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Abstract

Polygenic scores (PGS) can identify individuals at risk of adverse health events and guide genetics-based personalized medicine.
However, it is not clear how well PGS translate between different populations, limiting their application to well-studied ethnicities.
Proteins are intermediate traits linking genetic predisposition and environmental factors to disease, with numerous blood circulating
protein levels representing functional readouts of disease-related processes. We hypothesized that studying the genetic architecture of a
comprehensive set of blood-circulating proteins between a European and an Arab population could shed fresh light on the translatability
of PGS to understudied populations. We therefore conducted a genome-wide association study with whole-genome sequencing data
using 1301 proteins measured on the SOMAscan aptamer-based affinity proteomics platform in 2935 samples of Qatar Biobank and
evaluated the replication of protein quantitative traits (pQTLs) from European studies in an Arab population. Then, we investigated
the colocalization of shared pQTL signals between the two populations. Finally, we compared the performance of protein PGS derived
from a Caucasian population in a European and an Arab cohort. We found that the majority of shared pQTL signals (81.8%) colocalized
between both populations. About one-third of the genetic protein heritability was explained by protein PGS derived from a European
cohort, with protein PGS performing ∼20% better in Europeans when compared to Arabs. Our results are relevant for the translation of
PGS to non-Caucasian populations, as well as for future efforts to extend genetic research to understudied populations.

Introduction
Genome-wide association studies (GWAS) with complex disease
endpoints have revealed many genes and pathways involved in a
plethora of pathophysiologies (1). With increasing sample sizes,
approaches like Mendelian randomization (MR) allow to evalu-
ate the potential of associated proteins as new drug targets (2),
polygenic risk scores (PGS) inform precision medicine and identify
individuals who are at elevated risk of developing preventable
diseases (3), while genetic correlations provide etiological insights

into complex disease traits (4). GWAS with intermediate pheno-
types (5), such as gene expression, proteomics and metabolomics
complement these studies by providing functional read-outs for
disease-relevant pathways (6–8), allowing for drug-target prioriti-
zations and mode of action rationalizations (9).

However, while immensely successful in populations of North-
ern European ethnicity, and currently catching up in Hispanic,
African American, Chinese and Japanese populations, GWAS in
many lesser studied populations are still lagging behind (10,11). In
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this context, the question arises as to how far GWAS findings, in
particular PGS and MR instruments, may be translated from sta-
tistically well-powered studies to under-represented populations.

Previously, we reported a GWAS of 45 clinically relevant traits
in the Middle Eastern population of Qatar. We found that PGS
derived from studies in Caucasian ethnicities performed poorly
when applied to the Qatar population with an average relative
performance of 64.7% (s.d. = 15.8%) compared to when applied to
Europeans (12). Similarly, a recent GWAS in the UK Biobank (UKB)
with 35 blood and urine biomarkers found that PGS performed
better in the non-British white UKB sub-population as compared
to the South-East Asian and African UKB study participants (13).
We reasoned that a trans-ethnic study with a larger number
of quantitative traits, such as blood circulating protein levels,
may draw a broader picture of the general translatability of
PGS between populations, and that this approach may also shed
light on the underlying similarities and differences in the genetic
architectures of the individual associated with genetic loci.

Proteomics recently became accessible to GWAS, all thanks to
the technology advances in affinity proteomics, implemented by
the SOMAscan and Olink platforms (7) as well as enhanced mass
spectrometry approaches (14), leading to the discovery of pQTLs
for hundreds of proteins in studies with several thousand partic-
ipants (15–20). PGS for the plasma proteome have already been
shown capable of assessing the polygenic risk of cardiometabolic
diseases (21) and obesity (22), but these studies were restricted to
European populations. Here we set out to investigate the genetic
architecture of pQTLs in an Arab population, using proteomics
measurements that we recently performed in samples from 2935
participants of the Qatar Biobank (QBB) (23,24) using the SOMAs-
can aptamer-based affinity proteomics platform of Weill Cornell
Medicine-Qatar (17).

Our analysis comprises of three parts: first, we conduct a
‘classical’ GWAS with proteomics in QBB and evaluate the repli-
cation of pQTLs from the German KORA and the British INTER-
VAL studies to identify potential population-specific associations
(Fig. 1). Then, we fine-map the pQTL signals of QBB by investi-
gating their colocalization with the pQTLs in INTERVAL (Fig. 2).
Finally, we derive protein PGS using summary statistics from the
most highly powered protein GWAS to date, the Icelandic deCODE
study, and evaluate the performance of these PGS in the KORA
and QBB studies by comparing them to directly measured protein
levels in two almost equally powered studies of European and
Arab ethnicity, respectively (Fig. 3).

Results
A GWAS with 1301 blood circulating protein
traits identifies 2685 pQTLs in an Arab
population
We conducted a GWAS between 1301 blood circulating protein lev-
els and 10 004 359 genetic variants determined by whole-genome
sequencing (WGS) (see methods). We identified 2685 pQTL asso-
ciations at a Bonferroni level of significance (P < 3.8 × 10−11 = 5
× 10−8/1301), located at 2384 independent genetic loci (R2 < 0.1
between sentinel variants). Of the 1301 proteins assayed in this
study, 574 had at least one pQTL in QBB. A total of 1925 (71.7%)
of the identified pQTLs were located in-cis (382 proteins) with
respect to the protein coding gene while 760 (28.3%) were located
in-trans (282 proteins, Supplementary Material, Table S1). A total
of 135 genetic loci (5.7%) had more than one pQTL, 14 loci had
five or more pQTLs and the two most pleiotropic loci, VTN and C7,
had 23 and 36 pQTLs, respectively. Of the 2685 pQTLs, 148 pQTLs

(5.5%) had not been previously reported on any variant within a
window of +/−10 Mb from the sentinel variant at a significance
level of P < 10−8 or in linkage disequilibrium (LD) (R2 > 0.8) with
a previously reported pQTL at a significance level of P < 10−5, nor
were they reported in the latest version of SNiPA (25). These pQTLs
are considered novel.

Up to 89% of pQTLs identified by European
studies replicate in the Arab population
We attempted replication of two major pGWAS: the INTERVAL
study reported 1980 associations based on a GWAS with 3301
participants and 3622 protein traits. We replicated 381 out of 617
(61.8%) pQTLs for which we had protein data in QBB and for which
a tag variant (r2 > 0.8) was available, using a significance level for
replication of P < 0.05/617 (Supplementary Material, Table S2). Of
57 pQTLs reported at the pleiotropic C7 locus, we replicated 26
out of 30 for which we had data, and additionally found a cis-
pQTL for C7 which had not been reported before. The pleiotropic
VTN locus had 116 pQTLs in INTERVAL—we replicated 11 out of 18
pQTLs for which we had proteomics data, including the previously
reported VTN cis-pQTL. The KORA study reported 539 associations
based on a GWAS with 997 participants and 1124 protein traits. We
replicated 452 out of 508 (89.0%) pQTLs for which protein data and
a tag variant (r2 > 0.8) were available, based on a significance level
of P < 0.05/508 (Supplementary Material, Table S3).

The majority of cis-pQTLs are driven by
non-protein altering variants, while 6.5% may be
due to epitope effects
As we had WGS data available, we could identify all potentially
protein altering variants (PAV) that are in high LD with the sentinel
variants of the cis-pQTLs (LD based on QBB data). Such variants
can potentially impact the aptamer binding to the protein epi-
tope without having any other biological effect (Supplementary
Material, Table S1). Of the 1925 cis-pQTLs, 196 (10.2%) had at least
one such PAV in LD, based on a cutoff of r2 > 0.8. For 122 (62.2%)
of these pQTLs, the sentinel variant was itself a PAV. However, 70
(35.7%) of the 196 pQTLs with a PAV in LD were also associated
with at least one clinical GWAS trait, suggesting that at most
126 of the 1925 pQTLs (6.5%) may be affected by a pure epitope
effect without any biomedical consequence. The majority of the
cis-pQTLs (89.8%) are therefore likely to be driven by regulatory
variants.

Locus fine mapping and cross-population
colocalization suggest that 81.8% of regions with
shared associations between Europeans and
Arabs have a similar genetic architecture
We grouped adjacent pQTLs with a distance between lead vari-
ants of less than 500 kb into 771 pQTL regions and assigned all
variants within a distance of 500 kb from any one of the lead
variants to that region. The average number of pQTLs per region
was 3.5 and the median was one (Supplementary Material, Table
S4). The region with the largest number of pQTLs was at the
HLA locus on chromosome 6 in association with MICA protein
levels, which had 55 pQTLs in one region plus an additional
two regions that were more than 500 kb apart and that were,
therefore, treated as independent regions by our approach. We
performed region-wise genetic fine-mapping using GCTA COJO
with all variants in a region as input (26). The average number
of fine-mapped variants per locus was 1.5 with a median of one
and the largest number of variants was seven for CD177 antigen
and six for MICA (Supplementary Material, Table S4). We then
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Figure 1. pGWAS study and replication of pQTLs from KORA and INTERVAL. Scatterplot of the effect sizes of all replicable pQTLs between INTERVAL
and QBB (A) and between KORA and QBB (B), 2-D Manhattan plot of all significant QBB pQTLs (C); full summary statistics for these replications are in
Supplementary Material, Tables S2 and S3; full-size versions and regional association plots for all QBB pQTLs are in Supplementary Material, Figures
S1–S3.

compared the genetic architecture of the pQTL regions between
QBB and INTERVAL using the approach that is implemented in the
coloc package (27) together with SuSiE (Sum of Single Effects) for
credible set fine-mapping (28). SuSiE is a novel approach that eval-
uates the evidence for associations with multiple potential causal
variants simultaneously and has been applied to integrate fine-
mapping across 148 complex traits in three large-scale biobanks
(29). It was also used in a recent plasma proteome analysis in
individuals of European and African ancestry (30). Briefly, SuSiE
identifies so-called ‘credible sets’ (CS) of variants that are likely to
contain the causal variant and provides corresponding posterior
probabilities (PIP) for each of them being possibly causal for the
association with the trait. Coloc is usually used to determine
whether the association signals of two traits at the same genetic
locus are generated by a shared causal variant. This is done
using summary statistics from two GWAS conducted in the same
population and by analyzing the correlation between the asso-
ciation statistics. In contrast, here we used this approach to ask
whether an association signal for the same protein trait correlates
between two different populations (Fig. 2). Colocalization was
performed between all possible combinations of credible sets. The

probabilities for several hypotheses (H0–H4) regarding the ques-
tion of whether two associations are sharing the same genetic sig-
nal or not were then computed. Hypotheses H0, H1 and H2 (none
or only one association contains a causal variant) were excluded
in our setting, as we only consider regions that contain pQTLs that
were significant in both, the INTERVAL and QBB study. Hypothesis
H3 states that the two association signals are distinct, and H4 that
both associations have the same causal variant. A total of 598 of
the 771 regions had shared pQTLs between INTERVAL and QBB
and could be further analyzed using this cross-ethnic SuSiE-coloc
approach. Of these 598 shared regions, 133 had no significant
variant (P < 5 × 10−5) in INTERVAL, 36 had no credible set >95%
in INTERVAL, and five had no credible set >95% in QBB and
were not further considered. A total of 424 regions with shared
pQTL signals could hence be analyzed, out of which 347 regions
had at least one H4 (81.8%). The total number of signals that
support hypothesis H4 was 454 and the total number of regions
that only support hypothesis H3, but no H4, was 77. We provide
detailed colocalization plots for all analyzed regions as a resource
for future investigations of specific loci (Supplementary Material,
Fig. S4).
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Figure 2. Locus fine mapping and cross-population colocalization analysis. Examples of scatterplots of P-values for two regions, one with shared genetic
architecture between INTERVAL and QBB (FCRL3, A) and one with two unrelated signals (DKK3, B); circle colors reflect LD r2 with the respective
lead variant, the circle fill color is for Interval, circle border color represents LD in QBB (see Supplementary Material, Fig. S4 for further detail and
Supplementary Material, Table S4 for Cojo, SuSiE and Coloc statistics).

Polygenic scores of protein traits are driven by
large effect variants at current study sizes
We generated PGS for 842 proteins that were measured on all
versions of the SOMAscan platform in the KORA, QBB and deCODE
studies, using the deCODE protein association summary statistics
by clumping correlated variants based on LD (r2

PGS) and discarding
all associations below a fixed P-value cut-off (pPGS). We limited
the PGS variant selection to variants that were shared between
all three studies (N = 5 179 443) so that our comparison would not
be biased by differences in the availability of variants between
the studies (Fig. 3 and Supplementary Material, Table S5). We
explored a range of P-value cutoffs and r2 clumping values and
evaluated the performance of the PGS by correlating the predicted
and measured protein levels using 944 samples of the KORA study
and 1155 samples from unrelated participants of QBB (Supple-
mentary Material, Table S6). We considered a correlation between
PGS-predicted and measured protein levels as significant at a
Bonferroni level of P-value <0.05/842. For a PGS variant selection
P-value cut-off of pPGS = 10−8, the number of protein-PGS that
were significantly associated with measured protein levels in both
studies was highest (Fig. 3A), while the average number of variants
included in any individual PGS increased with r2

PGS (Fig. 3B). We,
therefore, chose pPGS = 10−8 and r2

PGS = 0.1 as reference values in
the subsequent analyses.

Overall, 268 out of 842 PGS-derived protein levels had a
Bonferroni-significant correlation with measured protein levels in
both studies (Fig. 3C). For most of these proteins, the correlation
between PGS-predicted and measured protein levels was smaller

in QBB than in KORA with an average slope of 0.53 for the
linear regression between the individual PGS correlations in
KORA and QBB. Hence, most PGS performed better in KORA than
in QBB.

We then asked how much of the genetic heritability (h2)
was captured by the PGS (r2). The average protein heritability
explained by the PGS was 38.7% in KORA and 35.7% in QBB,
estimated as the regression coefficient between r2 and h2

(Fig. 4A and B). The explained heritability by the PGS in QBB was
78.6% that of KORA, but with considerable variability depending
on the protein in question (Fig. 4C).

A cis-variant can regulate protein levels directly via its effect
on gene expression, although it can potentially also alter aptamer
binding when it is changing the encoded protein’s epitope (7). Cis-
variants often display large effect sizes and can dominate PGS,
while trans-variants reflect more complex regulatory relation-
ships between proteins and are expected to be involved in more
polygenic interactions (31). We, therefore, asked how much of
the protein levels was controlled indirectly through trans-variants.
For this purpose, we excluded all cis-variants within a ±10 Mb
window of the protein coding gene boundaries and then repeated
the process of PGS generation and evaluation as described above.
A total of 150 protein PGS for KORA and 152 for QBB retained a
significant correlation with the measured protein levels when no
cis-variants were used, indicating that these protein associations
have a significant contribution from trans-variants that can be
detected by studies that are statistically as highly powered as
deCODE (Fig. 4A and B).
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Figure 3. Evaluation of deCODE-derived protein PGS in KORA and QBB. (A) A number of Decode-derived PGS (out of 842) evaluated in QBB that correlate
with protein levels measured in QBB at a Bonferroni significance level (P < 0.05/842), depending on the applied pruning r2 and significance cut-off (P-
value); (B) the average number of variants included in the PGS as a function of pruning r2 and cut-off P-value; (C) correlation of PGS-predicted and
measured protein levels in QBB (r2_QBB) and KORA (r2_KORA), using a pruning r2 of 0.1 and a P-value cutoff of 5 × 10−8 for the PGS; presented are
268 PGS-derived protein levels that correlate with protein measurements in KORA and QBB at a Bonferroni level of significance; inset: histogram of the
frequency distribution of the difference r2

KORA – r2
QBB.

Discussion
In this investigation, we asked the following questions: do pQTL
signals seen in the European KORA and INTERVAL studies
replicate in the Arab QBB study? Do the corresponding protein loci
display similar genetic structures between the European and the
Arab populations? Are there any population specific association
signals? And how well do European-derived protein PGS perform
in an Arab population?

This is the first large-scale GWAS with proteomics in an Arab
population. Availability of WGS data was key for two reasons: one,
we were not limited by the current lack of population-specific
imputation panels, and two, we could comprehensively identify
all potentially causal protein-changing variants, alleviating
concerns regarding potential artifacts of affinity proteomics,
especially epitope effects when using the SOMAscan platform.
Only 10.2% of the cis-pQTLs appeared to be attributable to
potentially epitope changing variants, almost half of which also
have a biological function. We found consistent replication of
pQTLs from previous European studies. We attribute the higher
replication rate of KORA pQTLs (89.0%) compared to INTERVAL
(61.8%) to the fact that the latter study was more highly powered

and thus likely to identify more pQTLs with weaker effect
sizes that are harder to replicate. For this reason, we did not
attempt direct replication of more recent larger pQTL studies,
such as deCODE (19) and Pietzner et al. (20). The latter was
however included in the identification of potentially novel signals
through our SNiPA variant annotation, which included these
variants.

Few truly novel pQTL signals were found (5.5% of all discovered
pQTLs, excluding all previously identified signals at these loci),
which is not surprising given the increasing power of the latest
pGWAS. For instance, SNP rs5744204 is a pQTL for LBP in our study.
This variant has a low MAF (1.3%) in the Caucasian population
but is frequent in the Qatar population (15.6%). This pQTL was
discovered neither by the KORA and nor by the INTERVAL study
but was later reported by the more highly powered study by
Pietzner et al. (20). This is in agreement with a recent GWAS in
the non-European subpopulations of UK Biobank, where analysis
of 31 serum and urine biomarker quantitative traits identified
12 novel signals in African and 3 novel signals in South Asian
participants, where underlying variants were rare in Europeans
with allele frequencies <1% (32).
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Figure 4. Explained protein heritability between KORA and QBB. Scatterplot of protein variance explained by the PGS (r2) versus protein heritability (h2)
for KORA (A) and QBB (B); significant r2 (P < 0.05/842) in red; Scatterplot of the fraction of heritability explained by the PGS (r2/h2) in KORA and QBB,
only significant proteins shown (C); PGS r2 computed using all variants versus using trans-variants only for KORA (D) and QBB (E), significant r2 when
using trans-variants only are in red; note that proteins with solely a cis-signal are located near the x-axis (black dots) and proteins with a predominant
trans-signal are located close to the diagonal.

We used the approach of SuSiE-coloc (28) to compare genetic
signals between populations at 424 individual genetic regions.
While we found at least one shared signal at 81.8% of the loci,
it also needs to be acknowledged that many genetic loci host
more than one independent pQTL signal. While the approach is
designed to work with multiple causal variants, an inspection of
the individual plots (Supplementary Material, Fig. S4) revealed
cases where improvement is possible. We, therefore, chose not
to quantify the number of signals that are not shared between
populations, although it is clear that there are many. In summary,
we believe it is a fair statement that a majority of the pQTL signals
have a shared association signal, but that these are overlain by
additional population-specific variants, which contribute to the
differences in the performance of the PGS between populations.

We initially expected that protein PGS would capture the poly-
genic signal of many low effect variants, similar to what was
reported by Khera et al. (33), who showed that genome-wide PGS
emerge as a clinical tool to identify individuals that are at risk for
common diseases with risk equivalent to monogenic mutations.
However, we found that in our case most PGS were dominated by
a few genome-wide significant variants, which is demonstrated
by the fact that the strongest correlation between PGS-derived
and measured protein levels is obtained when using a P-value
cutoff of pPGS < 10−8. Adding variants at lower significance levels
appears to introduce more noise than information and adding
these variants decreases the predictive power of the PGS. We also
expected to find several proteins where the PGS is composed of a
direct (in-cis) and indirect (in-trans) contribution, which would cor-
respond to the area located between the x-axis and the diagonal
in Figure 4D and E. Again, this expectation was not generally met.

We hypothesize that the still limited sample size of the study used
to generate the PGS is at the root of this observation, indicating
that even the size of the deCODE study may still be too small to
derive truly polygenic protein PGS. Also, the calculation of protein
heritability may have failed for many proteins due to the still
limited sample size of current pQTL studies.

Our study has its strengths and limitations. Underrepresen-
tation of Arab populations in imputation panels may bias the
results toward European-specific variants. By using WGS data for
the GWAS in QBB, we assured that differences were not due to
low imputation quality in the Arab population. Furthermore, we
only used variants that were polymorphic with a minor allele
frequency (MAF) greater than one percent in all three studies,
which should further alleviate this problem. As we additionally
only retained variants that were present in all three studies in
the calculation of the PGS, we may have lost variants that are
specific to the European population. This would have weakened
the performance of the PGS in the KORA study, implying that
differences between the performance of the PGS between the
European and Arab populations could be larger if these variants
were included.

While relatedness between study participants is not an issue in
KORA and INTERVAL, there is a substantial degree of relatedness
in QBB. Although we corrected for relatedness in the GWAS part
of our study by using dedicated statistical tools, we choose to
reduce the number of QBB samples to only unrelated individuals
in the comparison of the PGS. While reducing power, this had the
positive side-effect that the resulting target cohorts, KORA and
QBB, were almost equally powered, which is expected to alleviate
possible bias due to differences in cohort sizes.
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Previous affinity-proteomics-based pQTL studies were flawed
by the problem that an association could potentially be driven
by a variant that changed the protein epitope and the pQTL
thereby reflected genetic differences of aptamer or antibody bind-
ing rather than protein levels (7). Here we quantified the extent of
this issue and show that only 10.2% of the pQTLs in our study
are potentially affected by protein coding variants. Furthermore,
almost half of these protein changing variants were also associ-
ated with clinical traits in published GWAS, suggesting that even if
they are potentially affecting binding affinity, they also likely have
a functional impact. Based on these observations, we estimate
that 6.5% of all cis-pQTLs discovered using the SOMAscan aptamer
technology are affected by pure epitope effects.

Another challenge to aptamer-based affinity proteomics is tar-
get specificity. Ideally, each aptamer would be individually vali-
dated. This is an ongoing process. The presence of a cis-pQTL is
considered a strong indicator of target specificity. Williams et al.
(34) experimentally confirmed target specificity for 93 of the 574
proteins that had at least one pQTL in our study, using pull-down
experiments in blood plasma and mass spectrometry for protein
identification. 78 (83.9%) out of these confirmed 93 proteins had
a cis-pQTL in at least one of QBB, KORA or INTERVAL. Moreover,
391 (68.1%) of the 574 proteins identified in our study had a cis-
pQTL in at least one of the studies. For these proteins, target
specificity is thus likely correctly annotated, while further experi-
ments may be required for some of the others, especially for appli-
cations where target specificity is essential, such as drug target
validation.

Given the fact that we were analyzing WGS data and therefore
in principle included all relevant common coding variants, our
study suggests that the majority (89.8%) of all pQTLs are driven by
non-coding causal variants. This is in line with observations from
GWAS with other traits that also found that most causal GWAS
variants fall into non-coding regions (35). It is interesting to note
that this bias towards non-coding causal variants appears to hold
for GWAS with blood circulating protein levels as well.

We applied a readily available methodology to compute PGS.
More sophisticated methods may yield slightly different results.
Method development is also continuing for the translation of
PGS between populations (36). It will be interesting to evalu-
ate these methods in studies with broad molecular phenotypes
like ours. Although we cannot publicly share QBB data on an
individual phenotype level due to the consent level given by
study participants, the data are accessible through direct appli-
cation to the QBB. In addition, we provide all summary statis-
tics freely through the GWAS catalog to allow future use of
our data.

Taken together, our study sheds new light on the genetic archi-
tecture of blood circulating pQTLs, which may be relevant for
many complex disease associations. It suggests that intermediate
molecular traits may be instrumental in estimating the translata-
bility of PGS for clinically relevant traits and disease outcomes
and encourages further genetically linked multi-omics studies
in underrepresented populations. Such studies, especially if con-
ducted in highly consanguineous populations, like that of Qatar,
have the additional potential to identify natural ‘knock-outs’ that
display extreme multi-omics phenotypes by rare variant associa-
tion analysis (37). Future more highly powered studies with deep
molecular phenotypes, such as metabolomics and proteomics,
and conducted in a diverse range of populations, are likely to
reveal more secrets about the molecular function of the human
genome and enable a population-agnostic approach to precision
medicine.

Materials and Methods
Study participants
QBB is a population-based study of adult Qatari nationals and
long-term residents (living in the country for ≥15 years) (23,24).
QBB collects extensive lifestyle, clinical, and biological informa-
tion on its participants, including metabolomics and proteomics
data. The Qatar Genome Project (QGP) builds on data and biosam-
ples from QBB to analyze multiple genetic aspects related to the
Qatari population and performs whole genome sequencing (WGS)
of Qatari nationals (38). In this study, we analyze 2935 samples
from the first batch of QBB that have joint WGS and proteomics
data available. All QBB participants signed an informed consent
form prior to their participation. The study was approved by
Hamad Medical Corporation Ethics Committee and the QBB insti-
tutional review board.

Whole genome sequencing
WGS was performed at the Sidra Clinical Genomics Laboratory
Sequencing Facility in Doha (Qatar) as previously described
(12). Briefly, DNA was extracted from peripheral blood and
genomic libraries were sequenced on HiSeq X Ten (Illumina,
USA) to achieve a minimum average coverage of 30×, and reads
were aligned to the GRCh37 (hs37d53) reference genome using
burrows-Wheeler aligner (BWA), and variants were called using
GATK 3.4 best practice. The combined variant call format (VCF)
file after variant filtering contained 64 997 510 variants for 2935
subjects including 58 713 573 single nucleotide variants (SNVs)
and 6 283 936 Indels. Non-autosomal variants (X, Y, mitochondrial
DNA), variants with a MAF below 1%, variants with missingness
above 10%, variants with Hardy–Weinberg Equilibrium (HWE)
P < 1E-6, as well as so-called ‘star’-allele variants (variants located
in larger indels), were excluded, leaving a total of 10 004 359
variants (SNVs + Indels) for GWAS analysis in 2935 samples. All
variant QC filtering steps were performed using Plink v1.90b6.10.
Indels were further removed and the dataset was further pruned
for LD > 0.5 to identify a set of independent markers for estimating
principal components (PCs) using Plink and estimating genetic
relationship matrix (GRM) using GCTA v1.92.3.

Proteomics data
QBB: blood circulating protein levels were measured using
the aptamer-based SOMAscan affinity proteomics platform
(Somalogic, Boulder, CO) (39) implemented at Weill Cornell
Medicine-Qatar, as previously described (17). Briefly, EDTA-
plasma was incubated with bead-coupled epitope-specific
aptamers (SOMAmers). Bead-bound proteins were then biotiny-
lated and complexes comprising biotinylated target proteins
and fluorescence-labelled SOMAmers were photocleaved and
recaptured on streptavidin beads. SOMAmers were then eluted
and quantified by hybridization to custom arrays of SOMAmer-
complementary oligonucleotides. The resulting raw intensities
were processed using different standards as a reference, including
hybridization normalization, median signal normalization and
signal calibration to control for inter-plate differences. Data for
1305 aptamers were obtained. No samples or data points were
excluded. Quality control was performed by repeated measures
of two QC samples. The median coefficient of variance (CV) was
0.073 for both QC samples, based on 51 and 54 repeated measures,
respectively. 95% of the aptamers had a CV below 0.172 and 0.176,
respectively, and 5% had a CV below 0.046 and 0.041, respectively.
In other words, half of the assayed proteins had a CV below 0.073
and most (95%) had a CV below 0.176.
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KORA: proteomics measurements were performed using the
same technology as for QBB at Somalogic but using a previous
version of the SOMAscan assay (V3.2) to measure a total of 1129
proteins. Based on 24 measurements each of the two QC samples
found that 95% of the aptamers had a CV below 0.136 and 0.104,
respectively, and 10% had a CV below 0.033 and 0.027, respectively.
The median CV was 0.052 and 0.039, respectively.

Protein annotations
The primary identifiers used in this study are the aptamers ids
(SeqId and SomaId in Supplementary Material, Table S7). These
identifiers are linked to the proteins that are targeted by the
respective aptamers (Uniprot and Entrez gene names). The rela-
tion between aptamer identifiers and protein identifiers is not
unique: in cases where an aptamer targets a protein complex,
multiple protein identifiers are listed (e.g. Complement C1q sub-
component, which is composed of the proteins C1QA, C1QB and
C1QC). In other cases, multiple aptamers can target different
versions of the same protein, which may lead to duplicated pro-
tein identifiers (e.g. APOE). For the definition of cis- and trans-
associations, gene coding regions were obtained for hg build 37.
Information on aptamer specificity is from the SOMAscan Assay
v4 annotation (version 3.3).

Genome-wide association
The SOMAscan proteomics data (processed RFU values) were log-
scaled and residues after regressing against age, gender, the first
10 genetic principal components (PCs), and levels of HSP90 (SeqId
2625-53_4) were computed and then inverse normalized. Four
aptamers targeting viral proteins were excluded from the analysis.
Mixed linear models were computed using GCTA (26) (v1.92.3 with
the—mlma option using GRM as computed above) and summary
statistics were saved for further analysis. Median genomic infla-
tion was lambda = 0.993 (range = [0.927, 1.016]). The combined pro-
teome and genome-wide significance level was P < 3.84E–11 (= 5 ×
10−8/1301). Independent loci were identified and defined as previ-
ously described (17) by first clumping all correlated genetic vari-
ants on an individual protein trait basis (LD r2 > 0.1, the distance
between variants < 10 Mb), keeping always the variant with the
strongest association as the sentinel variant, and then grouping
all correlated sentinel variants (LD r2 > 0.9) for different protein
traits into a single locus. pQTLs for which the sentinel variant was
less than 1 Mb distant from or within the boundaries of the protein
coding gene were annotated as cis-pQTLs, all others as trans-
pQTLs. In the case of aptamers targeting protein complexes, cis
annotation was prioritized over trans. Regional association plots
(RAP) were constructed using LocusZoom software (v 1.4) and with
local LD estimates (40).

Locus annotation
The online version of Phenoscanner (41) was used to annotate pre-
viously reported pQTLs (http://www.phenoscanner.medschl.cam.
ac.uk/, accessed [June 2, 2020]). In one approach all previously
published pQTLs were identified that were in LD (R2 > 0.8) with the
QBB sentinel variant in at least one of the five populations covered
by Phenoscanner, using a relaxed significance level of P < 10−5. In
a second approach, all pQTLs were identified that were located
within a ±10 Mb distance from the QBB sentinel variant at a sig-
nificance level of P < 10−8, regardless of LD. The presence of a pQTL
for the same protein trait in at least one of the two approaches was
used to annotate that pQTL as ‘KNOWN’, or as ‘NOVEL’ otherwise.
To update the known pQTLs with the latest associations from the
Pietzner et al. (20) study, a pre-release version of the SNiPA web

server was used (25) (accessed March 2, 2022). Updated overlap-
ping GWAS signals, expression QTLs (eQTLs), metabolomics QTLs
(mQTLs) and methylation QTLs (methQTLs) were also annotated
and are provided in Supplementary Material, Table S1 and are also
accessible online at http://snipa.org.

Variant annotation
Variants of the WGS data from QBB were annotated using
Ensembl VEP v99 using the per-gene option. The presence of a
potentially protein changing variant for a pQTL was investigated
by identifying the most highly correlated variant (LD > 0.8) that
changes the protein sequence. Potentially protein changing
variants were defined as frame shift variants, in-frame deletion,
in-frame insertion, missense variants, splice acceptor variants,
splice donor variants, splice region variants, start lost, stop gained
or stop loss. To evaluate all possible protein changing variants
that could be missed due to standard filtering in GWAS, we used
an entire set of 64 997 510 variants, including variants that were
filtered in the GWAS for their low quality, in order to identify
additional protein changing variants in high LD (r2 > 0.8) with the
pQTLs.

Replication of previous pGWAS
Replication of pQTLs reported by two major GWAS using the same
technology was attempted. 1980 pQTLs reported by the INTERVAL
study were extracted from Supplementary Material, Table S4 of
Sun et al. (18) and 539 pQTLs identified by the KORA study were
extracted from Supplementary Material, Table S1 of Suhre et al.
(17). In cases where the reported variant was not available in
QBB, the most highly correlated tag variant was used. The tag
variants were identified for the INTERVAL study using LD from
503 European samples in 1000G phase 3 data (42). Data for 617
and 508 replication attempts were available for INTERVAL and
KORA, respectively. The significance level for replication was set
to P < 0.05/617 and P < 0.05/508, respectively.

PGS calculation
Publicly available GWAS summary statistics from the deCODE
study (19) were used to derive PGS. The decode summary statistics
file were converted from hg38 to hg19 using University of
California Santa Cruz (UCSC) liftover tool (43). PGS were computed
for KORA using imputed and for QBB using WGS genotype data
using PLINK (44). Only variants and proteins that were jointly
available in all three studies were included. PGS variants were
selected by clumping correlated variants based on LD (r2

PGS) and
discarding all associations below a fixed P-value cut-off (pPGS). The
LD values are computed using 503 European samples in 1000G
phase 3 data. PGS performance was quantified using Pearson
correlations between PGS-derived and observed protein levels in
KORA and QBB using individual level SOMAscan data from both
studies. To determine the sensitivity of the PGS performance, we
repeated the PGS generation process using a range of significance
cutoffs (pPGS = 1, 0.1, 0.01, . . . , 10−8) and clumping r2 values
(r2

PGS = 0.1, 0.2, . . . , 1.0).

Supplementary Material
Supplementary Material is available at HMGJ online.
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