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Abstract. Diagnosing hematological malignancies requires identifica-
tion and classification of white blood cells in peripheral blood smears.
Domain shifts caused by different lab procedures, staining, illumination,
and microscope settings hamper the re-usability of recently developed
machine learning methods on data collected from different sites. Here,
we propose a cross-domain adapted autoencoder to extract features in
an unsupervised manner on three different datasets of single white blood
cells scanned from peripheral blood smears. The autoencoder is based on
an R-CNN architecture allowing it to focus on the relevant white blood
cell and eliminate artifacts in the image. To evaluate the quality of the
extracted features we use a simple random forest to classify single cells.
We show that thanks to the rich features extracted by the autoencoder
trained on only one of the datasets, the random forest classifier performs
satisfactorily on the unseen datasets, and outperforms published oracle
networks in the cross-domain task. Our results suggest the possibility
of employing this unsupervised approach in more complicated diagnosis
and prognosis tasks without the need to add expensive expert labels to
unseen data.
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1 Introduction

Hematopoietic malignancies such as leukemkia are among the deadliest diseases
with limited therapeutic options. Cytomorphological evaluation of white blood
cells under the microscopic in blood or bone marrow smears is key for proper
diagnosis. So far, this morphological analysis has not been automated and is
still performed manually by trained experts under the microscope. Recent works
demonstrate however the potential in automation of this task. Matek et al. [12]
have proposed a highly accurate approach based on ResNext [18] architecture
for recognition of white blood cells in blood smears of acute myeloid leukemia
patients. In another work [11] we have developed a CNN-based classification
method for cell morphologies in bone marrow smears. Boldu et al. [3] have sug-
gested a machine learning approach for diagnosis of acute leukemia by recogni-
tion of blast cells in blood smear images. Acevedo et al. [2] suggest a predictive
model for automatic recognition of patients suffering from myelodysplastic syn-
drome, a pre-form of acute myeloid leukemia.

All of these studies have used data provided from a single site. However,
many factors in laboratory procedures can affect the data and introduce a do-
main shift: Different illuminations, microscope settings, camera resolutions, and
staining protocols are only some of the parameters differing between laboratories
and hospitals. These changes can affect model performance considerably and ren-
der established approaches ineffective, requiring re-annotation and re-training of
models.

Exposing the optimization to domain shifts can be a solution to align dif-
ferent domains in real-world data. A learning paradigm with dedicated losses is
a common way to tackle this problem and has been already applied in many
approaches [14]. For instance, Duo et al. [7] propose to learn semantic feature
spaces by incorporating global and local constraints in a supervised method,
while Chen et al. [5] have developed a method for unsupervised domain adapta-
tion by conducting synergistic alignment of both image and features and applied
it to medical image segmentation in bidirectional cross-modality adaptation be-
tween MRI and CT.

Here, we present an AutoEncoder-based Cell Feature Extractor (AE-CFE),
a simple and economic approach for robust feature extraction of single cells. Our
method is based on instance features extracted by a Mask R-CNN [8] architec-
ture that is analyzed by an autoencoder to obtain features of single white blood
cells in digitized blood smears. Since the data is coming from different sites, we
are introducing a domain adaptation loss to reduce domain shifts. Our method is
the first unsupervised two-staged autoencoder approach for cross-domain feature
extraction based on instance features of a Mask R-CNN. It outperforms pub-
lished supervised methods in unseen white blood cell datasets and can thus con-
tribute to the establishment of robust decision support algorithms for diagnosing
hematopoietic malignancies. We made our implementation publicly available at
https://github.com/marrlab/AE-CFE

https://github.com/marrlab/AE-CFE
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Fig. 1. Overview of the proposed AE-CFE method. A Mask R-CNN detects single cells
in images and relevant instance features of the region of interest are extracted. The
autoencoder uses the instance features as input and tries to reconstruct (i) instance
features and (ii) single cell images. Since features are white blood cell specific, the
autoencoder is able to only reconstruct white blood cells and artefacts such as red
blood cells are discarded.

2 Methodology

Our unsupervised feature extraction approach starts with a Mask R-CNN [8]
model trained to detect single white blood cells in scanned patient’s blood
smears. For every detected cell instance-specific features extracted are used for
training an autoencoder. This compresses the input to a latent space represen-
tation, while a two-staged decoder tries to reconstruct (i) the encoded features
and (ii) the single cell images.

Mask R-CNN is commonly used for instance segmentation. The architecture
is based on an underlying feature extractor based on a ResNet-101-FPN [9,10]
backbone. It has two stages: (i) A region proposal network (RPN) suggests can-
didate bounding boxes all over the input image and (ii) different heads of the
architecture perform classification, bounding box regression, and segmentation
locally only on the region of interest (RoI) based on the features that are ex-
tracted for every instance with RoIAlign.

More formally, having an image Ii from dataset Dk,

ri,j , hi,j = fR−CNN(Ii) : ∀Ii ∈ Dk , (1)

where ri,j is the jth single cell image cropped out and, hi,j is its corresponding
features in ith image of the dataset. For simplicity we assume for now there is
only one white blood cell in every image and refer to it with ri and hi in the
rest of this section.

Our desired feature extraction method can be formulated as

z = fenc(hi; θ) , (2)
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Fig. 2. Number of samples in each of the 13 classes for the three datasets used in our
study.

where z is the robust, cross-domain feature vector we get at the bottleneck of
the autoencoder and θ are the parameters learned during the training.

The autoencoder consists of three modules: (i) encoder, (ii) feature decoder,
and (iii) image decoder. All three parts are trained by optimizing

L(θ, γ, ψ) = 1

N

N∑
i=1

(ĥi − hi)2 + 1− SSIM(r̂i, ri) + βLDA , (3)

where ĥi = f featdec (z; γ) is the reconstructed feature vector, r̂i = f img
dec (ĥi;ψ) is

the reconstructed image based on the feature reconstruction, γ and ψ are model
parameters, and N is number of white blood cells in the dataset. LDA is the
domain adaptation loss introduced in section 2.1 regulated by constant coefficient
β. We use the structural similarity index measure (SSIM) [16] to measure the
similarity of the reconstructed image x with the original single cell image y
detected by the Mask R-CNN, defined as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(4)

where µ and σ are the mean and variance of the images and c1, c2 are small
constants for numerical stability.

Group normalization (GN) [17] is applied after each layer in the encoder part
as an alternative to batch normalization that is not dependent on the batch size.
It divides the channels into groups and normalizes the groups with independent
group specific mean and variance. In our experiments GN was effective in image
generalization.
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2.1 Domain adaptation

When images come from different sites, the latent space can be dominated by
a domain shift (see Fig. 4). Domain adaptation with group normalization and
distribution-based maximum mean discrepancy has been shown to align the
latent space representation of different datasets [15]. We use it to adapt the
three datasets, which differ in resolution, size, and color.
With D = {D1, . . . DK} being the datasets we are training on, and a mean
matrix µk and sk as softmax of covariance matrix of the embedded features of
dataset Dk, our loss is defined by

LDA =

K∑
k=1

{MSE(µk, µ0) +
1

2
[DKL(s0||sk) +DKL(sk||s0)]} , (5)

where we calculate mean squared error on the mean matrices and a symmetrized
Kullback-Leibler (KL) divergence of the covariance matrices for all datasets to
bring them closer to the anchor dataset D0. Any other symmetric divergences,
or cosine similarity between the eigenvectors of the covariance matrices would
work for this optimization.

3 Evaluation

3.1 Datasets

We are using three different datasets to evaluate our method:
The Matek-19 dataset consists of over 18,000 annotated white blood cells

from 100 acute myeloid leukaemia patients and 100 patients exhibiting no mor-
phological features from the laboratory of leukemia diagnostics at Munich Uni-
versity Hospital between 2014 and 2017. It is publicly available [12] and there are
15 classes in the dataset. Image dimensions are 400×400 pixels or approximately
29× 29 micrometers.

The INT-20 in-house dataset has around 42,000 images coming from 18
different classes. Images are 288× 288 in pixels or 25× 25 micrometers.

The Acevedo-20 dataset consists of over 17,000 images of individual normal
cells acquired in the core laboratory at the Hospital Clinic of Barcelona published
by Acevedo et al. [1]. There are 8 classes in the dataset and images are 360×363
pixels or 36× 36.3 micrometers.

Since class definitions of the three datasets are different, we asked a medical
expert to categorize different labels into 13 commonly defined classes consist-
ing of: basophil, eosinophil, erythroblast, myeloblast, promyelocyte, myelocyte,
metamyelocyte, neutrophil banded, neutrophil segmented, monocyte, lympho-
cyte typical, lymphocyte atypical, and smudge cells. Figure 2 shows sample dis-
tribution between these 13 classes for different datasets.
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Fig. 3. We are comparing the reconstruction of AE-CFE with an image based autoen-
coder (Image AE). Red blood cells and artifacts surrounding the white blood cells are
eliminated with Mask R-CNN feature extraction.

3.2 Implementation details

Architecture The autoencoder is a fully convolutional network. The encoder
consists of 6 layers, the feature decoder has 3 layers, and the image decoder has
5 layers. All intermediate layers have ReLU activation functions, and outputs of
encoder and feature decoder are regulated by a tanh activation function while
the image decoder has a sigmoid activation function on the output. To extract
richest and least sparse features, we decided to use 50 as the bottleneck size
which is the smallest possible.

Training We performed stratified train and test splits on all datasets keeping
20% of the data for a holdout test set. Training was carried out using an Adam
optimizer for 150 epochs with a learning rate of 0.001 on three NVIDIA A100-
SXM4-40GB GPUs with a total batch size of 1500 (500 on each). The constant
β in equation 3 was set to 5.

Random Forest We used random forest implementation of the scikit-learn
library [4] for all of the experiments. Number of estimators was set to 200 and
maximum tree depth to 16.

3.3 Single cell detection by Mask R-CNN

The Mask R-CNN helps extracting the instance features and eliminate artefacts.
To verify this observation, we trained another autoencoder with a similar number
of layers in the decoder section on single white blood cell images as a baseline.
Figure 3 shows example reconstructions from both methods. The trained au-
toencoder is affected by the noise from surrounding red blood cells way more
than AE-CFE.

The Mask R-CNN model is trained on a small separate dataset of around
1500 images annotated for instance segmentation. The annotation of this dataset
does not require any expertise, as white blood cell shapes are annotated with no



AE-CFE: Unsupervised Cross-Domain Feature Extraction 7
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Fig. 4. UMAP embedding of AE-CFE with and without the domain adaptation loss.
A more uniformly distributed latent representation is achieved after using the domain
adaptation loss.

class information. The Mask R-CNN was trained for 26 epoches reaching a mAP
of 0.89. Analysing a pool of 77,363 images coming from three datasets, 65,693
cells were successfully detected (85%).

3.4 Evaluation

To quantitatively compare the quality of the extracted features by AE-CFE, we
train a random forest (RF) model on the extracted features trying to classify
single white blood cells into one of the 13 defined classes.

Table 1. Comparing the accuracy percentage of a random forest method trained on
our proposed AE-CFE approach with 4 other feature extraction methods as baselines:
ResNet101 trained on ImageNet, features extracted with Mask R-CNN, an autoencoder
trained on instance feature vectors, and an adversarial autoencoder trained on instance
feature vector. Mean and standard deviation of accuracy is reported from 5 training
runs.

Trained on Tested on Reset-RF R-CNN-RF AE-RF AAE-DA AE-CFE

Matek-19
Matek-19 62.5±1.8 60.5±0.8 86.0±0.04 87.5±0.8 83.7±0.5
INT-20 0 0 46.8±0.2 31.4±0.3 48.4±0.2
Acevedo-20 0 0 20.1±0.1 18.6±0.4 21.9±0.4

INT-20
Matek-19 0 0 47.2±3.4 63.9±0.2 73.2±0.1
INT-20 45.2±1.1 46.0±0.4 69.1±0.4 66.8±0.4 65.6±0.5
Acevedo-20 0 0 4.6±0.6 17.7±0.7 31.8±0.4

Acevedo-20
Matek-19 0 0 39.5±1.4 39.4±0.6 45.1±0.5
INT-20 0 0 9.7±0.3 17.7±0.7 21.0±0.5
Acevedo-20 37.1±0.8 35.9±1.1 67.2±0.7 64.3±0.1 65.2±0.5

In all experiments, the RF is trained on one dataset and tested on the test
set of all three datasets. We defined four baselines for our proposed method:
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(i) ResNet-RF: random forest classification of the features extracted with a
ResNet101 [9] architecture trained on ImageNet dataset [6] (ii) R-CNN-RF:
random forest classification of the instance features extracted with our trained
Mask R-CNN architecture (iii) AE-RF: random forest classification of features
extracted by a similar autoencoder trained on all datasets with no domain adap-
tation. (iv) AAE-DA: trained Adversarial domain adaption on features extracted
by a similar autoencoder.

In Table 1 we compare the accuracy of random forest classification of our
method with the baselines and report mean and standard deviation of accuracy
for 5 runs. For two of the baselines (ResNet-RF & R-CNN-RF) cross-domain
evaluations were inaccurate (accuracy close to zero) and random forest was un-
able to classify any sample correctly.

Next, we compare our method with oracle methods specifically trained for
classifying the datasets. Matek et al. [12] have published their ResNext archi-
tecture and trained model weights. We trained a similar ResNext model on each
of the datasets. In Table 2 and supplementary material, we compare these or-
acle methods with RF trained on features extracted with our method. We find
that both of the oracles are failing on the unseen dataset while a random forest
trained on our unsupervised AE-CFE features is performing by far better.

Table 2. Comparing the accuracy percentage of a random forest method trained on our
proposed AE-CFE feature extraction approach with 2 other oracle methods specifically
trained for each of the datasets. Matek et al.’s published method trained on their
dataset, and two ResNext models trained on each of the datasets with a random forest
classifying features of our proposed cross-domain autoencoder. Mean and standard
deviation of accuracy is reported over 5 runs.

Trained on Tested on ResNext Matek et al. AE-CFE

Matek-19
Matek-19 - 96.1 83.7±0.5
INT-20 - 29.5 48.4±0.2
Acevedo-20 - 8.1 21.9±0.4

INT-20
Matek-19 49.0±6.3 - 73.2±0.1
INT-20 88.7±1.5 - 65.6±0.5
Acevedo-20 16.9±1.6 - 31.8±0.4

Acevedo-20
Matek-19 7.3±3.1 - 45.1±0.5
INT-20 8.1±1.4 - 21.0±0.5
Acevedo-20 85.7±2.4 - 65.2±0.5

Finally, we are comparing the UMAP [13] embeddings of all feature vectors of
the white blood cells from the three datasets with and without our domain adap-
tation loss. Figure 4 shows that with domain adaptation not only the RF classi-
fication results improve but also a more uniform latent distribution is achieved,
supporting the results.
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4 Discussion & Conclusion

Artefacts in single cell images can greatly affect the performance of a model
by falsely overfitting on irrelevant features. For example, the surrounding red
blood cells and thus the number of red pixels in images can mislead the model
into categorizing samples based on anemic features (i.e. the density of red blood
cells) rather than the cytomorphological white blood cell properties. This makes
Mask R-CNN an essential element in our design, forcing the algorithm to focus
on the instance features cropped out in the region of interest rather than the
whole image or features in the background. But what if cells in unseen data are
considerably different? The fact that the training dataset for Mask R-CNN was
coming from only one of the three datasets used in our study, 85% detection rate
for single cells in unseen data is surprisingly high, and obviously good enough
for demonstrating the multi-domain applicability of our approach. However, an-
notation of single white blood cells in images from different datasets to train a
better Mask R-CNN is cheap, convenient, and fast and can improve our results
even further.

For classification, the random forest model trained on features extracted by
our approach is not performing as good as oracle models on the source domains,
but its performance in cross-domain scenarios is by far superior. This is partly
due to our domain adaptation loss that forces the latent representations from
different datasets to be as close as possible to each other. The small feature vec-
tors of only 50 dimensions with minimum sparsity allow usage of these features
in many different applications.

Using features from cell nuclei additionally, including the AE-CFE approach
in decision support algorithms, and testing our method in continuous training
scenarios where datasets are added one by one are just some of the exciting di-
rections we plan to follow in the future works. Our promising results support the
quality of cross-domain cell features extracted by AE-CFE and allow expansion
of the developed approaches on new data collected from new sites and hospitals.
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