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A B S T R A C T   

The existence of N6-adenosine methylation (m6A) of mRNA has been known for a long time, but only recently its 
regulatory potential was uncovered. Current research deciphers the molecular determinants leading to the 
deposition of this modification and consequences for modified mRNAs. It also evaluates the importance of such 
modifications for specific cell types and programs. In this review, we summarize the current knowledge on m6A 
modification of mRNAs in conventional and regulatory T cells and T-cell-driven immune responses and pa-
thology. We discuss the impact of m6A modification on T cell activation including cytokine and antigen receptor 
signaling or sensing of double-stranded RNAs (dsRNA).   

1. Introduction 

Several molecular mechanisms contribute to post-transcriptional 
regulation of gene expression in eukaryotic cells. These mechanisms of 
regulation can alter cell fate either through an impact on a broad range 
of target mRNAs or through very specific ones. For example, 3′ un-
translated region (3'-UTR) shortening via alternative polyadenylation 
and alternative splicing of pre-mRNA may change the expression or 
activity of a plethora of targets at the same time [1,2]. In contrast, RNA- 
binding proteins (RBPs) and miRNAs may also regulate only few 
expressed mRNAs by recognizing specific mRNA-encoded cis-elements 
and selectively changing their stability or efficiency of translation [3,4]. 

2. Epitranscriptomics 

In recent years, chemical modification of mRNA has been in the 
limelight as a new post-transcriptional mechanism of gene regulation. 
Studies over the past few years in this new field called “epitran-
scriptomics” have shown that N6-methyladenosine (m6A), which is the 
most prevalent modification in mRNAs, controls splicing, mRNA sta-
bility and translation [5]. On the one hand m6A modification can alter 
the ability of mRNAs to adopt specific secondary structures, since the 
modification itself interferes with base pairing [6–8]. On the other hand, 
it is clear that m6A creates unique binding sites on mRNAs for specific 
trans-acting factors i.e. the m6A-binding proteins [9,10]. Currently, 

several m6A-binding proteins have been identified and specific functions 
of different m6A-binding proteins become apparent, however contro-
versies remain. In each cell type and activation state we need to consider 
a unique regulatory network defined by the expressed mRNAs, deposi-
tion of m6A marks and expression of m6A-binding proteins. Here, we 
focus on the emerging prominent role of m6A in T cells discussing cur-
rent findings as well as challenges. 

2.1. m6A writers 

The m6A modification occurs in the nucleus, where m6A marks are 
deposited on pre-mRNAs co-transcriptionally [11,12]. It is catalyzed by 
a methyltransferase complex of METTL3 and METTL14 proteins [13], 
which further includes the Wilms tumor 1 associated protein (WTAP) 
[14], RNA binding protein 15 (RBM15/15B) [15], KIAA1429 (VIRMA) 
[16], ZC3H13 [15] and HAKAI [17] (Fig. 1). WTAP and ZC3H13 are 
required for the activity and nuclear localization of the m6A methyl-
transferase complex [13,15]. VIRMA and RBM15/RBM15B are similarly 
part of the complex and also essential for efficient m6A modification of 
mRNAs [16]. Although METTL3, as a METTL3/METTL14 heterodimer, 
is the only component with catalytic activity [18,19], it is so far unclear 
how the other components enable or direct the METTL3-contained ac-
tivity within the multiprotein complex. The modification occurs on 
selected mRNAs often positioned in a DRACH motif (D = G/A/U, R = G/ 
A, H = A/U/C) [20]. The modification is enriched at the stop codon or at 
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the 5′ end of the terminal exons that often contain the stop codon [21]. 
Despite many potential DRACH motifs in most transcripts, the deposi-
tion of m6A is selective for some mRNAs. It is so far believed that most 
modified mRNAs contain few m6A modified sites which may be clus-
tered, and only some mRNAs contain many [20,22]. Recent research 
revealed that deposition of m6A in a context of ACA motifs is primarily 
explained by the extended sequence surrounding the modified site [23]. 
Despite great progress investigating this molecular program, the criteria 
by which specific sites are selected for m6A modification are still not 
understood. 

PCIF1 is yet another m6A methyltransferase that produce N6,2′-O- 
dimethyladenosine (m6Am) [24,25]. Importantly, m6A modifications 
detected by m6A-specific antibodies in the 5'-UTR of mRNAs often reflect 
m6Am modifications because this modification is frequently found at the 
first transcribed nucleotide of mRNAs adjacent to the m7G cap [26]. 

It is currently unclear how individual component of the methyl-
transferase complex respond to external signals, and how components of 
the complex are expressed or regulated in different cell types and during 
activation and differentiation of cells. Furthermore, it is unsolved 
whether and how regulation impacts on the activity of the complex 
causing differential activity or differential m6A methylation of specific 
sites and targets. A recent analysis revealed that METTL3 and WTAP are 
phosphorylated by ERK [27], and suggested that the ERK-METTL3/ 
WTAP signaling axis promotes stem cell differentiation and tumori-
genesis. SUMOylation of METTL3 has also been detected and was shown 
to influence tumor growth in a cancer cell line [28]. However, many 
aspects of post-translational modification and regulation of writer pro-
teins remain to be elucidated. 

2.2. m6A readers 

Once the nuclear pre-mRNAs or nuclear mRNAs are m6A-modified, 
these marks can be recognized by reader proteins. Prototypic m6A 
reader proteins contain a YTH domain, which are specialized to directly 
bind to m6A. Alternatively, m6A changes the mRNA structure, which, by 
altering accessibility, can facilitate or impair interactions of other RNA- 
binding proteins. There are five YTH domain–containing proteins 
encoded in the mammalian genome. The YTHDF1, YTHDF2, and 
YTHDF3 paralogs are localized in the cytoplasm and share a highly 
conserved YTH domain as their only recognizable domain mediating 
interactions with m6A-modified mRNA targets. Initial studies 

discriminated different regulatory functions and different targets for 
these proteins. YTHDF2 selectively induced mRNA decay [9,29], 
YTHDF1 enhanced translation through binding to the eukaryotic 
translation initiation factor eIF3 [30], and YTHDF3 promoted protein 
synthesis in synergy with YTHDF1, whereas the protein also affected 
mRNA decay by cooperation with YTHDF2 [31,32]. However, a more 
recent study demonstrated overlapping binding characteristics and 
redundant functions for all three YTHDF1, YTHDF2, YTHDF3 proteins 
[33]. Interestingly, upon heat-shock stress, YTHDF2 was shown to 
translocate into the nucleus to prevent mRNA demethylation [34]. 
Contrasting these findings, a subsequent study was unable to recapitu-
late relocalization to the nucleus of YTHDF2 in response to heat-shock 
[35]. Apparently, all three YTHDF proteins which comprise extended 
regions of low-complexity undergo liquid-liquid phase separation in 
vitro as well as in cells, which is enhanced by mRNAs containing mul-
tiple m6A residues. Furthermore, the YTHDF–complex formation with 
mRNA is required to partition into P-bodies or stress granules [35]. In 
addition to the direct m6A-binding reader proteins, several other RNA- 
binding proteins can be indirectly recruited to m6A sites. IGF2BP1, 
IGF2BP2 and IGF2BP3 paralogs, which enhance mRNA stability, show 
themselves weak binding affinities for m6A containing RNA [36,37]. 
However, these IGF2BP1-3 proteins can interact with YTHDF proteins, 
as determined by proximity-labeling of proteins [38]. 

YTHDC1, alternative name YT521-B, is localized in the nucleus and 
linked to the regulation of mRNA splicing and nuclear export of mRNAs 
[39,40]. The nuclear localization and splicing functions of YTHDC1 
were found to be regulated by tyrosine phosphorylation [41]. YTHDC1 
was also shown to promote exon inclusion of target mRNAs by binding 
to SRSF3, thereby outcompeting SRSF10 binding to the mRNAs. How-
ever, several other studies attributed a smaller role of m6A-dependent 
YTHDC1-mediated regulation to splicing [42,43]. Unexpectedly, 
YTHDC1 contributed to epigenetic regulation of gene expression medi-
ated by histone modification. As shown in a recent study, YTHDC1 co- 
transcriptionally alters the chromatin via H3K9me2 demethylation by 
recruiting KDM3B [44]. YTHDC1 is also required for Xist noncoding 
RNA-mediated inactivation of the X chromosome, which might be ach-
ieved by recruitment of transcriptional silencing proteins or interactions 
with Polycomb repressive complex 1 (PRC1) and 2 (PRC2) [45]. 

YTHDC2, unlike the other ubiquitously expressed YTH-domain 
containing proteins, is highly expressed only in testes and YTHDC2 
knockout mice show defects mainly in spermatogenesis [46,47]. 
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Fig. 1. m6A methylation of mRNAs 
and regulatory mechanisms involving 
m6A binding proteins. 
Schematic representation showing 
how m6A methylation of mRNAs is co- 
transcriptionally deposited, which is 
mediated by the methyltransferase 
complex. In this complex METTL3 and 
METTL14 form a heterodimer, which 
further include the accessory proteins, 
WTAP, RBM15/RBM15B, VIRMA, 
ZC3H13 and HAKAI. ALKBH5 is the 
nuclear eraser protein that can remove 
m6A marks from mRNAs. In nucleus, 
the reader proteins, HNRNPs and 
YTHDC1, can change gene expression 
through splicing, histone modification 
or export of mRNAs to cytoplasm. 
Cytoplasmic reader proteins YTHDF 
family member can induce degrada-
tion of mRNAs or regulate translation 
efficiency, whereas IGF2BP family 
members can affect stabilization of 
mRNAs. YTHDF1, YTHDF3 and 
IGF2BP family members can poten-

tially modulate translation.   
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Compared to the other YTH domain containing proteins, the m6A- 
binding affinity of YTHDC2 has been shown to be lower [48]. Further 
experiments seem to be required to fully establish the molecular func-
tion of YTHDC2. 

m6A unfolds secondary structures and provides increased accessi-
bility for HNRNPC, HNRNPG and HNRNPA2B1 to binding sites that are 
found near to m6A sites [6–8]. Although these proteins were reported to 
contribute to pre-miRNA processing and splicing, the functional 
importance of this structure/switch model remains to be determined. 

Overall it has not been solved yet how these reader proteins can 
discriminate between targets and whether or which protein/protein 
interactions contribute to target recognition or enable them to either 
trigger different post-transcriptional or epigenetic mechanisms of gene 
regulation. 

2.3. m6A erasers 

There are two enzymes in mammalian cells, FTO and ALKBH5, that 
can erase m6A marks which has been established through measurement 
of in vitro demethylating activity [49,50]. ALKBH5 showed higher af-
finity and processivity for m6A, while FTO appeared to be less efficient 
on m6A instead more selective to demethylate N6,2′-O-dimethyladeno-
sine (m6Am). This suggests that ALKBH5 may be a physiologic m6A 
demethylase for the internal m6A modifications in mRNAs [51]. How-
ever, the extent to which demethylation of mRNAs by ALKBH5 during 
the short residence time of methylated mRNAs in the nucleus creates a 
dynamic methylated transcriptome and alters expression of specific 
genes is currently unclear. 

3. Importance of m6A modification in T cells 

A few reports have already investigated the impact of the m6A system 
in T cells, mainly focusing on mouse loss–of–function models of writer 
proteins, including Mettl3, Mettl14, Wtap and Virma, in which they 
studied T cell activation, regulation, differentiation and survival. In this 
section we will review the emerging m6A functions in T cell biology and 
underlying molecular mechanisms and discuss how they shape T cell- 
mediated immune responses. 

4. Loss of m6A causes aberrant T cell functions and T cell-driven 
pathology 

Several studies have demonstrated that m6A depletion by genetic 
inactivation of Mettl352, Mettl1453 or Wtap54 specifically in regulatory T 

cells (Treg) causes systemic autoinflammatory disease and colitis. Under 
normal conditions, inflammation of the colon is prevented through a 
tight balance in which conventional CD4+ T cells that are reactive to 
microbial antigens of the gut are suppressed by Treg cells. However, 
once an imbalance allows the conventional T cells to become more 
activated, the production and release of inflammatory cytokines occurs 
and colitis can develop (Fig. 2). An early report suggested that m6A 
mRNA methylation may sustain suppressive functions of Treg cells 
through destabilization of mRNAs encoding for Socs gene family mem-
bers, including Cish, Socs1, Socs3, Asb2 [52], which were marked by 
m6A [55]. In this mechanistic explanation the elevated expression of 
Socs family proteins after Mettl3 depletion inhibits the interleukin (IL)- 
2/STAT5 signaling pathway, which weakens Treg cell functions as these 
strongly depend on IL-2 signaling. Interestingly, the very same molec-
ular mechanism served as explanation for the reported observation that 
Mettl3-deficient conventional T cells appeared to be locked into a naive 
state [55], although the activation of conventional T cells is much less 
cytokine-dependent. 

Also mice lacking Mettl14 [53] or Wtap [54] in all CD4+ T cells 
develop autoinflammation and colitis at young age. Interestingly, these 
mice exhibit a reduced abundance of induced Treg cells in the gut, which 
are defined by Rorγt+Helios− marker expression and are critical players 
in the prevention of gut inflammation. Accordingly, these mice showed 
spontaneous activation of the conventional CD4+ T cells (Fig. 2). These 
results underscore the importance of m6A for Treg cell function and their 
ability to suppress the activation of conventional T cells. 

The development of colitis requires the combination of reduced Treg 
cell function and the ability of conventional CD4+ T cells to become 
activated in peripheral tissues, since colitis is caused by activated con-
ventional CD4+ T cells [56]. It was therefore unclear how conventional 
CD4+ T cells lacking m6A modifications could contribute to the colitis 
phenotype, when the methyltransferase complex components were 
conditionally inactivated in regulatory as well as conventional T cells, 
since the mentioned results suggested a functional inactivation of both 
cell types at the same time [55]. This question has been puzzling re-
searchers, and is still not entirely solved, since conventional T cells are 
strongly affected by m6A deficiency and cannot be easily studied in 
experimental disease models [55,57]. 

Importantly, in the short term, the transfer of the Mettl3-knockout 
CD4+CD45Rbhi T cells into Rag2-deficient mice was not able to cause 
colitis because the few cells that could be re-isolated from these lym-
phopenic hosts still exhibited the CD45Rbhi phenotype, which was 
interpreted as an impairment to become activated [55]. Based on this 
absence of activated T cells after adoptive transfer into lymphopenic 
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Fig. 2. m6A is required for the balance of conventional T cells and Treg cells and in the prevention an inflammation and colitis. 
Under normal conditions, gene regulation through m6A in Treg cells is required for the prevention of an inflammation. m6A depletion in Treg cells impairs their 
suppressive function and the peripheral differentiation of induced Treg cells (iTreg) in the gut, thereby causing an inflammation and colitis. Conversely, m6A 
depletion in peripheral T cells causes activation of conventional T cells and TCR-activation induced cell death. 
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hosts and an increase in frequencies of naive T cells at steady state in 
mice lacking Mettl3 expression in peripheral T cells, the early work 
concluded that there was a block of activation in conventional CD4+ T 
cells. However, the quantification of naive T cells lacking m6A marks is 
complicated due to an apparent downregulation of the CD44 marker 
only in CD62hi T cells in the secondary lymphoid organs, which can be 
seen in the published analyses [54,55]. 

Most recently, our group has provided evidence that m6A has a 
crucial role in antigen receptor (TCR) signaling and survival of T cells 
[54]. Furthermore, works from other groups showed an importance of 
m6A for follicular helper T cell (TFH) differentiation [58,59]. In these 
studies of mice with m6A-depletion, either caused by Wtap- or Mettl3- 
deficiency in peripheral T cells, the conventional CD4+ T cells became 
activated upon TCR stimulation, while their differentiation and survival 
was severely impaired [54,58]. In contrast, another study shows that 
shRNA-mediated depletion of METTL3 or METTL14 in SMARTA TCR 
transgenic CD4+ T cells enhances TFH development when these cells are 
adoptively transferred into B6 host mice followed by LCMV infection 
[59]. This difference in phenotype may relate to the different experi-
mental systems by ablating or reducing the targets at different devel-
opmental stages in a conditional knockout mouse model or in an shRNA 
knockdown approach. Indeed, for Wtap-deficient T cells evidence was 
presented that the m6A methyltransferase complex is dispensable for the 
persistence of naive T cells but becomes essential for the survival of 
activated T cells stimulated through their TCR. 

A major question was why m6A-depleted CD4+ T cells do not expand 
after adoptive transfers into Rag-deficient mice? In these lymphopenic 
hosts adoptively transferred T cells exhibit two distinct proliferation 

patterns, one pool of cells shows slow homeostatic expansion in response 
to IL-7 and the other one proliferates fast and progressively after TCR- 
dependent recognition of microbial antigens in the gut [60]. 
Proliferation-dye-labelled transfers of wild-type and Wtap-deficient 
CD4+ T cells into Rag1-KO mice showed that both populations of 
proliferating cells, either induced by IL-7 or TCR signaling, were present 
and even displayed equal numbers of cell divisions for m6A-sufficient 
and deficient T cells. Unexpectedly, the IL-7 induced proliferating cells 
were not reduced for the Wtap-knockout genotype. Instead these mice 
showed a strongly diminished pool of cells responding to TCR signaling. 
Further experiments led to the interpretation that TCR signaling in 
Wtap-deficient T cells caused strong activation induced death. For 
example, T cell activation by anti-CD3/anti-CD28 antibodies caused cell 
death of Wtap-deficient CD4+ T cells, although neither Wtap nor Mettl3 
depletion exerted a strong impact on proliferation. Consistently, the cell 
numbers of Mettl3-depleted CD4+ T cells expressing SMARTA TCR 
transgene were shown to be decreased upon lymphocytic choriome-
ningitis virus (LCMV) infection [58]. These data suggest a role for m6A 
in TCR signaling and activation-induced cell death. Of note, there is the 
difficulty to detect dead cells in vivo, since these are rapidly cleared by 
macrophages. Nevertheless, the m6A-depleted CD4+ T cells persist as 
naive cells, respond to IL-7, are initially able to proliferate upon TCR 
stimulation, but eventually die and disappear. In conclusion, the limited 
life-span and too low frequency is therefore one possible explanation for 
the failure of a single adoptive transfer of m6A-deficient CD4+ T cells 
into lymphopenic hosts to recapitulate the colitis observed in adult mice 
with genetic inactivation of m6A methyltransferase complex compo-
nents in all T cells. 
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Fig. 3. m6A mediated regulation of TCR and cytokine signaling. 
Schematic representation of m6A regulated signaling pathways in T cells. Upon TCR stimulation Ca2+ release from the endoplasmic reticulum induces the activation 
of stromal interaction molecules (STIM), which in turn activates ORAI1, the main plasma membrane channel for Ca2+ influx into lymphocytes. Uptake of extra-
cellular Ca2+ ultimately induces gene expression of cytokines and FasL. In the humoral context of the T cell TNF tumor necrosis factor (TNF) binds to the tumor 
necrosis factor receptor superfamily (TNFRSF) and leads to the assembly of the TNFR-associated signaling complexes. This complex triggers the activation of MAPK/ 
AP1 and NF-κB cascade, which regulates gene expression of genes involved in inflammation and survival. Dynamic changes of TNFR-associated signaling complexes, 
including Ripk1, Ripk3 and Caspase-8, can trigger a switch from inflammation and survival to cell death via apoptosis or necroptosis. Additional cytokine signals 
from IL-7 or IL-2 by binding to the cytokine receptors, IL-7R or IL-2R, result in dimerization of the receptors and activation of Janus kinases (JAKs), which in turn 
phosphorylate signal transducer and activator of transcription proteins (STATs). The induced translocation of STATs to the nucleus initiates the transcription of target 
genes. Suppressor of cytokine signaling (SOCS) family proteins can inhibit the activation of JAK. Inhibitory (blunt) arrows indicate that transcripts encoding for 
Orai1, Ripk1, Tnfα, Tnfr-II and SOCS proteins are m6A-modified, suggesting a reduced expression and impaired function. 
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5. m6A-regulated gene expression in T cells 

T cell differentiation, effector function and survival depend on 
regulated gene expression, which is induced due to T cell activation via 
the antigen receptor and cytokine receptors. These pathways involve 
mitogen-activated protein kinase MAPK/AP1, NF-κB and Ca2+/NFAT or 
JAK-STAT signaling cascades, respectively (Fig. 3) [61]. Several of these 
signaling pathways have already been shown to be regulated by m6A 
modification. mRNA-sequencing of Mettl3- or Wtap-depleted CD4+ T 
cells showed an enrichment of cytokine, TCR, MAPK and NF-κB 
signaling GO terms [54,55,58]. In Mettl3- or Wtap-depleted T cells, 
Stat5 phosphorylation after IL-7 stimulation was reduced. This impair-
ment correlated with upregulation of inhibitors of cytokine signaling, 
the m6A-modified Socs gene family member mRNAs Cish, Socs1 and 
Socs3 (Fig. 3) [55]. However, this inhibition did not significantly impact 
on IL-7 induced proliferation in vitro or in vivo54. In addition, phos-
phorylation of ERK and NF-κB was upregulated in the Mettl3-depleted 
CD4+ T cells [55]. Wtap depletion in CD4+ T cells enhanced and sus-
tained Ca2+ signaling when the cells were stimulated through their TCR 
or different pharmacologic stimuli that cause store-operated calcium 
entry (SOCE) [54]. Importantly the transcript encoding for Orai1, the 
main plasma membrane channel for Ca2+ influx in lymphocytes was 
m6A-modified and stabilized, resulting in upregulation of the protein 
expression upon ablation of Wtap (Fig. 3). Overload of Ca2+ influx can 
lead to cell death [62], while ORAI1 deficiency in CD4+ T cells showed 
reduced activation-induced cell death (AICD) and increased survival 
[63]. Wtap depletion changes the phosphorylation status of NFAT and 
CREB downstream of Ca2+ signaling, and induces expression of tran-
scription factors of Egr family members and c-Fos. Ultimately the 
elevated Ca2+/NFAT/Egr activation in CD4+ T cells with Wtap depletion 
correlated with increased FasL expression after anti-CD3/anti-CD28 
stimulation. Indeed Egr2 and/or Egr3 were shown to directly induce 
expression of SOCS1 and SOCS3 [64], suggesting a Ca2+-dependent in-
direct contribution to the increased expression of SOCS genes, which are 
also m6A-modified [55]. Although the increased FasL may be respon-
sible for causing AICD, an apoptosis inhibitor could not rescue the sur-
vival of Wtap-depletion CD4+ T cells. This pointed at alternative 
pathways contributing to cell death in TCR–stimulated Wtap-depleted 
CD4+ T cells. 

Ripk1 is a key mediator of cell death and inflammation, which is 
activated through TNF-TNFR signaling (Fig. 3) [65]. While Ripk1 
functions as a scaffold protein to induce NF-κB signaling, it can also 
trigger either apoptosis or necroptosis depending on Caspase-8 activity 
[66]. The mRNAs encoding for Ripk1, Tnfα and Tnfr-II (Tnfrsf1b) are 
m6A-modified and Ripk1 expression is upregulated after Wtap depletion 
in CD4+ T cells [54], which correlated with enhanced activation of NF- 
κB in Mettl3-depleted CD4+ T cells [55]. On the other hand, a specific 
inhibitor of Ripk1 (Nec-1) partially rescued cell death of TCR-stimulated 
Wtap-deficient CD4+ T cells. Importantly, combinatorial treatment with 
an apoptosis inhibitor (zVAD-fmk) and Nec-1 synergized to increase 
viability of Wtap-deficient CD4+ T cells. Moreover, overexpression of 
Ripk1 and Orai1 reduced the viability of T cells in the context of TCR 
stimulation [54]. These findings suggest that m6A ablation invokes AICD 
which results from dysregulated signaling pathways that are related to 
the upregulation of Orai1 and Ripk1. How these and other m6A targets 
work together in the control of T cell biology requires much further 
investigation. However, these findings already highlight a decisive role 
of m6A in the TCR response. 

Interestingly, GO terms of anti-viral, innate immune response and 
response to interferon (IFN)-β are also appreciably enriched in the 
upregulated genes when m6A-mediated regulation is disrupted [54,58]. 
It has also become clear that cells of the adaptive immune system also 
have sensing functions for pathogen-associated molecular patterns 
which have been more intensively studied in innate immune cells. For 
example, MDA5 [67] or LGP2 [68] deficiency is associated with func-
tional defects in CD8+ T cells, resulting in a failure to clear West Nile 

virus. TCR stimulation of CD4+ T cells increases TLR-3 expression and 
treatment of CD4+ T cells with the dsRNA synthetic analog poly(I:C) 
activates NF-κB signaling [69]. These evidences suggest that dsRNA can 
be sensed by T cells, and dsRNAs often accumulate during viral infection 
as a result of viral RNA replication. Several studies have reported that 
viral infection triggers a massive increase in m6A in both host and viral 
mRNAs [70,71]. Indeed infection with the RNA virus Vesicular Stoma-
titis Virus (VSV) has been shown to increase m6A modification in virus- 
derived transcripts and decrease viral dsRNA formation [72]. Genetic 
ablation of METTL3 in monocytes or hepatocytes causes enhanced type I 
IFN expression and accelerates VSV clearance. A recent study shows a 
role of m6A modification in the prevention of aberrant endogenous 
dsRNA formation [73]. Loss of METTL3 activated innate immune re-
sponses that were mediated through endogenous RNAs engaging in 
extensive base-pairing and dsRNA formation, which was partially 
rescued by Mavs and RNaseI inactivation. These findings suggest that 
m6A modification in general counteracts the ability of cellular RNAs to 
form endogenous dsRNAs, which is essential to prevent spontaneous and 
deleterious innate immune responses. It will be interesting to investigate 
whether or to which extent endogenous dsRNAs sensing and the acti-
vation of innate signaling contributes to physiologic T cell responses and 
effector functions. 

Altogether, the current data sets have revealed an involvement of 
m6A in TCR, cytokine and innate immune pathways, and their coin-
ciding deregulation profoundly alters T cell biology. Future studies with 
selective targeting of specific reader proteins or m6A-regulated cis-ele-
ments are now required to dissect how m6A impacts on individual tar-
gets and pathways to control specific T cell fate decisions. 

6. Concluding remarks 

In recent years, the field of epitranscriptomic has been advancing at 
an enormous speed, and already several studies have reported the 
importance of m6A in T cells. However, current concepts and regulatory 
mechanisms are still immature and require further confirmation, 
adjustment or clarification. 

One very important question that has already been answered for 
CD4+ T cells is: Where are m6A modifications positioned on the cellular 
transcripts? This issue has been addressed via m6A RNA- 
immunoprecipitation or m6A antibody crosslink to mRNA in vitro or 
Ythdf2 protein crosslink to RNA in cells, combined with immunopre-
cipitation and RNA sequencing. Bioinformatic analyses revealed a good 
overlap for the identified targets, and the binding sites have been 
defined at near-nucleotide resolution. These data now serve as a valu-
able resource to inspire new hypotheses and uncover important post- 
transcriptional regulation. 

Similar to studying the function of miRNAs by blunting their entire 
biogenesis via genetic inactivation of Dicer in T cells [74], the inacti-
vation of m6A writer complex components yields in strong and com-
pound effects. Future analyses need to deconvolute contributions from 
specific mRNAs, readers and regulatory mechanisms. 

Future research should also solve controversies and open questions: 
Why does the targeting of different writer complex components agree on 
many phenotypes and targets, but also display inconsistent or even 
opposite phenotypes. For example, why is Cd4-cre–mediated inactiva-
tion of Mettl3 not leading to the profound spontaneous activation of 
CD4+ and CD8+ T cells, as observed for the comparable genetic inacti-
vation of Wtap or Virma. Can these differences be explained by different 
deletion efficiencies and residual m6A levels? 

A recent study also involved a role for the m6A eraser protein Alkbh5 
in αβ and γδT cells [75,76]. Genetic deletion of Alkbh5 rendered CD4+ T 
cells unable to cause colitis and mice with Alkbh5 deficiency in T cells or 
lymphocytes were resistant to experimental induction of autoimmune 
encephalomyelitis or gastrointestinal Salmonella typhimurium infection, 
respectively. Alkbh5 deficiency in T cells was shown to affect the 
homing of CD4+ T cells as well as the recruitment of neutrophils into 
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organs by altering the expression of the transcripts encoding IFNγ and 
Cxcl10 as well as Cxcl2. In addition, Alkbh5 depletion in lymphocytes 
specifically induces an expansion of γδT cells following downregulation 
of Jagged1 and Notch2. Although these are intriguing findings, it is 
currently unclear whether the nuclear Alkbh5 protein affects quanti-
tively or qualitatively the cytoplasmic m6A marks, and whether and how 
it controls transcript splicing, half-life or translation. 

Additional open questions include: How does posttranslational 
modification of writers and readers or even of the erasers contribute to 
m6A function as, for example, Ythdf proteins showed strong upregula-
tion in CD4+ T cells after TCR or PMA stimulation. It is interesting that 
Ythdf1-deficient mice show an elevation of antigen-specific CD8+ T cells 
and anti-tumor responses [77]. These antitumour responses were CD8+

T cells extrinsic and explained by increased cross-priming from Ythdf1- 
deficient dendritic cells. Further investigations will have to address T 
cell intrinsic Ythdf1, Ythdf2 and Ythdf3 functions and elucidate possible 
redundant roles. These issues need to be considered and further assessed 
by future research. Moreover, which reader proteins work redundantly, 
cooperate or serve compartmentalized functions, and which environ-
mental cues regulate them to cause differential expression or activity? 
Overall, future investigations of m6A-mediated gene regulation need to 
carefully consider and experimentally reflect the context including cell 
type, differentiation stage, activation status and the involved stimulus or 
stress response. Furthermore, to discriminate acute from developmental 
effects the use of sophisticated inducible conditional gene inactivation 
may be crucial. 

Although RNA modification and epitranscriptomics is a young field, 
it has already evidenced a tremendous impact on T cells. Many more 
findings and discoveries can be expected in the future, since these cells 
make sophisticated use of all layers of gene regulation to integrate the 
multitude of signals in their development and the generation of context- 
dependent appropriate immune responses, while avoiding over-
activation and self-reactivity. 
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