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Abstract
In this paper, we consider two iterative algorithms for the phase retrieval problem:
the well-known Error Reduction method and the Amplitude Flow algorithm, which
performs minimization of the amplitude-based squared loss via the gradient descent.
We show that Error Reduction can be interpreted as a scaled gradient method applied
to minimize the same amplitude-based squared loss, which allows to establish its
convergence properties. Moreover, we show that for a class of measurement scenarios,
such as ptychography, both methods have the same computational complexity and
sometimes even coincide.

Keywords Phase retrieval · Error Reduction · Amplitude Flow · Ptychography

Mathematics Subject Classification 90C26 · 47J26 · 47J25 · 78M50 · 78A46

Communicated by Dae Gwan Lee, Ron Levie, Johannes Maly and Hanna Veselovska.

This article is part of the topical collection “Recent advances in computational harmonic analysis” edited
by Dae Gwan Lee, Ron Levie, Johannes Maly and Hanna Veselovska.

OM was partially supported by the Helmholtz Association within the projects Ptychography 4.0 and
EDARTI.

B Oleh Melnyk
oleh.melnyk@helmholtz-muenchen.de; oleh.melnyk@tum.de

1 Mathematical Imaging and Data Analysis, Helmholtz Center Munich, Ingolstaedter Landstrasse
1, Neuherberg 85764, Germany

2 Department of Mathematics, Technical University of Munich, Boltzmannstr. 3, Garching bei
München 85748, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s43670-022-00035-5&domain=pdf
http://orcid.org/0000-0002-1816-7613


   16 Page 2 of 21 O. Melnyk

1 Introduction

The phase retrieval problem considers the reconstruction of an unknown x ∈ C
d from

m ∈ N amplitude measurements of the form

yk = |(Ax)k | + nk, k = 1, . . . ,m, (1)

with A ∈ C
m×d denoting the measurement matrix and n ∈ R

m being noise.
It has many applications such as crystallography [1], noncrystalline materials [2–4]

and optical imaging [5], where the goal is to recover the specimen from its diffraction
patterns obtained by illumination with penetrating light, e.g., x-rays or electron beam.

One such application is ptychography [6, 7], where the inference on the object of
interest is based on a collection of far-field diffraction patterns, each obtained by an
illumination of a small region of the specimen. As the regions overlap, it produces the
surplus information, which allows for unique identification of the object up to a global
phase factor from ptychographic measurements.

Since the introduction of the phase retrieval problem to the mathematical commu-
nity, many approaches have been developed in order to reconstruct the specimen. The
spectrum of methods includes alternating projections methods [8–14], gradient-based
minimization [15–19], semidefinite [20–24] and linear programming [25, 26], direct
methods [27–31], and many more.

One of the longstanding favored algorithms is Error Reduction (ER), which was
introduced in 1972 by Gerchberg and Saxton [8]. Later contributions [10], [32] and
[12] classified ER as an alternating projections technique and supplemented it with
the detailed analysis on the convergence and also provided an interpretation of the
algorithm as a projected gradient method. The version of ER algorithm was also
studied as a gradient flow method in continuous setting [33].

Another algorithm, which became popular in recent years, is Amplitude Flow (AF)
[17, 19]. It performs the first order optimization applied to the amplitude-based squared
loss

L2(z) =
m∑

k=1

||(Az)k | − yk |2, z ∈ C
d . (2)

AF is well-understood for randomized measurements scenarios [17], where the matrix
A is random. It aswell possesses the convergence guarantees for arbitrarymeasurement
scenarios [19].

In this paper we connect these two methods by representing ER as a scaled gradient
method for the minimization of the amplitude-based squared loss L2. It allows to
establish convergence rate of the ER algorithm, which to our knowledge has never
observed in the literature. Furthermore, the scaled gradient representation provides the
equivalence between the set of fixed points of two methods. Lastly, we consider ER
and AF in application to the ptychographic measurements and show that both methods
exhibit the same computational complexity and in special cases even coincide.

The paper is structured in the following way. In Section 2 we provide the reader
with necessary notation and detailed overview of the ER and AF algorithms. Our



On connections between Amplitude Flow and Error Reduction Page 3 of 21    16 

contribution is then presented in Section 3 and proved in Section 4. Finally, the paper
is summarized by a short conclusion.

2 Notation and Preliminaries

2.1 Definitions

Throughout the paper, wewill use the short notation [a] = {1, 2, . . . , a} for index sets.
The complex unit is denoted by i . The complex conjugate of α ∈ C is given by ᾱ. The
transpose and complex conjugate transpose of a vector v or a matrix B are denoted by
vt , v∗ and BT , B∗, respectively. The Euclidean norm of a vector v ∈ C

a is given by

‖v‖2 :=
[∑a

j=1 |v j |2
]1/2

. We say that a matrix B ∈ C
b×a, b ≥ a is injective if for

all pairs of vectors u, v ∈ C
a with u �= v it holds that Bu �= Bv. The injectivity of B

is equivalent to the condition rank(B) = a. We will also denote the image of B as

im(B) := {Bv ∈ C
b : v ∈ C

a}.

For a square full rank matrix B its inverse is given by B−1. A matrix B ∈ C
b×a, b ≥ a

is called orthogonal if it satisfies B∗B = I , where I denotes the identity matrix. A
square orthogonal matrix B ∈ C

a×a is a unitary matrix and its inverse is B−1 = B∗.
The projection of u ∈ C

a onto a set S ⊆ C
a is an element ũ ∈ S, such that

‖u − ũ‖2 ≤ ‖u − v‖2 for all v ∈ S. An operator, which maps u to ũ is called the
projection operator onto S. In general, ũ is not unique, however, in case when S is a
non-empty closed convex set, ũ can be uniquely identified [34].

For a matrix B ∈ C
b×a of rank r its singular value decomposition is given by

B = U�V ∗,

where U ∈ C
b×r , V ∈ C

a×r are orthogonal matrices and � ∈ R
r×r is an invertible

diagonal matrix with diagonal entries σ j (B) > 0, j ∈ [r ], sorted in decreasing order.
The values σ j (B) are also referred to as the singular values of B. The largest singular
value σ1(B) equals to the spectral norm of B defined as

‖B‖ := max
v∈Ca ,‖v‖=1

‖Bv‖2.

Using the singular value decomposition, the Moore-Penrose pseudoinverse of B is
defined as

B† := V�−1U∗.

For an injective matrix B ∈ C
b×a, b ≥ a, its pseudoinverse B† can be expressed as

B† = (B∗B)−1B∗. (3)
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It satisfies

B†B = I and BB† is a projection operator onto the set im(B). (4)

For a vector v ∈ C
a , the diagonal matrix diag(v) ∈ C

a×a is formed by placing the
entries of the vector v onto main diagonal, so that for k, j ∈ [a] it holds that

diag(v)k, j :=
{

vk k = j,

0 k �= j .

The discrete Fourier transform is given by a matrix F ∈ C
d×d with the entries

Fk, j = e2π i(k−1)( j−1)/d , k, j ∈ [d], (5)

and satisfies equality
F∗F = d I . (6)

The family of the circular shift matrices Ss ∈ C
d×d , s ∈ Z is defined by its action for

all vectors v ∈ C
d as

(Ssv) j := v( j−1−s mod d)+1, j ∈ [d]. (7)

For the description of the computational complexity of algorithms, we use notation
O(n) for the order of operations, meaning that at most cn operations are required for
some constant c > 0.

For a function f : C → C and a vector v ∈ C
a , the notation f (v) will denote the

entrywise application of the function f . For a vector v ∈ C
a and number α ∈ C by

v + α we will denote vector in C
a with entries vk + α, k ∈ [a]. For instance, using

this notation we can rewrite the measurements (1) as

y = |Ax | + n.

2.2 Phase retrieval

In the context of the phase retrieval problem, it is convenient to refer to the spaces
C
d and Cm as object and measurement spaces, respectively. If the phases of the mea-

surements Ax were known, the problem would be the classical recovery from linear
measurements, which in general is only possible if the dimension of the measurement
spacem is at least as large as the dimension of the object space d. Since the phases are
lost, the number of required measurements is even higher and, hence, we will assume
that m ≥ d. It is known that m ≥ 4d − 4 measurements are sufficient for the unique
reconstruction of x when A is generic [35] andm ≥ cd with constant c ≥ 1 when A is
random [23, 24]. By the unique reconstruction of x , we understand the identification
of x up to a global phase factor αx for any α ∈ C, |α| = 1, since it holds that

|Ax | = |Aαx |.



On connections between Amplitude Flow and Error Reduction Page 5 of 21    16 

The unique reconstruction of x up to a global phase is equivalent to the unique identifi-
cation of the set {αx : |α| = 1} or, in other words, the function {αx : |α| = 1} 
→ |Ax |
is injective. One of the necessary conditions for the unique recovery is the injectivity
of the matrix A. If A is not injective then there exist two vectors u, v ∈ C

d , such
that u �= v and Au = Av. Consequently, |A(u − v)| j = 0 and it is not possible to
distinguish u − v and the zero vector from the measurements. The injectivity of the
matrix A will be the main assumption for our results in Section 3. The injectivity of
A, however, is not sufficient for unique recovery. A counterexample is A = F , which
is injective by (6), but it is well-known that there are multiple objects satisfying the
same measurements |Fx | [36].

2.3 Error Reduction

The Error Reduction (ER) is an iterative algorithm for the phase retrieval problem. It
considers an initial guess z0 ∈ C

d in the object space and is given by the iterations

zt+1 = A† diag

(
y

|Azt |
)
Azt , t ≥ 0. (ER)

The iterations are repeated until the fixed point is reached, so that zt+1 = zt . For T ∈ N

iterations of ER O(md2 + Tmd) operations are required, where O(md2) operations
are needed to compute the pseudoinverse and O(md) operations are performed per
iteration.

Let us consider iterates in the measurement space ut := Azt , t ≥ 0 for which the
update of ER reads as

ut+1 = Azt+1 = AA† diag

(
y

|Azt |
)
Azt = AA† diag

(
y

|ut |
)
ut .

In this form, diag
(

y
|ut |

)
ut is the projection of ut onto the set

M := {u ∈ C
m : |u| = y}.

Moreover, the set M can be viewed as a product of one-dimensional sets

Mk := {α ∈ C : |α| = yk}, k ∈ [m],

and, thus, the projection onto M is performed by projecting each coordinate utk onto
corresponding setMk . The second step is to apply AA†, which is by (3), the projection
operator onto im(A). Therefore, ERfirst projects ontoM, where themeasurements are
satisfied. Then, the resulting point is projected onto im(A). The sequential projections
onto M and im(A) allows for an interpretation of ER as an alternating projection
scheme. If M was a convex set, then ER would converge to the intersection of two
sets [37]. However, due to non-convexity ofM, convergence of ut to the intersection
of the sets is not guaranteed, which is a known problem of the ER algorithm. We note
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that, when A allows for unique recovery and noise is absent, intersection of M and
im(A) is given by {αx : |α| = 1} [12].

Another complication arising from the non-convexity ofM is the non-uniqueness
of the projection ontoM. Let yk �= 0 and consider the projection of α ∈ C ontoMk .
If α is non-zero, the closest point in Mk is given by yk · α/|α| [12, Lemma 3.15a].
If α = 0, all points in Mk have the same distance to 0 and any of them can be used
as a projection. In the literature, it is resolved by setting the projection either to yk or
ykeiϕ for a randomly selected angle ϕ ∈ [0, 2π). In this paper, we will instead map 0
to 0, which is not precisely the projection, but can be interpreted as an average of all
possible projections

0 = 1

2π

∫ 2π

0
yke

iϕdϕ.

Therefore, whenever (Azt )k = 0 we set (Azt )k/|(Azt )k | = 0.
TheERalgorithmcan also be interpreted as a projected gradientmethod [12, Section

3.8] applied to solve the minimization problem

min
u∈im(A)

‖|u| − y‖22. (8)

We note, that substituting Az for u, z ∈ C
d leads to an unconstrained minimization

of the amplitude-based objective (2), which suggests that ER can be interpreted as a
gradient method applied to the function L2.

It is known that in the absence of noise if an initial guess z0 is chosen sufficiently
close to the set {αx : |α| = 1}, the ER algorithm will converge to a point in this set
[12, Theorem 3.16]. In general, ER does not converge globally to {αx : |α| = 1} [12,
p.830]. If the loss L2 is differentiable at zt , the ER iteration will not increase the value
of L2, i.e., L2(zt+1) ≤ L2(zt ) [12, 38].

For the initialization z0 of ER, the polarization method can be used [12, 39, 40]. It
constructs amatrix containing the estimates of sgn(Axk)sgn(Ax�), k, � ∈ [m] from the
measurements and recovers sgn(Axk) by solving the phase synchronization problem
[41–44].

2.4 Amplitude Flow

The Amplitude Flow algorithm (AF) considers the gradient-based optimization of
the amplitude-based objective (2). The algorithm is based on the Wirtinger deriva-
tives, which are discussed in greater detail in Section 4.2, while in this section we
superficially define the gradient in order to avoid lengthy derivations.

Given an initial guess z0 ∈ C
d , AF is based on the iterations

zt+1 = zt − μt∇L2(z
t ), t ≥ 0, (AF)
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whereμt > 0 denotes the so-called learning rate and∇L2 is the generalizedWirtinger
gradient of L2 given by

∇L2(z) = A∗
[
I − diag

(
y

|Az|
)]

Az.

Similarly to ER, we treat the case (Az)k = 0 by setting (Az)k/|(Az)k | = 0. The
iteration process is continued until the gradient∇L2(zt ) vanishes, which is equivalent
to reaching the fixed point zt+1 = zt . Originally, AF was derived and analyzed for
random Gaussian measurements without noise [17]. For such A, it is possible to
construct good starting point z0 via spectral initialization [15] or null initialization [45],
such that AF admits linear convergence rate to the set of true solutions {αx : |α| = 1}.
In general, for any choice of the measurement matrix A, the following convergence
results have been established in [19].

Theorem 1 ([19, Theorem 1])Consider measurements y of the form (1). Let 0 < μt ≤
‖A‖−2 and z0 ∈ C

d be arbitrary. Then, for iterates {zt }t≥0 defined by AF we have

L2(z
t ) ≥ L2(z

t+1) for all t ≥ 0,

‖zt+1 − zt‖2 → 0, t → ∞,

and

min
t=0,...,T−1

‖zt+1 − zt‖22 ≤ L2(z0)

‖A‖2T for all T ≥ 0.

Unlike the randomized scenario, the general case only guarantees convergence
to a fixed point with sublinear rate. Therefore, the initialization z0 is crucial for the
convergence to globalminimum. For a non-random A, e.g., in case of ptychography, an
outcome of the direct (non-iterative)method [30] is a good starting point. Furthermore,
with sufficiently good initialization AF can achieve linear convergence rate [46] even
for non-random measurements.

As the proof of Theorem 1 resembles the proof of Theorem 3 below, we provide
the sketch of proof for Theorem 1 in Remark 10 in Section 4.2.

The computational complexity of AF for T ∈ N iterations is given by O(Tmd)

operations. If the learning rate is chosen to be μt = ‖A‖−2, the computation of
the spectral norm can be done with additional O(md) operations by performing the
fixed number of the power method iterations. More precisely, for K ∈ N and random
initialization v0, iterates vk = A∗Avk−1/‖A∗Avk−1‖2, k ∈ [K ], are computed and
‖AvK ‖2 is used as an estimate of ‖A‖.

3 Results

As it was briefly mentioned in Section 2.3, ER can be linked to the minimization of
the amplitude-based objective (2). We formalize this intuition in the next lemma.
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Lemma 2 Let A be injective. Then, ER is a scaled gradient method with iterations
given by

zt+1 = zt − (A∗A)−1∇L2(z
t ), t ≥ 0.

Weemphasize that the result of Lemma 2 is only true for all z ∈ C
d , if the ambiguity

0/0 in the iteration of ER is defined as 0.
The reinterpretation of ER as a scaled gradient method allows to analyze conver-

gence of the algorithm similarly to AF, which leads to an analogue of Theorem 1.

Theorem 3 Consider the phase retrieval measurements y of the form (1)with injective
matrix A. Let z0 ∈ C

d be arbitrary. Then, for iterates {zt }t≥0 given by ER we have

L2(z
t ) ≥ L2(z

t+1) for all t ≥ 0,

‖zt+1 − zt‖2 → 0, t → ∞,

and

min
t=0,...,T−1

‖zt+1 − zt‖22 ≤ L2(z0)

Tσ 2
d (A)

for all T ≥ 0,

where σd(A) denotes the smallest singular value of the matrix A.

Theorem 3 guarantees that no matter how noisy the measurements are, ER will
always converge to a fixed point and the convergence rate is sublinear. However, even
in the absence of noise, it does not guarantee the global convergence to a point in the set
{αx : |α| = 1}. We note that for cases A = F and A corresponding to ptychography
(see (10) below), the convergence of ER to a fixed point was shown in [10] and [47],
respectively. However, the convergence rate was not derived. Comparing Theorem 3
to Theorem 1, we observe that the constant in the convergence rate of ER is worse by
σ 2
1 (A)/σ 2

d (A) compared to AF.
A further consequence of Lemma 2 is the equality of the fixed-point sets of both

algorithms.

Corollary 4 Let A be injective. Then, z ∈ C
d is a fixed point of ER if and only if z is

the fixed point of AF.

We note that Corollary 4 does not imply that given the same initial guess z0, both
algorithms will necessarily converge to the same fixed point.

By Theorem 1 and Theorem 3, both algorithms seem to be comparable in terms of
convergence rate and by Corollary 4 in terms of critical points. However, for T ∈ N

iterations ofERO(md2+Tmd)operations are required,whileAFonly needsO(Tmd)

operations and, thus, in general ER is considerably slower in terms of computation
complexity. The next corollary shows, that this difference is less significant in cases
where the columns of A are orthogonal.

Corollary 5 Let

A∗A = diag(v) for some v ∈ R
d with v� > 0, � ∈ [d]. (9)
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Then, for T ∈ N iterations both algorithms ER and AF require O(Tmd) operations.
Furthermore, if A∗A = cI , for some c > 0, then the iteration of ER coincides with

the iteration of AF for the learning rate μt = ‖A‖−2.

While condition (9) may seem restrictive, it, in fact, holds in many practical appli-
cations. For instance, the equivalence of both algorithmswas observed for the recovery
from Fourier magnitudes (A = F) in [10]. Another application of interest is ptychog-
raphy, for which the measurement matrix A is given by

A =
⎡

⎢⎣
F diag(Ss1w)

...

F diag(Ssr w)

⎤

⎥⎦ , (10)

where the vector w ∈ C
d denotes the distribution of the light in the illuminated region

and s1, . . . , sr ∈ [d], r ≤ d, are unique positions of the regions. Matrices F and Ss j
are given by (5) and (7), respectively. When r = d and s j = j, j ∈ [d], the matrix A
is also known as the discrete Short-Time Fourier transform (STFT) with window w.

The next corollary shows that condition (9) and, consequently, the results of Corol-
lary 5 also hold for ptychographic measurements.

Corollary 6 Consider measurements of the form (1) with ptychographic measurement
matrix A as in (10). Then, A∗A = diag(v), where the vector v has entries

v� = d
∑

j∈[r ]
|(Ss j w)�|2,

for all � ∈ [d]. The matrix A is injective if and only if v� > 0 for all � ∈ [d].
Furthermore, if A is the STFT matrix, the vector v has entries v� = d‖w‖22 for all � ∈
[d]. Consequently, the results of Corollary 5 apply for ptychographic measurements.

In order to illustrate the result of Corollary 6, we perform a numerical reconstruc-
tions of randomly generated x ∈ C

d , d = 256 with both AF and ER. In the first case,
A is chosen to be the STFT matrix with the window

w j =
{
exp

(
− ( j−8.5)2

12.8 + i π( j−8.5)2

12.8

)
, j ∈ [32],

0, j /∈ [32].

In the second case A is given by (10)with the samewindow and positions s j = 16 j and
j ∈ [d/16]. The measurements are additionally corrupted by Poisson noise such that

signal-to-noise ratio 10 log10

(
‖|Ax |2‖22

‖y2−|Ax |2‖22

)
is approximately 45. Figure 1a shows the

valuesL2(zt ) for 500 iterations of the algorithms starting from a random initialization
z0. Note that for the STFT matrix A, AF and ER coincide as predicted by Corollary 6,
while this is no longer true for A as in (10).Despite producing different reconstructions,
the runtime of the algorithms in Figure 1b is almost the same, which is in line with
Corollary 5.
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Fig. 1 Numerical visualization of Corollary 5 and Corollary 6

Finally, we consider a scenario when the object is supported on J ⊆ [d]. Then, we
can rewrite the the measurement model as

y = |AEJ xJ | + n,

where xJ is the vector containing entries of x in J and EJ is a linear embedding oper-
ator, which maps xJ to x . In such case, the results above apply for new measurement
matrix Ã = AEJ .

4 Proofs

4.1 Proofs of Lemma 2 and corollaries

We will start with the proof of Lemma 2.

Proof of Lemma 2 By the assumption, A is injective and, thus, identities (3) and (4)
hold true. Therefore, the iteration of ER can be rewritten as

zt+1 = A† diag

(
y

|Azt |
)
Azt = A†Azt − A†Azt + A† diag

(
y

|Azt |
)
Azt

= zt − A†
[
I − diag

(
y

|Azt |
)]

Azt = zt − (A∗A)−1A∗
[
I − diag

(
y

|Azt |
)]

Azt

= zt − (A∗A)−1∇L2(z
t ).


�
Using the result of Lemma 2, we deduce Corollary 4 and Corollary 5.

Proof of Corollary 4 Let z ∈ C
d be a fixed point of ER. By Lemma 2, we have that

z = z − (A∗A)−1∇L2(z),
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which is equivalent to

(A∗A)−1∇L2(z) = 0.

Since A is injective and (A∗A)−1 exists, the obtained equality holds if and only if
∇L2(z) = 0, so that z is the fixed point of AF. 
�
Proof of Corollary 5 Using the condition (9), we obtain (A∗A)−1 = diag(1/v). Con-
sequently, by Lemma 2, the iteration of ER is given by

zt+1 = zt − (A∗A)−1∇L2(z
t ) = zt − diag(1/v)∇L2(z

t ).

The computation of the gradient requires O(md) operations. Both the multiplication
with diag(1/v) and the difference can be done inO(d) operations. Therefore, the total
number of operations for a single iteration of ER is given by O(md + d) = O(md),
which is the same order of operations as for a single iteration of AF. Furthermore,
evaluation of v requires additional O(md) operations. We also note that ‖A‖2 =
max�∈[d] |v�| and the computation of the learning rate is done in O(d) operations.
Therefore, both algorithms have total complexity of O(Tmd) for T iterations.

If A∗A = cI , then

‖A‖2 = ‖A∗A‖ = ‖cI‖ = c and (A∗A)−1 = c−1 I = ‖A‖−2 I .

Hence, using Lemma 2 for the iteration of ER we have

zt+1 = zt − (A∗A)−1∇L2(z
t ) = zt − ‖A‖−2∇L2(z

t ),

which is precisely the iteration of AF with μt = ‖A‖−2. 
�
The last corollary is the result of direct computations similar to the equation (12)

in [19].

Proof of Corollary 6 We compute the product A∗A by using the representation (10),

A∗A =
r∑

j=1

(F diag(Ss j w))∗(F diag(Ss j w)) =
r∑

j=1

diag∗(Ss j w)F∗F diag(Ss j w).

Next, we use (6) and diag∗(Ss j w) = diag(Ss j w) to obtain

A∗A =
r∑

j=1

d diag(Ss j w) diag(Ss j w) =
r∑

j=1

diag(d|Ss j w|2)

= diag

⎛

⎝d
r∑

j=1

|Ss j w|2
⎞

⎠ = diag(v).
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The matrix A is injective if and only if A∗A is invertible, and the diagonal matrix is
invertible when all its entries are non-zero. Since v� = d

∑r
j=1 |Ss j w�|2 ≥ 0, � ∈ [d],

the injectivity of A is equivalent to v� > 0 for all � ∈ [d].
If A is the STFT matrix, then s j = j for all j ∈ [d] and the entries of the vector v

further simplify to

v� = d
d∑

j=1

|Ss j w�|2 = d
d∑

j=1

|w(�− j−1) mod d+1|2, � ∈ [d].

Changing the order of summation yields

v� = d
d∑

j=1

|w j |2 = d‖w‖22,

for all � ∈ [d], which concludes the proof. 
�

4.2 Proof of Theorem 3

The proof of Theorem 3 is based on Wirtinger derivatives [48]. Let us recall some
basic facts about Wirtinger derivatives based on [49, 50]. A function f : C 
→ C

can be viewed as a function of two real variables, the real and imaginary parts of the
argument z = α + iβ. The function f is said to be differentiable in real sense if the
derivatives with respect to α and β exist.

Then, the Wirtinger derivatives are defined as

∂ f

∂z
:= 1

2

∂ f

∂α
− i

2

∂ f

∂β
,

∂ f

∂ z̄
:= 1

2

∂ f

∂α
+ i

2

∂ f

∂β
,

which is nothing, but a change of the coordinate system to conjugate coordinates. In
this sense, we treat function f as a function of z and z̄ instead of α and β.

As an example consider f (z) = z = α + iβ. Its Wirtinger derivatives are

∂z

∂z
= 1

2

∂(α + iβ)

∂α
− i

2

∂(α + iβ)

∂β
= 1

2
− i2

2
= 1 and

∂z

∂ z̄
= 0,

which implies that z̄ can be treated as a constant when the derivative with respect to z
is computed and vice versa.

Similar to the real analysis of multivariate functions, Wirtinger derivatives are
extended for f : Cd 
→ C, that is for z ∈ C

d they are given by

∂ f

∂z
=

(
∂ f

∂z1
, . . . ,

∂ f

∂zd

)
and

∂ f

∂ z̄
=

(
∂ f

∂ z̄1
, . . . ,

∂ f

∂ z̄d

)
.

The computation of Wirtinger derivatives is analogous to the standard real analy-
sis as the arithmetic operations and the chain rule extends to the complex case. For
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Wirtinger derivatives it also holds that

∂ f

∂z
= ∂ f̄

∂ z̄
and

∂ f

∂ z̄
= ∂ f̄

∂z
, (11)

for any differentiable function f .
The Wirtinger derivatives are particularly useful for optimization of real-valued

functions of complex variables. Let f : C
d 
→ R be a differentiable real-valued

function. Its differential can be presented in the form of Wirtinger derivatives as

d f = ∂ f

∂z
dz + ∂ f

∂ z̄
d z̄.

Since f is real-valued, by (11), it holds that

∂ f

∂z
= ∂ f

∂ z̄
,

and the differential simplifies to

d f = 2Re

(
∂ f

∂z
dz

)
.

It is maximal, when dz is a scaled version of ∂ f
∂z = ∂ f

∂ z̄ and, thus, ∂ f
∂ z̄ gives the direction

of the steepest ascent. Moreover, the critical points of f are those, where derivative
with respect to z̄ vanishes. For this reason, the gradient of f is defined as

∇ f :=
(

∂ f

∂ z̄

)T

=
(

∂ f

∂z

)∗
.

In our analysis, we would also need theWirtinger version of the second order Taylor’s
approximation theorem in integral form. That is for all twice continuously differen-
tiable functions f : Cd 
→ R and all z, v ∈ C

d it holds that

f (z + v) = f (z) +
[∇ f
∇ f

]∗ [
v

v̄

]
+

[
v

v̄

]∗ ∫ 1

0
(1 − s)∇2 f (z + sv)ds

[
v

v̄

]
, (12)

where ∇2 f denotes the Hessian matrix

∇2 f =
⎡

⎢⎣
∇2
z,z f ∇2

z̄,z f

∇2
z̄,z f ∇2

z,z f

⎤

⎥⎦ ,
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and its components are given by

∇2
z,z f = ∂

∂z
∇ f = ∂

∂z

(
∂ f

∂z

)∗
and ∇2

z̄,z f = ∂

∂ z̄
∇ f = ∂

∂ z̄

(
∂ f

∂z

)∗
.

For further information on Wirtinger calculus, we refer reader to [49, 50].
Let us go back to the amplitude-based objective (2). We rewrite it as

L2(z) =
m∑

k=1

|
√

|(Az)k |2 −
√
y2k |2. (13)

Since
√· is not differentiable at 0, L2 is not differentiable on Cd . Hence, the gradient

of L2 is not properly defined for points z with (Az)k = 0 for some k ∈ [m]. In order
to overcome this issue, we consider the following smoothed version of (13),

L2,ε(z) :=
m∑

k=1

|
√

|(Az)k |2 + ε −
√
y2k + ε|2, (14)

where ε > 0. The function L2,ε possesses some useful properties. Firstly, L2,ε is
continuous in ε and we have

L2(z) = lim
ε→0+L2,ε(z).

Secondly, we can compute the gradient of L2,ε everywhere and properly define the
generalized gradient of L2 as the limit of gradients as parameter ε vanishes.

Lemma 7 The function L2,ε is continuously differentiable with the gradient given by

∇L2,ε(z) = A∗
[
I − diag

( √
y2 + ε√|Az|2 + ε

)]
Az, z ∈ C

d .

Furthermore, the generalized gradient of L2 is given by the pointwise limit

∇L2(z) := lim
ε→0+ ∇L2,ε(z).

Proof Denote by ak the conjugate of the k-th row of thematrix A, so that (Az)k = a∗
k z.

Then, a single summand of L2,ε is given by

fk(z) := |
√
zT ākaTk z̄ + ε −

√
y2k + ε|2, k ∈ [m].

The gradient of fk can be evaluated by the chain rule. We get
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∇ fk(z) =
[
∂ fk
∂ z̄

(z)

]T

=
⎡

⎣
∂|

√
zT ākaTk z̄ + ε −

√
y2k + ε|2

∂

√
zT ākaTk z̄ + ε −

√
y2k + ε

·
∂

√
zT ākaTk z̄ + ε −

√
y2k + ε

∂zT ākaTk z̄ + ε
· ∂zT ākaTk z̄ + ε

∂ z̄

⎤

⎦

T

= 2

(√
zT ākaTk z̄ + ε −

√
y2k + ε

)
1

2
√
zT ākaTk z̄ + ε

[
zT āka

T
k

]T

=
⎛

⎝1 −
√
y2k + ε

√
zT ākaTk z̄ + ε

⎞

⎠ aka
∗
k z =

⎛

⎝1 −
√
y2k + ε

√|(Az)k |2 + ε

⎞

⎠ (Az)kak .

Then, by the linearity of derivatives,

∇L2,ε(z) =
m∑

k=1

∇ fk(z) =
m∑

k=1

⎛

⎝1 −
√
y2k + ε

√|(Az)k |2 + ε

⎞

⎠ (Az)kak

= A∗
[
I − diag

( √
y2 + ε√|Az|2 + ε

)]
Az.

For the generalized gradient ofL2 we consider two cases. If (Az)k �= 0 for all k ∈ [m],
then

√
y2k + ε/

√|(Az)k |2 + ε → yk/|(Az)k |, ε → 0+, for all k ∈ [m]. Note that in
this case, L2 is differentiable at z and its gradient coincides with the limit of ∇L2,ε(z)
as ε → 0+. On the other hand, if (Az)k = 0 for some k ∈ [m], it holds that

√
y2k + ε

√|(Az)k |2 + ε
(Az)k =

√
y2k + ε

√
0 + ε

· 0 = 0 → 0 = yk
|(Az)k | (Az)k, ε → 0+,

with ambiguity 0/0 resolved as 0. 
�

The last property concerns the Hessian matrix of L2,ε.

Lemma 8 [19] The function L2,ε is twice continuously differentiable and its Hessian
matrix satisfies

[
v

v̄

]∗
∇2L2,ε(z)ds

[
v

v̄

]
≤ 2v∗A∗Av, for all z, v ∈ C

d , ε > 0.

Proof See computations on pages 27-28 of [19]. 
�
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Remark 9 The convergence of gradient descent to a critical point is often studied
[51] under the assumption that the function f is L-smooth with L ≥ 0. For twice
continuously differentiable functions L-smoothness is equivalent to the inequality

−2L‖v‖22 ≤
[
v

v̄

]∗
∇2 f (z)ds

[
v

v̄

]
≤ 2L‖v‖22, for all z, v ∈ C

d .

In fact, only the upper bound is sufficient to establish convergence of gradient decent.
In our case, its stronger version is given by Lemma 8.

Now, we are equipped for the proof of Theorem 3.

Proof of Theorem 3 In view of Lemma 2, let us consider the smoothed step of the ER
algorithm

z+ε := z − (A∗A)−1∇L2,ε(z).

Note that (A∗A)−1 exists due to injectivity of A.
We first show that the single step of the smoothed Error Reduction works for

minimization of L2,ε and then we take the pointwise limits to obtain desired result for
L2. In order to derive that in each iteration step the objective does not increase, we
apply Taylor’s theorem (12) with arbitrary z ∈ C

d and v = −(A∗A)−1∇L2,ε(z). We
note that by Lemma 8, the integral in (12) is bounded as

∫ 1

0
(1 − s)

[
v

v̄

]∗
∇2L2,ε(z + sv)

[
v

v̄

]
ds ≤ 2v∗A∗Av

∫ 1

0
(1 − s)ds = v∗A∗Av.

Hence, by (12), we have

L2,ε(z
+
ε ) ≤ L2,ε(z) − 2[∇L2,ε(z)]∗(A∗A)−1∇L2,ε(z)

+ [∇L2,ε(z)]∗((A∗A)−1)∗(A∗A)(A∗A)−1∇L2,ε(z)

= L2,ε(z) − [∇L2,ε(z)]∗(A∗A)−1∇L2,ε(z),

where we used that ((A∗A)−1)∗ = ((A∗A)∗)−1 = (A∗A)−1. Lemma 7 gives

z+ε → z+ := z − (A∗A)−1∇L2(z), ε → 0+,

and, thus, taking the limit ε → 0+ yields

L2(z
+) ≤ L2(z) − [∇L2(z)]∗(A∗A)−1∇L2(z).

Selecting z as iterates zt of ER, we obtain

L2(z
t+1) ≤ L2(z

t ) − [∇L2(z
t )]∗(A∗A)−1∇L2(z

t ). (15)
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Since A is injective, its singular value decomposition is given by A = U�V ∗ with
orthogonal U ∈ C

m×d , unitary V ∈ C
d×d and invertible diagonal matrix � ∈ C

d×d .
Then,

(A∗A)−1 = (V�2V ∗)−1 = (V ∗)−1�−2V−1 = V�−2V ∗ = (V�−1)(V�−1)∗
(16)

is the singular value decomposition of (A∗A)−1. From this representation we deduce
that

[∇L2(z
t )]∗(A∗A)−1∇L2(z

t ) = ‖(V�−1)∗∇L2(z
t )‖22 ≥ 0.

Thus, by (15),

L2(z
t+1) ≤ L2(z) − [∇L2(z)]∗(A∗A)−1∇L2(z) ≤ L2(z

t ),

which shows the first statement of Theorem 3.
In order to prove the remaining statements of Theorem 3, we need to link the decay

of the objective to the iterates. By Lemma 2, we have that

‖zt+1 − zt‖22 = ‖(A∗A)−1∇L2(z
t )‖22 = [∇L2(z

t )]∗(A∗A)−1(A∗A)−1∇L2(z
t ).

Using (16) and the definition of the spectral norm, the squared distance between the
iterates can be bounded as

‖zt+1 − zt‖22 = (�−1V ∗∇L2(z
t ))∗�−2(�−1V ∗∇L2(z

t ))

= ‖�−1(�−1V ∗∇L2(z
t ))‖22 ≤ ‖�−1‖2‖�−1V ∗∇L2(z

t )‖22
= σ 2

1 (�−1)[∇L2(z
t )]∗V�−1�−1V ∗∇L2(z

t )

= σ−2
d (A)[∇L2(z

t )]∗(A∗A)−1∇L2(z
t ).

Next, we sum up the norms for T ∈ N iterations of ER and apply (15) to obtain

T−1∑

t=0

‖zt+1 − zt‖22 ≤ σ−2
d (A)

T−1∑

t=0

[∇L2(z
t )]∗(A∗A)−1∇L2(z

t )

≤ σ−2
d (A)

T−1∑

t=0

[
L2(z

t ) − L2(z
t+1)

]

= σ−2
d (A)

[
L2(z

0) − L2(z
T )

]
≤ σ−2

d (A)L2(z
0),

where in the last line we used that L2(z) ≥ 0 for all z ∈ C
d . This implies that

the partial sum of the series
∑∞

t=0‖zt+1 − zt‖22 is bounded and, thus, the series is
convergent.Consequently, summands converge to zero, that is‖zt+1 − zt‖22 → 0, t →
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∞. Furthermore, we have

min
t=0,...,T−1

‖zt+1 − zt‖22 ≤ 1

T

T−1∑

t=0

‖zt+1 − zt‖22 ≤ L2(z0)

σ 2
d (A)T

,

which concludes the proof. 
�

Remark 10 Proof of Theorem 1 follows the same logic. By Taylor’s theorem (12) with
v = μtL2(z), the analogue of inequality (15) is established. Since the learning rate is
a positive constant, it further implies that the norm of the gradient converges to zero
with the desired speed similarly to the proof of Theorem 3.

5 Conclusion

In this paper we established the understanding of the Error Reduction algorithm as a
scaled gradient method and derived its convergence rate. Furthermore, it was shown
that in practical scenarios, Error Reduction has the same computational complexity as
the Amplitude Flow method and the two algorithms coincide in some cases.

In the future, we plan to expand our analysis for the Hybrid Input-Output method
[9] and extended Ptychograpic Iterative Engine [52] used for the problem of blind
ptychography.
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S., Schlom, D.G., Muller, D.A.: Electron ptychography achieves atomic-resolution limits set by lattice
vibrations. Science 372(6544), 826–831 (2021). https://doi.org/10.1126/science.abg2533

8. Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of phase from image and
diffraction plane pictures. Optik 35, 237 (1972)

9. Fienup, J.R.: Reconstruction of an object from the modulus of its Fourier transform. Optics Lett. 3(1),
27–29 (1978). https://doi.org/10.1364/ol.3.000027

10. Fienup, J.R.: Phase retrieval algorithms: A comparison. Appl. Opt. 21(15), 2758–2769 (1982). https://
doi.org/10.1364/AO.21.002758

11. Wen, Z., Yang, C., Liu, X., Marchesini, S.: Alternating direction methods for classical and ptycho-
graphic phase retrieval. Inverse Problems 28(11), 115,010 (2012). https://doi.org/10.1088/0266-5611/
28/11/115010

12. Marchesini, S., Tu, Y.C., Wu, H.T.: Alternating projection, ptychographic imaging and phase synchro-
nization. Appl. Comput. Harmon. Anal. 41(3), 815–851 (2016). https://doi.org/10.1016/j.acha.2015.
06.005

13. Chang, H., Lou, Y., Duan, Y., Marchesini, S.: Total variation-based phase retrieval for Poisson noise
removal. SIAM J. Imag. Sci. 11(1), 24–55 (2018). https://doi.org/10.1137/16M1103270

14. Fannjiang, A., Zhang, Z.: Fixed point analysis of Douglas-Rachford splitting for ptychography and
phase retrieval. SIAM J. Imag. Sci. 13(2), 609–650 (2020). https://doi.org/10.1137/19M128781X

15. Candes, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval via Wirtinger Flow: Theory and algorithms.
IEEE Trans. Inform. Theory 61(4), 1985–2007 (2015). https://doi.org/10.1109/TIT.2015.2399924

16. Chen, Y., Candes, E.J.: Solving random quadratic systems of equations is nearly as easy as solving
linear systems. NIPS (2015)

17. Wang, G., Giannakis, G.B., Eldar, Y.C.: Solving systems of random quadratic equations via Truncated
Amplitude Flow. IEEETrans InformTheory 64(2), 773–794 (2018). https://doi.org/10.1109/TIT.2017.
2756858

18. Wang, G., Giannakis, G.B., Saad, Y., Chen, J.: Phase retrieval via Reweighted Amplitude Flow. IEEE
Trans. Signal Proc. p. 1 (2018). https://doi.org/10.1109/TSP.2018.2818077

19. Xu, R., Soltanolkotabi, M., Haldar, J.P., Unglaub, W., Zusman, J., Levi, A.F.J., Leahy, R.M.: Acceler-
ated Wirtinger Flow: A fast algorithm for ptychography. arXiv:1806.05546

20. Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM
J. Imag. Sci. 6(1), 199–225 (2013). https://doi.org/10.1137/110848074

21. Candès, E.J., Strohmer, T., Voroninski, V.: Phaselift: Exact and stable signal recovery from magnitude
measurements via convex programming. Commun. PureAppl.Math. 66(8), 1241–1274 (2013). https://
doi.org/10.1002/cpa.21432

22. Kueng, R., Rauhut, H., Terstiege, U.: Low rank matrix recovery from rank one measurements. Appl.
Comput. Harm. Anal. 42(1), 88–116 (2017). https://doi.org/10.1016/j.acha.2015.07.007

23. Kabanava, M., Kueng, R., Rauhut, H., Terstiege, U.: Stable low-rank matrix recovery via null space
properties. Inform. Infer. J. IMA 5(4), 405–441 (2016). https://doi.org/10.1093/imaiai/iaw014

24. Krahmer, F., Kümmerle, C., Melnyk, O.: On the robustness of noise-blind low-rank recovery from
rank-one measurements. Linear Algebra Appl. 652, 37–81 (2022) https://doi.org/10.1016/j.laa.2022.
07.002. https://www.sciencedirect.com/science/article/pii/S0024379522002609

https://doi.org/10.1073/pnas.0503305102
https://doi.org/10.1107/S0108767306016515
https://doi.org/10.1146/annurev.physchem.59.032607.093642
https://doi.org/10.1109/MSP.2014.2352673
https://doi.org/10.1038/s41566-017-0072-5
https://doi.org/10.1038/s41566-017-0072-5
https://doi.org/10.1126/science.abg2533
https://doi.org/10.1364/ol.3.000027
https://doi.org/10.1364/AO.21.002758
https://doi.org/10.1364/AO.21.002758
https://doi.org/10.1088/0266-5611/28/11/115010
https://doi.org/10.1088/0266-5611/28/11/115010
https://doi.org/10.1016/j.acha.2015.06.005
https://doi.org/10.1016/j.acha.2015.06.005
https://doi.org/10.1137/16M1103270
https://doi.org/10.1137/19M128781X
https://doi.org/10.1109/TIT.2015.2399924
https://doi.org/10.1109/TIT.2017.2756858
https://doi.org/10.1109/TIT.2017.2756858
https://doi.org/10.1109/TSP.2018.2818077
http://arxiv.org/abs/1806.05546
https://doi.org/10.1137/110848074
https://doi.org/10.1002/cpa.21432
https://doi.org/10.1002/cpa.21432
https://doi.org/10.1016/j.acha.2015.07.007
https://doi.org/10.1093/imaiai/iaw014
https://doi.org/10.1016/j.laa.2022.07.002
https://doi.org/10.1016/j.laa.2022.07.002
https://www.sciencedirect.com/science/article/pii/S0024379522002609


   16 Page 20 of 21 O. Melnyk

25. Goldstein, T., Studer, C.: Phasemax: Convex phase retrieval via Basis Pursuit. IEEE Trans. Inform.
Theory 64(4), 2675–2689 (2018). https://doi.org/10.1109/TIT.2018.2800768

26. Ghods, R., Lan, A.S., Goldstein, T., Studer, C.: in 52nd Annual Conference on Information Sciences
and Systems (CISS) (IEEE, Princeton,NJ, 2018), pp. 1–6. https://doi.org/10.1109/CISS.2018.8362270

27. Chapman, H.N.: Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution. Ultrami-
croscopy 66(3–4), 153–172 (1996). https://doi.org/10.1016/S0304-3991(96)00084-8

28. Iwen, M.A., Viswanathan, A., Wang, Y.: Fast phase retrieval from local correlation measurements.
SIAM J. Imag. Sci. 9(4), 1655–1688 (2016). https://doi.org/10.1137/15M1053761

29. Iwen,M.A., Preskitt, B., Saab,R.,Viswanathan,A.: Phase retrieval from localmeasurements: Improved
robustness via eigenvector-based angular synchronization. Appl. Comput. Harm. Anal. 48(1), 415–444
(2020). https://doi.org/10.1016/j.acha.2018.06.004

30. Forstner, A., Krahmer, F., Melnyk, O., Sissouno, N.: Well-conditioned ptychographic imaging via lost
subspace completion. Inverse Problems 36(10), 105,009 (2020). https://doi.org/10.1088/1361-6420/
abaf3a

31. Perlmutter, M., Merhi, S., Viswanathan, A., Iwen, M.: Inverting spectrogrammeasurements via aliased
Wigner distribution deconvolution and angular synchronization. Inform. Infer. J. IMA (2020). https://
doi.org/10.1093/imaiai/iaaa023

32. Levi, A., Stark, H.: in ICASSP ’84. IEEE International Conference on Acoustics, Speech, and Signal
Processing (Institute of Electrical and Electronics Engineers, San Diego, CA, USA, 1984), pp. 88–91.
https://doi.org/10.1109/ICASSP.1984.1172785

33. Tsipenyuk, A.: Variational approach to Fourier phase retrieval. Doctoral Thesis
34. Aubin, J.P.: Applied Functional Analysis, 2nd edn. Pure and applied mathematics (JohnWiley & Sons,

Inc, Hoboken, NJ, USA, 2000). https://doi.org/10.1002/9781118032725. https://onlinelibrary.wiley.
com/doi/book/10.1002/9781118032725

35. Conca, A., Edidin, D., Hering, M., Vinzant, C.: An algebraic characterization of injectivity in phase
retrieval. Appl. Comput. Harmon. Anal. 38(2), 346–356 (2015). https://doi.org/10.1016/j.acha.2014.
06.005

36. Beinert, R., Plonka, G.: Ambiguities in one-dimensional discrete phase retrieval from Fourier mag-
nitudes. J. Fourier Anal. Appl. 21(6), 1169–1198 (2015). https://doi.org/10.1007/s00041-015-9405-
2

37. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems.
SIAM Rev. 38(3), 367–426 (1996). https://doi.org/10.1137/S0036144593251710

38. Qian, J., Yang, C., Schirotzek, A., Maia, F., Marchesini, S.: Efficient Algorithms for Ptychographic
Phase Retrieval. Inverse Problems and Applications. Contemp. Math 615, 261–280 (2014)

39. Alexeev, B., Bandeira, A.S., Fickus, M., Mixon, D.G.: Phase retrieval with polarization. SIAM J. Imag.
Sci. 7(1), 35–66 (2014). https://doi.org/10.1137/12089939X

40. Pfander, G.E., Salanevich, P.: Robust phase retrieval algorithm for time-frequency structured measure-
ments. SIAM J. Imag. Sci. 12(2), 736–761 (2019). https://doi.org/10.1137/18M1205522

41. Singer, A.: Angular synchronization by eigenvectors and semidefinite programming. Appl. Comput.
Harmon. Anal. 30(1), 20–36 (2011). https://doi.org/10.1016/j.acha.2010.02.001

42. Boumal, N.: Nonconvex phase synchronization. SIAM J. Optim. 26(4), 2355–2377 (2016). https://doi.
org/10.1137/16M105808X

43. Bandeira, A.S., Boumal, N., Singer, A.: Tightness of the maximum likelihood semidefinite relaxation
for angular synchronization. Math. Programm. 163(1–2), 145–167 (2017). https://doi.org/10.1007/
s10107-016-1059-6

44. Filbir, F., Krahmer, F., Melnyk, O.: On recovery guarantees for angular synchronization. J. Fourier
Anal. Appl. 27(2) (2021). https://doi.org/10.1007/s00041-021-09834-1

45. Chen, P., Fannjiang, A., Liu, G.R.: Phase retrieval by linear algebra. SIAM J.Matrix Anal. Appl. 38(3),
854–868 (2017). https://doi.org/10.1137/16M1107747

46. Bendory, T., Eldar, Y.C., Boumal, N.: Non-convex phase retrieval from STFT measurements. IEEE
Trans. Inform. Theory 64(1), 467–484 (2018). https://doi.org/10.1109/TIT.2017.2745623

47. Griffin, D., Lim, J.: Signal estimation from modified Short-Time Fourier transform. IEEE Trans.
Acoustics Speech Signal Proc. 32(2), 236–243 (1984). https://doi.org/10.1109/TASSP.1984.1164317

48. Wirtinger, W.: Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen. Math.
Annalen 97(1), 357–375 (1927). https://doi.org/10.1007/BF01447872

49. Hunger, R.: An introduction to complex differentials and complex differentiability (2008). https://
mediatum.ub.tum.de/doc/631019/631019.pdf

https://doi.org/10.1109/TIT.2018.2800768
https://doi.org/10.1109/CISS.2018.8362270
https://doi.org/10.1016/S0304-3991(96)00084-8
https://doi.org/10.1137/15M1053761
https://doi.org/10.1016/j.acha.2018.06.004
https://doi.org/10.1088/1361-6420/abaf3a
https://doi.org/10.1088/1361-6420/abaf3a
https://doi.org/10.1093/imaiai/iaaa023
https://doi.org/10.1093/imaiai/iaaa023
https://doi.org/10.1109/ICASSP.1984.1172785
https://doi.org/10.1002/9781118032725
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118032725
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118032725
https://doi.org/10.1016/j.acha.2014.06.005
https://doi.org/10.1016/j.acha.2014.06.005
https://doi.org/10.1007/s00041-015-9405-2
https://doi.org/10.1007/s00041-015-9405-2
https://doi.org/10.1137/S0036144593251710
https://doi.org/10.1137/12089939X
https://doi.org/10.1137/18M1205522
https://doi.org/10.1016/j.acha.2010.02.001
https://doi.org/10.1137/16M105808X
https://doi.org/10.1137/16M105808X
https://doi.org/10.1007/s10107-016-1059-6
https://doi.org/10.1007/s10107-016-1059-6
https://doi.org/10.1007/s00041-021-09834-1
https://doi.org/10.1137/16M1107747
https://doi.org/10.1109/TIT.2017.2745623
https://doi.org/10.1109/TASSP.1984.1164317
https://doi.org/10.1007/BF01447872
https://mediatum.ub.tum.de/doc/631019/631019.pdf
https://mediatum.ub.tum.de/doc/631019/631019.pdf


On connections between Amplitude Flow and Error Reduction Page 21 of 21    16 

50. Bouboulis, P.: Wirtinger’s calculus in general Hilbert spaces. arXiv:1005.5170
51. Beck, A.: First-order methods in optimization (Society for Industrial and Applied Mathematics.

Philadelphia (2017). https://doi.org/10.1137/1.9781611974997
52. Maiden, A.M., Rodenburg, J.M.: An improved ptychographical phase retrieval algorithm for diffrac-

tive imaging. Ultramicroscopy 109(10), 1256–1262 (2009). https://doi.org/10.1016/j.ultramic.2009.
05.012

http://arxiv.org/abs/1005.5170
https://doi.org/10.1137/1.9781611974997
https://doi.org/10.1016/j.ultramic.2009.05.012
https://doi.org/10.1016/j.ultramic.2009.05.012

	On connections between Amplitude Flow and Error Reduction for phase retrieval and ptychography
	Abstract
	1 Introduction
	2 Notation and Preliminaries
	2.1 Definitions
	2.2 Phase retrieval
	2.3 Error Reduction
	2.4 Amplitude Flow

	3 Results
	4 Proofs
	4.1 Proofs of Lemma 2 and corollaries
	4.2 Proof of Theorem 3

	5 Conclusion
	Acknowledgements
	References




