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A Supplementary Material

A.1 Analytical results: Deterministic limit

We present here the results of the deterministic limit.

Theorem A.1 Let xk(t) = X(k)(t)/N, ni = Ni/N. Then, the deterministic limit of the model is given by
the ODE

ẋk = µ

(
− ϑ2 xk ((1 − x̂k) + n2)

(x̂k + n1) + ϑ2((1 − x̂k) + n2)
+

ϑ1 (1 − xk) (x̂k + n1)

ϑ1(x̂k + n1) + ((1 − x̂k) + n2)

)
(1)

x̂k = (1 − τ)xk +
τ

dk
∑

k′∼k
xk′ . (2)

Proof: Let Xt = (X(k)
t )k∈Γ, and x(t) = (X(k)

t /N)k∈Γ. The rates to increase/decrease the state X(k)
t

can be written as f+,k(Xt/N) resp. f−,k(Xt/N), where

f+,k(x) = µ(1 − xk)
ϑ1(x̂k + n1)

ϑ1(x̂k + n1) + (1 − x̂k + n2)
, f−,k(x) = µxk

ϑ2(1 − x̂k + n2)

(x̂k + n1) + ϑ2(1 − x̂k + n2)
.

x̂k is defined in the statement of the theorem. Therewith, the Kramers-Moyal expansion yields the
limiting Fokker-Planck equation for the probability density ψ(x, t)

∂tψ(x, t) = − ∑
k∈Γ

∂x(k)(( f+,k(x)− f−,k(x))ψ(x, t)) +
1

2N ∑
k∈Γ

∂2
x(k)(( f+,k(x) + f−,k(x)) u(x, t))

The deterministic ODE is determined by the drift term, such that ẋk = f+,k(x)− f−,k(x). This yields
the desired result. □
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A.2 Analytical results: Proof of Proposition 3.1 (main text)

Proof: We start with the Fokker-Planck equation obtained by the Kramers-Moyal expansion, where
we use the scaling ni = Ni/N, and ϑi constant in N. Only afterwards, we proceed to the desired
scaling.

As seen above, the rates to increase/decrease the state can be written as f+(Xt/N) resp.
f−(Xt/N), where

f+(x) = µ(1 − x)
ϑ1(x + n1)

ϑ1(x + n1) + (1 − x + n2)
, f−(x) = µx

ϑ2(1 − x + n2)

(x + n1) + ϑ2(1 − x + n2)
.

As we are in a one-patch-model (no spatial structure), we do not have an index k, and also no
variable x̂ that is responsible for the communication between patches. Therewith, the limiting
Fokker-Planck equation reads

∂tu(x, t) = −∂x(( f+(x)− f−(x)) u(x, t)) +
1

2N
∂2

x(( f+(x) + f−(x)) u(x, t))

Now we rewrite drift and noise term with the new scaling ni = Ni/N, ϑi = 1 − θi/N, where
we neglect terms of order O(N−2). We find (using the computer-algebra tool maxima [5]) that
(h := 1/N)

f+(x)− f−(x)

= µ(1 − x)
(1 − h θ1)(x + h N1)

(1 − h θ1)(x + h N1) + (1 − x + h N2)
− µx

(1 − h θ2)(1 − x + h N2)

(x + h N1) + (1 − h θ2)(1 − x + h N2)

= µ

(
[(θ1 + θ2)x − θ1] x (1 − x)− (N1 + N2) x + N1

)
h +O(h2),

while h( f+(x) + f−(x)) = h 2 µx(1 − x) +O(h2). If we rescale time, T = µ h t, the Fokker-Planck
equation becomes

∂Tu(x, T) = − ∂x

{ (
[(θ1 + θ2)x− θ1] x (1− x)− (N1 + N2) x+ N1

)
u(x, T)

}
+ ∂2

x

{
x (1− x) u(x, T)

}
.

For the invariant (and stationary) distribution φ(x) the flux of that rescaled Fokker-Planck equation
is zero, that is,

−
(
[(θ1 + θ2)x − θ1] x (1 − x)− (N1 + N2) x + N1

)
φ(x) +

d
dx

(
x(1 − x) φ(x)

)
= 0.

With v(x) = x(1 − x)u(x), we have

v′(x) =
(
[(θ1 + θ2)x − θ1] +

N1

x
− N2

1 − x
x
)

v(x)

and hence
v(x) = C e

1
2 (θ1+θ2)x2−θ1 x xN1 (1 − x)N2

resp.
φ(x) = C e

1
2 (θ1+θ2)x2−θ1 x xN1−1 (1 − x)N2−1

□
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A.3 Analytical results: Proof of Theorem 3.2 (main text)

Proof: We again start off with the Fokker-Planck equation, obtained by the Kramers-Moyal expan-
sion, where we use the scaling ni = Ni/N, and ϑi constant in N. Only afterwards, we proceed to
the desired scaling. As seen above, the rates to increase/decrease the state in site k can be written
as f (k)+ (X(·)

t /N) resp. f (k)− (X(·)
t /N), where

f (k)+ (x(·)) =
[µ(1 − x(k))] [ϑ1((1 − τ) x(k) + τx̌(k) + n1)]

ϑ1((1 − τ) x(k) + τx̌(k) + n1) + (1 − (1 − τ) x(k) − τx̌(k) + n2)
,

f (k)− (x(·)) =
[µx(k)] [ϑ2(1 − (1 − τ) x(k) − τx̌(k) + n2)]

((1 − τ) x(k) + τx̌(k) + n1) + ϑ2(1 − (1 − τ) x(k) − τx̌(k) + n2)
.

Here, x̂(k) is the average of x(·) in the neighborhood of j, given by the graph Γ.
Therewith, the flux j(k)(x(·)) for the limiting Fokker-Planck equation is defined by

j(k)(x(·)) = −
(

f (k)+ (x(·))− f (k)− (x(·))
)

u(x(·))

+
1

2N
∂x(k)

{(
f (k,ℓ)
+ (x(·)) + f (k,ℓ)

− (x(·))
)

u(x(·))
}

and the Fokker-Planck equation itself reads

∂tu(x(·)) = ∑
k∈Γ

∂x(k) j
(k)(x(·)).

Now we rewrite drift and noise term with the new scaling ni = Ni/N, ϑi = 1 − θi/N, τ =

γ/N, where we neglect terms of order O(N−2). We obtain (again using the computer-algebra
program maxima [5]) that (h := 1/N)

f (k)+ (x(·))− f (k)− (x(·))

=
µ (1 − x(k)) [ϑ1((1 − τ) x(k) + τx̌(k) + n1)]

ϑ1((1 − τ) x(k) + τx̌(k) + n1) + (1 − (1 − τ) x(k) − τx̌(k) + n2)

− µ x(k) [ϑ2(1 − (1 − τ) x(k) − τx̌(k) + n2)]

((1 − τ) x(k) + τx̌(k) + n1) + ϑ2(1 − (1 − τ) x(k) − τx̌(k) + n2)

= µ

(
(x̌(k) − x(k)) γ x(k) (1 − x(k))

+x(k) (1 − x(k)) (θ2 x(k) − θ1 (1 − x(k)))− (N2 + N1)x(k) + N1

)
h +O(h2),

while f (k)+ (x(·)) + f (k)− (x(·)) = 2 µ x(k) (1 − x(k)) +O(h). Hence, in lowest order, j(k)(x(·)) = 0 reads

∂x(k)

{(
x(k)(1 − x(k))

)
u(x(·))

}
=

(
x(k) (1 − x(k)) (γ(x̌(k) − x(k)) + θ2 x(k) − θ1 (1 − x(k)))− (N2 + N1)x(k) + N1

)
u(x(·)).
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For γ = 0, this equation collapses to the case without interaction across patches. This obser-
vation motivates us to introduce v(x(·)) by

u(x(·)) = v(x(·)) ∏
k′∈Γ

φ(x(k
′)).

Therewith, we obtain

∂x(k)v(x(·)) = γ (x̌(k) − x(k)) v(x(·))

with the solution

v(x(·)) = C exp
{

γ ∑
k∈Γ

(
1

2 dk
∑

k′∼k
x(k)x(k

′) − 1
2
(x(k))2

)}
.

The factor 1/(2 dk) is due to symmetry reasons: Each pair of nodes (k1, k2) with k1 ∼ k2 appears
twice in the sum. We rewrite the sum as follows

∑
k∈Γ

(
1

2 dk
∑

k′∼k
x(k)x(k

′) − 1
2
(x(k))2

)
= ∑

k∈Γ

1
2 dk

(
∑

k′∼k
x(k)x(k

′) − dk (x(k))2
)

= − ∑
k∈Γ

1
2 dk

(
∑

k′∼k

(
− x(k)x(k

′) + (x(k))2
))

= − ∑
k∈Γ

1
2 dk

1
2

(
∑

k′∼k

(
(x(k

′))2 − 2x(k)x(k
′) + (x(k))2

))

= − ∑
k∈Γ

1
4 dk

(
∑

k′∼k

(
x(k) − x(k

′)

)2)
.

□

A.4 Bifurcation analysis

We consider the deterministic scaling (SI, section A.1), but only ocnsider one single patch. If x is the
fraction of opinion 1 supporters, the ODE reads (use τ = 0)

ẋ = −µx
ϑ2(1 − x + n2)

(x + n1) + ϑ2(1 − x + n2)
+ µ(1 − x)

ϑ1(x + n1)

ϑ1(x + n1) + (1 − x + n2)
. (3)

Proposition A.2 For n1 = n2 = n and ϑ1 = ϑ2, x = 1/2 always is a stationary point; this stationary point
undergoes a pitchfork bifurcation at ϑ1 = ϑ2 = ϑp, where

ϑp =
1 − 2n
1 + 2n

. (4)

Proof: The rates to increase/decrease the state can be written as f+(Xt/N) resp. f−(Xt/N),
where (recall that na/b = Na/b/N)

f+(x) = µ(1 − x)
ϑ1(x + n1)

ϑ1(x + n1) + (1 − x + n2)
, f−(x) = µx

ϑ2(1 − x + n2)

(x + n1) + ϑ2(1 − x + n2)
.

Therewith, the Fokker-Planck equation for the large population size (Kramers-Moyal expansion)
reads

∂tu(x, t) = −∂x(( f+(x)− f−(x)) u(x, t)) +
1

2N
∂2

x(( f+(x) + f−(x)) u(x, t))
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(a) (b)

(c)
1

(d)
1

Figure 1: Stationary points of the reinforcement model over ϑ = ϑ1 = ϑ2. The pitchfork bifurcation
in (a) is indicated by a bullet, the saddle-node bifurcations in (b) and (c) are indicated by
open circles. Stable branches of stationary points are represented by solid lines, unstable
branches by dotted lines. (a) n1 = n2 = 0.1, ϑ1 = ϑ2 = ϑ, (b) n1 = 0.1, n2 = 0.105,
ϑ1 = ϑ2 = ϑ, (c) n1 = n2 = 0.1, reinforcement for group A ϑ2 = 0.5, ϑ1 on the x-axis, (d)
n1 = 0.2, n2 = 0.02, reinforcement for group A ϑ2 = 1.0, ϑ1 on the x-axis.

and the ODE due to the drift term in case of N → ∞ reads

d
dt

x = f+(x)− f−(x).

Due to symmetry reasons, if n1 = n2 and ϑ1 = ϑ2, we find f+(1− x) = f−(x) and f+(x) = f−(1− x),
which implies

f+(1 − x)− f−(1 − x) = f−(x)− f− + (x) = −( f+(x)− f−(x)).
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Hence, each even number of derivatives of f+(x)− f−(x) at x = 1/2 yields zero,

d2i

dx2i

(
f+(1 − x)− f−(1 − x)

)
= − d2i

dx2i

(
f+(x)− f−(x)

)
⇒ d2i

dx2i

(
f+(1/2)− f−(1/2)

)
= 0.

Particularly, f+(1/2) − f−(1/2) = 0 such that x = 1/2 is a stationary point. Furthermore, (x −
1/2)′ = a(x − 1/2) + b(x − 1/2)3 + .. for some real numbers a, b; due to symmetry reasons, the
second order term is missing in the Taylor expansion at x = 1/2. Thus, we obtain a Pitchfork
bifurcation at a = 0. Using the computer algebra package maxima [5] we work out the coefficients
a and b explicitly,

µ−1 d
dt

x = −x
ϑ(1 − x + n2)

(x + n1) + ϑ(1 − x + n2)
+ (1 − x)

ϑ(x + n1)

ϑ(x + n1) + (1 − x + n2)

= −2 ϑ
(2 n + 1) ϑ + (2 n − 1)
(2 n + 1) (ϑ + 1)2

(
x − 1

2

)
+

32 ϑ (ϑ + n − ϑ2(n + 1))
(2 n + 1)3 (ϑ + 1)4

(
x − 1

2

)3

+O((x − 1/2)4)

For ϑ ∈ (0, 1), n > 0, the coefficient in front of the third order term always is non-zero, while the
coefficient in front of the linear term becomes zero at ϑ = ϑp. Hence, we have a pitchfork bifurcation
at that parameter.

□

In Fig. 1 (a), we show that pitchfork bifuration. If the parameters are non-symmetrical (n1 ̸=
n2, or ϑ1 ̸= ϑ2), the pitchfork bifurcation is replaced by one or two saddle-node bifurcations 1 (b),
(c), or even no bifurcation at all 1 (d). The deeper reason for this observation is the instability of the
pitchfork bifurcation against any perturbation that breaks the symmetry x 7→ 1− x. The background
is the theory about the unfolding of higher-codimensional bifurcation by generic perturbations [2, 3].
We will not discuss the deeper mathematical background here, but simply investigate the observed
pattern in Fig. 1. In panel (a), we have the symmetric case, and find the proper pitchfork bifurcation.
Panel (b) shows the result if the number of zealots only differs slightly, where the reinforcement-
parameter for both groups are assumed to be identical. We still find a reminiscent of the pitchfork
bifurcation: The stable branches in (b) are close to the stable branches in (a), and also the unstable
branches correspond to each other. For the limit n2 → n1, panel (b) converges to panel (a). However,
the branches are not connected any more but dissolve in two unconnected parts, and the pitchfork
bifurcation is replaced by a saddle-node bifurcation.
In panel (c) and (d), the upper branch visible in panel (b) did vanish, and only the lower branch is
present. As ϑ2 is kept constant (ϑ2 = 0.5 in panel (c) and ϑ2 = 0 in panel (d)) and only ϑ1 does vary,
there is no continuous transition to panel (a).

The effect of reinforcement for a given group is similar to an increase of the number of that
group’s zealots. If the reinforcement of one group is distinctively stronger than that of the other
group, persons recruited by this group will – due to the reinfrocement – stay (long) within this
group. The group will dominate the population. In panel (d), the second group has only 1/10 of
the zealots of the first group, but is able to take over if the members of that group do an extreme
reinforcement (ϑ1 ≪ 1). However, if both groups reinforce themselves, the mechanism is kind of
symmetrical, with a bistable setting as the consequence.
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A.5 Vaccination data analysis

The data used are made available by the Robert-Koch-Institute, and have been published in [1, 6, 4].
The web pages for the measles data are located in the URL’s (“Tabellen”)
https://www.versorgungsatlas.de/themen/versorgungsprozesse?tab=3&uid=76&cHash=
15379e83482f9325cf011f690c059c26 (accessed 2’nd Mai 2021)
https://www.versorgungsatlas.de/themen/versorgungsprozesse?tab=3&uid=43&cHash=
31605ab96524f1a101ec8e3aac07e388 (accessed 2’nd Mai 2021)
and that for meningoccoci https://www.versorgungsatlas.de/themen/versorgungsprozesse?
tab=4&uid=75&cHash=08f43064449be9c3947a6ffd61e0e09a (accessed 2’nd Mai 2021)

The GIS-data used are available at the URL
https://gdzshopv-lpz.bkg.bund.de/index.php/default/catalog/product/view/id/773/s/
nuts-gebiete-1-250-000-stand-01-01-nuts250-01-01/category/8/?___store=default

The R-code used to analyze the data is available at the GitHub repository https://github.
com/jomuemathe/EchoChambersVaccinationHesitancy.

We fit each year separately, assuming that we sample from a quasi-equilibrium, where the pa-
rameters change so slowly that the distribution is well approximated by an equilibrium distribution.

To create the graph, indicating which districts are neighbors, we simply identified districts
with common boundaries in GIS data, and defined them as neighbors (see Fig. 2).

Figure 2: Neighbor-graph as defined for the districts in Germany. Black lines: boundaries of dis-
tricts; yellow lines: edges between districts (districts are represented by their center of
gravity).

7

https://www.versorgungsatlas.de/themen/versorgungsprozesse?tab=3&uid=76&cHash=15379e83482f9325cf011f690c059c26
https://www.versorgungsatlas.de/themen/versorgungsprozesse?tab=3&uid=76&cHash=15379e83482f9325cf011f690c059c26
https://www.versorgungsatlas.de/themen/versorgungsprozesse?tab=3&uid=43&cHash=31605ab96524f1a101ec8e3aac07e388
https://www.versorgungsatlas.de/themen/versorgungsprozesse?tab=3&uid=43&cHash=31605ab96524f1a101ec8e3aac07e388
https://www.versorgungsatlas.de/themen/versorgungsprozesse?tab=4&uid=75&cHash=08f43064449be9c3947a6ffd61e0e09a
https://www.versorgungsatlas.de/themen/versorgungsprozesse?tab=4&uid=75&cHash=08f43064449be9c3947a6ffd61e0e09a
https://gdzshopv-lpz.bkg.bund.de/index.php/default/catalog/product/view/id/773/s/nuts-gebiete-1-250-000-stand-01-01-nuts250-01-01/category/8/?___store=default
https://gdzshopv-lpz.bkg.bund.de/index.php/default/catalog/product/view/id/773/s/nuts-gebiete-1-250-000-stand-01-01-nuts250-01-01/category/8/?___store=default
https://github.com/jomuemathe/EchoChambersVaccinationHesitancy
https://github.com/jomuemathe/EchoChambersVaccinationHesitancy


Measles We present here all results for the measles vaccination data.
Decoupled model

year N1 N2 θ1 θ2 LL tst KS(reinf) KS (zealot) mean
2008 59.64 15.50 250.71 92.65 6.88e-07 0.072 0.0011 0.86
2009 57.47 22.38 213.05 102.61 4.84e-08 0.24 0.0038 0.78
2010 53.14 17.97 188.38 82.01 4.11e-06 0.40 0.019 0.80
2011 47.32 18.49 177.11 91.58 2.30e-07 0.23 0.0018 0.80
2012 50.91 18.56 189.53 92.49 2.07e-06 0.57 0.014 0.81

Spatial model
year N1 N2 θ1 θ2 γ

2008 45.29 11.90 317.61 90.70 1024.70
2009 49.49 19.86 271.88 116.27 540.52
2010 41.33 14.35 237.79 88.04 593.66
2011 47.14 15.72 259.09 93.55 556.15
2012 38.42 14.15 243.34 93.59 700.49

If we exclude Saxonia (as it has for meningococci slightly different rules for vaccination), we
obtain

year N1 N2 ϑ1 ϑ2 γ

2008 46.72 12.46 328.42 95.90 1019.21
2009 53.81 21.56 294.87 126.26 522.32
2010 44.01 15.26 250.89 93.33 574.34
2011 48.73 16.43 269.03 98.30 549.74
2012 40.73 15.20 258.63 100.94 690.08

The parameters are slightly different if we exclude Saxonia, but thee is no fundamental differ-
ence to the analysis of all data.

Meningocci Infection We present here all results of the Meningocci vaccination.
Decoupled model
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year N1 N2 ϑ1 ϑ2 LL tst KS(reinf) KS (zealot) mean
2009 22.11 13.76 84.82 70.80 8.66e-12 0.75 0.0013 0.76
2010 28.68 13.45 108.34 68.03 1.25e-10 0.57 0.0028 0.78
2011 29.19 13.89 119.42 75.99 2.62e-14 0.46 0.00069 0.79
2012 41.39 13.93 159.23 67.96 2.56e-12 0.57 0.0013 0.80
2013 39.58 14.79 157.14 75.99 2.14e-13 0.56 0.00090 0.80
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Spatial model

As Saxonia has slightly different recommendations with respect to the meningococci vaccina-
tion, these data are left out (and are missing in the original data set).

year N1 N2 θ1 θ2 γ

2009 16.83 10.56 91.10 62.012 248.97
2010 22.39 10.66 116.66 62.77 255.67
2011 26.19 11.87 144.67 73.77 277.62
2012 48.82 12.55 223.89 63.24 286.69
2013 39.54 12.52 192.78 69.66 273.14

That is, the parameters for the spatial model are slightly different, but there is no fundamental
difference to the analysis of all data.

Elasticities The table with the elasticities show a common pattern for both diseases and all years.

name year Elast(N1) Elast(N2) Elast(ϑ1) Elast(ϑ2)
Measles 2008 0.21 -0.28 -0.133 0.22
Measles 2009 0.48 -0.58 -0.34 0.46
Measles 2010 0.38 -0.45 -0.24 0.33
Measles 2011 0.35 -0.47 -0.24 0.38
Measles 2012 0.32 -0.42 -0.21 0.34
Meningo 2009 0.41 -0.64 -0.32 0.60
Meningo 2010 0.42 -0.56 -0.32 0.50
Meningo 2011 0.41 -0.56 -0.33 0.53
Meningo 2012 0.54 -0.55 -0.40 0.46
Meningo 2013 0.49 -0.56 -0.38 0.48
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B SI Figures
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Figure 3: Histograms for the measles vaccination coverage (decoupled model). Solid line: Probabil-
ity density with reinforcement, dashed line: probability density without reinforcement.
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Figure 4: Vaccination coverage (in percent) for measles in Germany.
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Figure 5: Histograms for the meningicocci vaccination coverage (homogeneous model). Solid line:
Probability density with reinforcement, dashed line: probability density without reinforce-
ment.
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Figure 6: Vaccination coverage (in percent) for meningococci in Germany. Note that the region of
Saxonia is missing as its official recommendations for the meningococci vaccination differ
from the rest of Germany.
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