sig-
nals recorded at all the transducers compose the sinogram
s[d, t]:=s4[t] of the scan. We model the measured optoa-
coustic sinograms probabilistically as samples s of a random
field S, i.e. a collection of random variables that model all
recorded signals of a sinogram sy [f], # € [1,2,..., Nsamples],
de[l1,2,...,Ngansducers]- In the remainder of this paper,
we will denote random fields with capital letters, and specific
samples of random fields with lower case letters. The main
assumption that leads to the formulation of denoising as a
decomposition problem is that S is the sum of two independent
random fields Soa and Spoise, Which describe the signal content
due to optoacoustic responses and electrical noise, respec-
tively. This assumption is justified by the fact that electrical
noise in optoacoustic tomography typically originates from
common system thermal noise and electromagnetic interfer-
ence that is not influenced by the optoacoustic signal [1]. The
probability distributions underlying Soa and Speise are denoted
by Poa and Ppoise:

S = Soa + Snoise

with Spa ~ Poa and Spoise ~ Pnoise independent. (1)

Optoacoustic scans at different wavelengths are modeled
as independent realizations of S because the noise is caused
by the electronics of the imaging system that are not affected
by the wavelength switching of the laser. In summary, isolating
the noise-free optoacoustic sinogram soa given s is equivalent
to decomposing s = SQA + Spoise INtO its two components soa
and spojse-

B. Deep-Learning-Based Denoising Framework

Next, we step-by-step derive a deep-learning-based denois-
ing framework that can decompose optoacoustic sinograms
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into their signal and noise components. In short, we train a
deep neural network to infer the electrical noise component
from a noisy input sinogram using experimentally acquired
pure noise sinograms and synthetic optoacoustic sinograms.

To solve the decomposition problem introduced in sub-
section A, we need access to the distributions Ppa and
Phoise. However, both random fields Spa and Speise are non-
homogeneous and anisotropic with intricate spatial and tem-
poral correlations due to the physics underlying the signals
and the fact that electrical noise in optoacoustic systems
often contains complex parasitic noise (Fig. 2¢) [1]. As a
result, accurate explicit models for the complex distributions
of optoacoustic signals and electrical noise Poa and Preige are
difficult to obtain. We therefore present a data-driven approach
that allows us to rely on the empirical distributions of Poa and
Proise via sampling of Spa and Sppise. We first explain sample
acquisition and then elaborate on our methodology for solving
the decomposition task.

Because of the independence of Spa and Spoise and the
wavelength independence of Syeise, €lectrical noise can be
directly measured in the absence of any absorbers that would
emit optoacoustic responses. We thus obtained samples of
the electrical noise distribution Speise Of the test system
by immersing the scanner in a water tank and measuring
from 700 to 790 nm, where light absorption in water is
negligible (i.e., the optical absorption coefficients of water
at 700 — 790 nm are between 0.006 cm~! and 0.026 cm™!,
whereas for example the absorption coefficients of oxygenated
hemoglobin and fat at 800 nm and 930 nm are 4.4 cm™!
and 13 cm™!, respectively [28]-[30]). Note that in theory the
effects of water absorption on the acquired noise samples may
be further decreased by interrupting the optical path between
the laser and the imaging probe during the noise acquisi-
tions, or by acquiring noise samples only at the wavelength
with the lowest water absorption coefficient from the range
700 — 790 nm. However, in practice such adjustments were
not essential, as the obtained electrical noise samples did not
correlate with the respectively used wavelength from the range
700 — 790 nm (which confirms that water absorption is indeed
negligible in the whole range), and as the presented denoising
framework facilitated accurate denoising with the current noise
acquisition setup.

Acquiring samples of Spa in an experimental setup is a
laborious and time-consuming process that requires averaging
multiple scans of the same location to remove electrical noise.
Additionally, patient or operator movement impedes accu-
rate averaging. Therefore, instead of experimentally acquiring
noise-free optoacoustic sinograms, we generated samples of
Poa via simulation by applying an accurate acoustic forward
model of the scanner [31], [32] to publicly available images
from the PASCAL VOC2012 dataset [33], a diverse collection
of over 17 000 images covering a large range of features. Uti-
lizing these images as underlying initial pressure distributions
in the simulations enables us to account for a broad range of
potential features in optoacoustic sinograms and should yield
a good approximation of the empirical distribution of Poa.
In addition, the general scope of the training data ensures
that the denoising model is universally and with uniform

Simulated OA sinograms
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Measured electrical noise
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Inferred electrical noise
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Fig. 1. Discriminative deep learning framework for denoising optoa-
coustic sinograms. a) Training setup of the method. The network was
trained iteratively using simulated samples from the optoacoustic sino-
gram distribution of the test system and experimentally acquired samples
of the electrical noise distribution of the system. b) Evaluation setup of
the method. The trained neural network can infer the electrical noise
from a noisy input sinogram. Subtracting the inferred noise from the input
sinogram yields the denoised sinogram. c) U-net architecture of the deep
neural network.

performance applicable to arbitrary scans acquired by the
considered system.

Using the samples from Soa and Spoise, We utilized a
U-net-like deep neural network [34] to solve the decompo-
sition task at hand. Fig. 1 depicts the deep-learning-based
approach. Fig. la shows the training setup. We iteratively
trained the network on randomly selected pairs of samples soa
and spoise from Spa and Speise to infer the noise component
(Snoise) from a noisy input sinogram s = S0A + Snoise-
In this way, the network is optimized to adopt the complex
characteristics of Poa and Ppoise. Fig. 1b depicts the evaluation
setup. Once trained, we can use the neural network to infer
electrical noise from noisy input scans.

C. Experiments

As a test system for the denoising algorithm, we used a
custom prototype of an MSOT Acuity Echo handheld scanner
(iThera Medical GmbH, Munich, Germany). The system is
equipped with a tunable laser that illuminates tissue with
laser pulses of ~8 ns duration with an energy of 16 mJ
and a repetition rate of 25 Hz. The ultrasound detector of
the system consists of 256 piezoelectric transducers with a
central frequency of 4 MHz, which are equidistantly placed
on a circular arc with a radius of 6 cm and an angular
coverage of 145°. Ultrasound signals are recorded with a
sampling frequency of 40 MHz. Inside the imaging probe,
heavy water with a speed of sound of approximately 1397 m/s
is used as coupling medium. Fig. 2 provides an overview
of the imaging system and its output. Fig. 2a shows the
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Fig. 2. Overview of the handheld MSOT system and its output used to
evaluate the proposed denoising method. a) lllustration of the scanning
procedure using the handheld imaging probe of the test system. b) Data
layout of a measured multispectral stack of sinograms. The depicted
sinogram shows the recorded signals during a representative scan of
a human breast lesion at 960 nm. c) Magnification of the marked signals
in b, which were recorded prior to responses from tissue and thus are
predominately comprised of electrical noise. d) Histogram and fitted
Gaussian distribution (R2 = 99.5%) for parts of the electrical noise with
visually low amounts of parasitic noise (signals marked in ¢ with the
dashed rectangle) illustrating the characterization of the thermal noise of
the system.

scanning procedure using the handheld imaging probe of the
system. Fig. 2b illustrates the data layout of a multispec-
tral stack acquired by the imaging system. A multispectral
stack consists of 28 sinograms recorded at wavelengths from
700 — 970 nm in steps of 10 nm. Fig. 2c shows electrical noise
from a representative optoacoustic in vivo scan. We observed
that electrical noise in the system consists of two additive
components: normally distributed thermal noise with a mean
of zero and a standard deviation in the range of 0.2 — 0.3
and complex parasitic noise that is presumably caused by
the switching-mode power supply of the system (examples
marked with red arrows in Fig. 2c¢). Fig. 2d illustrates the
characterization of thermal noise of the system based on
parts of experimentally acquired electrical noise samples with
visually low amounts of electrical noise and confirms that the
thermal noise can be modeled as white Gaussian noise. The
presented characterization of the thermal noise of the system
nevertheless remains an approximation as the parasitic and
thermal components of electrical noise cannot be completely
separated.

We first evaluated the ability of the proposed deep learning
framework to remove the combination of Gaussian thermal and
complex parasitic electrical noise observed in the test system.
We trained and evaluated a deep neural network on experimen-
tally acquired samples of the electrical noise distribution Sypise
of the system and simulated samples of the optoacoustic signal
distribution Spa (denoted as Dataset-EN). Next, we applied
the trained denoising network to measurements of a physical
phantom (denoted as Dataset-Ph). The arrangement of the
phantom is shown in the inlay in Fig. 4a. Two plastic tubes
with inner diameters of 3.0 mm and 0.86 mm and outer

diameters of 3.2 mm and 1.52 mm were filled with ink and
imaged cross-sectionally to simulate absorbers of different
sizes and at different depths. These tubes were immersed into
two layers of agar of slightly different densities mixed with
Intralipid (6 ml 20% emulsion / 100 ml water) to mimic
light scattering and small variations of the speed of sound
distribution in biological tissue. Additionally, a copper plate
was integrated into the arrangement as a reference that can be
seen in both optoacoustic and ultrasound images.

To evaluate the denoising performance of the framework
on in vivo scans, we subsequently applied the trained deep
neural network to 81 multispectral optoacoustic scans of
human breast cancer lesions (denoted as Dataset-BC). These
scans were acquired in a study that was approved by the
local ethics committee of the Technical University of Munich
(27/18 S). All participants gave written informed consent upon
recruitment.

Lastly, we evaluated the ability of the trained network
to adapt to changes of the hardware configuration and of
environmental conditions such as humidity and temperature
of the used system, which might alter the amounts of ther-
mal or parasitic electrical noise. For that, we applied the
trained model to optoacoustic signals that were corrupted by
a combination of measured electrical noise sinograms scaled
with a factorgy € {0,0.5, 1, ..., 3}, and white Gaussian noise
with standard deviation ogn € {0,0.2,0.4, ..., 2} (denoted as
Dataset-EN+-GN). A summary of the four datasets is given in
Table I.

D. Data Pre-Processing and Network Training

We band-pass filtered all recorded signals from
500 kHz — 10 MHz to remove signals outside the bandwidth
of the transducers and reduce low frequency responses that
would otherwise dominate the contrast in reconstructed
optoacoustic images. Additionally, all signals were slightly
cropped in the time domain to remove filtering artifacts at the
signal boundaries and to make the number of signal samples
divisible by 16, as required by the chosen neural network
architecture, leading to 1808 time samples for each of the
256 detectors per scan.

A detailed illustration of the proposed neural network is
given in Fig. lc. We adopted the U-Net neural network
architecture [34] with a depth of 5 layers and a width of
64 channels, and designed the network to infer only the elec-
trical noise spoise from a noisy input sinogram s to minimize
the necessary expressiveness of the network [18]. The network
was trained for 300 epochs using the L1 norm of the difference
of inferred and ground truth noise as loss functional, and the
ADAM optimizer [35] with batch size = 1 and momentum
parameters 1 = 0.5 and f» = 0.999. The learning rate
was set to 0.0001 and was linearly decreased to zero in the
last 50 epochs. To accelerate the learning process, we scaled
all input data of the neural network by a constant factor of
0.004 to achieve a signal range of [—1; 1]. After having passed
the neural network, all signals were rescaled to the original
range. After training, the final model was selected based on the
minimal loss on a validation split of the dataset. One training
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TABLE |
STRUCTURE AND SIZE OF THE FOUR DATASETS USED IN THIS PAPER

Name Description Train split Val. split Test split

Dataset-EN | Simulated noise-free 3000 sinograms 590 sinograms 629 sinograms
optoacoustic sinograms
Measurements of pure 2110 sinograms 590 sinograms 629 sinograms
electrical noise sinograms

Dataset-Ph | Scans of a phantom - - 28 sinograms in 1 multispectral stack

Dataset-BC | In vivo scans of human - - 2268 sinograms in 81 multispectral stacks
breast lesions

Dataset- Simulated noise-free - - 629 sinograms

EN+GN optoacoustic sinograms
Measurements of pure - - (7 x 11) x 629 sinograms of measured electrical
electrical noise sinograms noise sinograms that were scaled with factorgy €
+ simulated white {0,0.5, 1,..., 3} and additionally augmented by
Gaussian noise additive white Gaussian noise with a standard

deviation ooy € {0,0.2,0.4,...,2}

process took approximately three days on an NVIDIA GeForce
RTX2070 GPU.

E. Signal-to-Noise Ratio

For Dataset-EN and Dataset-GN,
to-noise ratio (SNR), i.e. the ratio of signal power and
noise power, to quantify the noise levels in the signals
before and after denoising. We calculated the power P(s)
of a whole sinogram s[d, t],d € [1,2,..., Nyansducers] »! €
(1,2,..., Nsamples] as

1 ZNlransdicers ZNsamples S[d, t]z.
d=1 t=1

Ntransducers NV samples
2)

we used the signal-

P(s) .=

Based on equation 2, the SNR of a sinogram s with ground

truth noise spoise and inferred noise s, ;. is defined as

P (S - Snoise)

. 7
(snmse - Snoise)

SNR := 10log dB. 3)

Setting s’

Toise= 0 Yields the SNR before denoising; setting
Spoise to the output of the trained network yields the SNR
after denoising.

Since computing the SNR requires direct access to the
ground truth noise spoise Of a scan, the metric cannot be directly
transferred to the in vivo scans of Dataset-BC. We therefore
defined an alternative metric, SNRyean, that enabled us to
approximate the ground truth electrical noise for the in vivo
scans from Dataset-BC by considering the per-pixel mean
sinogram amplitudes across Nycans different scans of the
dataset, s(D, s@ . sWseans) (|5]) := Ns!ans Zflv;c‘i‘"s ls ().

Pis)) = (Isnoisel)

SNRmean := 101log;, dB. 4)

(Isnoisel)—(I Sliloise‘)

We approximated the ground truth electrical noise (|spoisel)
from the first 100 averaged time samples of all scans in

Dataset-BC {|s[-, 1|}, € [1,2,...,100]:

100
— d,t
100;/—1<|S[ 1D

fort € [1,2,..., Nsamples]- 5)

(Isnoiseld, t1]) ~

Note that equation 5 yields a meaningful approximation of
(Isnoiseld, t1|) for two reasons: First, the 100 signals recorded
at the beginning of a scan do not contain optoacoustic
responses but mostly electrical noise because they originate
from the coupling medium inside the imaging probe. Sec-
ond, we observed from the electrical noise sinograms in
Dataset-EN that for the used test system, (|spoiseld,]|) is
constant over time. Thus, an estimation of electrical noise
based on a subset of time samples of the sinogram (i.e. the
first 100 time samples in equation 4) is applicable to all time
steps t € [1,2,..., Noamples]. Furthermore, sinograms from
Dataset-BC were cropped to the first 1732 recorded signal
samples before evaluating the SNReqn, as subsequent signals
originate from outside the designated field of view of the scans
and contain strong reflections and filtering artifacts.

SNRean can approximate the SNR of in vivo images,
for which the true amount of electrical noise is unknown.
However, the metric may overestimate the SNR after denoising
because the per-pixel mean amplitudes of the predicted noise
(I8)oiscl) is subtracted in the denominator of equation 4,
disregarding the possibility that the predicted and the ground
truth noise have different signs: (|Snoise|) — (IS

r/loise [) = {ISnoise—

sl’wisel) only if V1...n... Ngcans: Sgn (sr(lgz;e) = sgn (s,(ln)). An
empirical comparison of SNRpean and SNR on Dataset-EN
(for which ground truth noise samples are also available)
showed that SNRpyean correctly estimated the average true
SNR before denoising (SNRpyean = 9.6 dB, avg. SNR =
9.3 dB) and overestimated the SNR after denoising by
approximately 6 dB (SNRpean = 26.5 dB, avg. SNR =
20.3 dB). The offset of the SNRpean after denoising is

however smaller than the reported SNRyean improvements of
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20 — 22 dB of the presented denoising method for Dataset-BC
(see section III).

F. Evaluation on Reconstructed Images

To evaluate the effects of the denoising method visually
and quantitatively on optoacoustic images, we reconstructed
the initial pressure pg of all breast scans in Dataset-BC, both
with and without denoising the recorded sinograms with the
trained neural network, using a model-based reconstruction
algorithm [31], [32]. We added two regularization terms to
address the two main causes of the ill-posedness of the inverse
problem: simple Tikhonov regularization to mitigate limited
view noise and Laplacian-based regularization to mitigate
sub-resolution noise.

po i=argmin [Mp — sl + Zllplz + Z204p13.  (©)

The reconstructed optoacoustic images are of the size 400 x
400 pixels and correspond to FOVs of 3.99 cm x 3.99 cm.
We denote the obtained datasets of reconstructed MSOT
breast images as Doriginal and Dgenoised- Additional recon-
structions were also obtained using backprojection reconstruc-
tion [36], [37].

We quantified the effects of the denoising method in the
reconstructed images by calculating the contrast resolution
and the contrast-to-noise ratio of blood vessels. For that, we
manually segmented blood vessels in the images, as well
as background ROIs from the surroundings of all segmented
vessels. The segmentations were based on scans at 870 nm,
where blood contrast is at a maximum. The background areas
were chosen so as not to overlap with regions below and above
strong absorbers, which are affected by limited view artifacts.
We chose vessels of different sizes and at different depths to
obtain general estimates for the blood contrast in the dataset.
Fig. 3f shows the segmented regions for a representative scan.
Based on these segmentations, the contrast resolution of a scan
with mean intensities Ivessels and Ipackground D ifs respective
vessel and background ROIs is defined as

_ Lyessels — Ibackground

CR: (N

- b
Lyessels + Ibackground

and the contrast-to-noise ratio of a scan with standard devia-
tion Gpackground in its background ROIs is defined as

)

CNR = 1010g10 <1vessels - Ibackground> dB.

Obackground

Negative values in backprojection images were set to zero
before calculating the contrast resolution.

To evaluate the effects of denoising on the spectral con-
trast of MSOT, we applied blind spectral unmixing via non-
negative matrix factorization (NMF) [38] to the multispectral
optoacoustic images from Doriginal and Dgenoised and compared
the variety and biological interpretability of obtained spectral
decompositions. For each of the two datasets (consisting
each of 400 x 400 x 81 = 12960000 acquired spectra),
we obtained a spectral decomposition into 10 non-negative
spectral components H (size 10 x 28) and corresponding

non-negative unmixing coefficients W (size 12 960 000 x
10).

!
(W, H) = argmin 2| S = WHIE + 4 (IWI + IH],)

(W,H)=0

e (W + 1HIE), ©)
where S (size 12 960 000 x 281) denotes all spectra of
the dataset, || M]|| F::( i ml2 j)7 denotes the Frobenius

norm, [|M]|; := Ei,j |m; ;| denotes the entrywise L'-norm of
a matrix M = (mi, j)i,j’ and M> 0 refers to an entrywise
inequality. The entrywise L'-regularization was chosen to
promote a maximally sparse decomposition of the spectra,
guided by the fact that the spectral contrast of biological tissue
is dominated by a small number of abundant chromophores.
The number of spectral components chosen was purposefully
greater than the number of different chromophores in tissue to
also extract variants of the chromophores’ absorption spectra
that are perceived because of spectral coloring (i.e., distortions
of the perceived absorption spectra of chromophores in deeper
tissue by light absorption of chromophores in superficial tissue
layers). The specific number of components and regularization
parameters A;= 50.1 and Ar= 50.1 were selected via para-
meter space exploration and meaningfulness of the resulting
spectral components. Furthermore, the residual norm

rNF = IS — WH 2 /1S (10)

was evaluated for each of the two NMF runs to quantify the
accuracy of the obtained unmixing solution.

I1l. RESULTS

The proposed deep learning framework for denoising optoa-
coustic sinograms significantly improves the SNR of both
simulated and in vivo data in real-time. The average inference
time of the employed deep neural network was 9 milliseconds.
Based on the resulting increased quality of the optoacoustic
signal data, the denoising method enables improved optoa-
coustic image contrast and spectral unmixing performance.
In the following, we report the detailed findings in the signal,
image, and spectral domains.

A. Denoising Performance in the Signal Domain

Optoacoustic signals and electrical noise are both complex
broadband signals whose characteristics overlap significantly.
The presented data-driven approach can disentangle these
overlaps by accessing and separating the data manifolds of
signal and noise in sinograms. We observed significant reduc-
tions in noise levels, both visually and quantitatively, upon
application of the denoising method to sinograms that were
corrupted by a combination of Gaussian thermal and com-
plex parasitic electrical noise (Dataset-EN, Dataset-BC, and
Dataset-EN+GN with factorgy > 0), as well as to sinograms
that were corrupted only by Gaussian noise (Dataset-EN+GN
with factorgy = 0). Fig. 3 summarizes these results. We begin
by visually inspecting the effects of the denoising method for
a representative scan of a breast lesion in Fig. 3a-f. Fig. 3a
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Fig. 3. Evaluation of the proposed denoising approach in the signal domain. a) Noisy sinogram from a representative scan of a human breast

lesion. b) Electrical noise component inferred by the neural network. c) Denoised sinogram obtained by subtracting b from a. d-f) Magnifications of
the marked areas in a-c. g-j) Quantitative evaluation of the denoising performance. g) Comparison of the SNR distributions in simulated optoacoustic
sinograms that are distorted by electrical noise before and after denoising. The mean gain is 10.9 dB. h-i) Evaluation of in vivo scans of human
breast lesions. h) Mean SNR (SNRmean) of individual time samples. The average increase is 20.8 dB. i) Individual SNRmean of all detectors. The
average increase is 22.4 dB. j) Average SNR gains (“SNR after denoising — SNR before denoising”) of the trained model for optoacoustic signals
that were corrupted by a combination of measured electrical noise sinograms scaled with factorgy € {0,0.5,1, ..., 3}, and white Gaussian noise
with standard deviations ogy € {0,0.2,0.4, ..., 2}. One of the detectors (no. 61) was defective and excluded from the plots in g-j.

shows the noisy sinogram before denoising. Because of the
radial nature of wave propagation and the circular shape
of the used imaging probe, optoacoustic responses appear
as bow-shaped structures in the sinogram. Also note that
optoacoustic signals from a spherical target at the center of
the circular transducer array appear as bow-shaped structures
because of refraction at the interface between the coupling
medium inside the imaging probe (heavy water with a speed
of sound of 1397 m/s) and the imaged tissue (speed of sound
typically in the range 1450 — 1550 m/s). The sinogram is
distorted by additive electrical noise that is composed of
zero-mean Gaussian noise and complex noise artefacts with
strong spatiotemporal correlations (also shown in Fig. 2c).
Fig. 3b depicts the electrical noise component inferred by
the trained neural network, which demonstrates the network’s
ability to extract electrical noise. Finally, Fig. 3c shows the
denoised sinogram, which was obtained by subtracting the
inferred noise from the recorded sinogram. Fig. 3d-f depict
enlargements of identical temporal sections of the images in
Fig. 3a-c, highlighting the fine features of the optoacoustic
signals that are exposed upon removal of electrical noise
(yellow arrows).

Fig. 3g-j provide an in-depth quantitative analysis of the
network’s denoising performance. These results confirmed the
ability of the network to consistently remove electrical noise
with high accuracy from both synthetic and in vivo optoa-
coustic sinograms. Fig. 3g compares the distributions of SNRs
within the test split of Dataset-EN before and after denoising.
Application of the denoising method to the sinograms in
Dataset-EN resulted in an average improvement in SNR of
10.9 dB, with improvements for individual sinograms ranging
from 4.6 dB to 20.0 dB. After the neural network was trained
and tested on Dataset-EN, we applied it to denoise scans of

breast lesions (Dataset-BC) to demonstrate its applicability to
in vivo data. Fig. 3h shows a plot of the mean SNRyean
of these individual time samples from Dataset-BC before
and after application of the network, which indicates a time-
independent increase in SNRpean of approximately 20.8 dB
after denoising. The uniformity of the increase in SNRpyean
demonstrates that the trained neural network can extract
electrical noise both from strong optoacoustic responses in
superficial tissue (time samples 400 — 700), as well as from
signals deeper in tissue, which have lower amplitudes due to
light fluence attenuation (time samples 1100 — 1400).

Furthermore, we demonstrated the ability of the method
to compensate for the variations in parasitic electrical noise
within the transducer array of the test system (see Fig. 2c
for details) to confirm the applicability of the trained network
to in vivo scans. For that, we calculated the SNRyean for
Dataset-BC individually for all transducer elements, rather
than for the whole sinograms, before and after denoising.
As shown in Fig. 3i, applying the trained network to the
breast scans from Dataset-BC improves the SNRpyean at all
transducers by an average of 22.4 dB in a near uniform
manner. Note that the transducers at the boundaries of the
detector probe have lower SNRs than the central transducers
due to the probe layout partially shielding the outermost
transducers from arriving acoustic waves. The lower SNRean
values at transducers 30-43, 79-87, 167-175, 213-227 result
from acoustic noise waves propagating along the transducer
array, which corrupts the ground truth noise estimation used
to calculate the SNRpean (see Equation 5). These noise waves
depend on the imaged tissue, and therefore cannot be removed
by the neural network.

Thus far, we have demonstrated the ability of the denoising
method to accurately isolate the electrical noise of the test
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system. Next, we investigated whether the trained model can
also adopt electrical noise with altered levels of parasitic and
thermal noise components, e.g. caused by changes in hardware
configurations or environmental conditions such as humidity
and temperature. We applied the trained model to optoacoustic
signals that were corrupted with augmented electrical noise
sinograms containing, in comparison to the measured electrical
noise used during training, up to three times the amount
of parasitic noise and approximately up to four times the
amount of thermal noise (see Dataset-EN+GN in Table I).
Fig. 3j summarizes the average denoising performance of
the trained network, which afforded improvements in SNR
for all tested combinations of parasitic and thermal noise
components. These results demonstrate that the trained neural
network can also generalize to previously unseen amounts of
electrical noise and thus facilitate robust denoising in real-
world imaging applications, where the amounts of electrical
noise may change over time.

B. Denoising Enables High Contrast in Optoacoustic
Images

Thus far, we have demonstrated the ability of the denoising
network to isolate and remove electrical noise in optoacoustic
sinograms. In this section, we analyze the effects of denoising
on reconstructed optoacoustic images. First, we ensure that the
denoising network successfully removes noise artifacts without
distorting any true optoacoustic image structures using optoa-
coustic images of a phantom. Subsequently, we evaluate the
improved image contrast due to denoising in a clinical dataset
of scans of human breast lesions, to show the potential for
improved diagnostic capability of optoacoustic tomography.

We utilized a model-based inversion algorithm to recon-
struct optoacoustic images (i.e. initial spatial pressure dis-
tributions) from all scans in the datasets Dataset-Ph and
Dataset-BC, both with and without denoising the recorded
sinograms with the trained neural network. Fig. 4a-e illustrate
the qualitative improvements to selected images upon appli-
cation of the neural network. Fig. 4a shows an optoacoustic
image of a phantom at 700 nm, reconstructed from a noisy
sinogram. Zero-mean Gaussian noise in the recorded sinogram
reduces the overall contrast in the image, whereas parasitic
noise leads to ring artifacts that obscure potentially relevant
image features. The arrangement of the phantom is shown
in the inlay of Fig. 4a. Fig. 4b depicts the same optoacoustic
image reconstructed from a denoised sinogram, demonstrating
that the neural network can significantly reduce both the
background noise and the ring artifacts. Fig. 4c plots the
difference between Figs. 4a and b, which yields artifacts
and background noise but no real structures, emphasizing the
ability of the network to accurately identify and isolate noise
in optoacoustic images. Fig. 4d and e show the optoacoustic
images of a malignant breast tumor at 870 nm. The denoised
image in Fig. 4e appears significantly richer in contrast than
the original image in Fig. 4d and contains structures that are
not visible prior to the denoising. To highlight the clinical
relevance of the improved contrast, note that in Fig. 4e, the
optoacoustic contrast inside the tumor core regions (outlined in

blue) is separated from the noise that dominates these regions
in Fig. 4d. Furthermore, we reconstructed the scans from
Dataset-BC with the backprojection algorithm and confirmed
that the presented denoising method also achieves visible
reductions in the background noise and the ring artifacts for
these images.

Next, we evaluated the contrast resolution (CR) of blood
vessels in optoacoustic images reconstructed via model-based
inversion from Dataset-BC to quantify the enhancement capa-
bilities of the trained neural network in the image domain.
Blood vessels and background ROIs were first manually seg-
mented, as depicted in Fig. 4f, and used to calculate the blood
contrast resolution. The distributions of contrast resolution
in Dataset-BC before and after denoising are compared in
Fig. 4g, which shows an average improvement of 0.083 with
a range of 0.003 to 0.55 for individual images. As shown in
Fig. 4h, the average improvement in blood contrast resolu-
tion is consistent across all wavelengths, demonstrating the
network’s ability to remove noise, independent of the varying
strength of individual absorbers across the accessible spec-
trum. The denoising capabilities of the presented denoising
method were also confirmed when evaluating the contrast-to-
noise ratio of blood vessels in the images from model-based
inversion, and the contrast resolution and contrast-to-noise
ratio of blood vessels in images from backprojection recon-
struction, with average improvements of 1.7 dB, 0.043, and
2.6 dB, respectively.

C. Deep-Learning-Based Denoising Enables High
Spectral Contrast

A further central finding of this work is the ability of
the presented denoising approach to significantly improve
spectral contrast in MSOT, i.e. the differentiation of chro-
mophores based on their absorption spectra. We found that
upon application of the denoising method to the MSOT
scans from Dataset-BC, the dominant absorbers in breast
tissue — hemoglobin, lipids, and water — are more accurately
identified and localized. To analyze the spectral contrast,
we applied blind spectral unmixing via non-negative matrix
factorization (NMF) to the original and denoised breast images
and decomposed each of the two datasets into 10 spectra
and corresponding unmixing coefficients. Note that unlike
linear unmixing based on the reference absorption spectra
of chromophores in tissue, NMF finds both the spectra and
unmixing coefficients in a data driven way and thus extracts
variants of the reference spectra that consider effects from
spectral coloring.

Fig. 5 compares the spectral contrast of the original and
denoised MSOT breast images from Dataset-BC. In Fig. 5a-c,
we show the NMF spectra obtained from the original (Fig. 5a)
and from the denoised (Fig. 5b) data next to the reference
absorption spectra of the most prominent chromophores in
tissue (oxygenated and deoxygenated hemoglobin, water, and
lipids, see Fig. 5¢). The spectra derived from the original data
show a significant number of sharp peaks (spectra no. 3, 5,
7, 8,9, 10) attributable to ring artifacts from parasitic noise,
rather than specific absorbers in tissue. In contrast, the spectra
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Fig. 4. Demonstration of improved image quality in denoised scans of a phantom and of human breast lesions. a) Optoacoustic image of a

phantom before denoising. The overlayed image shows the arrangements of the phantom: tubes filled with ink (yellow), copper sheet (blue), and
agar layers with slightly different speed of sound distributions (grey). b) Corresponding optoacoustic image after denoising. c) Difference between
a and b. d-e) Optoacoustic image of a malignant breast tumor (d) before and (e) after denoising. The location of the hypoechoic tumor core, obtained
from ultrasound images, is outlined in blue. f) Examples for the vessel and background ROls that are used to compute the contrast resolution.
g-h) Quantification of the contrast resolution (CR) of blood vessels in scans of breast lesions before and after denoising. The average increase is
0.083. The minimal gain is 0.003. The depicted optoacoustic images of the phantom and the breast lesion are obtained at 700 nm and 870 nm,

respectively. All scale bars correspond to 5 mm.

obtained from the denoised images are broader, smoother, and
are more easily related to the reference absorption spectra of
hemoglobin (spectra no. 1, 2, 6, 7, 8, 10), fat (spectra no.
4, 9), and water (spectra no. 3, 5). The increased number of
meaningful spectra found by NMF demonstrates superior spec-
tral contrast of the denoised images compared to the original
images. The improved unmixing accuracy upon application of
the denoising method was also confirmed quantitatively by
evaluating the residual norms of the NMF runs (see equation
10). The 10 NMF components obtained from the original
MSOT breast scans could only represent 83.2% of the data
(rnMF = 16.8%), whereas the 10 NMF components obtained
from the denoised MSOT breast scans could represent 91.8%
of the data (ranmr = 8.2%).

In Fig. 5d-g, we visualize the obtained spectral decompo-
sitions before and after denoising of a representative multi-
spectral stack to visually confirm the ability of the network to
enable better spectral contrast. We color-encode and blend the
unmixing coefficients of three NMF spectra at a time, which
correlate with the reference absorption spectra of hemoglobin
(Fig. 5d,e), lipids, and water (Fig. 5f,g), covering approx-
imately the same spectral regions for the original and the
denoised data. To improve the dynamic range of the rendered
images, we display the square roots of all coefficients in the
visualizations. Whereas the visualizations derived from the
original data are dominated by overlapping coefficients of

different spectra (appearing as white in the color-encoding)
and by ring noise artifacts (example marked with white arrows
in Fig. 5f), the visualizations derived from denoised data show
a reduction of noise artifacts and express significantly richer
spectral contrast. In addition, while the tumor core (outlined
in white) in Fig. 5d,f contains a lot of noise, this noise
is removed by the denoising method in Fig. 5e,g, revealing
hemoglobin contrast inside the tumor (white arrows in Fig. 5e).
In summary, improved spectral contrast is observable in two
ways upon application of the denoising method to the scans
from Dataset-BC: First, blind spectral unmixing retrieves a
more versatile set of spectral components and second, the
denoising method enables a more meaningful decomposition
of the acquired images into the found spectra.

IV. CONCLUSION

Optoacoustic signals are relatively weak and thus suscep-
tible to corruption by electrical noise during the imaging
process, which impedes morphological and spectral contrast.
In this work, we presented a discriminative deep-learning-
based denoising method for optoacoustic sinograms, which
employs a deep neural network trained on samples of experi-
mentally acquired electrical noise and simulated ground truth
optoacoustic signals. We demonstrated that the trained deep
neural network could accurately remove electrical noise from
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Effects of denoising on the spectral content of optoacoustic images. a-b) NMF spectra that were obtained from the original (a) and the

denoised (b) MSOT images of human breast lesions from Dataset-BC. c) Reference absorption spectra of the most prominent chromophores in
breast tissue. d-g) Visualizations of the NMF decomposition of a representative MSOT image showing a malignant breast tumor at approximately
2 cm depth before (d, f) and after (e, g) denoising. The images color-encode the contributions of three spectra that respectively correlate with the
absorption spectra of hemoglobin (d, ), fat, and water (f, g). The position of the tumor, obtained from ultrasound images, is demarcated by the white

outlines.

in vivo scans of a MSOT system. The proposed signal
processing technique offers a fast and accurate approach to
improve the SNR of recorded optoacoustic sinograms, increase
morphological image contrast, and enable rich spectral contrast
at high resolution in handheld MSOT imaging.

The presented deep-learning-based denoising framework is
effective because it can access the topology and the statis-
tics of pure electrical noise and optoacoustic signal datasets.
This structural information contained in large datasets has
recently been made accessible by advances in computational
power and methodology and is the driving force behind
the increasing success of deep learning methods in medical
imaging [39], [40]. We generated such a large and high-
quality dataset by complementing the experimentally acquired
pure noise data with simulated optoacoustic sinograms. The

simulated data was obtained by applying a mathematical
model of the imaging system to a general-feature image
database, thereby incorporating prior knowledge about the
imaging system without sacrificing general applicability of
the method to any data acquired by the system. This is an
example of the integration of a physical model into data-
driven methods, which remains a major challenge in machine
learning [27], [41], [42]. The proposed method allows a trade-
off between model accuracy and generality. For example, one
could potentially enhance denoising performance by selecting
an optoacoustic signal dataset that more specifically reflects
typical tissue responses. However, the method achieves accu-
rate denoising and good generalization beyond the training
data without any such specialization. To further evaluate the
utility of the presented denoising approach, future research
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may also focus on strategies to improve the interpretability of
the employed deep neural network model [43].

Furthermore, the trained deep neural network model pro-
vides a means of fast denoising. Clinical optoacoustic imaging
systems typically provide real-time feedback to the device
operator on a built-in monitor. Due to the restricted process-
ing times, these online images are usually much lower in
quality than those produced offline, which can lead to longer
imaging sessions and incorrect selection of regions of inter-
est. We demonstrated that the method can denoise a full
optoacoustic sinogram of the MSOT system in approximately
9 milliseconds, which is fast enough for real-time feedback
during device operation. Improving instantaneous image qual-
ity enhances the dynamic imaging capabilities of MSOT [44]
while decreasing examination times.

In addition to better image quality, the denoising method
also enhances the fidelity of the obtained spectral informa-
tion. MSOT enables molecular contrast by extending the
high-resolution optical contrast of optoacoustic imaging to the
spectral dimension [45]. However, previous clinical MSOT
studies extracted spectral information mostly by averaging
over larger areas in MSOT images [6]—[8], thereby sacrificing
the superior resolution of optoacoustic imaging. In this work,
we demonstrated that denoising overcomes the necessity to
average over large tissue regions and enables spectral contrast
down to the system resolution, which is ~200 um in the
test system. High-resolution spectral contrast was highlighted
by localizing hemoglobin contrast inside a 2 cm deep breast
tumor. Spectral contrast is of the utmost interest for clinical
applications of MSOT, since it, for example, enables detailed
studies of local blood oxygenation and tissue metabolism.

Finally, the presented denoising framework is also applica-
ble to other (optoacoustic) imaging systems. For example,
optoacoustic mesoscopy [46] and microscopy systems [47]
are beset with similar electrical noise, making the approach
of acquiring pure noise measurements and simulating signals
with a numerical model applicable to these systems without
any major changes. Other noise sources, like speckle noise in
ultrasound imaging [48] or optical coherence tomography [49]
and shot noise in coherent diffraction imaging [50] can be
modeled as independent multiplicative noise and can thus
be approached by adapting the proposed method accordingly.
More generally, the presented methodology can in any context
disentangle two random fields that are mixed in a known
way and whose distributions can be accessed by sampling.
In particular, the denoising approach can also be applied
to remove signal-dependent noise if samples are obtained
from the conditional probability distribution of the noise
P(Spoise]Soa = soa). Then, the denoising network could
be trained with signal and noise samples that are generated
through the following two-step process: 1: Get sample soa
from Soa~Poa. 2: Get sample Spoise from (Spoise|Soa =
50A) ~ P (Snoise|Soa = s0A)-

In summary, the deep learning framework that we propose
in this work is an efficient and flexible method for denoising
optoacoustic tomography data. By significantly improving the
data quality of the considered MSOT system, we move one
step closer to the full potential of handheld MSOT imaging,

which is dynamic high-resolution molecular contrast deep in
tissue.

SOURCE CODE

The source code for the presented denoising framework is
available at
https://github.com/juestellab/msot-sinogram-denoising.
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