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Abstract. Light-sheet fluorescence microscopy (LSFM) is a cutting-
edge volumetric imaging technique that allows for three-dimensional
imaging of mesoscopic samples with decoupled illumination and detec-
tion paths. Although the selective excitation scheme of such a micro-
scope provides intrinsic optical sectioning that minimizes out-of-focus
fluorescence background and sample photodamage, it is prone to light ab-
sorption and scattering effects, which results in uneven illumination and
striping artifacts in the images adversely. To tackle this issue, in this pa-
per, we propose a blind stripe artifact removal algorithm in LSFM, called
DeStripe, which combines a self-supervised spatio-spectral graph neural
network with unfolded Hessian prior. Specifically, inspired by the desir-
able properties of Fourier transform in condensing striping information
into isolated values in the frequency domain, DeStripe firstly localizes
the potentially corrupted Fourier coefficients by exploiting the structural
difference between unidirectional stripe artifacts and more isotropic fore-
ground images. Affected Fourier coefficients can then be fed into a graph
neural network for recovery, with a Hessian regularization unrolled to
further ensure structures in the standard image space are well preserved.
Since in realistic, stripe-free LSFM barely exists with a standard image
acquisition protocol, DeStripe is equipped with a Self2Self denoising loss
term, enabling artifact elimination without access to stripe-free ground
truth images. Competitive experimental results demonstrate the efficacy
of DeStripe in recovering corrupted biomarkers in LSFM with both syn-
thetic and real stripe artifacts.
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1 Introduction

Light-sheet Fluorescence Microscopy (LSFM) is a planar illumination technique
that is revolutionizing biology by enabling rapid in toto imaging of entire em-
bryos or organs at subcellular resolution [14,16]. By illuminating the specimen
perpendicular to the detection direction, LSFM excites fluorescence only in a thin
slice (Fig. 1a), which allows for a higher signal-to-noise ratio and better imag-
ing contrast [12]. However, a drawback of such a lateral illumination scheme is
the presence of striped artifacts along the illumination direction in the result-
ing image, caused by the absorption of coherent light within the sample [12,17]
(Fig. 1b). Although several optical solutions, multi-view LSFM for instance [7],
can remove stripes in the source, they are limited by low acquisition rate and
increased photobleaching, rendering them unsuitable for rapid in toto imaging
[12,17,22]. Therefore, computational strategies, which attempt to remove stripe
artifacts after acquisition, are highly attractive.

Inspired by the desirable properties of Fourier transform in condensing strip-
ings into isolated values on x -axis in Fourier space (for vertical stripes in Fig.
1b), one line of model-based destriping studies [11,13] suppresses stripe noises by
constructing a Fourier filter on a transformed domain, e.g., wavelet [13]. How-
ever, filtering-based methods risk removing structural information of the sample
which falls within the same filter band, resulting in image blurring negatively
[18,3]. On the contrary, another line of works treats the destriping issue as an ill-
posed inverse problem in the standard image space, where regularizations, such
as stationary prior on the stripes [5], are commonly adopted to find the optimal
solution [3,4]. However, despite their promising abilities to preserve structural
information such as sharp edges, some strict spatial constraints, e.g., low-rank
assumption for the noise [4], only hold true when the stripes cover the entire
field of view, which is not the case in LSFM imaging [8].

With recent advances in deep learning, emerging structural noise removal
studies put image denoising tasks into a more general framework, where a map-
ping from a corrupted image to its noise-free counterpart is directly learned
by training a generative network on a large dataset of clean/noisy images,
e.g., pix2pix GAN with paired images [10], or cycleGAN on non-paired images
[26]. However, neither clean ground truth images [23], nor an extensive training
dataset [15], is easily accessible in LSFM [17]. Encouragingly, recent develop-
ments in learning self-supervised denoising from single images, Self2Self [1] and
Self2Void [9] for instance, circumvent the acquisition of clean/noisy image pairs
by using the same noisy image as both input and target. For example, Self2Void
proposed to randomly exclude pixels of a noise-corrupted image and optimize the
denoising network only on these blind spots to prevent the model from simply
learning an identical mapping [9]. Unfortunately, their assumption of a limited
size of artifacts, which cannot span more than several connected pixels, is intrin-
sically not applicable to our case of striping artifacts with arbitrary shapes.

To address the aforementioned issues, in this paper, we propose a blind stripe
artifact remover in LSFM, called DeStripe, by using a self-supervised spatio-
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spectral graph neural network with unfolded Hessian prior. The main contribu-
tions of this paper are summarized as follows:
• DeStripe is a unified stripe artifact remover that operates in both spatial

and spectral domains, enabling a complete stripe elimination by using a
deep learning-parameterized Fourier filtering, while also preserving sample
biological structures with an unfolded Hessian-based spatial constraint.

• Unlike previous convolutional image denoising networks, which adopt a U-
net architecture directly in the image space to deal with artifacts spanning
across multiple pixels, we formulate a graph neural network (GNN) in the
spectral domain to recover stripe-affected Fourier coefficients, which is more
efficient due to the isolation of stripes in Fourier space.

• Aided by a Self2Self denoising loss formulation, DeStripe is trained com-
pletely in a self-supervised fashion, allowing blind stripe artifact removal in
LSFM without the need for stripe-free LSFM images.

Fig. 1: An overview of DeStripe (see text for explanation)

2 Methods

We illustrate DeStripe for blind stripe artifact removal in LSFM as a schematic
plot in Fig. 1. First, by assuming that the Fourier projection of structured stripes
is more directional than the sample itself, we locate corrupted Fourier coefficients
within a wedge region in the Fourier space (Fig. 1 b-e). We then feed the affected
Fourier projection into a GNN for recovery, in which the network reconstructs
every noise-related Fourier coefficient based on its uncorrupted neighbors on a
polar coordinate (Fig. 1f). In addition, we unfold a Hessian minimization process



4 Y. Liu et al.

into our graph-based Fourier recovery network via the split Bregman algorithm
(Fig. 1g), to ensure local continuity and preserve sample structure.

2.1 Detecting of Corruption in Fourier Space

Given a LSFM volume Y ∈ RNd×Nh×Nv with total Nd slices of Nh×Nv images,
DeStripe is to recover the underlying stripe-clean volume X from its degraded
observation Y = S � X, where S is the distortion caused by stripes. In Fourier
space, the spectral energy of unidirectional stripes S, which is assumed to be
perpendicular to the edge in LSFM images, is highly condensed in a narrow
wedge-shape frequency band perpendicular to the direction of the stripes [18],
whereas the underlying stripe-clean sample X has no strong direction preference
in its edges (see Fig. 1c). Therefore, for every slice Yk ∈ RNh×Nv , its Fourier
coefficients ỹkij ∈ C, which fall within the same thin concentric annulus Ark,
mathematically follow a two-dimensional Gaussian distribution and in turn lead
to the Rayleigh distribution as the amplitude distribution model [8], except those
stripe-corrupted ones. Therefore, a corruption matrix W ∈ RNd×Nh×Nv (Fig.
1d), whose (k, i, j )-th element wkij = S(‖ỹkij‖) ∈ [0, 1] indicates the degree
of corresponding Fourier coefficient fulfilling the Gaussian distribution, i.e., the
probability of being uncorrupted, is obtained, where S(x) = exp(−x2/2) is the
survival function of a Rayleigh distribution [8], and ‖ỹkij‖ is the magnitude of
ỹkij after whitening. By thresholding W, we derive a binary corruption mask M,
where mi,j,k = 1 indicates the Fourier coefficients being corrupted (Fig. 1e).

2.2 Formulating Stripe Removal as a Deep Unfolding Framework

In order to recover the stripe-clean volume X from its degraded observation
Y = S�X, DeStripe minimizes an energy function as follows:

X = argmin
X

{
‖Y− S�X‖2 + αR(X))

}
(1)

where the data term ‖Y− S�X‖2 maximizes the agreement between the pre-
diction and input degraded image, R(X) is a prior term that enforces desirable
properties on the solution X, and α is a trade-off parameter. In DeStripe, we
adopt split Bregman algorithm [24] to decouple the data term and prior term,
resulting in three sub-problems:

Xk+1 = argmin
X

{
‖Y− S�X‖2 + µ

2

∥∥∥Zk −X− Bk
∥∥∥2} (2a)

Zk+1 = argmin
Z

{
αR(Z) +

µ

2

∥∥∥Z−Xk+1 − Bk
∥∥∥2} (2b)

Bk+1 = Bk +Xk+1 − Zk+1 (2c)

where k = 1, 2, . . . ,K denotes the k -th iteration, Z is introduced for splitting, B
is the Bregman variable, and µ is the Lagrange multiplier. Next, in contrast to
traditional model-based destriping approaches [3,8,18], which derive handcrafted
solutions for each sub-problem in Eq. (2), we propose to:
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• formulate a GNN-parameterized Fourier filtering to solve the data sub-
problem in Eq. (2a), denoted as G(•) yellow bar in Fig. 1g;

• solve the prior sub-problem in Eq. (2b) with the regularizer specified as
Hessian in the image space [24], denoted as H(•) green bar in Fig. 1g;

• adapt Bregman variable in every iteration based on Eq. (2c), denoted as
B(•) purple par in Fig. 1g;

• inherit the hyper-parameter generator in [25] as P(•) to avoid manual pa-
rameter tuning, shown as peach bar in Fig. 1g.

Fig. 2: Structure of (a) k -th G(•), (b) l -th FGNN, and (c) FAtt.

2.3 Graph-Based Fourier Recovery Network G(•)

Inspired by the homogeneous Fourier projection of the sample against directional
one for stripings, sample-only spectral response within the corruption mask M is
modeled as a combination of their uncorrupted neighbors on a polar coordinate.
To this end, we adopt a GNN, which is able to vary the neighborhood size by
constructing the receptive field and is shown in Fig. 2a. Specifically, we firstly
reformulate Fourier projection Ỹ ∈ CNd×Nh×Nv as a graph G = {V,H,A}, where
V is the vertex set with |V| = Nd ×Nh ×Nv nodes, H ∈ C|V|×1 is the node at-
tributes, whose p-th row is the Fourier component ỹkpipjp indexed by node p, and
A ∈ R|V|×|V| is the adjacency matrix, whose (p, q)-th entry indicates connection
from node q to p. According with the isotropic hypothesis that we assume on
the stripe-free X, we define neighboring connections on a polar coordinate:

apq = 1q∈Np
× wkqiqjq , Np =

{
q
∣∣∣q ∈ Arpkp , mkqiqjq = 0, |Np| = N

}
(3)

where Np is the neighboring set of node p, consisting of total N uncorrupted
nodes that are randomly selected from Arpkp of node p. We define the proposed
stripe filtering process, FGNN (Fig. 2b), as a message passing scheme on G:

h(l+1)
p =


0.5

(
h
(l)
p W(l)

1 + (
∑

q∈N (p)

apq × h(l)q W(l)
1 /

∑
q
apq

)
, mkpipjp = 0

h
(l)
p W(l)

2 − (
∑

q∈N (p)

apq × h(l)q W(l)
1 )/

∑
q
apq, mkpipjp = 1

(4)
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where l = 1 . . . , L is the number of layers, h(l)p ∈ C1×Nl is the activation of node p
at the l -th layer. Since corrupted Fourier coefficients are an accumulation of com-
ponents belonging to both stripes and underlying sample, we project sample-only
h
(l)
p (mkpipjp = 0) and stripe-related h(l)p (mkpipjp = 1) by W(l)

1 ∈ CNl×N(l+1) and
W(l)

2 ∈ CNl×N(l+1) separately. Note that we borrow the design of complex-valued
building blocks from [20] for W(l)

1 and W(l)
2 , which simulates complex arithmetic

using two real-valued entities. Additionally, we insert a frequency-aware self-
attention unit [21], called FAtt (Fig. 2c), between every two successive FGNN,
which encodes recovery importance by taking not only the Fourier coefficients
but also corresponding frequencies into account. As a result, the sample-only
spectral response is explicitly modeled as a weighted combination of its uncor-
rupted neighbors on a polar coordinate. Moreover, stripe-only Fourier projection
is exclusively reserved as activation M � H(L+1), which can then be subtracted
from the input stripe-sample mixture for striping removal.

2.4 Unfolded Hessian Prior for Structure Preservation H(•)

By specifying regularizer R(X) in Eq. (2b) as a Hessian prior in the image space:

RHessian(X) = λx‖Xxx‖1 + λy‖Xyy‖1 + λz‖Xzz‖1
+ 2
√
λxλy‖Xxy‖1 + 2

√
λxλz‖Xxz‖1 + 2

√
λyλz‖Xyz‖1

(5)

where λx, λy and λz are the penalty parameters of continuity along x, y and z
axes, respectively, Xi denotes the second-order partial derivative of X in different
directions. Eq. (5) then has solution as:

Zk+1
i = shrink(λiXk+1

i + Bki ,
α

µ
) (6)

where λi = λx, λy, λz, 2
√
λxλy, 2

√
λxλz, 2

√
λyλz for i = xx, yy, zz, xy, xz, yz,

and shrink(•) is the scalar shrinkage operator [24].

2.5 Self2Self Denoising Loss Formulation

We propose to train learnable parameters Θ in DeStripe via a self-supervised
denoising scheme, where training targets are still stripe-corrupted volume Y:

Θ = argmin
Θ

‖Y−X‖2 + β

Nd∑
k = 1

∑
r

∑
x̃∈Pr

k

∥∥∥∥∥∥‖x̃‖ − 1

|Qrk|
∑
z̃∈Qr

k

‖z̃‖

∥∥∥∥∥∥
2
 (7)

where mean square error ‖Y−X‖2 is adopted to encourage the agreement be-
tween prediction X and input image Y in the image space. Particularly, the
second term in Eq. (7) is to prevent the model from learning an identical map-
ping by quantifying isotropic properties of recovered X̃ in Fourier space, where
Prk is the corrupted subset of Ark, and Qrk = {x̃ |x̃ ∈ Ark, x̃ /∈ Prk }.
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2.6 Competitive Methods

We compare DeStripe to five baseline methods: (i) wavelet-FFT [13]: a Fourier
filter-based destriping method in wavelet space; (ii) variational stationary noise
remover (VSNR) [5]: a Bayesian-based restoration framework in image space;
(iii) filling the wedge [18]: a total variation model-based Fourier recovery ap-
proach for stripe artifacts removal; (iv) strip the stripes [8]: a Fourier reconstruc-
tion method using sparsity of the image gradient and longitudinal smoothness
of the stripes for spatial constraint; (v) SN2V [2]: a self-supervised deep learning
network, which enables removal of structured noise by using a structured blind
spots scheme; and two DeStripe variations: (vi) DeStripe G(•) only: constructed
by removing the Hessian prior H(•) to disable spatial constraints; (vii) DeStripe
H(•) only: formulated by replacing G(•) with a plain U-Net in the image space,
regardless of the isolation of stripes in Fourier domain.

Fig. 3: Visualization of stripe-removal quality with respect to ground-truth.

3 Results and Discussion

3.1 Evaluation on LSFM images with synthetic stripe artifact

We firstly evaluate DeStripe in removing synthetic stripes. As stated in the In-
troduction, there is no stripe-free LSFM with the conventional parallel light
illumination. Yet special image acquisition protocol, such as diffused light-sheet
microscopy, could illuminate the blind spots and alleviate stripe artifacts in the
source [19]. Here we take a diffused LSFM volume collected in [19], add sim-
ulated stripes following [8] for thirty times, perform DeStripe and other stripe
removal methods, and compare the restored images to the original artifact-free
ground truth. DeStripe’s reconstruction achieves the best peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM), far surpassing other ap-
proaches (Table.1, p<0.001 using Wilcoxon signed-rank test). It is worth noting
that a SSIM of 0.98 suggests an almost flawless reconstruction by DeStripe. In
comparison, wavelet-FFT, VSNR, and strip the stripes could distort the original
signal gradient when removing the stripe artifacts (Fig. 3). Filling the wedge
and SN2V, on the other hand, has residual stripes after correction (see enlarged
image details). Only DeStripe resolves stripes without affecting original image
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details. Additionally, we perform an ablation study to assess individual com-
ponents of DeStripe, H(•) and G(•). We discover that they complement one
another and contribute to the overall outstanding performance.

Table 1: DeStripe achieves best quantitative results on synthetic stripes.

wavelet-
FFT[13]

VSNR
[5]

filling the
wedge[18]

strip the
stripes[8]

SN2V
[2]

DeStripe
H(•) only

DeStripe
G(•) only DeStripe

PSNR 24.25
±0.77

19.23
±0.76

31.74
±1.74

26.13
±1.56

20.22
±0.83

24.24
±0.78

31.18
±2.08

36.34
±1.19

SSIM 0.87
±0.02

0.74
±0.03

0.93
±0.01

0.87
±0.01

0.73
±0.03

0.89
±0.02

0.92
±0.02 . 0.98

±0.01

Fig. 4: Visualization of stripe-removal quality in real scenario.

3.2 Evaluation on LSFM images with real stripe artifact

DeStripe is further evaluated on real stripes in LSFM against filling the
wedge [18], the baseline that achieves the best performance on synthetic data.
Two large sample volumes, mouse heart (100x1484x1136) and zebrafish brain
(50x2169x1926), both with a resolution of 1.06 um in x, y and 10 um in z axi-
ally, were optically cleared and imaged using a light sheet microscope. A multi-
channel coherent laser source (Omicron Sole-6) was collimated and expanded
to achieve the required light sheet size for the ca. 3 mm x 5 mm field of view
and 15 um sheet waist for optical sectioning (see [6] for detailed image acquisi-
tion protocol). As shown in Fig. 4a, although filling the wedge can erase most
of the quasi-periodic stripes, it also distorts the original image, e.g., causing a
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fake signal to appear in the formerly dark region (red box). Moreover, filling
the wedge cannot resolve aperiodic thick stripes (residual stripes remain after
correction, Fig. 4b). DeStripe, on the other hand, resolves both types of stripe
while preserving the original image details.

4 Conclusion

In this paper, we propose DeStripe, a self-supervised spatio-spectral graph neu-
ral network with unfolded Hessian prior, to remove stripe artifacts in light-
sheet fluorescence microscopy images. DeStripe is trained completely in a self-
supervised manner, with the stripe-corrupted image serving both network input
and target, obviating the need for a stripe-free LSFM for network training. Fur-
thermore, by combing data-driven Fourier filtering in soectral domain with a
Hessian-based spatial constraint, DeStripe can localize and filter isolated stripe-
corrupted Fourier coefficients while better preserving sample biological struc-
tures. Both qualitative and quantitative evaluations show that DeStripe sur-
passes other state-of-the-art LSFM stripe removal methods by a large margin.
DeStripe code will be made accessible for biologists for academic usage.
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