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Introduction

MicroRNAs (miRNAs) are small single-stranded non-coding 
RNAs, which are endogenously expressed and predominantly 
downregulate the expression of mRNA targets. They achieve 
post-transcriptional regulation of gene expression as part of 
the miRNA-induced silencing complex (miRISC), which con-
sists of a miRNA and several proteins, including a member of 
the Argonaute (AGO) protein family. Binding of miRISC to its 
target sequence is guided by the miRNA and most commonly 
occurs within the 3'-untranslated region (3'-UTR) of the mRNA, 
thereby inducing translational repression or degradation of the 
mRNA (reviewed in refs. 1−3).

It becomes increasingly apparent that deregulated expression of 
miRNAs is causally related to the development of various complex 

MiRNAs are short, non-coding RNAs that regulate gene expression post-transcriptionally through specific binding to 
mRNA. Deregulation of miRNAs is associated with various diseases and interference with miRNA function has proven 
therapeutic potential. Most mRNAs are thought to be regulated by multiple miRNAs and there is some evidence that such 
joint activity is enhanced if a short distance between sites allows for cooperative binding. Until now, however, the concept 
of cooperativity among miRNAs has not been addressed in a transcriptome-wide approach. here, we computationally 
screened human mRNAs for distances between miRNA binding sites that are expected to promote cooperativity. We find 
that sites with a maximal spacing of 26 nucleotides are enriched for naturally occurring miRNAs compared with control 
sequences. Furthermore, miRNAs with similar characteristics as indicated by either co-expression within a specific tissue 
or co-regulation in a disease context are predicted to target a higher number of mRNAs cooperatively than unrelated 
miRNAs. These bioinformatic data were compared with genome-wide sets of biochemically validated miRNA targets 
derived by Argonaute crosslinking and immunoprecipitation (hITs-cLIp and pAR-cLIp). To ease further research into 
combined and cooperative miRNA function, we developed miRco, a database connecting miRNAs and respective targets 
involved in distance-defined cooperative regulation (mips.helmholtz-muenchen.de/mirco). In conclusion, our findings 
suggest that cooperativity of miRNA-target interaction is a widespread phenomenon that may play an important role in 
miRNA-mediated gene regulation.
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disorders. This includes cardiac disease,4,5 lung cancer,6 leuke-
mia,7 neurological disorders such as Alzheimer disease,8 metabolic 
abnormalities like diabetes mellitus,9 and rheumatoid arthritis.10

Unbiased approaches to miRNA function, for example, by 
application of synthetic miRNA libraries to cells,11 indicated that 
cellular pathways are regulated by multiple miRNAs12,13 or are 
subject to regulation by a single miRNA acting on different lev-
els.14 On the other hand, almost every miRNA investigated has 
been assigned several, often contradictory, physiological roles.15 
Obviously, identifying the target mRNAs is crucial to understand 
the function of a disease-related miRNA and, consequently, to 
develop therapeutic approaches. To achieve this goal, we need to 
know the criteria according to which miRNAs (in the context of 
miRISCs) are guided to their respective targets and the principles 
leading to effective target regulation.
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same or different miRNAs instead of a single one, which is there-
fore useful as a predictor of miRNA target regulation.35

The possibility that miRNAs could regulate their targets in 
a concerted—potentially cooperative—fashion has already been 
considered short after their identification, when the 3'-UTR of 
C. elegans lin-41 mRNA was shown to contain multiple targets 
sites (seven) for miRNA lin-4.37,38 Later, the integrity of more 
than one site for miRNA let-7 on the same target has been shown 
to be essential for efficient translational repression.39 Additional 
support comes from assays which showed that luciferase reporter 
mRNAs with two or four binding sites for an exogenous small 
RNA (CXCR4 siRNA) in their 3'-UTR were more efficiently 
repressed than single-site constructs.40

In principle, the combined regulation of a mRNA by several 
miRNAs could be achieved by (1) independent or (2) coopera-
tive target interaction (Fig. 1A). Independent binding of sev-
eral miRNAs (in the context of a miRISC) to the same mRNA 
may be presumed to confer additive regulatory effects, whereas 
cooperative binding enhances the individual regulatory potency 
of miRNAs. Depending on their experimental design, assays 
for translational repression of reporter constructs verified both 
independent23,41,42 and cooperative42,43 activities of small RNAs. 
According to these studies, additive effects on the same mRNA 
are, at best, moderate, whereas regulation by two or more sites 
within a certain distance amplified miRNA-mediated repression 
to an extent greater than expected from independent sites, sup-
porting a concept of cooperative activity.

However, only one of these studies42 characterized cooperative 
RISC binding in a quantitative way. The authors used siRNAs 
(i.e., small interfering RNAs of 18–21 nucleotides, which com-
pletely hybridize to their targets) instead of miRNAs and mul-
tiple binding sites on one reporter mRNA molecule. The Hill 
coefficient, a measure of cooperativity,44 was determined by fit-
ting reporter repression as a function of the siRNA concentra-
tion to the Hill equation. Next to the identity of the involved 
Argonaute protein, Broderick et al.42 showed strong dependency 
of cooperative silencing on the distance between two adjacent 
binding sites. They could show that at least for AGO 1, 3 and 
4, miRNA cooperativity is limited to directly adjacent binding 
sites. This is in accordance with previous approaches studying 
the spacing pattern between neighboring binding sites leading to 
cooperative repression. Although the conclusions drawn in these 
studies were not fully unanimous, they concurred that coopera-
tive effects are facilitated when miRNA binding sites are directly 
adjoining40,42 (i.e., the distance from the 5'-end of one miRNA to 
the 5'-end of the next is 20−22 nucleotides or the length of exactly 
one miRNA). Enhanced repression of mRNAs with two (vs. one) 
miRNA binding sites was also observed when sites partially over-
lapped (5'-end of downstream site moved four nucleotides into 
the accessory but not the seed region of the upstream site) or 
when they were separated by few additional nucleotides (5'-to-
5' distance of 25 nucleotides).43 It seems, however, unclear what 
mode of combined miRNA activity (independent or cooperative) 
underlies translational repression of these constructs. Broderick 
et al.42 found that cooperative effects are lost when miRNA sites 
(except bulged AGO 2 sites) were separated by 19 nucleotides 

However, the mechanisms of miRNA-mRNA interactions 
are still about to be elucidated, and versatile, often contradictory 
modes of action have been reported.16-19 In metazoans, the sup-
pressive effect of an individual miRNA on a target is often small,20 
potentially due to the fact that miRNAs form only imperfect and 
thermodynamically unfavorable RNA-RNA hybrids with their 
targets over a short sequence (called the miRNA seed region 
nucleating the interaction).

A set of interaction rules has been formulated1 based on bio-
chemical and bioinformatic analyses, but functional miRNA 
sites often show aberrant characteristics. In spite of these diffi-
culties, there is good evidence that contiguous and perfect base 
pairing of nucleotide positions 2–8 of the miRNA (seed region) 
with the cognate mRNA sequence is predictive of true interac-
tions between them.1,21

Therefore, one comparably successful approach to bioinfor-
matically predict miRNA targets is to focus on the seed region 
in miRNA targets. The online tool TargetScan searches for 
conserved seed regions of 7 and 8 nucleotides in length as well 
as for 3' compensated sites in 3'-UTRs. It ranks its predicted 
results based on further miRNA-mRNA binding properties 
summarized in a so called context+ score, including seed-pairing 
stability and target-site abundance.22-24 A similar tool to pre-
dict miRNA target sites, miRanda, scores and ranks its results 
based on a machine learning algorithm called mirSVR.25-27 The 
authors use support vector regression (SVR) to train on target 
site information as well as context features and calibrate their 
scores to correlate with observed downregulation of a published 
experimental data set.

More recently, computational methods were successfully com-
bined with experimental miRISC-RNA crosslinking approaches 
to identify target mRNAs and characterize their miRNA bind-
ing sites: High-throughput sequencing of RNA isolated after UV 
crosslinking and immunoprecipitation (HITS-CLIP),28 photoac-
tivatable ribonucleoside-enhanced CLIP (PAR-CLIP)29 and indi-
vidual nucleotide resolution CLIP (iCLIP).30 These approaches 
are helpful to reduce the search space for miRNA targets since 
they select for RNA fragments that are bound to active miRISC 
complexes. By UV irradiation of living cells, native protein-RNA 
contacts will be covalently crosslinked and, thereby, the informa-
tion about the binding region preserved for later miRNA bind-
ing site predictions. Next to CLIP methods, there is a range of 
approaches used for target identification that do not rely on cross-
linking, such as pull down of biotinylated miRNAs.31

However, miRNA-target interactions are not only bidirec-
tional but rather form complex networks.32,33 For the formation 
of a RISC on mRNA, seed pairing with as little as 6 or 7 nucleo-
tides between miRNA and mRNA target seems sufficient (albeit 
thermodynamically unfavored and most likely dependent on 
further interaction between RISC components and the mRNA). 
Therefore, almost every miRNA known to date is computation-
ally predicted to target more than one mRNA, and experimental 
evidence confirms this notion.17,22-24,34-36 Further, one mRNA is 
often controlled by multiple miRNAs. It has been shown that 
mRNAs with strong miRNA-mediated effects on their expres-
sion level typically contain multiple miRNA binding sites for the 
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Here we present a systematic distance analysis of predicted 
miRNA target sites in human 3'-UTRs. Compared with ran-
domized controls, distances shown by experimental studies to 
generate cooperative effects were enriched for naturally occurring 
miRNAs and miRNA binding sites. Further, functionally related 
miRNAs tend to bind more distance-defined cooperative targets, 
as the number increases for groups of miRNAs co-expressed in 
the same tissue or co-regulated in specific disease contexts. Our 
results, which are based on binding sites predicted by TargetScan 
are in good agreement with both a second computational target 
site predictor (miRanda/mirSVR) and experimentally verified 
miRNA interaction sites derived from HITS-CLIP or PAR-CLIP 
experiments.

Our findings support the importance of inter-site distance as 
a parameter defining miRNA-mediated repression. The com-
prehensive analysis of multiple miRNAs per target rather than 
miRNA-mRNA pairs appears essential to exploit disease-asso-
ciated miRNAs and respective targets suitable for therapeutic 
purposes. To facilitate further research in miRNA cooperativity 
we developed miRco, a public web application that predicts coop-
erative miRNA-target interactions based on inter-site distance 
constrains: www.mips.helmholtz-muenchen.de/mirco.

(5'-to-5' distance 40 nucleotides). These studies suggest that 
direct adjacency of binding sites promotes cooperative miRNA 
activities, whereas deviation from this rule may result in loss of 
combined effects or a shift toward independent activities. A sche-
matic drawing of these correlations is shown in Figure 1B. Some 
outliers with larger 5'-to-5' distance of cooperative binding sites 
may be explained by spatial proximity due to suitable secondary 
structure of the mRNA sequence.

Mechanistically, distance constraints between miRNA bind-
ing sites have been suggested to result from interactions between 
adjacent RNA-induced silencing complexes which stabilize target 
mRNA binding and increase the probability of occupancy (bind-
ing cooperativity).41,42 Another possibility would be a cooperative 
influence on the recruitment or effectiveness of further proteins 
leading to enhanced target degradation or repression (functional 
cooperativity42). Too close sites might be underrepresented due to 
steric hindrance of neighboring RISCs resulting in reduced effec-
tiveness, possibly even lower than for a single site. On the other 
hand, if binding sites are too distant, the RNA-protein complexes 
might not be able to positively interact. However, it has to be elu-
cidated if cooperative target regulation reflects a general concept 
of miRNA mediated mRNA regulation.

Figure 1. Distance between multiple miRNA binding sites as predictor of cooperative target regulation. (A) concerted miRNA target regulation (in 
the context of miRIscs) may be described by independent or cooperative activities. An independent mode of repression has been described for 
very close and for very distant sites. Non-additive effects would be expected if overly close sites exclude simultaneous binding of miRNAs. Additive 
effects may occur when miRNAs occupy sites autonomously without activity-enhancing interactions between their miRIscs. In contrast, coopera-
tive activity has been shown for miRNAs, whose binding sites on a specific mRNA are within a certain distance referred to as cooperativity range. 
The term cooperativity refers to a synergistic effect amplifying miRNA-mediated repression to an extent greater than expected from independent 
sites. (B) summary of previous experimental studies investigating distance-dependency of cooperative target repression by multiple small RNA 
binding sites. Inter-site distances (d) tested in the reports (squares) are shown as the distance between adjacent miRNA 5' ends on the respective 
mRNA target. square colors, light and dark blue indicate that the repressive effect of multiple binding sites was weaker/similar or stronger than for 
a single target site. Brown squares emphasize 5'-to-5' distances for which repression has been reported significantly greater than expected from 
additive effects (cooperative miRIsc binding mode). The accumulation of cooperative regulation for distances between 15−26 nucleotides indicates 
that directly adjacent miRIscs (with certain variations) have the highest potential to repress their target in a cooperative way. cooperative regulation 
outside of the core cooperativity range might occur due to secondary structure formations of the target sequence. Doench D, et al.;43 saetrom s, 
et al.;41 Grimson G, et al.;23 Broderick B, et al.42
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To test for statistical significance, the results were compared 
with two different null models: (1) randomly chosen binding 
sites and (2) predicted target sites for scrambled miRNA-like 
sequences. For the first null model, we randomly selected tar-
get sites in a sequence-independent manner and, thus, generated 
artificial target sets with random binding positions. We picked 
random positions from the complete set of real human 3'-UTRs. 
The number of sites was normalized to predictions for human 
miRNAs. For the second, we designed arbitrary sequences of 
22 nucleotides with the constraint that they are not similar to 
known miRNAs. We predicted targets with TargetScan and 
kept only those results that have a similar number of targets than 
native human miRNAs.

The distribution of all pairwise distances significantly differed 
for endogenous miRNAs and randomly selected binding sites in 
the range of 15−26 nucleotides (Fig. 2B, P value < 2.2 × 10–16). 
This is in accordance with experimental findings (Fig. 1B) and 

Results

MiRNA target sites are enriched within cooperativity-pro-
moting distance. If a cooperative mode of action was function-
ally relevant, then cooperativity-promoting distance between 
target sites should be statistically overrepresented for intact 
binding sites of miRNAs. To test this, we computed the dis-
tribution of pairwise distances between predicted binding sites 
of evolutionary conserved human miRNAs. MiRNA targets 
were predicted using TargetScan, version 6.2.45 The data set 
contained 1,537 conserved human miRNAs. We calculated 
the distribution of distances between all binding sites of each 
miRNA individually. In addition, we determined distances for 
all binding sites of groups of two and five miRNAs (Fig. 2A). 
These group sizes have been defined in order to analyze combi-
natory effects. They were sampled 1,000 times from the com-
plete set of miRNAs.

Figure 2. Naturally occurring miRNA binding sites are more frequently spaced within the cooperativity range (15−26 nucleotides) than expected by 
chance. (A) The pairwise distance between all binding sites of a single (1) or multiple (2) miRNAs is calculated for each mRNA 3'-UTR. (B) The distribu-
tion of pairwise distances shows an enrichment of the cooperativity permitting distance for miRNAs compared with randomly picked sites (1) and 
predicted binding sites of scrambled sequences (2) (P < 2.2 × 10–16, Wilcoxon Rank sum test).
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This picture changed when groups of two or five miRNAs 
were taken into account. While both data sets retrieved by 
experimental methods exhibited the same tendency as the tar-
get prediction tools, both HITS-CLIP and PAR-CLIP showed a 
stronger gain. The mean fraction of cooperative targets increased 
to 4.7% and 12.5% for HITS-CLIP and to 3.4% and 5.7% for 
PAR-CLIP. The mean percentage of coperative targets for the 
controls increased only to 0.4%/0.8% for random positions and 
1%/1.3% for random sequences. In general, miRanda/mirSVR 
resembled HITS-CLIP and PAR-CLIP more closely while for 
TargetScan the number of cooperative targets was slightly lower.

These results show that cooperative regulation is likely to 
involve different miRNAs. Most importantly, the data for com-
putational target prediction was confirmed with two indepen-
dent sets of experimentally validated miRNA targets.

Functionally related miRNAs show an enrichment of tar-
get sites within cooperativity permitting distance. As shown 
above, endogenous miRNAs are more likely to posess target sites 
in a cooperativity range than randomly picked sites or scrambled 
sequences. If cooperativity is relevant in miRNA-mediated gene 
regulation, then functionally related miRNAs may share more 
cooperative targets than others. As most miRNAs are not com-
prehensively understood with respect to function, the field widely 
relies on two criteria that may be indicative of functional rela-
tion: (1) Co-expression of miRNAs within a particular tissue 
and (2) co-regulation in a common disease context. To put the 
first criterion to the test, we used the miRNA expression profiling 
database mimiRNA.46 For the second, we employed PhenomiR,47 
a database of differentially regulated miRNA expression in dis-
eases. For all miRNAs in both databases, targets were retrieved 
from TargetScan as described before.

The mimiRNA database employs normalized human miRNA 
expression profiles from four different sources: Sequencing data 
from the miRNA Atlas,48 quantitative real-time PCR data from 
Gaur et al.49 and Lee et al.50 and microarray and deep sequencing 
data from the Gene Expression Omnibus (GEO).51 The complete 
data set for 188 different tissues was used to calculate the pro-
portion of cooperative targets among all targets for single and 
groups of two and five miRNAs. Co-expressed miRNAs were 
compared with all non-expressed miRNAs as a control. As shown 
exemplary for brain, liver, heart and lung (Fig. 4), miRNAs that 
are co-expressed in a tissue target more mRNAs in a potentially 
cooperative manner than miRNAs that are not co-expressed in 
a particular tissue (one-sided Wilcoxon Rank Sum test with P 
< 2.2 × 10–16). Moreover, the difference increases for groups of 
two and five co-expressed miRNAs, suggesting that these co-
expressed miRNAs are in a functional relation with each other.

To test for the second presumed indicator of functional inter-
relation, i.e. co-regulation in disease, we applied the latest release 
of PhenomiR, a database which comprises 126 diseases and 615 
associated miRNAs. Again, the fraction of cooperative targets 
was determined for single and sampled combinations of two and 
five miRNAs. The complete set of non-regulated miRNAs was 
used as control for each disease. Targeting with at least two bind-
ing sites within the cooperativity range was more often found for 
co-regulated miRNAs than for control groups not associated with 

is hence referred to as cooperativity range. This holds true for 
individual as well as for combinations of two and five different 
miRNAs. The enrichment of miRNA binding sites shows a peak 
for an inter-site distance of ~21 nucleotides (i.e., when two miR-
NAs bind in immediate vicinity). The distance distribution of 
predicted binding sites for scrambled sequences was also found 
to be different from miRNAs, again with significant underrepre-
sentation within the cooperativity range (Fig. 2B).

In summary, when only small distances are considered 
(< 3 miRNA lengths), predictions for randomly picked sites and 
scrambled sequences produced similar results, while predicted 
target sites for human miRNAs displayed significant enrichment 
of inter-site spacing between 15−26 nucleotides. These findings 
correlate with previous studies (Fig. 1B) and, thus, we used this 
window of inter-site spacing in subsequent analyses to determine 
cooperatively regulated miRNA targets.

HITS-CLIP and PAR-CLIP data sets show cooperativity. 
We calculated the fraction of targets that are potentially regu-
lated in a cooperative manner for four distinct sets of miRNA 
targets: (1) TargetScan predictions for human miRNAs,44 (2) 
miRanda/mirSVR predictions for human miRNAs as a second 
target prediction tool,26,27 (3) experimentally validated data from 
a HITS-CLIP28 and (4) from a PAR-CLIP study.29 All data sets 
were compared with random target sites and random sequences. 
As above, we analyzed single as well as groups of two and five 
miRNAs to take combined activity into account.

Looking at target prediction, both tools show significantly 
more cooperative targets than random binding sites and random 
sequences (p-values < 2.2 × 10–16). This holds true for single 
and groups of two and five miRNAs. Interestingly, in all cases, 
miRanda/mirSVR has a higher percentage of cooperative targets. 
We find a mean of 2%, 4%, and 8% for miRanda/mirSVR and 
a mean of 1%, 1.7%, and 2.2% for TargetScan.

The difference between miRNAs and controls increased with 
the number of miRNAs and we found the largest difference for 
groups of five naturally occurring miRNAs. This indicates that 
targets controlled by multiple different miRNAs are more fre-
quently regulated in a cooperative fashion than mRNAs with 
multiple binding sites for an identical miRNA species.

Recently, biochemical methods to identify miRNA bind-
ing sites on a genome-wide scale have been developed. For an 
experimental validation of our in silico results, we analyzed 
the published HITS-CLIP and PAR-CLIP data sets. The for-
mer contains mRNA binding sites for the 20 most abundant 
miRNAs from mouse brain while the latter contains 47 human 
miRNAs. Both HITS-CLIP and PAR-CLIP identifie similar 
numbers of targets as TargetScan and miRanda/mirSVR and, 
thus, allow for comparison with our findings for computational 
prediction.

We retrieved all binding sites for both data sets and calcu-
lated the proportion of cooperative targets (Fig. 3, brown and 
blue boxes). For a single miRNA, only HITS-CLIP shows sig-
nificantly more cooperative targets than controls with a mean of 
2.5% compared with 0.5% and 0.2% for random sequences and 
random sites. PAR-CLIP data shows a mean of 0.4% cooperative 
targets and thus is not different from controls.
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based on our findings and reported experimental data.23,41-43 
Alternatively, the user may define a custom lower and upper limit 
of the distance. The tool includes miRNAs and mRNAs from 
human, mouse and rat. Target predictions are obtained from the 
current release of TargetScan (version 6.2).

First, the user is asked to choose the species for which the 
search is to be performed. Then, a list of miRNAs, or genes, or 
both may be submitted. If either miRNAs or genes are left blank, 
the complete data set is used for analysis. Our tool is connected 
to the PhenomiR database. The user can select a disease anno-
tated in PhenomiR and input a set of disease-associated miRNAs 
(Fig. 5B). The output of miRco is presented as a list of target genes 
with corresponding binding sites in the aforementioned coopera-
tivity range. Data are initially sorted based on the context+ score 
calculated by TargetScan and can subsequently be listed by tar-
get gene symbol and average distance between the binding sites. 
Furthermore, the result table can be filtered for the occurrence of 
one or multiple miRNAs within the list of candidate mRNAs.

The improved data set of the latest TargetScan release is a 
solid fundament for prediction of cooperative targets for three 
major model organisms used for medical research. miRco may 
serve as a hypothesis-generator to aid further research on the 

a particular disease (one-sided Wilcoxon Rank Sum test with P 
< 2.2 × 10–16) (data not shown). Notably, this holds true for all 
diseases covered by PhenomiR. Similar to co-expressed miRNAs, 
we found an increase of the difference between disease-associated 
miRNAs and controls for groups of two and five miRNAs.

miRco: A tool to predict miRNA targets with binding sites 
in a cooperativity-permitting distance. We have shown that 
miRNA binding sites are more often located in the cooperativity 
range than expected by chance. Additionally, functionally related 
miRNAs show an enrichment of cooperative binding sites. Still, 
the biological relevance of cooperativity in miRNA function has 
to be shown experimentally. To support further research in this 
topic, we developed the web application miRco, a tool to predict 
potentially cooperative miRNA interactions and their mRNA 
targets. Upon user input of miRNAs and distance allowance 
between miRNA binding sites, miRco identifies mRNAs that 
may be controlled by cooperative miRNA activities. Additionally, 
miRco can find all miRNAs that bind cooperatively to a given list 
of genes or mRNAs (Fig. 5A and B). To predict mRNAs that are 
cooperatively regulated, miRco searches by default for target sites 
within a distance of 15–26 nucleotides between two consecu-
tive miRNA 5' ends. As described above, this setting was chosen 

Figure 3. The fraction of cooperative targets per total targets grows for increasing numbers of miRNAs. Analysis of cooperative targets was performed 
with computationally predicted (Targetscan, red; miRanda, brown) and experimentally identified (hITs-cLIp, light blue; pAR-cLIp, dark blue) target 
sets. The proportion of cooperative targets is plotted for single miRNAs and sampled groups of two and five miRNAs. The mean is always higher for 
existing miRNAs than either of the controls (P < 2.2 × 10–16, tested with Wilcoxon Rank sum test), except pAR-cLIp data for single miRNAs. This indicates 
that they are more often located in a potential cooperative distance than expected by chance.
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with miRNA sites in cooperativity range than from control set-
ups. Third, the higher proportion of such mRNAs goes along 
with the co-regulation of miRNAs in tissue as well as similar 
disease context, underscoring the suspected functional interplay 
of these miRNAs on the respective mRNAs. The enrichment of 
miRNA binding sites in cooperativity-promoting distance speaks 
for a prevalently concerted, maybe cooperative way of miRNA 
target regulation.

However, the mechanisms of targeting are complex. 
Apparently, the type of Argonaute protein involved in a particu-
lar silencing complex has great influence on the nature of tar-
get regulation.42 For example AGO 1 and AGO 2 show distinct 
characteristics with respect to the distance requirement between 
binding sites leading to cooperative targeting.42 While bulged 
binding of miRNAs within AGO 1-complexes shows cooperativ-
ity only for adjacent binding sites, bulged sites of AGO 2-contain-
ing RICSs can act cooperatively in adjacent as well as in extended 
compositions. Consequently, the cell-specific proportion of the 
different AGO subtypes as well as the concentration of other 
potential effector proteins may be important. Furthermore, the 
sequence context around miRNA sites might affect cooperative 
actions of miRISCs, with other protein binding sites and second-
ary structure as the most likely determinants.

Therefore, the next step in studying miRNA cooperativity 
will be to more comprehensively analyze it in a biological context. 
Analysis of several instead of single miRNAs and their potential 
cooperativity could lead to a better understanding of the complex 
interplay of miRNAs and genetic networks in health and disease.

Cooperativity as a moderator of strongly increased effects 
would be interesting for the therapeutic use of miRNAs: If two 
miRNAs downregulate an mRNA target cooperatively, a lower 

mechanisms underlying concerted miRNA-mediated target 
regulation.

Discussion

The study presented here addresses a largely unresolved question 
in miRNA research: Do miRNAs confer physiological effects on 
their own, or do they function in a concerted, possibly coopera-
tive manner?

Literature provides certain evidence: Experiments in which 
a single small regulatory RNA binds to a single site within a 
mRNA often fail to show effects (e.g. refs. 23 and 40). On the 
other hand, studies indicated that miRNA-mediated target regu-
lation is particularly effective if several miRNAs bind within a 
close distance.23,41-43 However, these results rely on expression of 
artificial reporter constructs and do not provide comprehensive 
evidence that cooperativity is a general principle of miRNA-
mediated target regulation.

In principle, one way to explain the basic concept of miRNA 
cooperativity is that proximity of binding sites on mRNAs sta-
bilizes miRISCs’ binding to their mRNA targets, leading to an 
increased silencing effect. This proximity concept has already 
been discussed in literature and several of our observations provide 
further support for it on a genome-wide scale: First, we showed 
that mRNAs with more than one miRNA site are more likely to 
have these sites placed in cooperativity-promoting distance (15–
26 nucleotides, 5'-to-5') than randomized controls. Interestingly, 
the peak distance of ~21 nucleotides reflects binding of two 
miRNAs in direct neighborhood. Second, by in silico prediction 
(TargetScan, miRanda/mirSVR), as well as experimentally sup-
ported (HITS-CLIP, PAR-CLIP), we retrieved more mRNAs 

Figure 4. Functionally related miRNAs show an enrichment of target sites within the cooperativity range. Fraction of potentially cooperative targets 
for miRNAs in four exemplary tissues (blue) compared with a control set of miRNAs not expressed within the respective tissue (gray). Targeting within 
the cooperativity permitting distance is over-represented for co-expressed miRNAs (one-sided Wilcoxon Rank sum test with P < 2.2 × 10–16).
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Figure 5. Functionality of the miRco web application. (A) A search for cooperative miRNA-target interactions is performed by selecting miRNA candi-
dates, relevant target genes or both. The user is able to specify parameters for the range in which the spacing between two adjacent miRIsc binding 
sites (d) is assumed to lead to cooperative target repression. Default values are 15−26 nucleotides. predictions for three species are available: human, 
mouse, and rat. (B) screenshot of the user interface of the online tool.
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prediction is performed on a multiple sequence alignment of 
18413 3'-UTRs from 23 species. For miRanda/mirSVR, we used 
the predictions for conserved miRNAs with a good mirSVR 
score. The release contains 249 human miRNAs.

Random distribution of target sites. Randomly distributed 
target positions were used as a null model for cooperativity. We 
picked random positions within the real set of human 3'-UTRs. 
UTR data for all human genes (assembly GRCh37.p10) was 
downloaded from ENSEMBL BioMart (www.ensembl.org/). 
The number of positions per UTR was normalized to lie within 
the range of TargetScan predictions. This approach is completely 
independent of miRNAs, their sequences and pairing determi-
nants. Thus, this represents the most basic null model for bind-
ing site allocation and does not rely on any prior knowledge.

Random miRNA-like sequences. To augment the basic ran-
dom position control, we generated 1,000 completely random 
22 nucleotides long sequences. We only used sequences which are 
not known human miRNAs and do not contain seeds (nucleo-
tide 2–8) of known human miRNAs. We predicted targets for 
these seeds with the TargetScan 6.2 software and the UTR data 
provided by TargetScan. For the subsequent analyses, only ran-
dom sequences that produce the same numbers of targets (i.e., 
between 10–2,719) as human miRNAs were taken into account.

Sampling of groups. For analyses using single miRNAs, the 
complete data set was considered. Groups of two and five miR-
NAs or controls were sampled randomly 1,000 times from the 
complete set with no recurrence.

HITS-CLIP data set. The data set of Chi et al.28 is available at 
ago.rockefeller.edu, including mapping of miRNA binding sites 
onto genomic positions. The authors of this study used neocor-
tex of P13 mouse brain, crosslinked RNA binding proteins and 
RNA with UV irradiation and immunoprecipitated AGO-RNA 
complexes. Subsequently, RNA was purified and sequenced. 
Computational analysis produced a miRNA-mRNA interaction 
map. We used the mapping on mouse genome assembly mm9.

PAR-CLIP data set. The data set of Hafner et al.29 is avail-
able through starBase (starbase.sysu.edu.cn), a database provid-
ing gene mappings for a wide range of CLIP experiments.58 We 
used the “target site interaction” tool of starBase with settings for 
at least one microRNA read and “stringent miRNA targets” as 
described in the starBase publication.

Statistics. The distributions of pairwise distances (in a given 
distance window) as well as the percentage of cooperative tar-
gets were tested for a significant difference between miRNAs and 
controls with a one-sided Wilcoxon Rank Sum test.59 We used 
the wilcox.test function in the “stats” package of the R statistical 
computing software with a confidence interval of 0.95 to calcu-
late P values. P values < 2.2 × 10–16 occur due to the limits in 
floating point precision in R.

miRco web application. The miRco web tool is implemented 
as a JAVA EE application running on a Tomcat 6 servlet engine, 
using the same MySQL database described above. It employs 
TargetScan release 6.2. For a given set of mRNAs and miRNAs, 
miRco produces groups of miRNA binding sites that fulfill the 
user set distance criteria. Whenever two binding sites are at the 
exact same position or overlap (i.e., their distance is smaller than 

level of expression might suffice to exert the designated effect. 
This would potentially decrease side effects of the miRNAs or 
miRNA mimics and, thereby, lead to a more tolerable treatment.

In addition, combinations of miRNAs could be employed to 
improve experimental protocols. Similar to the idea of decreased 
side effects of therapeutic miRNAs, the combination of different 
miRNAs might increase the specific effect on the targets of inter-
est. Interestingly, the combined activity of multiple miRNAs has 
recently been reported to facilitate the reprogramming of fibro-
blasts to cardiomyocyte-like cells52 as well as the induction of plu-
ripotent stem cells (iPSCs).53,54

Recently, several studies highlighted the interaction of AGO/
miRNAs with other RNA binding proteins (RBP).55-57 In the 
future, the concept of cooperativity may extend to all RBPs in 
order to better predict mRNA regulation.

In the context of this work, we also developed miRco (mips.
helmholtz-muenchen.de/mirco), a web application meant to aid 
experimental research into the cooperative action of miRNAs. 
It predicts potentially cooperatively targeted mRNAs based on 
binding site distances and, thus, might help to identify key regu-
latory miRNA-mRNA networks. miRco serves as a starting point 
for wet lab scientists: It allows one to input miRNAs and search 
for cooperative targets. In addition, the user can specify a set of 
genes and find all miRNAs that target these genes in a coopera-
tive fashion. This dual approach helps to narrow down lists of 
candidate genes and miRNAs and makes it more feasible to test 
cooperativity in a complex biological context.

Taken together, our data indicate that cooperativity of 
miRNA-target interaction is a wide-spread phenomenon that 
may play an important role in miRNA-mediated gene regulation.

Materials and Methods

Criteria for the prediction of cooperativity. Cooperativity of 
two miRNAs is defined by the distance between the 5'-starts 
of their binding sites. We used 15 nucleotides as the lower and 
26 nucleotides as the upper limit of the cooperative distance, fol-
lowing experimental studies of distance-dependent cooperative 
effects and our data showing an enrichment of binding sites for 
human miRNAs in this window.

To determine whether a mRNA may be cooperatively regu-
lated, we take a single gene, acquire all binding sites of a given set 
of miRNAs on this mRNA and cluster them in groups where the 
distance between two adjacent sites lies within the cooperativity 
interval. If at least two binding sites fulfill this criterion, a mRNA 
is considered to be potentially regulated in a cooperative manner.

All data sets are stored in a MySQL database containing tables 
for genes, miRNAs and binding sites as well as their relations. 
Analyses are performed with Python programs combined with 
data plotting using R.

MiRNA target prediction. We used computational target pre-
diction of human miRNAs from TargetScan22,45 release 6.2 and 
miRanda/mirSVR release August 2010.26,27 For TargetScan, we 
used the predictions for conserved miRNAs and targets. Scores 
of target sites are the context+ scores calculated by TargetScan. 
The release 6.2 contains 1,536 conserved human miRNAs and 
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