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ABSTRACT
Deep learning based classification of biomedical images requires manual annotation by experts, which is
time-consuming and expensive. Incomplete-supervision approaches including active learning, pre-training
and semi-supervised learning address this issue and aim to increase classification performance with a
limited number of annotated images. Up to now, these approaches have been mostly benchmarked on
natural image datasets, where image complexity and class balance typically differ considerably from
biomedical classification tasks. In addition, it is not clear how to combine them to improve classification
performance on biomedical image data.

We thus performed an extensive grid search combining seven active learning algorithms, three
pre-training methods and two training strategies as well as respective baselines (random sampling,
random initialization, and supervised learning). For four biomedical datasets, we started training with 1%
of labeled data and increased it by 5% iteratively, using 4-fold cross-validation in each cycle. We found
that the contribution of pre-training and semi-supervised learning can reach up to 25% macro F1-score in
each cycle. In contrast, the state-of-the-art active learning algorithms contribute less than 5% to macro
F1-score in each cycle. Based on performance, implementation ease and computation requirements, we
recommend the combination of BADGE active learning, ImageNet-weights pre-training, and
pseudo-labeling as training strategy, which reached over 90% of fully supervised results with only 25% of
annotated data for three out of four datasets.

We believe that our study is an important step towards annotation and resource efficient model training
for biomedical classification challenges.
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Introduction
Recent successes of deep learning methods rely on large amounts of well annotated training data1.
However, for biomedical images annotations are often scarce as they crucially depend on the availability
of trained experts, whose time is expensive and limited. Therefore many biomedical imaging
classifications can be categorized as incomplete-supervision approaches, where the labeled data is
limited and unlabeled data is abundant2. While encountering an incomplete-supervision problem, two
questions typically arise: How much annotation is needed to train a decent model? And which
computational methods can be applied to arrive there efficiently?

Active learning algorithms address the issue by finding the most informative instances for annotation3–5

and have been benchmarked on natural image datasets6–13. Pre-training methods such as transfer
learning and self-supervised learning have shown a great potential for improving the network performance
on classification tasks with only a small number of labeled images14–17. During transfer learning, a neural
network uses the representation from another model, ideally trained on a similar dataset, while in
self-supervised learning, a representation without any labels is learned18. A common transfer learning
approach, used also in many biomedical applications, is to initialize a model with pre-trained ImageNet
weights19,20. Semi-supervised learning leverages unlabeled data in addition to labeled data to increase the
performance as well as the stability of predictions21,22. This is particularly appealing for biomedical
imaging, where high-throughput technologies23 generate large quantities of unlabeled data.

Biomedical image datasets differ from natural images in a couple of important characteristics: They are
often imbalanced, typically less diverse in terms of shapes and color range, and classes are often
distinguished by only small feature variations, e.g. in texture and size24,25. While there is an increasing
number of publications covering these three approaches separately, it is not clear which combination of
the aforementioned approaches yields the best performance in practice. Moreover, the approaches'
efficiency with respect to each other has not been analyzed.

In this paper, we perform an extensive grid-search in incomplete-supervision approaches including seven
active learning algorithms plus random sampling as the baseline, three pre-training methods plus random
initialization as the baseline, and training strategies including two semi-supervised learning methods and
supervised learning as the baseline, on four exemplary biomedical imaging datasets. First, we compare
which combination leads to the best results on each dataset. For each dataset, we then analyze the
contribution of the best active learning algorithm, best pre-training method and best training strategy.
Finally, we recommend a combination of approaches for dealing with similar biomedical classification
tasks.
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Results
Biomedical image datasets
To evaluate the efficiency and performance of active learning algorithms, pre-training methods, and
training strategies, we have selected four exemplary, publicly available and fully annotated datasets from
the biomedical imaging field. These datasets show strong class imbalance, little color variance, strong
similarity between classes, and cover different applications (Figure 1):

● The white blood cell dataset comprises 18,395 images (128x128x3 pixel) of human leukocytes
from blood smears of 100 patients diagnosed with acute myeloid leukemia and 100 individuals
who show no symptoms of the disease24,26, with 15 expert labeled classes. To ensure a
meaningful test set, we have merged neutrophils (segmented and band), lymphocytes (typical
and atypical) and immature leukocytes (myeloblasts, promyelocytes, promyelocytes-bilobed, and
myelocytes) based on the class definitions24 (Figure 1a).

● The skin lesion dataset contains 25,339 dermoscopy images (128x128x3 pixel) from eight skin
cancer classes27–29. The dataset has been used in the ISIC 2018 challenge as an effort to improve
melanoma diagnosis (Figure 1b).

● The cell cycle dataset comprises 32,273 images (64x64x3 pixel) of Jurkat cells in seven different
cell cycle stages captured by imaging flow cytometry30. The four minority classes cover only 2.4%
of the data. In addition, there is a great amount of similarity among the classes (Figure 1c).

● The diabetic retinopathy dataset consists of 3,672 high-resolution color fundus retinal
photography images31, classified into 5 stages of diabetic retinopathy. For computational reasons,
we have reduced the size of the images from 2095x2095x3 to 128x128x3 pixels. The dataset has
been used in the APTOS 2019 Blindness Detection challenge on kaggle32 (Figure 1d).
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Figure 1. Biomedical image datasets exhibit strong class imbalance, little color variance and high similarity
among classes. (a) The white blood cell dataset comprises 18,395 images (128x128x3 pixel) of human leukocytes
from blood smears of 100 patients diagnosed with Acute Myeloid Leukemia and 100 individuals who show no
symptoms of the disease24,26,33 with ten expert labeled classes. (b) The skin lesion dataset contains 25,339
dermoscopy images (128x128x3 pixel) from eight skin cancer classes27–29. (c) The cell cycle dataset comprises
32,273 images (64x64x3 pixel) of Jurkat cells in seven different cell cycle stages created by imaging flow cytometry30.
For better visualization, only the bright-field channel is shown. (d) The diabetic retinopathy dataset consists of 3,672
color fundus retinal photography images (128x128x3 pixel) classified into five stages of diabetic retinopathy31. All
datasets are publicly available (see Methods).
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Experiments
From each dataset, we randomly selected 1% of the data as our initial annotated set and trained a
ResNet18 (see Methods). Then in each cycle we added 5% of annotated data as suggested by one of the
seven active learning algorithms (Figure 2) or randomly sampled 5% as baseline. This process was
repeated eight times which led to adding 40% (and using in total 41%) of annotated data. We combined
active learning with three different pre-training methods and random initialization as baseline, and two
different training strategies with supervised learning as baseline (see Methods for a detailed description of
all methods). This resulted in 13,824 independent experiments (see Figure 2). We performed a 4-fold
cross-validation in each cycle and calculated macro F1-score, accuracy, precision, and recall. The macro
F1-score, defined as the average F1-score over all classes thus accounting for the imbalanced nature of
the datasets (see Figure 1), was used as our main metric of comparison, assuming that the correct
prediction of small classes is of biological or diagnostic importance. To quantitatively compare different
combinations, we looked at the average macro F1-score across all cycles. Every combination is reported
in the form of “active learning algorithm + pre-training method + training strategy”.
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Figure 2: We systematically compared combinations of 7 active learning algorithms, 3 pre-training methods
and 2 training strategies on 4 biomedical imaging datasets. Specifically, we ran 4x8x4x3x4x9 = 13,824
independent experiments (4 datasets, 7 active learning algorithms + 1 baseline, 3 pre-training methods + 1 baseline,
2 training strategies + 1 baseline, 4-fold cross-validation and 1 initial step + 8 active learning cycles) to identify the
best combination out of 96 possible combinations.

The best performing combination on the white blood cell dataset was learning loss + SimCLR +
pseudo-labeling (Figure 3a), which achieved an average macro F1-score of 0.71±0.07 (mean±standard
deviation on n=8 cycles). This was followed by entropy-based + SimCLR + pseudo-labeling as well as
MC-dropout + SimCLR + pseudo-labeling (0.71±0.08), learning loss + ImageNet + pseudo-labeling
(0.71±0.09) and BADGE + ImageNet + pseudo-labeling (0.70±0.09). The best performing combinations
reached 94% of the macro F1-score of a model trained in a fully supervised manner on the whole dataset
(macro F1-score 0.83±0.02).
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On the skin lesion dataset BADGE + ImageNet + pseudo-labeling achieved the highest average macro
F1-score of 0.56±0.09 (Figure 3b). It was followed by learning loss + ImageNet + pseudo-labeling at
0.55±0.10, MC-dropout + ImageNet + pseudo-labeling at 0.54±0.09, entropy-based + ImageNet +
pseudo-labeling as well as least confidence + ImageNet + pseudo-labeling at 0.54±0.10. Notably, the best
performing combination reached 91% of the macro F1-score of a model trained in a fully supervised
manner on the whole dataset (macro F1-score of 0.68±0.02).

The best performing combinations on the cell cycle dataset were BADGE + ImageNet + pseudo-labeling,
augmentation-based + ImageNet + pseudo-labeling, and entropy-based + ImageNet + pseudo-labeling at
0.54±0.08 (Figure 3c). It was followed by MC-dropout + ImageNet + pseudo-labeling as well as random
sampling + SimCLR + pseudo-labeling at 0.53±0.08. The best performing combinations reached 96% of
the macro F1-score of the same network trained in a fully supervised manner on the whole dataset
(macro F1-score of 0.63±0.03).

On the diabetic retinopathy dataset augmentation-based + ImageNet + FixMatch reached the highest
macro F1-score at 0.49±0.08, followed by random sampling + SimCLR + pseudo-labeling at 0.49±0.12,
augmentation-based + SimCLR + FixMatch at 0.48±0.08, augmentation-based + SimCLR +
pseudo-labeling at 0.48±0.13 and margin confidence + SimCLR + pseudo-labeling at 0.48±0.14 (Figure
3d). The best performing combinations reached 83% of the macro F1-score of the same network trained
in a fully supervised manner on the whole dataset (macro F1-score of 0.67±0.03).
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Figure 3. ImageNet and SimCLR as pre-training methods, and pseudo-labeling as the training strategy
dominate the best performing combinations, while no particular active learning algorithm prevails. In each
panel (a-d) the upper bound of performance is fully supervised learning (black dotted line). (a) White blood cell
dataset: Pseudo-labeling is the best performing training strategy for this dataset, achieving 94% of the fully
supervised results with learning loss and SimCLR. (b) Skin lesion dataset: pseudo-labeling and ImageNet pre-training
are consistently part of the best combinations, reaching 91% of fully supervised results with BADGE active learning.
(c) Skin lesion dataset: pseudo-labeling is the top performing training strategy, reaching at least 96% of fully
supervised results with augmentation-based active learning and ImageNet pre-training. (d) Diabetic retinopathy
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dataset: random sampling + SimCLR + pseudo-labeling reaches performance similar or better than any other
combination, reaching 83% of the fully supervised results.

Ablation study
In the previous section we made two noteworthy observations. First, no active learning algorithm showed
up in the best combinations consistently. Second, ImageNet and SimCLR pre-training as well as
pseudo-labeling were always in the top combinations. To better understand each approach’s contribution
to the performance, we selected the top combination for each dataset (see Figure 3) and conducted a
systematic ablation study. We define the contribution to performance of each incomplete-supervision
approach by calculating the difference in F1-score if that approach was substituted with its baseline:
active learning algorithms were substituted with random sampling, pre-training methods with random
initialization and training strategies with supervised learning (Figure 4).

Figure 4. Semi-supervised learning and pre-training contribute stronger to the top performing combination in
comparison to active learning. For every dataset, the top combination of active learning algorithm, pre-training
method and training strategy based on the results of the grid-search (see Results and Figure 3) is depicted. The
contribution to performance of each approach is calculated by substituting it with its baseline and subtracting the
obtained macro F1-score from the original (see Methods for details).

Our analysis revealed that although combining active learning, pre-training and semi-supervised learning
exhibited to be effective in all datasets, their contributions to performance differ. For every top
combination, the contribution of the pre-training and semi-supervised learning is considerably higher than
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active learning. For example, after adding only 5% annotated data for the white blood cell dataset,
learning loss as active learning contributes 4% to the performance, while SimCLR pre-training and
pseudo-labeling as training strategy contribute 12% and 20% respectively (2nd row in first matrix in Figure
4). The same kind of observation can be deduced for the other three datasets. Interestingly, the highest
contributions to macro F1-score are always achieved in the first 5 cycles.

Discussion
We have investigated the effect of combining different incomplete-supervision approaches on four
biomedical image classification datasets with an extensive grid-search over seven active learning
algorithms, three pre-training methods and two training strategies as well as their baselines. For three out
of four datasets, the top combinations reached more than 90% in macro F1-score of the fully supervised
approach (see Figure 3 and 5b), with only 26% of the data being labeled (1% randomly selected and 5%
added in 5 active learning cycles). Notably, this was not the case for the diabetic retinopathy dataset,
where the top combination still lacked 12% from the fully supervised results with using even 41% of the
labeled data. One reason might be image resolution: For computational reasons, we had to reduce height
and width of the images from 2095x2095 to 128x128 pixels, which might have contributed to
misclassifications between the ‘proliferate’ and ‘severe’ classes (data not shown).

Our grid-search showed that no single best active learning algorithm outperforms the rest consistently.
Even though they perform better than random sampling, the results of using learning loss,
augmentation-based, BADGE and MC-dropout are highly dataset dependent. In terms of implementation,
all of the methods were straightforward except learning loss, as it brought changes in the architecture,
loss function and implementation.

Regarding pre-training methods, ImageNet and SimCLR led consistently to top results, while autoencoder
pre-training did not prove to be effective. After close inspection of all combinations (Figure 2 only shows
the top-5 combination), we observed that SimCLR showed to be more effective than ImageNet in
combination with supervised learning. This observation is in alignment with recent papers that show that
SimCLR or other self-supervised methods outperform ImageNet on biomedical applications34,35,36.
However, our analysis showed that ImageNet and SimCLR pre-training performed comparatively similar
when being combined with a semi-supervised method. This can be explained by the fact that
semi-supervised learning strategies already use the unlabeled data in their training process, which makes
the use of self-supervised methods redundant. In terms of implementation, SimCLR implementation was
straightforward, but needed large batch sizes > 2048 which was cumbersome during the execution.

As expected, semi-supervised learning outperformed supervised learning in all cases, due to the fact that
it exploits unlabeled data during training. In particular, pseudo-labeling was the top choice for all datasets,
while FixMatch only performed well for the diabetic retinopathy dataset. This could be due to the fact that
augmentations in FixMatch are not designed for biomedical images (see Methods). While pseudo-labeling
implementation was straightforward, tuning the right hyperparameters for FixMatch was rather difficult. In
terms of run-time, pseudo-labeling required slightly more than supervised learning, with the exception of
FixMatch, which took at least three times more than supervised learning in every case (see Figure 5a).

Combination
Our analysis showed that combining active learning algorithms, pre-training methods, and
semi-supervised learning strategies lead to superior performance in all cases. However, we found that the
state-of-the-art active learning algorithms contribute less than 5% to macro F1-score in each cycle. In
contrast, the contribution of pre-training and semi-supervised learning can reach up to 25% macro
F1-score. Moreover, we found that the initial cycle plays a major role in reaching higher performance. In
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almost all cases (17 out of 20), the top 5 combinations were the ones that performed well from the first
cycle on (see Figure 3). Considering the fact that semi-supervised learning and pre-training contribute
more than active learning as well as the importance of the first cycles, we recommend spending more
time and resources on testing different semi-supervised learning strategies and pre-training methods
instead of active learning.

As a result of this work, we recommend an annotation and resource efficient strategy for biomedical
imaging active learning tasks. We propose that the combination of BADGE active learning, ImageNet
initialization pre-training, and pseudo-labeling as training strategy can be considered as a stable choice
for dealing with problems where annotated data is limited. For three datasets, this combination reached at
least 90% of the fully supervised results by only using 25% of the labeled data (see Figure 5b).

Figure 5. The annotation and resource efficient combination, BADGE + ImageNet + pseudo-labeling, reaches
>90% of the fully supervised result in three out of four biomedical datasets by using only 25% of annotated
data. (a) BADGE + ImageNet + pseudo-labeling takes only slightly longer than supervised learning on three out of
four datasets, while BADGE + ImageNet + FixMatch takes at least three times more on every dataset. (b) By using
only 25% of annotated data, the recommended combination, BADGE + ImageNet + pseudo-labeling, reaches >80%
of the fully supervised result for all the datasets and >90% in three out of four datasets.

Although our work shows the potential of annotation-efficient learning for four biomedical image
classification datasets, the methodology should be tested on more datasets to gain insights into
correlations between dataset characteristics and the performance of the applied methods. Due to the
computational costs, we used a fixed architecture and a fixed set of parameters. While this choice might
not lead to the best fully supervised performance for each dataset (e.g. compared to much bigger
architectures or series of ensemble learners used in ISIC 2018 and APTOS 2019), it provides a
framework to systematically analyze the combination of incomplete-supervision approaches. Based on
the work of Chen et al.37, we also suggest testing bigger architectures to figure out if there is a correlation
between the architecture size and the performance for biomedical data. Finally, a larger variety of active
learning algorithms, self-supervised methods and semi-supervised strategies should be added to this
analysis to find an overall optimal strategy.
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Methods
Active learning algorithms

The performance of a model fΘ with parameters Θ can be increased by labeling images from the set of
unlabeled images U, and thus adding pairs of images and corresponding labels (xi, yi) to the set of labeled
images L. The labeling of unlabeled images is carried out in cycles, in which s images S⊆ U with |S| = s
are selected for annotation and added to L, after the performance of the model converges with the
previous labeled set L. Active learning algorithms aim on selecting images in U for annotation, such that
the addition of these images to L results in a maximum increase in the evaluation metrics M. The main
difference between active learning algorithms is how images in the U are prioritised for labeling. The
algorithms evaluated in this paper are based on uncertainty δ. Uncertainty δ is a scalar value which is
attributed to each image in U. The s images S ⊆ U with |S| = s with the highest uncertainty are selected
for labeling in each cycle.

Monte Carlo dropout (MC-dropout)
Dropout is a commonly used technique for model regularization, which randomly ignores a fraction of
neurons during training to mitigate the problem of overfitting. It is typically disabled during test time.
MC-dropout involves the assessment of uncertainty in neural networks using dropout at test time38,39 and
thus estimates the uncertainty of the prediction of an image. MC-dropout generates non-deterministic
prediction distributions for each image. The variance of this distribution can be used as an approximation
for model uncertainty δ40. During each active learning cycle, the s images with the highest variance are
annotated and added to the labeled set L. This has been shown to be an effective selection criterion
during active learning6.

Augmentation-based sampling
Let a be a function that performs stochastic data augmentation, such as cropping, horizontal flipping,
vertical flipping or erasing on a given image. Each unlabeled image ui∈ U is transformed using a and this
process is repeated J times to obtain the set Ui = {u1i, u2i, u3i...uJi} with |Ui| = J. The random
transformations are followed by a forward-pass through the model fΘ. This results in J predictions Qˆi =
{qˆ1i, qˆ2i, qˆ3i...qˆJi}, where qˆi = argmax PΘ(yˆi|ui) is the most probable class according to the model output
for each set Ui of perturbed copies of an unlabeled image ui ∈ U. The model uncertainty δ can be
estimated by keeping a count of the most frequently predicted class (mode) for each image. The idea
behind this approach is that if the model is certain about an image, it should output the same prediction
for randomly augmented versions. Thus, the lower the frequency of the mode, the higher the uncertainty
δ41. During each active learning cycle, the images with the lowest frequency of the most frequently
predicted class are annotated and added to the labeled set L.

Entropy-based sampling
Entropy measures the average amount of information or "bits" required for encoding the distribution of a
random variable3. Here, entropy is used as a criteria for active learning3 to select the s images S ⊆ U,
whose predicted outcomes (softmax layer) have the highest entropy, assuming that high entropy of
predictions mean high model uncertainty δ. By definition, entropy focuses on taking the complete
predictive distribution into account3.

Least confidence
Least confidence sampling is the simplest and most common form of uncertainty sampling. The difference
between the most confident prediction out of all class predictions (the highest softmax value) and 100%
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confidence is used as a metric. Hence, by selecting the s images (S ⊆ U) which the model is least
confident about, the model performance is optimized42.

Learning loss
Learning loss is a second network, called loss prediction module, which can be added to an active
learning network, then called target model. It is trained to predict the losses of the target model on
unlabeled inputs, simultaneously to the training of the target model. For the next active learning cycle this
module can be used to select images for which the target model is likely to produce a wrong prediction13.

BADGE
BADGE10 is an active learning method, which selects diverse samples that have a high magnitude in the
gradient space. The model is considered to be uncertain about an image, if knowing the label of the
image results in a large gradient of the loss with respect to model parameters. As the labels are not
known, BADGE considers the predicted labels as true labels. Secondly, in order to make sure that a
diverse batch of images are selected, BADGE uses the k-MEANS++ algorithm43. Hence, BADGE trades
off between uncertainty and diversity of the s images S⊆ U which are selected for active learning.

Margin confidence sampling
Margin sampling is similar to least confidence sampling. Only for margin confidence sampling the
difference between the most confident prediction and second most confident prediction is used as the
metric. The main idea is that the smaller the difference is, the higher the model uncertainty on an image.
As a result, the s images S⊆ U with the least difference are selected44.

Random sampling
During each active learning cycle an image set S ⊆ U is chosen arbitrarily. Random sampling acts as a
baseline. Hence, all other algorithms are expected to perform better than random sampling.

Pre-training methods
Network initialization can increase the performance of neural networks45. It is considered to be even more
essential when the amount of annotated data is not considerably large35. In this work we utilize three
different pre-training methods plus random initialization (baseline):

ImageNet weights
ImageNet weights are obtained by training a feature extraction network on the ImageNet dataset. After
training on ImageNet data, the weights of the feature extractor network can be used for initialization of
models, which are to be trained on other datasets46. This has become a standard pre-training for
classification tasks as it often helps the network to converge faster than with random initialization.
Additionally, it has been shown to be beneficial in low-data biomedical imaging regimes34.

Autoencoders
Autoencoders are a class of neural networks used for feature extraction47. The objective of the
autoencoders is to reconstruct the input. An encoder network e encodes the input x into its latent
representation e(x). The encoder typically includes a bottleneck layer with relatively few nodes. The
bottleneck layer forces the encoder to represent the input data in a compact form. This latent
representation is then used as an input to a decoder network d, which aims to output a reconstruction
d(e(x)) of the original input. Hence, autoencoders do not require labels for training and the whole dataset
can be used for training an autoencoder architecture. For pre-training the encoder is used as a feature
extraction network while the decoder is generally discarded. This has been shown to significantly improve
network initialization on biomedical imaging datasets48.
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SimCLR
SimCLR is a framework for contrastive learning of visual representations14. It learns representations in a
self-supervised manner by using an objective function that minimizes the difference between
representations of the model fΘ on pairs of differently augmented copies of the same image. Let a be a
function that performs stochastic data augmentations (such as cropping, adding color jitter, horizontal
flipping and gray scale) on a given image. Each image x∈ D in a mini-batch of size B is passed through
the stochastic data augmentation function a twice to obtain xi = {x1i

’, x2i
’}. These pairs can be termed as

positive pairs as they originate from the same image xi. A neural network encoder e extracts the feature
vectors h from the augmented images. A multi-layer perceptron with one hidden layer is used as a
projection head for projecting the feature vectors h to the projection space where then, a contrastive loss
is applied. The contrastive loss function is a softmax loss function applied on a similarity measure
between positive pairs against all the negative examples in the batch and is weighted by the temperature
parameter τ that controls the weight of negative examples in the objective function. Using SimCLR as a
pre-training method shows significant improvement on ImageNet classification14.

Random initialization
It has been shown that complete random initialization performs poorly compared to more sophisticated
initialization measures49. We thus use Kaiming He initialization50 (which has been shown to boost the
performance) as a baseline random initialization method.

Training strategies
Large amounts of unlabeled data are typically available in biomedical applications. Ideally, this unlabeled
data is not only used for network initialization but also during training. Thus, we compare the performance
of training the model only using the existing labeled data a.k.a. supervised learning versus a
semi-supervised approach, which incorporates the unlabeled data in the training process.

Semi-supervised learning
For semi-supervised learning we use FixMatch21, a combination of consistency regularization51 and
pseudo-labeling52. Given the set of unlabeled images U = {u1, u2, u3...uK} with |U| = K, consistency
regularization aims to maximize the similarity between model outputs, obtained by passing stochastically
augmented versions of the same image through the model fΘ(a(x)). Pseudo-labeling refers to using
pseudo-labels for unlabeled images. Pseudo-labels are obtained by passing the unlabeled images
through the model fΘ, i.e. Yˆ = fΘ(U) and using the outcome with maximum probability in the predicted
distribution qˆi = argmax PΘ(yˆi|xi) as the pseudo-label if the maximum probability value qˆi is above a
threshold τ. Using pseudo-labels, the unlabeled images are added to the set of labeled images L
temporarily.

FixMatch
The FixMatch loss consists of a supervised loss term i.e. the multi-class cross-entropy loss and the
unsupervised loss term. The unsupervised loss term is calculated by passing the unlabeled dataset
through a stochastic weak augmentation function aweak (e.g. rotation or translation) and then applying
pseudo-labeling on the output prediction distribution with threshold. Another set of pseudo-labels is
obtained by passing the unlabeled dataset through a strong stochastic augmentation function astrong (e.g.
color distortion, random noise, or random erasing). After calculating the two sets of pseudo-labels for
unlabeled images, consistency regularization is applied by calculating cross-entropy between the
pseudo-labels. The loss function contains the weighting parameter λ which weighs the unsupervised loss
term:
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Lfixmatch = Lsupervised + λ ⋅ Lunsupervised (2)

Using FixMatch, a significant performance improvement has been observed compared to supervised
training in a low-data regime 21.

Pseudo-labeling
The second method we use for semi-supervised learning is pseudo-labeling53. Wrapper methods involve
training a base learner on L = {(x1, y1), (x2, y2), (x3, y3)...(xN, yN)} with |L| = N as well as U = {u1, u2, u3...uK}
with |U| = K, for which the labels are acquired through pseudo-labeling54. The training process involves
two steps. First, the base learner is trained on L as well as the pseudo-labeled set from previous cycles
and predictions (yˆ). Second, the unlabeled images, for which the base learner outputs predictions with a
high confidence, are assigned the corresponding predicted label and added to the training set as
pseudo-labeled images for the next cycle.

Supervised learning
In supervised learning we are looking for a model fΘ with parameters Θ to learn a mapping Yˆ = fΘ(L) such
that the objective function Loss (yˆi, yi) is minimized. Supervised learning uses only labeled data. The
performance of the model can be evaluated using an evaluation metric M such as accuracy, recall etc.
The objective function used in this paper is the multi-class cross-entropy loss function,

Loss = (1)−
𝑖

𝑁

∑
𝑗

𝐶

∑ 𝑦
𝑖𝑗 

𝑙𝑜𝑔(𝑦
^

𝑖𝑗
)

with C being the total number of classes in the dataset and N being the size of L.

Architecture
We use ResNet1855 as the training architecture. For each dataset, we pretrain the ResNet18 using an
autoencoder or SimCLR14. For the autoencoder pre-training, we use a feature extractor network
consisting of a ResNet18 encoder and a decoder with transposed convolutional layers. After training the
autoencoder, the ResNet18 encoder is used as a feature extractor and the decoder is discarded.

Acknowledgements
We thank Björn Menze, Tingying Peng, Christian Matek, Melanie Schulz, Rudolf Matthias Hehr, Lea
Schuh, Valerio Lupperger, and Ario Sadafi (Munich) for discussions and for contributing their ideas.

Author contributions
ABQ implemented code and conducted experiments with supervision of SSB and DW. SSB, ABQ, DW,
and CM wrote the manuscript with FS. SSB created figures with ABQ and the main storyline with CM. FS
helped with the manuscript narrative and editing. CM supervised the study. All authors have read and
approved the manuscript.

Additional Information
Competing interests
The author(s) declare no competing interests.

Funding
SSB has received funding by F. Hoffmann-la Roche LTD (No grant number is applicable) and supported
by the Helmholtz Association under the joint research school “Munich School for Data Science - MUDS”.

Shetab Boushehri et al. 2021 15

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2021. ; https://doi.org/10.1101/2020.12.07.414235doi: bioRxiv preprint 

https://paperpile.com/c/J7qmwE/VBKW
https://paperpile.com/c/J7qmwE/QLxC
https://paperpile.com/c/J7qmwE/EA0N
https://paperpile.com/c/J7qmwE/d6fF
https://paperpile.com/c/J7qmwE/95JW
https://doi.org/10.1101/2020.12.07.414235
http://creativecommons.org/licenses/by-nd/4.0/


CM has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (Grant agreement No. 866411).

Data and Software availability
All scripts and how to access and process the data can be found here:
https://github.com/marrlab/Med-AL-SSL.

References

1. Tan, C. et al. A Survey on Deep Transfer Learning. in Artificial Neural Networks and Machine

Learning – ICANN 2018 270–279 (Springer International Publishing, 2018).

2. Zhou, Z.-H. A brief introduction to weakly supervised learning. Natl Sci Rev 5, 44–53 (2017).

3. Settles, B. Active learning literature survey. https://minds.wisconsin.edu/handle/1793/60660 (2009).

4. Joshi, A. J., Porikli, F. & Papanikolopoulos, N. Multi-class active learning for image classification. in

2009 IEEE Conference on Computer Vision and Pattern Recognition 2372–2379 (2009).

5. Ren, P. et al. A Survey of Deep Active Learning. arXiv [cs.LG] (2020).

6. Gal, Y., Islam, R. & Ghahramani, Z. Deep Bayesian Active Learning with Image Data. arXiv [cs.LG]

(2017).

7. Ducoffe, M. & Precioso, F. QBDC: Query by dropout committee for training deep supervised

architecture. arXiv [cs.LG] (2015).

8. Holub, A., Perona, P. & Burl, M. C. Entropy-based active learning for object recognition. in 2008 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition Workshops 1–8 (2008).

9. Wei, K., Iyer, R. & Bilmes, J. Submodularity in Data Subset Selection and Active Learning. in

Proceedings of the 32nd International Conference on Machine Learning (eds. Bach, F. & Blei, D.) vol.

37 1954–1963 (PMLR, 2015).

10. Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J. & Agarwal, A. Deep Batch Active learning by

diverse, uncertain gradient lower bounds. arXiv [cs.LG] (2019).

11. Sener, O. & Savarese, S. Active Learning for Convolutional Neural Networks: A Core-Set Approach.

arXiv [stat.ML] (2017).

12. Killamsetty, K., Sivasubramanian, D., Ramakrishnan, G. & Iyer, R. GLISTER: Generalization based

Data Subset Selection for Efficient and Robust Learning. arXiv [cs.LG] (2020).

Shetab Boushehri et al. 2021 16

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2021. ; https://doi.org/10.1101/2020.12.07.414235doi: bioRxiv preprint 

https://github.com/marrlab/Med-AL-SSL
http://paperpile.com/b/J7qmwE/Ceum
http://paperpile.com/b/J7qmwE/Ceum
http://paperpile.com/b/J7qmwE/BMgM
http://paperpile.com/b/J7qmwE/VYKH
https://minds.wisconsin.edu/handle/1793/60660
http://paperpile.com/b/J7qmwE/VYKH
http://paperpile.com/b/J7qmwE/81At
http://paperpile.com/b/J7qmwE/81At
http://paperpile.com/b/J7qmwE/Jwj8
http://paperpile.com/b/J7qmwE/zfnz
http://paperpile.com/b/J7qmwE/zfnz
http://paperpile.com/b/J7qmwE/TBIN
http://paperpile.com/b/J7qmwE/TBIN
http://paperpile.com/b/J7qmwE/HHW6
http://paperpile.com/b/J7qmwE/HHW6
http://paperpile.com/b/J7qmwE/VBuS
http://paperpile.com/b/J7qmwE/VBuS
http://paperpile.com/b/J7qmwE/VBuS
http://paperpile.com/b/J7qmwE/iRAm
http://paperpile.com/b/J7qmwE/iRAm
http://paperpile.com/b/J7qmwE/cpAN
http://paperpile.com/b/J7qmwE/cpAN
http://paperpile.com/b/J7qmwE/vcpM
http://paperpile.com/b/J7qmwE/vcpM
https://doi.org/10.1101/2020.12.07.414235
http://creativecommons.org/licenses/by-nd/4.0/


13. Yoo, D. & Kweon, I. S. Learning loss for active learning. in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition 93–102 (2019).

14. Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A Simple Framework for Contrastive Learning of

Visual Representations. arXiv [cs.LG] (2020).

15. van den Oord, A., Li, Y. & Vinyals, O. Representation Learning with Contrastive Predictive Coding.

arXiv [cs.LG] (2018).

16. Sagheer, A. & Kotb, M. Unsupervised Pre-training of a Deep LSTM-based Stacked Autoencoder for

Multivariate Time Series Forecasting Problems. Sci. Rep. 9, 19038 (2019).

17. Newell, A. & Deng, J. How Useful is Self-Supervised Pretraining for Visual Tasks? arXiv [cs.CV]

(2020).

18. Jing, L. & Tian, Y. Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey.

IEEE Trans. Pattern Anal. Mach. Intell. PP, (2020).

19. Wang, X. et al. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on

Weakly-Supervised Classification and Localization of Common Thorax Diseases. arXiv [cs.CV]

(2017).

20. Rajpurkar, P. et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep

Learning. arXiv [cs.CV] (2017).

21. Sohn, K. et al. FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence.

arXiv [cs.LG] (2020).

22. Tarvainen, A. & Valpola, H. Mean teachers are better role models: Weight-averaged consistency

targets improve semi-supervised deep learning results. arXiv [cs.NE] (2017).

23. Blasi, T. et al. Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat.

Commun. 7, 10256 (2016).

24. Matek, C., Schwarz, S., Spiekermann, K. & Marr, C. Human-level recognition of blast cells in acute

myeloid leukaemia with convolutional neural networks. Nat Mach Intell 1, 538–544 (2019).

25. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature

(2017).

Shetab Boushehri et al. 2021 17

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2021. ; https://doi.org/10.1101/2020.12.07.414235doi: bioRxiv preprint 

http://paperpile.com/b/J7qmwE/rHyn
http://paperpile.com/b/J7qmwE/rHyn
http://paperpile.com/b/J7qmwE/95JW
http://paperpile.com/b/J7qmwE/95JW
http://paperpile.com/b/J7qmwE/lna1
http://paperpile.com/b/J7qmwE/lna1
http://paperpile.com/b/J7qmwE/WhpF
http://paperpile.com/b/J7qmwE/WhpF
http://paperpile.com/b/J7qmwE/T03X
http://paperpile.com/b/J7qmwE/T03X
http://paperpile.com/b/J7qmwE/7LcQ
http://paperpile.com/b/J7qmwE/7LcQ
http://paperpile.com/b/J7qmwE/6H9t
http://paperpile.com/b/J7qmwE/6H9t
http://paperpile.com/b/J7qmwE/6H9t
http://paperpile.com/b/J7qmwE/cyxX
http://paperpile.com/b/J7qmwE/cyxX
http://paperpile.com/b/J7qmwE/VBKW
http://paperpile.com/b/J7qmwE/VBKW
http://paperpile.com/b/J7qmwE/LvTw
http://paperpile.com/b/J7qmwE/LvTw
http://paperpile.com/b/J7qmwE/6TGn
http://paperpile.com/b/J7qmwE/6TGn
http://paperpile.com/b/J7qmwE/uhpJ
http://paperpile.com/b/J7qmwE/uhpJ
http://paperpile.com/b/J7qmwE/SV8G
http://paperpile.com/b/J7qmwE/SV8G
https://doi.org/10.1101/2020.12.07.414235
http://creativecommons.org/licenses/by-nd/4.0/


26. Matek, C., Schwarz, S., Marr, C., & Spiekermann, K. A Single-cell Morphological Dataset of

Leukocytes from AML Patients and Non-malignant Controls (AML-Cytomorphology_LMU). The

Cancer Imaging Archive (TCIA)

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=61080958.

27. Tschandl, P., Rosendahl, C. & Kittler, H. The HAM10000 dataset, a large collection of multi-source

dermatoscopic images of common pigmented skin lesions. Sci Data 5, 180161 (2018).

28. Codella, N. C. F. et al. Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017

International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging

Collaboration (ISIC). arXiv [cs.CV] (2017).

29. Combalia, M. et al. BCN20000: Dermoscopic Lesions in the Wild. arXiv [eess.IV] (2019).

30. Eulenberg, P. et al. Reconstructing cell cycle and disease progression using deep learning. Nat.

Commun. 8, 463 (2017).

31. APTOS 2019 Blindness Detection. https://www.kaggle.com/c/aptos2019-blindness-detection/.

32. Diabetic Retinopathy Detection. https://www.kaggle.com/c/diabetic-retinopathy-detection/overview.

33. Clark, K. et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information

repository. J. Digit. Imaging 26, 1045–1057 (2013).

34. Raghu, M., Zhang, C., Kleinberg, J. & Bengio, S. Transfusion: Understanding Transfer Learning for

Medical Imaging. arXiv [cs.CV] (2019).

35. Holmberg, O. G. et al. Self-supervised retinal thickness prediction enables deep learning from

unlabelled data to boost classification of diabetic retinopathy. Nature Machine Intelligence 2, 719–726

(2020).

36. Azizi, S. et al. Big Self-Supervised Models Advance Medical Image Classification. arXiv [eess.IV]

(2021).

37. Chen, T., Kornblith, S., Swersky, K., Norouzi, M. & Hinton, G. Big Self-Supervised Models are Strong

Semi-Supervised Learners. arXiv [cs.LG] (2020).

38. Kendall, A. & Gal, Y. What Uncertainties Do We Need in Bayesian Deep Learning for Computer

Vision? in Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 5574–5584

Shetab Boushehri et al. 2021 18

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2021. ; https://doi.org/10.1101/2020.12.07.414235doi: bioRxiv preprint 

http://paperpile.com/b/J7qmwE/4sPO
http://paperpile.com/b/J7qmwE/4sPO
http://paperpile.com/b/J7qmwE/4sPO
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=61080958
http://paperpile.com/b/J7qmwE/4sPO
http://paperpile.com/b/J7qmwE/P5hP
http://paperpile.com/b/J7qmwE/P5hP
http://paperpile.com/b/J7qmwE/zBup
http://paperpile.com/b/J7qmwE/zBup
http://paperpile.com/b/J7qmwE/zBup
http://paperpile.com/b/J7qmwE/HC7J
http://paperpile.com/b/J7qmwE/kIKE
http://paperpile.com/b/J7qmwE/kIKE
http://paperpile.com/b/J7qmwE/VEF5
https://www.kaggle.com/c/aptos2019-blindness-detection/
http://paperpile.com/b/J7qmwE/VEF5
http://paperpile.com/b/J7qmwE/6mM0
https://www.kaggle.com/c/diabetic-retinopathy-detection/overview
http://paperpile.com/b/J7qmwE/6mM0
http://paperpile.com/b/J7qmwE/Y2v4
http://paperpile.com/b/J7qmwE/Y2v4
http://paperpile.com/b/J7qmwE/0QGB
http://paperpile.com/b/J7qmwE/0QGB
http://paperpile.com/b/J7qmwE/eMKu
http://paperpile.com/b/J7qmwE/eMKu
http://paperpile.com/b/J7qmwE/eMKu
http://paperpile.com/b/J7qmwE/GPeg
http://paperpile.com/b/J7qmwE/GPeg
http://paperpile.com/b/J7qmwE/4bY6
http://paperpile.com/b/J7qmwE/4bY6
http://paperpile.com/b/J7qmwE/r5ac
http://paperpile.com/b/J7qmwE/r5ac
https://doi.org/10.1101/2020.12.07.414235
http://creativecommons.org/licenses/by-nd/4.0/


(Curran Associates, Inc., 2017).

39. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A Simple Way

to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

40. Gal, Y. & Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in

Deep Learning. in International Conference on Machine Learning 1050–1059 (2016).

41. Sadafi, A. et al. Multiclass Deep Active Learning for Detecting Red Blood Cell Subtypes in Brightfield

Microscopy. in Medical Image Computing and Computer Assisted Intervention – MICCAI 2019

685–693 (Springer International Publishing, 2019).

42. Culotta, A. & McCallum, A. Reducing Labeling Effort for Structured Prediction Tasks. in Proceedings,

The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative

Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA

(eds. Veloso, M. M. & Kambhampati, S.) 746–751 (AAAI Press / The MIT Press, 2005).

43. Arthur, D. & Vassilvitskii, S. k-means++: The Advantages of Careful Seeding. (2006).

44. Zhou, J. & Sun, S. Improved Margin Sampling for Active Learning. in Pattern Recognition 120–129

(Springer Berlin Heidelberg, 2014).

45. Hanin, B. & Rolnick, D. How to Start Training: The Effect of Initialization and Architecture. in

Advances in Neural Information Processing Systems (eds. Bengio, S. et al.) vol. 31 571–581 (Curran

Associates, Inc., 2018).

46. Raghu, M., Zhang, C., Kleinberg, J. & Bengio, S. Transfusion: Understanding Transfer Learning for

Medical Imaging. in Advances in Neural Information Processing Systems 32 (eds. Wallach, H. et al.)

3347–3357 (Curran Associates, Inc., 2019).

47. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning. (MIT Press, 2016).

48. Ferreira, M. F., Camacho, R. & Teixeira, L. F. Using autoencoders as a weight initialization method on

deep neural networks for disease detection. BMC Med. Inform. Decis. Mak. 20, 141 (2020).

49. Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.

Proceedings of the thirteenth international conference (2010).

50. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level

Shetab Boushehri et al. 2021 19

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2021. ; https://doi.org/10.1101/2020.12.07.414235doi: bioRxiv preprint 

http://paperpile.com/b/J7qmwE/r5ac
http://paperpile.com/b/J7qmwE/GlWa
http://paperpile.com/b/J7qmwE/GlWa
http://paperpile.com/b/J7qmwE/JMbm
http://paperpile.com/b/J7qmwE/JMbm
http://paperpile.com/b/J7qmwE/F1o5
http://paperpile.com/b/J7qmwE/F1o5
http://paperpile.com/b/J7qmwE/F1o5
http://paperpile.com/b/J7qmwE/WifA
http://paperpile.com/b/J7qmwE/WifA
http://paperpile.com/b/J7qmwE/WifA
http://paperpile.com/b/J7qmwE/WifA
http://paperpile.com/b/J7qmwE/wtti
http://paperpile.com/b/J7qmwE/yDxp
http://paperpile.com/b/J7qmwE/yDxp
http://paperpile.com/b/J7qmwE/OLp7
http://paperpile.com/b/J7qmwE/OLp7
http://paperpile.com/b/J7qmwE/OLp7
http://paperpile.com/b/J7qmwE/M8Sr
http://paperpile.com/b/J7qmwE/M8Sr
http://paperpile.com/b/J7qmwE/M8Sr
http://paperpile.com/b/J7qmwE/UYZl
http://paperpile.com/b/J7qmwE/VXqM
http://paperpile.com/b/J7qmwE/VXqM
http://paperpile.com/b/J7qmwE/t8nN
http://paperpile.com/b/J7qmwE/t8nN
http://paperpile.com/b/J7qmwE/GQlp
https://doi.org/10.1101/2020.12.07.414235
http://creativecommons.org/licenses/by-nd/4.0/


performance on imagenet classification. in Proceedings of the IEEE international conference on

computer vision 1026–1034 (2015).

51. Sajjadi, M., Javanmardi, M. & Tasdizen, T. Regularization With Stochastic Transformations and

Perturbations for Deep Semi-Supervised Learning. arXiv [cs.CV] (2016).

52. Lee, D.-H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural

networks. in Workshop on challenges in representation learning, ICML vol. 3 (2013).

53. van Engelen, J. E. & Hoos, H. H. A survey on semi-supervised learning. Mach. Learn. 109, 373–440

(2020).

54. McLachlan, G. J. Iterative Reclassification Procedure for Constructing an Asymptotically Optimal

Rule of Allocation in Discriminant Analysis. J. Am. Stat. Assoc. 70, 365–369 (1975).

55. He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition. in 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (2016).

Shetab Boushehri et al. 2021 20

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2021. ; https://doi.org/10.1101/2020.12.07.414235doi: bioRxiv preprint 

http://paperpile.com/b/J7qmwE/GQlp
http://paperpile.com/b/J7qmwE/GQlp
http://paperpile.com/b/J7qmwE/hmpD
http://paperpile.com/b/J7qmwE/hmpD
http://paperpile.com/b/J7qmwE/RtUv
http://paperpile.com/b/J7qmwE/RtUv
http://paperpile.com/b/J7qmwE/QLxC
http://paperpile.com/b/J7qmwE/QLxC
http://paperpile.com/b/J7qmwE/EA0N
http://paperpile.com/b/J7qmwE/EA0N
http://paperpile.com/b/J7qmwE/d6fF
http://paperpile.com/b/J7qmwE/d6fF
https://doi.org/10.1101/2020.12.07.414235
http://creativecommons.org/licenses/by-nd/4.0/

