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A B S T R A C T   

Background: Long-term exposure to air pollution has been associated with cardiopulmonary diseases, while the 
underlying mechanisms remain unclear. 
Objectives: To investigate changes in serum metabolites associated with long-term exposure to air pollution and 
explore the susceptibility characteristics. 
Methods: We used data from the German population-based Cooperative Health Research in the Region of 
Augsburg (KORA) S4 survey (1999–2001) and two follow-up examinations (F4: 2006–08 and FF4: 2013–14). 
Mass-spectrometry-based targeted metabolomics was used to quantify metabolites among serum samples. Only 
participants with repeated metabolites measurements were included in the current analysis. Land-use regression 
(LUR) models were used to estimate annual average concentrations of ultrafine particles, particulate matter (PM) 
with an aerodynamic diameter less than 10 μm (PM10), coarse particles (PMcoarse), fine particles, PM2.5 absor-
bance (a proxy of elemental carbon related to traffic exhaust, PM2.5abs), nitrogen oxides (NO2, NOx), and ozone at 
individuals’ residences. We applied confounder-adjusted mixed-effects regression models to examine the asso-
ciations between long-term exposure to air pollution and metabolites. 
Results: Among 9,620 observations from 4,261 KORA participants, we included 5,772 (60.0%) observations from 
2,583 (60.6%) participants in this analysis. Out of 108 metabolites that passed stringent quality control across 
three study points in time, we identified nine significant negative associations between phosphatidylcholines 
(PCs) and ambient pollutants at a Benjamini-Hochberg false discovery rate (FDR) corrected p-value < 0.05. The 
strongest association was seen for an increase of 0.27 μg/m3 (interquartile range) in PM2.5abs and decreased 
phosphatidylcholine acyl-alkyl C36:3 (PC ae C36:3) concentrations [percent change in the geometric mean: 
− 2.5% (95% confidence interval: − 3.6%, − 1.5%)]. 
Conclusions: Our study suggested that long-term exposure to air pollution is associated with metabolic alterations, 
particularly in PCs with unsaturated long-chain fatty acids. These findings might provide new insights into 
potential mechanisms for air pollution-related adverse outcomes.   

1. Introduction 

Epidemiological studies have shown associations between chronic 
exposure to ambient air pollution and pulmonary, cardio-metabolic, and 
neurological disease, and even mortality (Bae et al. 2021; Cao et al. 
2020; Hales et al. 2021; Kasdagli et al. 2022; Liu et al. 2021; Mortamais 

et al. 2021; Park et al. 2021; Wolf et al. 2021). However, the underlying 
biological mechanisms are not yet fully elucidated. Hypothesized 
pathways linking air pollution exposure and health include the direct 
translocation of ambient particles with a smaller aerodynamic diameter 
(e.g., ultrafine particles) and gaseous air pollutants (e.g., nitrogen di-
oxide and ozone) from the lung into the blood leading to alternations of 
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blood parameters (Nemmar et al. 2002). Another possible pathway is the 
induction of local inflammatory responses in the lung by larger inhaled 
ambient particles leading to autonomic cardiac, systemic inflammatory, 
and haemostatic activities (Brook et al. 2010). 

The blood metabolome is a collection of biologically active chemicals 
in the human blood, derived from endogenous processes and exogenous 
exposure to food, medicines, and pollutants (Rappaport et al. 2014). 
Metabolomics has become a well-developed tool to investigate small 
molecular metabolites presented in the biological systems and corre-
sponding cellular responses perturbed by endogenous or exogenous 
stimuli (Holmes et al. 2008). Recent epidemiological studies have pro-
vided evidence of adverse air pollution-induced effects on metabolomic 
biomarkers (Chen et al. 2019a; Gaskins et al. 2021; Hood et al. 2022; Li 
et al. 2017; Li et al. 2021; Liang et al. 2018; Ritz et al. 2022; van 
Veldhoven et al. 2019; Vlaanderen et al. 2017; Ward-Caviness et al. 
2016). However, these studies mainly focused on short-term and inter-
mediate exposures (day-to-day changes) to air pollution. Only a few 
studies have examined the metabolomics signatures in response to long- 
term air pollution exposures (e.g., annual averages) within cohort 
studies (Jeong et al. 2018; Nassan et al. 2021a; Nassan et al. 2021b; 
Walker et al. 2019). These studies were either limited to small sample 
sizes or focused on specific individuals, for example, older men or par-
ticipants with adult-onset asthma or cardio-cerebrovascular diseases. 

Given the limited evidence, especially within a general population 
cohort study, we aimed to determine the associations between long-term 
ambient air pollution and targeted metabolomics within the population- 
based Cooperative Health Research in the Region of Augsburg (KORA) 
cohort, conducted in the area of Augsburg, Germany. Additionally, we 
explored the role of potential individual characteristics in modifying the 
effects of air pollution effects, including body mass index (BMI), lifestyle 
(e.g., smoking status, alcohol consumption, physical activity, and di-
etary patterns), pre-existing diseases (e.g., hypertension and diabetes), 
and medication intakes (e.g., anti-hypertensive, anti-diabetic, and lipid- 
lowering medication). We hypothesized that long-term exposure to air 
pollution is associated with the perturbation of serum metabolite con-
centrations involved in some metabolic pathways related to adverse 
health effects from ambient air pollution and that individuals’ charac-
teristics can modify these health effects. 

2. Methods 

2.1. Study design and participants 

In this longitudinal study, we used data from the KORA cohort. The 
fourth cross-sectional health survey of the KORA cohort (KORA S4) was 
conducted from October 1999 to April 2001. It involved 4,261 partici-
pants aged 25–74 years with German citizenship in the city of Augsburg, 
Germany, and two adjacent counties. Two follow-up examinations were 
carried out: within the first follow-up (KORA F4), 3,080 participants 
were examined between Oct 2006 and May 2008, whereas the second 
follow-up (KORA FF4) consisted of 2,279 participants with examina-
tions between June 2013 and Sept 2014. 

A computer-assisted personal interview, a self-administered ques-
tionnaire, and physical examinations were performed at each visit by 
trained investigators at the study centre. Physical activity was catego-
rized based on the time spent on physical exercise into low (no or almost 
no physical exercise), medium (regular or irregular approx. one hour per 
week), and high (more than two hours per week) levels. Alcohol con-
sumption was categorized into no (0 g/day), moderate (men 0.1–39.9 g/ 
day and women 0.1–19.9 g/day), and high (men ≥ 40 g/day and 
women ≥ 20 g/day) consumption. Smoking status was categorized into 
current (regular or irregular smokers), former (ex-smokers), and never 
(never-smokers) smokers. A diet questionnaire with a qualitative food 
frequency list was performed to collect the dietary intake; a continuous 
dietary score and categorical dietary patterns were defined based on 
participants’ answers. Briefly, the individuals’ dietary intake was 

collected using a food-frequency questionnaire investigating 24 food 
groups. An index was built rating the frequency with which each food 
was consumed by assigning either 0, 1, or 2 points based on recom-
mendations of the German Nutrition Society (DGE). Higher scores reflect 
better compliance with DGE recommendations. A sum dietary score 
ranging from 0 to 27 was calculated according to DGE guidelines and 
subsequently grouped into three categories: adverse (≤13 points), or-
dinary (14 ~ 15 points), and favourable (≥16 points) dietary patterns. 
This approach was established in earlier KORA studies and was vali-
dated against a weighed 7-day dietary protocol (Rabel et al. 2018; 
Winkler and Döring 1998). 

Only participants who attended at least two visits across the entire 
study period were included in this longitudinal analysis. Additionally, 
we excluded participants with missing data on covariates used in our 
main analysis (Fig. S1). Written informed content was obtained from all 
participants. The KORA study was approved by the ethics committee of 
the Bavarian Chamber of Physicians (Munich, Germany). 

2.2. Biomarker measurements 

Blood samples were drawn into serum gel tubes between 8:00 am 
and 10:30 am after at least 8 h of overnight fasting. The blood samples 
were kept at 4 ◦C up to six hours after blood withdrawal for further 
procedure. Serum was collected and filled into synthetic straws, and 
stored in liquid nitrogen (− 80 ◦C) until the further analyses were 
conducted. 

2.3. High-sensitivity C-reactive protein (hs-CRP) 

The high-sensitivity C-reactive protein (hs-CRP) assay was per-
formed shortly after the blood withdrawal for each study wave (KORA 
S4 (September-December 2001), KORA F4 (July-October 2008), and for 
KORA FF4 (December 2015-March 2016)). hs-CRP was measured in 
serum by a BN nephelometer (Siemens Healthcare Diagnostics Product 
GmbH, Marburg, Germany) in the collaborating Biomarker Laboratory 
at the University of Ulm, Germany. 

2.4. Targeted metabolomics 

The metabolite profiling in serum samples was done with the 
AbsoluteIDQTM p180 kit (BIOCRATES Life Sciences AG, Innsbruck, 
Austria) for KORA S4 (March–April 2011) and FF4 (February–October 
2019), allowing for the simultaneous quantification of 188 metabolites. 
KORA F4 samples were measured with the AbsoluteIDQTM p150 kit to 
detect 163 metabolites in August 2008–March 2009. The assay pro-
cedures have been described previously in detail (Römisch-Margl et al. 
2012). 

Identical quality control (QC) procedures were used in each of the 
three study points in time. Each metabolite should meet the following 
three criteria: (1) The average value of the coefficient of variance (CV) in 
the five/six reference samples or three quality control samples should be 
less than 25%; (2) 50% of all measured sample concentrations for the 
metabolite should be above the limit of detection (LOD), which was 
defined as three times the median of zero samples; (3) The rate of 
missing value of metabolite should be less than 5%. The non-detectable 
values of each metabolite were randomly imputed by values ranging 
from 75% to 125% of half of the lowest measured value of the corre-
sponding metabolite in each plate. In order to minimize the plate effects 
in each visit, plate normalization factors were calculated by dividing the 
mean of reference sample values (QC samples in KORA F4) in each plate 
by the mean of all reference sample values in all plates, and then used to 
normalize each metabolite (Han et al. 2022; Huang et al. 2020). 

Additionally, to control for the effects of the different kits between 
KORA F4 and KORA S4/FF4, up to eight participants’ samples were 
randomly selected from each of the 36 kit plates in KORA F4 and re- 
measured using the same AbsoluteIDQt p180 kit used in KORA S4/FF4 
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in September–October 2019 (Han et al. 2022). The difference in each 
metabolite between the corresponding participants in KORA F4 and re- 
measured KORA F4, and a further mean difference of each metabolite 
were calculated. The kit normalization factor was calculated by dividing 
the mean of each metabolite in KORA F4 by the mean of each metabolite 
in KORA F4 minus the mean difference between KORA F4 and re- 
measured KORA F4, and used to correct KORA F4 metabolite data. 
Extreme outliers of each metabolite were defined as a value beyond the 
range of mean ± 5 × standard deviations and imputed by the K-nearest 
neighbors algorithm (KNN). 

In total, 135 metabolites in KORA S4, 114 in KORA F4, and 145 in 
KORA FF4 passed the quality control. Out of these, 108 metabolites were 
overlapped among KORA S4, F4, and FF4 and were used in the subse-
quent analysis. Metabolites covered the following compound classes: 12 
amino acids, 12 acylcarnitines, 72 glycerophospholipids (including 32 
phosphatidylcholines with acyl-acyl (diacyl) side chains, 33 phosphati-
dylcholines with acyl-alkyl side chains, and seven lysophosphati-
dylcholines), 11 sphingomyelins (SM) and a sum of hexoses (including 
glucose). The complete list of metabolites is presented in the supple-
mentary material (Table S1). 

2.5. Exposure assessment 

Residential annual mean exposure to air pollution including ultrafine 
particles (particulate matter (PM) ≤ 100 nm in aerodynamic diameter, 
represented by particle number concentration (PNC)), PM with an 
aerodynamic diameter less than 10 μm (PM10), between 2.5 and 10 μm 
(PMcoarse), and less than 2.5 μm (PM2.5), PM2.5 absorbance (a proxy of 
elemental carbon related to traffic exhaust, PM2.5abs), nitrogen oxides 
(NO2, NOx), and ozone (O3) was estimated using land-use regression 
(LUR) models. The performance of LUR models was evaluated by leave- 
one-out cross-validation (LOOCV) (Wolf et al. 2017). Briefly, three bi- 
weekly measurements at 20 locations within the KORA study area 
were carried out between March 2014 and April 2015 to cover the 
warm, cold, and intermediate seasons. Simultaneously, measurements 
were obtained at a reference site throughout the whole period to adjust 
for temporal variation. Annual average air pollutant concentrations 
were then calculated at those sites. The LUR model was built by 
regressing the measured annual average concentrations in 2014–15 
against geographic information system-based spatial predictors 
including local land use (e.g. residential land, industrial, commercial 
and transport units, urban green, and water bodies), building density, 
population density, household density, topography, coordinates, and 
traffic variables (e.g. total traffic load of all (major) roads in a buffer, 
traffic intensity on nearest (major) road, and heavy-duty traffic intensity 
on nearest (major) road) (Wolf et al. 2017). Participants’ home ad-
dresses were applied to the fitted models to determine residential 
exposure levels. The adjusted model-explained variance (R2) of the LUR 
models ranged from 68% (PMcoarse) to 94% (NO2), and the adjusted 
LOOCV R2 was between 55% (PMcoarse) and 89% (NO2), which indicated 
a good model fit. The process has been described in detail elsewhere 
(Wolf et al. 2017). For participants who moved during the study period, 
the updated residential addresses were used for exposure assignment; 
otherwise, the same exposure levels were assigned across different visits. 

3. Statistical analyses 

3.1. Statistical methods 

Basic descriptive analyses were performed for participant charac-
teristics, air pollutants, and meteorological parameters. Kruskal-Wallis 
test (one-way ANOVA) and Pearson’s Chi-squared test were applied 
for continuous and categorical variables, respectively. Spearman’s rank 
correlation coefficient was used to calculate correlations between air 
pollutants. 

We applied linear mixed-effects models with random participant- 

specific intercepts to examine the associations between repeatedly 
measured metabolite levels and air pollutants. In addition, linear mixed- 
effects models were also performed between hs-CRP and air pollutants to 
investigate the systemic inflammatory response. All outcomes (metab-
olites and hs-CRP) were natural-log transformed to increase the con-
formity to normal distributions of residuals. Covariates included in the 
models were selected a priori based on previous studies and the Bayesian 
Information Criterion (BIC) (Holmes et al. 2008; Lacruz et al. 2016; 
Nassan et al. 2021a; Sun et al. 2020b; Ward-Caviness et al. 2016). 
Minimum models adjusted for age, sex, body-mass index (BMI), an in-
dicator of each visit (KORA S4, KORA F4, or KORA FF4), and season of 
blood withdrawal (winter: December–February, spring: March–May, 
summer: June–August, and autumn: September–November). Main 
models additionally included smoking status (never/former/current), 
alcohol consumption (g/day), physical activity (low/medium/high), 
educational attainment (primary school/high school/college), fasting 
status (overnight fasting of 8 h or not) and diet score (continuous). 
Extended models further added hypertension, diabetes, medication 
intake (anti-hypertensive, anti-diabetic, and lipid-lowering medication), 
high-density lipoproteins (HDL), and total cholesterol. Effect estimates 
are presented as percent changes in the geometric mean (together with 
95% confidence intervals [95% CI]) of the repeatedly assessed outcomes 
per interquartile range (IQR) increase in air pollutant concentrations. 

Single – Pollutant models 

log
(
Yij
)

= β0 + μi + β1 × APij + β2− n × Covariatesij + eij 

In the formula, Yij is the metabolite concentration of participant i at 
visit j. β0 denotes the fixed intercept, and μi represents the random 
intercept for subject i. β1 is the estimate of each air pollutant and APij 
indicates the annual averages of the air pollutants (PM10, PMcoarse, 
PM2.5, PM2.5abs, PNC, NO2, NOx, and O3) for participant i at visit j. β2-n is 
estimate for each covariate, and Covariatesij represents the measurement 
of covariates for participant i at visit j. eij is the residual normal error. 

Effect modification was investigated by including an interaction 
term between each air pollutant and the potential effect modifier 
assessed at each visit. The examined modifiers included age (<65 years 
vs ≥ 65 years; the age 65 years is the current official retirement age in 
Germany)), sex (male vs female), obesity (BMI < 30 kg/m2 vs ≥ 30 kg/ 
m2), smoking status (current vs never/former smoker), alcohol con-
sumption (low vs medium vs high), education (low vs high (high school/ 
college)), physical activity (low vs medium vs high), dietary pattern 
(adverse vs ordinary vs favourable), hypertension (no vs yes), diabetes 
(no vs yes), and medication intakes (no vs yes). The effect modification 
analyses were only conducted for those metabolites significantly asso-
ciated with air pollutants. 

We performed several sensitivity analyses in this study: 1) We 
included all participants with data on air pollution, phenotypes, and 
metabolites in the analysis. 2) We restricted our analyses to participants 
who did fasting eight hours before the blood withdrawal throughout the 
entire study period. 3) Additionally, we restricted our main analysis to 
participants who did not move within the study period. 4) To control for 
selection bias introduced by selecting participants with more than one 
measurement, we estimated weights for those included using the inverse 
probability weighting (IPW) method (Weuve et al. 2012). Briefly, the 
probability of being included in our main analysis among all study 
participants in KORA S4 was calculated using logistic regression. We 
used individual characteristics of our main analysis as possible pre-
dictors. Then, we applied the inverse of the predicted probability 
determined from the logistic regression as the weight in our main model. 
5) Given the temporal variation of each air pollutant exposure, we used 
back-extrapolated annual average air pollutant concentrations from the 
respective years of KORAS4, F4 and FF4 instead of using annual average 
air pollutant concentration estimated by the LUR models in 2014–2015 
(Text S1). Briefly, the absolute differences between the LUR model and 
the air pollutants data from monitors in the period of each visit were 
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calculated. They were then used to correct each visit’s air pollutant 
concentrations, respectively. 6) To examine the influence of air 
pollution-associated systemic inflammation, we further included high- 
sensitivity C-reactive protein (hs-CRP) in our main models. 7) We per-
formed two-pollutant models by including two air pollutants simulta-
neously if their Spearman correlation was smaller than 0.7. 8) We also 
performed a mixed-effects quantile regression to assess the association 
between air pollution exposure and metabolites at deciles of the me-
tabolites. 9) To investigate the co-effects between long-term and short- 
term air pollution exposure, we simultaneously included short-term 
exposures (at the day of blood withdrawal, one day, two days, three 
days, four days, as well as two-day, five-day and two-week moving av-
erages before the blood withdrawal) to each air pollutant in the corre-
sponding long-term exposure model. The short-term exposure included 
PM2.5, PM10, PMcoarse, NO2, NOx and O3, was measured consecutively by 
local monitors and the daily average exposure concentration of each air 
pollutant was assigned to each participant based on the date of blood 
withdrawal in each visit (Text S1). 10) To assess the effect of the storage 
time (Haid et al. 2018), we performed an additional sensitivity analysis, 
including the storage year in our main models. Briefly, we calculated the 
storage time between the collection date of the blood sample for each 
participant and the detection time (middle date in the whole measure-
ment period). Then, we included this storage year in our main models. 
We assumed a non-linear relationship between the change of metabo-
lites concentrations and the storage time, so we used a spline for the 
storage years to account for non-linearity in these relationships. 11) In 
the main models, we assessed the exposure–response relationships be-
tween all metabolites and air pollutants for deviations from linearity 
using penalized splines with the degree of freedom selected by gener-
alized cross-validation, and restricted our analyses to the linear section 
of the relationship. 

All statistical analyses were done with R (version 3.6.2), and the p- 
value cut-off was set as 5.8 × 10-5 to account for multiple testing 
introduced by assessing eight air pollutants and 108 metabolites in this 
study (0.05/(108*8)). We also report all associations with p-val-
ues<0.05 after Benjamini-Hochberg false discovery rate (FDR) correc-
tion since the Bonferroni method for adjusting p-values is more 
conservative. 

3.2. Pathway analysis for metabolites 

For metabolites showing significant associations with air pollutants 
after correcting for multiple testing, we performed pathway analysis 
using the “Pathway Analysis” module in MetaboAnalyst 5.0, a web- 
based software for metabolomics data analysis (Pang et al. 2021). This 
module supports pathway analysis by integrating two parts, enrichment 
analysis and topology analysis, based on the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database, which is a collection of manually 
drawn pathway maps representing the knowledge of molecular inter-
action, reaction, and relation networks. In the enrichment analysis, the 
p-value is calculated by the one-tailed Fisher’s exact test, which repre-
sents the probability of observing at least k metabolites in a pathway, if 
there is no association with air pollution: 

p(X ≥ k) = 1 −
∑k− 1

i=0

(
M
i

)(
N− M
n− i

)

(
N
n

)

where N represents the number of the metabolites detected by the 
platform, M indicates the metabolites in the pathway of interest (ith), n is 
the metabolites significantly associated with air pollution, and k means 
the number of metabolites overlapped between M and n mapping to the 
ith pathway (Wieder et al. 2021). The pathway topology analysis uses 
two well-established node centrality measures to estimate node impor-
tance. Furthermore, to take into account the comparison among 
different pathways, the node importance values calculated from cen-
trality measures are further normalized by the sum of the importance of 

the pathway. Therefore, the total/maximum importance of each 
pathway is one. The importance measure of each metabolite node re-
flects the percentage with regard to the total pathway importance, and 
the pathway impact value is the cumulative percentage from the 
matched metabolite nodes. Pathways with a p-value ≤ 0.1, or with an 
impact value > 0.5 while p-value ≤ 0.3 were considered the most rele-
vant pathways. 

4. Results 

4.1. Characteristics of study participants 

Participant characteristics are summarized in Table 1. Only partici-
pants attending at least two visits during the entire study period with no 
missing information in the main confounders were included in our main 
analyses. Therefore, among 9,620 observations from 4,261 study par-
ticipants in the KORA cohort, we included 5,772 (60.0%) observations 
from 2,583 (60.6%) participants in this analysis. Specifically, 1,977 
(76.5%) out of the 2,583 participants attended two examinations, and 
606 (23.5%) attended all three examinations (Table 1). 

Due to the fasting status restriction in KORA S4, only 1,601 from 
overall 4,261 participants had data on metabolite levels, mainly elderly 
individuals. Therefore, on average, KORA S4 participants were older 
than those of KORA F4 and KORA FF4 (Table 1). Meanwhile, the average 
educational attainment, the percentages of 8 h overnight fasting before 
blood withdrawal, current smoker, unhealthy dietary pattern, and me-
dium and high levels of physical activity of KORA S4 were lower (p- 
value < 0.01). In contrast, the mean BMI, alcohol consumption, 
cholesterol, HDL, and hs-CRP and the percentage of hypertension were 
higher in KORA S4 (p-value < 0.01). 

4.2. Characteristics of air pollutants 

Annual average concentrations of PM2.5, PM10 and NO2 at partici-
pant’s residences were below the EU air quality standard values of 25 
µg/m3 for PM2.5, and 40 µg/m3 for PM10 and NO2, respectively. While 
they were all higher than the WHO air quality guideline values of 5 µg/ 
m3, 10 µg/m3 and 10 µg/m3 for PM2.5, PM10 and NO2, respectively. The 
maximum annual O3 concentration (45.9 µg/m3) was also below the 
WHO air quality guideline values calculated from peak season (60 µg/ 
m3) (Table 2). All pollutants showed a strong positive relationship, 
except for O3, which showed weak or negative correlations with other 
air pollutants (Table 2). 

4.3. Association between metabolites and long-term air pollution 

In our main models, several metabolites from the phosphatidylcho-
lines group showed significant negative associations with PMcoarse, 
PM2.5abs and NO2, respectively (Fig. 1). Specifically, PC ae C34:2 and PC 
ae C36:3 were negatively associated with PMcoarse and PM2.5abs (at a p- 
value < 5.8 × 10-5). Additionally, at an FDR-corrected p-value < 0.05, 
we observed decreases in PC ae C34:2 and PC ae C36:3 in association 
with NO2. Moreover, PC ae C36:4 showed negative associations with 
PM2.5abs and PMcoarse, and PC ae C34:3 with PM2.5abs, respectively. 
These results were robust in our minimum and extended models (Fig. 2). 
In addition, we observed positive associations between hs-CRP and 
PMcoarse, PM10, PNC and NOx (uncorrected p-value < 0.05) (Fig. S2). 
While the four identified metabolites showed moderate to high corre-
lations with each other, hs-CRP was not associated with them at all 
(Fig. S3). 

4.4. Pathway analysis 

In the pathway analysis, we uploaded the four metabolites signifi-
cantly associated with at least one of the long-term exposures to 
PM2.5abs, PMcoarse, or NO2. We identified four metabolic pathways, 
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including the arachidonic acid (p-value = 0.003, impact value = 0), 
linoleic acid (p-value = 0.008, impact value = 0), alpha-linolenic acid 
(p-value = 0.02, impact value = 0), and glycerophospholipid (p-value =
0.02, impact value = 0.1) metabolisms that were related to long-term 
exposure to PM2.5abs, PMcoarse, and NO2 exposure, where p-value was 
from enrichment analysis and pathway impact value was from the to-
pology analysis. However, they were insignificant after using the FDR 
method to correct the raw p-value (Fig. 3 and Table S2). 

4.5. Effect modification 

Effect modification analyses were conducted for the four metabolites 
significantly associated with long-term exposure to PM2.5abs, PMcoarse 
and NO2. Results are presented in Fig. 4 showing that the associations 
between PC ae C34:3 and PM2.5abs, PMcoarse and NO2 were significantly 
modified by physical activity (Bonferroni-corrected p < 0.004). Partic-
ipants with low physical activity showed the strongest effects. A similar 
pattern was seen for PC ae 34:2, PC ae 36:3 and PM2.5abs and NO2 
(uncorrected p < 0.05). Moreover, results indicated a consistent modi-
fication of the air pollutant effects on PC ae 34:2 by education. Partic-
ipants with a lower education showed stronger effects compared to those 
with a higher education. Results also suggested a consistent modifica-
tion of the air pollutant effects on PC ae 36:4 by obesity - obese in-
dividuals showed stronger associations between metabolites and air 
pollutants. We did not find consistent differences between smokers and 
participants who never smoked and participants with medium or high 
alcohol consumption versus those without alcohol intake. Additionally, 
results suggested effect modification by disease status (hypertension and 
diabetes) and medication intake, while the differences were not statis-
tically significant (Fig. S4, Fig. S5). This might be due to the large 
difference in the sample sizes of the different groups since much fewer 
participants had diabetes or intake of anti-hypertension, anti-diabetes, 
or lowering-lipid medicines. We also did not find significant differences 
between males and females in most metabolites except that a few PCs 
decreased more in females than males when exposed to O3 (Fig. S6). 

4.6. Sensitivity analyses 

The associations between air pollution and the four metabolites were 
generally robust in different sensitivity analyses. Results remained sta-
ble when restricting the participants to fasting individuals or those who 
did not move their residences during the whole study period (Fig. 5). 
Additionally, including all participants, using predicted inverse proba-
bilities, or using back-extrapolated air pollutant exposures to adjust for 
measurement error did not change the results. The results were still 
robust after further including hs-CPR in the main and extended models 
(Fig. S7). 

The associations between metabolites and particulate air pollutants 
(PM10, PMcoarse, PM2.5abs, and PNC) were robust after additionally 
adjusting for PM2.5 except for PNC where associations were attenuated 
(Fig. S8). The associations between metabolites and particle metrics 
(PM2.5, PM10, PMcoarse, PM2.5abs, and PNC) and NO2 were also stable 
after adjusting for O3 (Fig. S9). After additionally adjusted by the 
storage year of blood samples into the main model, the effect estimates 
keep stable (Fig. S10). The additional adjustment of short-term air 
pollution exposure slightly strengthened the effect estimates of long- 

Table 1 
Descriptive statistics of participant characteristics for KORA S4, F4 and FF4 (N =
5,772).  

Variable S4 (N 
¼

1,129)  

F4 (N 
¼

2,556)  

FF4 (N 
¼

2,087)  

p–value 

Mean  
± SD / 
N (%)  

Mean  
± SD / 
N (%)  

Mean  
± SD / 
N (%)  

Age (years) 63.3 ±
5.4  

57.5 ±
13.3  

60.7 ±
12.3  

< 0.001 

Sex (male) 570 
(50.6)  

1,240 
(48.5)  

1,012 
(48.5)  

0.46 

Education       < 0.001 
Primary school 753 

(66.7)  
1,357 
(53.1)  

1034 
(49.5)   

High school 221 
(19.6)  

621 
(24.3)  

530 
(25.4)   

College 155 
(13.7)  

578 
(22.6)  

523 
(25.1)   

BMI (kg/m2) 28.4 ±
4.2  

27.7 ±
4.7  

27.8 ±
4.9  

< 0.001 

Alcohol 
consumption (g/ 
day) 

16.2 ±
20.9  

14.4 ±
19.5  

14.9 ±
20.1  

0.025 

Dietary score 16.2 ±
3.6  

15.3 ±
3.6  

15.1 ±
3.6  

< 0.001 

Dietary patterns       < 0.001 
Adverse 271 

(24.0)  
817 
(31.9)  

715 
(34.3)   

Ordinary 212 
(18.8)  

541 
(21.2)  

451 
(21.6)   

Favorable 646 
(57.2)  

1,198 
(46.9)  

921 
(44.1)   

Fasting (8 h) (% yes) 1,016 
(90.0)  

2,543 
(99.5)  

2,074 
(99.4)  

< 0.001 

Smoking status       0.002 
Current smoker 137 

(12.1)  
384 
(15.0)  

307 
(14.7)   

Former smoker 437 
(38.7)  

1,066 
(41.7)  

902 
(43.2)   

Never smoker 555 
(49.2)  

1,106 
(43.3)  

878 
(42.1)   

Physical activity       < 0.001 
Low 444 

(39.3)  
818 
(32.0)  

589 
(28.2)   

Medium 479 
(42.4)  

1,115 
(43.6)  

952 
(45.6)   

High 206 
(18.3)  

623 
(24.4)  

546 
(26.2)   

Hypertension (% 
yes) 

609 
(53.9)  

1,016 
(39.8)  

825 
(39.5)  

< 0.001 

Diabetes (% yes) 92 (8.2)  224 
(8.8)  

215 
(10.3)  

0.11 

Medication intake 
(% yes)        

Anti–hypertension 
medication 

397 
(35.2)  

861 
(33.7)  

782 
(37.5)  

0.03 

Anti–diabetes 
medication 

53 (4.7)  154 
(6.0)  

174 
(8.3)  

< 0.001 

Lipid lowering 
medication 

128 
(11.3)  

351 
(13.7)  

342 
(16.4)  

< 0.001 

Cholesterol (mg/dL) 
* 

243.6 
± 40.8  

216.1 
± 38.8  

216.7 
± 39.5  

< 0.001 

HDL (mg/dL)* 58.1 ±
16.5  

56.1 ±
14.4  

65.9 ±
18.8  

< 0.001 

hs-CRP (mg/L)* 3.1 ±
4.9  

2.4 ±
4.8  

2.5 ±
4.6  

< 0.001 

KORA = Cooperative Health Research in the Region of Augsburg; S4 = fourth 
cross-sectional health survey of the KORA cohort; F4 = first follow-up exami-
nation of KORA S4; FF4 = second follow-up examination of KORA S4; BMI =
body mass index; HDL = high density lipoprotein; hs-CRP = high sensitivity C- 
reactive protein; S4 participants were selected based on whether they did fasting 
or not. Dietary patterns was classified by the dietary score basing on the 
assessment of individual’s dietary intake (questionnaire): Adverse =≤13 points, 
Ordinary = 14 ~ 15 points, Favourable = ≥16 points. Physical activity was 
defined according to the exercise time per week: Low = almost or no sporting 

activity, Medium = regular/ irregular approx. 1 h per week, High = regularly>2 
h in the week. *Cholesterol was missing for one (0.09%) participant in KORA S4, 
and one (0.05%) in KORA FF4; HDL was missing for one (0.09%) participant in 
KORA S4, one (0.04%) in KORA F4, and one (0.05%) in KORA FF4; hs-CRP was 
missing for 12 (1.06%) participants in KORA S4, five (0.22%) in KORA F4, and 
two (0.10%) in KORA FF4. 1,977 participants attended two examinations, and 
606 attended three examinations. p-value was based on the Kruskal-Wallis test 
for continuous variables, and Pearson’s Chi-squared test for categorical 
variables. 
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Table 2 
Descriptive statistics and Spearman correlation coefficients of air pollution concentrations in long-term analysis (N = 2,583).  

Pollutant Mean ± SD Range IQR Spearman correlation coefficients 

PM2.5 PM10 PM2.5abs PMCoarse PNC O3 NO2 NOx 

PM2.5 (μg/m3) 11.8 ± 1.0 8.2–14.3  1.4 1        
PM10 (μg/m3) 16.6 ± 1.5 12.3–22.3  2.1 0.52 1       
PM2.5abs (10–5/m) 1.2 ± 0.18 0.8–1.8  0.3 0.61 0.78 1      
PMcoarse (μg/m3) 4.9 ± 1.0 2.6–8.7  1.4 0.57 0.78 0.81 1     
PNC (103/cm3) 7.3 ± 1.8 3.2–15.0  2.0 0.65 0.80 0.78 0.76 1    
O3 (μg/m3) 39.1 ± 2.4 31.3–45.9  3.4 –0.18 0.05 –0.10 0.14 –0.03 1   
NO2 (μg/m3) 14.1 ± 4.4 6.9–27.5  6.9 0.72 0.72 0.86 0.83 0.78 –0.16 1  
NOx (μg/m3) 21.8 ± 7.4 4.0–50.5  8.8 0.75 0.73 0.72 0.75 0.90 –0.06 0.83 1 

*Exposure levels were estimated at participants’ residences in KORA S4. In total, 2153 participants didn’t move since S4, and 430 participants moved between S4 and 
F4, or F4 to FF4. For participants who changed residence among S4, F4 and FF4, the updated residential addresses were used for exposure assignment to the respective 
study. Otherwise, the same exposure levels from KORA S4 were assigned across different visits. PM2.5 = particulate matter with an aerodynamic diameter less than or 
equal to 2.5 μm; PMcoarse = particulate matter with an aerodynamic diameter of 2.5–10 μm; PM10 = particulate matter with an aerodynamic diameter less than or equal 
to 10 μm; PM2.5abs = PM2.5 absorbance; PNC = particle number concentration; NO2 = nitrogen dioxide; NOx = nitrogen oxide; O3 = ozone. 

Fig. 1. Volcano plots presenting the associations between long-term air pollutant exposure and metabolites. The results were derived from the main models adjusted 
for age, sex, body-mass index (BMI), an indicator for each visit(KORA S4, KORA F4, or KORA FF4), season of blood withdrawal, smoking status, alcohol consumption, 
physical activity, educational attainment, fasting status, and dietary score. The Y axis shows the negative logarithm of the p-value (logarithmic base of 10). The X axis 
indicates the association between air pollutants and metabolites. The red and blue dashed lines represent adjusted statistical significance levels according to Bon-
ferroni and FDR methods, respectively. The points with six different colors represent six metabolite groups involved in this study including amino acids (black), 
acylcarnitines (green), phosphatidylcholines (orange), lysophosphatidylcholines (light blue), sphingomyelins (blue), and hexoses (grey). PC ae: acyl-alkyl phos-
phatidylcholine. PM2.5 = particulate matter with an aerodynamic diameter less than or equal to 2.5 μm; PMcoarse = particulate matter with an aerodynamic diameter 
of 2.5–10 μm; PM10 = particulate matter with an aerodynamic diameter less than or equal to 10 μm; PM2.5abs = PM2.5 absorbance; PNC = particle number con-
centration; NO2 = nitrogen dioxide; NOx = nitrogen oxide; O3 = ozone. 
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term exposure but showed consistent estimates across the different 
exposure windows (Fig. S11). 

Mixed-effects quantile regression showed similar associations for 
PM2.5abs exposure across deciles (Fig. S12). In contrast, there were 
stronger associations between PMcoarse exposure and the four metabo-
lites from the 10th percentile up to the fifth decile (Fig. S13). Similarly, 
stronger associations were seen between the four metabolites and NO2 
exposure from the second to the sixth decile (Fig. S14). 

We also checked the exposure–response relationships of all metab-
olites and PM2.5abs, PMcoarse and NO2 exposure. There was no deviation 
from linearity for NO2 with the four metabolites (Fig. S15), while slight 
deviations were observed for PM2.5abs and PMcoarse (Fig. S16, Fig. S17). 
We excluded the extreme values for PM2.5abs (>99% of total PM2.5bs) and 
PMcoarse (<5% of total PMcoarse and > 95% of total PMcoarse) from the 
dataset to ensure a linear exposure–response relationship for PM2.5abs, 
the results kept robust with our main analysis results (Fig. S18-S21). 

5. Discussion 

This longitudinal study identified nine associations between long- 
term exposure to air pollution and targeted serum metabolites, mainly 
from the phosphatidylcholine subgroup. In particular, we observed that 
participants exposed to higher PM2.5abs, PMcoarse and NO2 had lower 
levels of PC ae C34:2 and PC ae C36:3. In addition, PC ae C36:4 showed a 
negative association with PM2.5abs and PMcoarse, and PC ae C34:3 was 
negatively associated with PM2.5abs. In the subsequent pathway analysis, 
they were identified as related to glycerophospholipid, linoleic acid and 

alpha-linolenic acid metabolism. Moreover, we found effect modifica-
tions for several individual characteristics: participants with older age, 
obesity, lower educational attainment, low physical activity levels, or 
adverse dietary patterns showed stronger associations than their coun-
terparts. In addition, we could confirm positive associations between 
several air pollutants (PMcoarse, PM10, PNC, and NOx) and hs-CRP as 
previously reported cross-sectionally for FF4 (Pilz et al. 2018), where we 
saw positive but non-significant associations with PNC, PM10, PMcoarse, 
PM2.5abs, NO2, and NOx. 

Metabolites are the intermediates or end products of metabolism, 
and could affect cellular physiology through modulation of other 
“omics” levels and represent changes induced by exposures (Rinschen 
et al. 2019). Alterations in the lipid metabolism due to the unbalance of 
anti- and pro-inflammatory biomarkers and oxidative stress levels could 
be one of the underlying mechanisms linking air pollution exposure to 
adverse health effects. Only a few studies explored the associations be-
tween long-term exposure to air pollution and metabolites in a cohort 
setting. A cross-sectional study based on the TwinsUK cohort reported 
eight inflammation and oxidative stress-related metabolites out of 280 
untargeted metabolomics profiling. For example, α-tocopherol, glycine, 
and benzoate were associated with long-term PM2.5. Moreover, CRP was 
negatively associated with seven of these eight metabolites (Menni et al. 
2015). A study including cohorts from Italy and Switzerland reported 
that long-term exposure to air pollution on adult asthma and cardio-
vascular disease was related to unsaturated fatty acids e.g., linolenic 
acid metabolism (Jeong et al. 2018). Another cross-sectional cohort 
study based on 79 metabolites indicated that annual ultrafine particles 

Fig. 2. Comparisons of percent changes (95% CIs) of metabolites per IQR increase in air pollutant concentrations between the results from minimum, main and 
extended models. Minimum model: minimum models were adjusted for age, sex, BMI, season, an indicator of each visit (KORA S4, KORA F4, or KORA FF4); Main 
model: further adjusted for educational attainment, smoking status, fasting status, alcohol consumption, physical activity, and dietary score; Extended model: 
additionally included hypertension, diabetes, and medication intake (anti-hypertension, anti-diabetes, and lipid lowering medications), HDL, and total cholesterol 
into the main models. An IQR increase was 1.40 μg/m3 for PM2.5, 2.06 μg/m3 for PM10, 1.36 μg/m3 for PMcoarse, 1.95 × 103/cm3 for PNC, 0.27 × 10-5/m for PM2.5abs, 
6.86 μg/m3 for NO2, 8.69 μg/m3 for NOx, and 3.45 μg/m3 for O3. PC ae: acyl-alkyl phosphatidylcholine. PM2.5 = particulate matter with an aerodynamic diameter 
less than or equal to 2.5 μm; PMcoarse = particulate matter with an aerodynamic diameter of 2.5–10 μm; PM10 = particulate matter with an aerodynamic diameter less 
than or equal to 10 μm; PM2.5abs = PM2.5 absorbance; PNC = particle number concentration; NO2 = nitrogen dioxide; NOx = nitrogen oxide; O3 = ozone. 
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(UFP) exposure was associated with metabolites that might increase 
oxidative stress and affect inflammatory processes and endothelial 
function (Walker et al. 2019). Two studies within the Normative Aging 
Study (NAS, a closed cohort study) reported that long-term exposure to 
PM2.5 species (e.g., UFP, black carbon), PM2.5, and air temperature was 
associated with perturbed metabolic pathways, including glycer-
ophospholipid, sphingolipid, and biosynthesis of unsaturated fatty acids 
etc. (Nassan et al. 2021a; Nassan et al. 2021b). They also reported that 
long-term NO2 exposure was positively associated with four lipid me-
tabolites, while these metabolites were not significantly associated with 
any metabolomics pathway. 

Since untargeted metabolomics was used in all these studies, 
comparing our results with those from single metabolite levels is diffi-
cult. Nevertheless, they are mostly consistent in identifying metabolic 
pathways related to inflammation, unsaturated fatty acids, and glycer-
ophospholipid associated with long-term exposure to air pollution. Po-
tential differences in results compared with our findings might also be 
due to the small sample size (less than 1,000 participants) of some of 
these studies, differences in study designs (e.g., case-control study), and 
selected study population (e.g., older men). 

Several studies reported the associations between metabolomics and 
short-term and intermediate exposure to air pollution. A longitudinal 
study on the effects of high-level PM2.5 exposure on serum metabolomics 
reported that metabolites related to phospholipid metabolism (lyso-
phosphatidic acid, phospholipid acid, and lysophosphatidylethanol-
amine) were decreased for a 10 µg/m3 increase in PM2.5 (Huan et al. 
2021), which supports our findings to some extent where four phos-
phatidylcholine metabolites were decreased in association with 
PM2.5abs, PMcoarse and NO2. In a previous cross-sectional analysis based 
on KORA S4, F4 and the follow-up of survey 3 (KORA F3), Ward- 
Caviness et al. observed a significant positive association between one 
lysophosphatidylcholine (LPC) and short-term NO2 exposures (Ward- 

Caviness et al. 2016). This longitudinal analysis did not find any asso-
ciations between LPC and long-term exposures to NO2 or other air pol-
lutants. However, we observed decreased levels of four PCs in 
association with long-term PM2.5abs, PMcoarse and NO2 exposure. A 
perturbation between LPC and PC was also reported in two other studies 
investigating the associations between short-term exposure to air 
pollution and untargeted metabolomics profiling (Chen et al. 2019a; Yan 
et al. 2019). Chen et al. indicated that two fatty acids, five phospholipids 
(phosphatidylserine, PEs, phosphatidic acid), and one sphingosine in 
urine significantly decreased with a higher short-term PM2.5 exposure; 
these metabolites were related to energy metabolism, oxidative stress 
and inflammation (Chen et al. 2019a). In the second study, Yan et al. 
investigated the associations between exposure to traffic-related air 
pollution (NOx, PM2.5) during the first trimester and serum metabolites 
measured in mid-pregnancy. They observed that higher exposure to air 
pollution was related to alterations in several oxidative stress and in-
flammatory pathways, including fatty acid, phospholipid, linoleate, and 
eicosanoid metabolism (Yan et al. 2019). 

Phosphatidylcholine (PC) is the representative and important 
component of lipoproteins that belongs to glycerophospholipid. It has a 
polar phosphocholine head group, which is connected via a glycerol 
backbone to two fatty acid side chains of varying lengths and degrees of 
saturation. The fatty acids are bound to the sn1 and sn2 positions of the 
glycerol backbone, either via two esters (acyl) bonds (diacyl-PC, PC aa) 
or by one ester and one ether (alkyl) bond (acyl-alkyl-PC, PC ae). It is the 
most abundant phospholipid in all mammalian cell membranes and 
subcellular organelles and could be attacked by reactive oxygen species 
(ROS) and lead to lipid peroxidation, especially the polyunsaturated 
fatty acids (Ayala et al. 2014; Cole et al. 2012; van der Veen et al. 2017). 
PC and LPC serve as reservoirs and transporters of glycerophospholipid 
components: fatty acids, phosphate, glycerol, and choline, which could 
regulate homeostatic and inflammatory processes. 

Fig. 3. Metabolic pathways identified for long-term 
exposure to PM2.5abs, PMcoarse and NO2. The plot is 
the same for PM2.5abs, PMcoarse and NO2, since the 
corresponding ID in the KEGG database for these 
four metabolites that were significantly associated 
with PM2.5abs, PMcoarse or NO2 exposure is identical. 
The pathway analysis is based on both enrichment 
analysis and pathway topology analysis. The Y-axis 
is the negative logarithm of the p-value (logarithmic 
base of 10) from the enrichment test. The X-axis 
indicates the structural impact of PM2.5abs, PMcoarse 
or NO2 related metabolites in the enriched path-
ways, which is based on the cumulative importance 
of all the significant metabolites within the 
pathway. The size of each bubble represents the 
impact value. The colour of each bubble represents 
the significance of the enrichment. PMcoarse = par-
ticulate matter with an aerodynamic diameter of 
2.5–10 μm; PM2.5abs = PM2.5 absorbance; NO2 =

nitrogen dioxide.   
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Lysophosphatidylcholine (LPC) could be hydrolyzed by PC via Phos-
pholipase A2 (PLA2). The decreased concentrations of PCs, as well as 
increased PLA2, might indicate increased turnover of PCs for the syn-
thesis of pro- and anti-inflammatory factors (Kertys et al. 2020). In an in 
vivo study, significant reductions in LPC and PC concentrations were 
observed after chronically exposing to ambient PM2.5, which might 
result from repeated inflammation (Chen et al. 2014). This might 
explain the negative associations between PCs and long-term NO2 
exposure in this study compared to the study of Ward-Caviness and 
colleagues, which observed a positive association between LPCs and 
short-term NO2 exposure. Furthermore, given the positive associations 
between CRP and long-term exposure to air pollution (PMcoarse, PM10, 
PNC, and NOx), these findings suggested a perturbation of anti- 
inflammation and pro-inflammation after long-term exposure to air 
pollution. 

The higher abundance of PC in human tissues compared to other 
phospholipid classes has been shown to play an important role in health 
and diseases (van der Veen et al. 2017). The inhibition of hepatic PC 
synthesis and changes in hepatic phospholipid composition were related 
to fatty liver disease and impaired liver regeneration after surgery (van 
der Veen et al. 2017). The altered PC metabolism may also promote the 
development of Alzheimer’s and cardiovascular diseases (CVD) (Tang 
et al. 2013; Whiley et al. 2014). In other metabolomics-related studies 
using the KORA cohort, a decrease in a few acyl-alkyl-PCs was associ-
ated with smoking (including an overlapped PC ae C34:3) and ageing 
(Chak et al. 2019; Xu et al. 2013). Plasmalogens are a subclass of alkyl- 
PCs with antioxidant properties (Engelmann 2004). A decreased serum 
concentration of acyl-alkyl-PCs and alkenyl-PC (plasmalogen) lipids 

were found in stable coronary artery disease (CAD) and acute myocar-
dial infarction (MI) (Moxon et al. 2017; Sutter et al. 2016). Our findings, 
therefore, might indicate that acyl-alkyl-PCs could be the underlying 
biomarkers involved in the biological mechanisms of chronic air pollu-
tion exposure-associated diseases. 

Apart from environmental impacts, pathological stimuli and normal 
physiological variations can also lead to differences in metabolic profiles 
(Lacruz et al. 2016; Soininen et al. 2015; Suhre et al. 2010). Lifestyle 
factors, including obesity, smoking, alcohol consumption, physical ac-
tivity and dietary patterns, were considered risk factors for metabolism 
(Lacruz et al. 2016). Previous studies reported that male, older, obese, 
smoking, and unhealthy individuals are more susceptible to air pollution 
exposures (Chen et al. 2019b; Hou et al. 2020; Sun et al. 2020a; Yazdi 
et al. 2021; Zhang et al. 2021). We observed that older participants 
(>65 years old) showed a stronger association than the younger ones, 
which could be explained by a greater susceptibility in older adults to 
oxidative stress and also a higher prevalence of pre-existing diseases in 
the older group (Peters et al. 2021; Sacks et al. 2011). We did not find 
significant differences between males and females in most metabolites 
except that a few PCs decreased more in females than males when 
exposed to O3. In contrast, males were more susceptible when exposed to 
the other air pollutants. The obese subgroup was more susceptible to 
long-term exposure to air pollution in this study, which could be hy-
pothesized that altered PCs facilitate inflammation in obese participants. 
Physical activity has immediate beneficial effects, accumulating over 
time. In the long run, it reduces the risk of developing cardiovascular 
and respiratory diseases, type 2 diabetes, and certain types of cancers 
and reduces the risk of all-cause and cause-specific mortality (Tainio 

Fig. 4. Percent changes (95% CIs) of metabolites per IQR increase in air pollutant concentrations stratified by age, BMI, educational attainment, physical activity 
level and dietary patterns. Results were from our main models adjusted for covariates including age, sex, BMI, season, an indicator of each visit (KORA S4, KORA F4, 
or KORA FF4), educational attainment, smoking status, fasting status, alcohol consumption, physical activity, and dietary score, while the continuous variable will be 
replaced by each corresponding effect modifier. An IQR increase was 1.36 μg/m3 for PMcoarse, 0.27 × 10-5/m for PM2.5abs, and 6.86 μg/m3 for NO2. PC ae: acyl-alkyl 
phosphatidylcholine. PMcoarse = particulate matter with an aerodynamic diameter of 2.5–10 μm; PM2.5abs = PM2.5 absorbance; NO2 = nitrogen dioxide. * p < 0.05 # 
p < 0.004 (0.05/(3*4)). 
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et al. 2021). Our results suggested that higher physical activity attenu-
ated the adverse effects of air pollution, which suggests that the long- 
term beneficial effects of physical activity might outweigh the harmful 
effects of air pollution, as previous studies reported (Fuertes et al. 2018; 
Sun et al. 2020b). Participants with low educational attainment were 
more vulnerable to air pollution exposure. Low education has been 
associated with increased susceptibility to adverse health effects of air 
pollution due to a higher prevalence of pre-existing diseases and limited 
access to medical care and fresh foods (Sacks et al. 2011). We observed 
that individuals with healthier dietary patterns showed weaker associ-
ations with air pollution, which might follow the findings that sufficient 
intakes of essential micronutrients (e.g., vitamins and long-chain poly-
unsaturated fatty acids) could modulate air pollution-induced harmful 
effects by reducing the oxidative stress and inflammatory response (Lim 
et al. 2019; Péter et al. 2015). 

The targeted metabolomics approach used in our study has the 
strength to give an annotation of all metabolites compared to untargeted 
metabolomics analysis (unknown metabolites were also quantified), 
which might mislead false annotation for metabolites. To our knowl-
edge, this is the first study using repeated measurements of targeted 
metabolomics to explore the health effects of long-term exposure to 
ambient air pollution within a population-representative cohort study of 
adults, and also with the largest number of study participants. We 
further assessed multiple air pollutants, including different particle 

matters and gaseous air pollutants. Moreover, the KORA cohort is a well- 
characterized study with standardized and comprehensive methods to 
collect individual information, enhancing our results’ reliability. The 
longitudinal study design with repeated measurements of biomarkers 
strengthened statistical power and reduced potential residual con-
founding from unmeasured factors. It might also provide analytical 
improvement to previous cross-sectional analyses despite the lack of 
replication by other cohorts. Furthermore, the residential air pollutant 
concentrations were estimated using well-defined LUR models, which 
captured the spatial variation in exposure and enabled us to conclude 
consistent patterns across various air pollutants, reducing the risk of 
chance findings. This study also has the strength to assess the suscepti-
bility from both external and intrinsic factors, especially dietary intake 
and lifestyle, which are known to affect the human metabolome. How-
ever, targeted metabolomics lowered the opportunity for new bio-
markers discovery and could not fully represent the whole metabolome. 
Another limitation of our study is that the annual average concentra-
tions of air pollutants were estimated using spatial models for 2014–15. 
We believe these exposure estimates are valid for the historical spatial 
contrasts because previous studies have shown that the spatial variation 
in exposure remained stable over time (de Hoogh et al. 2018; Eeftens 
et al. 2011; Gulliver et al. 2013; Wang et al. 2013). Using the air 
pollution concentrations obtained with a back-extrapolation approach, 
we investigated the potential effects of temporal variation. In addition, 

Fig. 5. Percent changes (95% CIs) of metabolites per IQR increase in air pollutant concentrations in different sensitivity analyses. The confounders used in different 
sensitivity analyses were the same as used in our main model including age, sex, BMI, season, indicator of each visit, educational attainment, smoking status, fasting 
status, alcohol consumption, physical activity, and dietary score. An IQR increase was 1.40 μg/m3 for PM2.5, 2.06 μg/m3 for PM10, 1.36 μg/m3 for PMcoarse, 1.95 ×
103/cm3 for PNC, 0.27 × 10-5/m for PM2.5abs, 6.86 μg/m3 for NO2, 8.69 μg/m3 for NOx, and 3.45 μg/m3 for O3. Main: results from the main models (participants with 
repeated measurements); All participants: all participants with at least one visit in KORA S4, KORA F4 or KORA FF4; Fasting: participants who did overnight fasting; 
No-mover: participants who never change their residences during the entire study; IPW: further add predicted inverse probability of each participant into the main 
models; Backd: back-extrapolated annual average air pollutant concentrations were used rather the LUR estimated air pollutant concentrations. PC ae: acyl-alkyl 
phosphatidylcholine. PM2.5 = particulate matter with an aerodynamic diameter less than or equal to 2.5 μm; PMcoarse = particulate matter with an aerodynamic 
diameter of 2.5–10 μm; PM10 = particulate matter with an aerodynamic diameter less than or equal to 10 μm; PM2.5abs = PM2.5 absorbance; PNC = particle number 
concentration; NO2 = nitrogen dioxide; NOx = nitrogen oxide; O3 = ozone. 
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we restricted our study to non-movers (participants who did not move 
within the study period) to reduce the exposure misclassification. The 
robust results from both analyses validated our exposure assessment 
approach. Nevertheless, we cannot rule out the potential impact of 
measurement error and note that exposure measurement error driven by 
spatial and/or temporal misalignments could lead to biases in either 
direction, as well as incorrect standard errors of health effect estimates. 

6. Conclusions 

Our study suggested that long-term air pollution exposure is associ-
ated with metabolic alterations, particularly in PCs with unsaturated 
long-chain fatty acids. These findings could provide new insights into 
potential mechanisms for air pollution-associated adverse outcomes in 
the general adult population. 
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pollution, physical activity and health: A mapping review of the evidence. Environ. 
Int. 147, 105954. 

Tang, W.H.W., Wang, Z., Levison, B.S., Koeth, R.A., Britt, E.B., Fu, X., Wu, Y., Hazen, S.L., 
2013. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular 
risk. N. Engl. J. Med. 368 (17), 1575–1584. 

van der Veen, J.N., Kennelly, J.P., Wan, S., Vance, J.E., Vance, D.E., Jacobs, R.L., 2017. 
The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism 
in health and disease. Biochimica et Biophysica Acta (BBA) - Biomembranes 1859 
(9), 1558–1572. 

van Veldhoven, K., Kiss, A., Keski-Rahkonen, P., Robinot, N., Scalbert, A., Cullinan, P., 
Chung, K.F., Collins, P., Sinharay, R., Barratt, B.M., Nieuwenhuijsen, M., 
Rodoreda, A.A., Carrasco-Turigas, G., Vlaanderen, J., Vermeulen, R., Portengen, L., 
Kyrtopoulos, S.A., Ponzi, E., Chadeau-Hyam, M., Vineis, P., 2019. Impact of short- 
term traffic-related air pollution on the metabolome – Results from two metabolome- 
wide experimental studies. Environ. Int. 123, 124–131. 

Vlaanderen, J.J., Janssen, N.A., Hoek, G., Keski-Rahkonen, P., Barupal, D.K., Cassee, F. 
R., Gosens, I., Strak, M., Steenhof, M., Lan, Q., Brunekreef, B., Scalbert, A., 
Vermeulen, R.C.H., 2017. The impact of ambient air pollution on the human blood 
metabolome. Environ. Res. 156, 341–348. 

Walker, D.I., Lane, K.J., Liu, K., Uppal, K., Patton, A.P., Durant, J.L., Jones, D.P., 
Brugge, D., Pennell, K.D., 2019. Metabolomic assessment of exposure to near- 
highway ultrafine particles. J. Eposure Sci. Environ. Epidemiol. 29 (4), 469–483. 

Wang, R., Henderson, S.B., Sbihi, H., Allen, R.W., Brauer, M., 2013. Temporal stability of 
land use regression models for traffic-related air pollution. Atmos. Environ. 64, 
312–319. https://doi.org/10.1016/j.atmosenv.2012.09.056. 

Ward-Caviness, C.K., Breitner, S., Wolf, K., Cyrys, J., Kastenmüller, G., Wang-Sattler, R., 
Schneider, A., Peters, A., 2016. Short-term NO2 exposure is associated with long- 
chain fatty acids in prospective cohorts from Augsburg, Germany: results from an 
analysis of 138 metabolites and three exposures. Int. J. Epidemiol. 45 (5), 
1528–1538. 

Weuve, J., Tchetgen Tchetgen, E.J., Glymour, M.M., Beck, T.L., Aggarwal, N.T., 
Wilson, R.S., Evans, D.A., Mendes de Leon, C.F., 2012. Accounting for bias due to 
selective attrition: the example of smoking and cognitive decline. Epidemiology 23 
(1), 119–128. 

Whiley, L., Sen, A., Heaton, J., Proitsi, P., García-Gómez, D., Leung, R., Smith, N., 
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