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Abstract
Background: The concept of “one-airway-one-disease”, coined over 20 years ago, may be an over-simplification of the links between allergic diseases. Genomic studies suggest that rhinitis alone and rhinitis with asthma are signaled by distinct pathways.
Methods: In this paper, we leveraged the information of the human interactome to distinguish the molecular mechanisms associated to two phenotypes of allergic rhinitis: rhinitis alone and rhinitis in multimorbidity with asthma.
Results: We observed significative differences in the topology of the interactomes and in the pathways associated to each phenotypes. In rhinitis alone, identified pathways included cell cycle, cytokine signaling, developmental biology, immune system, metabolism of proteins and signal transduction. In rhinitis and asthma multimorbidity, most pathways were related to signal transduction and fewer to cytokine signaling, immune system or developmental biology.  Toll-like receptors (TLR 2, 3, 4, 5, 6, 7/8 and 9) and IL-17-mediated signaling were identified in rhinitis alone, while IL-33 was identified in rhinitis in multimorbidity. On the other hand, few pathways were associated with both phenotypes. Most were associated with signal transduction pathways including estrogen-stimulated signaling. The only immune system pathway was FcRI-mediated MAPK activation.
Conclusions: Our findings suggests that rhinitis alone and rhinitis and asthma mulitmorbidity should be considered as two distinct diseases.
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Introduction
Allergic rhinitis (AR) tends to cluster with asthma (A) in multimorbidity [1]. However, clinically, two rhinitis (R) phenotypes can be identified: R alone (affecting around 70-80% of patients with R), and (ii) R in multimorbidity with A (R+A), affecting 20-30% [2]. On the other hand the majority of patients with A have or have had rhinitis (R) [1]. Furthermore, airway remodelling, a constant feature of A [3] does not merely exist in R [4]. It is also important to consider that the clinical, immunological and genetic differences between monosensitisation (to one allergen) and polysensitisation (to more than one allergen) and the link between polysensitisation and multimorbidity increase the heterogeneity of R [6, 8] suggesting the existence distinct molecular pathways in R+A and R alone [5]. In consequence, the concept of “one-airway-one-disease” coined over 20 years ago [6] may be an oversimplification of the disease.
Previous efforts to understand the links between R and R+A have focused in the atopic march sequence [7]. An alternative approach is the characterization of the molecular mechanisms of these diseases and its interactions. A complete characterization of cellular function can only emerge from studying how gene products interact with one another, forming a dense molecular network known as the interactome (which can be defined as the representation of all interactions —regulatory, metabolic, physical, etc.— among the gene products present at a given time within a cell). This is where the branch of systems biology known as interactomics comes into play, applying data mining and biostatistical methodologies to identify molecular pathways and, in general, to provide a molecular context that will facilitate the understanding of the complexity of many phenotypes. During the last decade, its analysis has provided important insights into the inner operations of the cell under different conditions [9-12] including pathological ones [13-16]. 
[bookmark: _Hlk110157438]The MeDALL study, which was aimed at unraveling the complexity of allergic diseases, did show that the coexistence of eczema, R, and A in the same child is more common than expected by chance alone-both in the presence and absence of IgE sensitisation, suggesting that these diseases share causal mechanisms [17]. A MeDALL in silico study suggested the existence of a multimorbidity cluster between A, eczema and R, and suggest that type 2 signaling pathways represent a relevant multimorbidity mechanism of allergic diseases [18]. The in silico analysis of the interactome at the cellular level suggested the existence of differentiated multimorbidity mechanisms between A, dermatitis and R at cell type level, as well as mechanisms common to distinct cell types [19]. A MeDALL transcriptomics study of samples from MeDALL birth cohorts identified a signature of eight genes identifies multimorbidity for A, R, and dermatitis [17]. In this study, genes of R alone differed from those of R+A multimorbidity without any overlap. 
In this paper, we used genetic information obtained in MeDALL cohorts to compare the molecular mechanisms of R and R+A, assessing how the relationship between these diseases should be understood in a multimorbidity framework using and interactomics approach. 

Materials & Methods
Design of the study. Using the transcriptomics data from Lemonnier et al. obtained in the MeDALL (Mechanisms of the Development of Allergy) study [20], we characterized the molecular pathways associated to R alone and R+A using an interactomics approach. 
Datasets. Differentially expressed genes (DEGs) for R alone and for R+A were obtained from the MeDALL gene expression study [20]. This analysis was also reproduced for the three individual cohorts within the study (GINI from Germany [18], INMA from Spain [21], BAMSE from Sweden [22]), using a significance cutoff of FDR < 5·10-3. The full dataset is supplied in Supplementary File 1.
The interactome. The first-degree interactomes of the DEGs for R alone and for R+A were independently generated using the IntAct database [23] via the IntAct web-based tool at the European Bioinformatics Institute (https://www.ebi.ac.uk/intact/). Ensembl Gene IDs were used instead of HGNC names to avoid ambiguities. Self-interactions and expanded interactions were discarded. Interactomes are supplied in Supplementary File S2. Random distributions to test the degree of interconnectedness of the interactomes were generated by random sampling of gene sets of the same size of each interactome over 10,000 iterations.
Functional annotation. The interactomes were functionally annotated using the DAVID web-based tool [24], with the Reactome database as the source of functional information [25]. Functional pathways were considered significant with FDR < 0.05. In order to simplify the functional annotation, we only considered pathways in the intermediate levels (levels 3 and 4) of the Reactome hierarchy. Furthermore, pathways associated to diseased or defective cellular processes were removed. Full functional annotation is available at Supplementary File S3.
Software. All data mining and statistical analysis was carried out using the R programming language [26]. Networks were plotted using the Cytoscape software [27]. 

Results
Topological analysis of the interactomes. We generated interactomes for R alone and R+A, which can be seen as snapshots of the cellular mechanisms behind these conditions (Figure 1). The interactome of R alone consisted of 464 genes connected by 466 edges. The interactome of R+A consisted of 130 genes connected by 149 edges. The interactome of R alone is 2.18 times denser than random expectation, which is statistically significant (z-test; P = 1.09·10-11). Similarly, the interactome of R+A is 6.22 times denser than random expectation, which is also statistically significant (z-test; P = 3.42·10-50). There were no DEGs common to R alone and R+A in the MeDALL study, but we identified 25 genes common to both interactomes, which is significantly larger than random expectation (z-test; P = 2.52·10-22). 
Functional annotation. Functional annotation revealed marked differences in the molecular pathways of both phenotypes. Pathways specific to R alone (Figure 2) involved a number of Toll-like receptor (TLR), IL-17 and MyD88 (myeloid differentiation primary response gene 88) signaling cascades, WNT5A-dependent signaling, RHO GTPase activity and the small ubiquitin-related modifier (SUMO) pathways. In contrast, pathways associated to R+A (Figure 3) were much richer in signal-transducion-related processes, such as IL-mediated and fibroblast growth factor receptors (FGFRs)-mediated signaling. IL-33, in particular, stood out with a ~68-fold enrichment.
The pathways common to both R phenotypes are shown in Figure 4. The pathways with largest fold enrichment both in R alone and R+A are estrogen-stimulated signaling through PRKCZ and RAS-mediated signaling.

Discussion
Using topological and functional analysis, we identified a core of common mechanisms between the two phenotypes of R, but also found significant differences between both phenotypes. Densely interconnected groups of genes within the interactome are known to be contributors to the same pathological phenotypes [28, 29]. The high level of connectivity that we observed within the interactome of each phenotype, together with the lack of common DEGs, suggests that R alone and R+A are largely mechanistically different diseases, affecting different molecular pathways.
 TLRs stand out as strong drivers of R alone. TLRs are type I transmembrane receptors employed by the innate immune system [30]. Variation in the TLR genes has been associated with R in several candidate gene studies. A significant excess of rare variants in R patients was found in TLR1, TLR5, TLR7, TLR9 and TLR10 186 but not in TLR8 [31]. Children carrying a minor rs1927911 (TLR4) allele may be at a higher R risk [32]. In turn, TLR is strongly associated to MyD88 pathways, which mediates in innate lymphoid cells type 2 (ILC2) activation and eosinophilic airway inflammation [33-36]. IL-17 was also identified, as were SUMO pathways, known to regulate many cellular processes including signal transduction and immune responses [37-39].
On the other hand, there are a number of mechanisms such as NfB-mediated signaling and IL-1 and IL-33 activity that seem to be driving R+A multimorbidity. IL-33 and IL1RL1 are among the most highly replicated susceptibility loci for A [40], and IL-33 has a known role in infection-mediated A susceptibility [41, 42]. There is an increase in FGFR (fibroblast growth factor receptor) signalling. The FGF/FGFR signaling system regulates a variety of biological processes, including embryogenesis, angiogenesis, wound repair and lung development [43]. It may be relevant in A remodelling.
Finally, some signal transduction pathways common to R alone and R+A have an impact on the IgE-mediated immune response. They include activation of RAS on B cells [44], CD209 signaling [45], MAPK Kinase [46],  FceRI MAPK kinase activation [47], ERK activation [48], Raf kinases [49] or VEGFA [50].

Limitations of the study
Incompleteness and spurious interactions have been for a long time limitations in any study that makes use of data from the human interactome [51]. However, recent advances in the characterization of protein interactions have yielded a ~90% the human protein-coding genome to the represented in the interactome [52], and authors have argued that data noise does not limit a successful application of the interactome to the investigation of disease mechanisms [51, 53, 54]. Also, the human interactome is known to be biased toward certain genes of interest (a category that includes many disease-associated genes) [55-57]. However, non-biased interactomes have a much lower coverage, which makes them unsuitable for some topology-based studies [58]. Lastly, time-dependent and location-dependent interaction patterns are not captured in our study, which only considers an interactome static in time.
Impact of the study 
Clinical data, epidemiologic studies [59], mHealth-based studies [60] and genomic approaches [17] support the existence of two distinct diseases: R alone and R with A multimorbidity. This study helps to better understand the differences between R and R+A and to refine the ARIA-MeDALL hypothesis on allergic diseases [61] and highlights the importance of IL-17 [62, 63], IL-33 [64, 65] and their interactions to understand the allergic multimorbidity.
Conclusions
The interactomes of R alone and R+A show topological characteristics that suggest that the cellular mechanisms involved are different for each phenotype. We identified mechanisms specific to R alone (TLR and MyD88 signaling cascades, SUMO pathways) and mechanisms specific to R+A (IL-33-mediated signaling, FGFR-mediated signaling).
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