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BACKGROUND: End-stage renal disease is associated with a high risk of cardiovascular events. It is unknown, however, whether 
mild-to-moderate kidney dysfunction is causally related to coronary heart disease (CHD) and stroke.

METHODS: Observational analyses were conducted using individual-level data from 4 population data sources (Emerging Risk 
Factors Collaboration, EPIC-CVD [European Prospective Investigation into Cancer and Nutrition–Cardiovascular Disease 
Study], Million Veteran Program, and UK Biobank), comprising 648 135 participants with no history of cardiovascular disease 
or diabetes at baseline, yielding 42 858 and 15 693 incident CHD and stroke events, respectively, during 6.8 million person-
years of follow-up. Using a genetic risk score of 218 variants for estimated glomerular filtration rate (eGFR), we conducted 
Mendelian randomization analyses involving 413 718 participants (25 917 CHD and 8622 strokes) in EPIC-CVD, Million 
Veteran Program, and UK Biobank.

RESULTS: There were U-shaped observational associations of creatinine-based eGFR with CHD and stroke, with higher risk 
in participants with eGFR values <60 or >105 mL·min–1·1.73 m–2, compared with those with eGFR between 60 and 105 
mL·min–1·1.73 m–2. Mendelian randomization analyses for CHD showed an association among participants with eGFR <60 
mL·min–1·1.73 m–2, with a 14% (95% CI, 3%–27%) higher CHD risk per 5 mL·min–1·1.73 m–2 lower genetically predicted 
eGFR, but not for those with eGFR >105 mL·min–1·1.73 m–2. Results were not materially different after adjustment for factors 
associated with the eGFR genetic risk score, such as lipoprotein(a), triglycerides, hemoglobin A1c, and blood pressure. 
Mendelian randomization results for stroke were nonsignificant but broadly similar to those for CHD.

CONCLUSIONS: In people without manifest cardiovascular disease or diabetes, mild-to-moderate kidney dysfunction is causally 
related to risk of CHD, highlighting the potential value of preventive approaches that preserve and modulate kidney function.

Key Words: cardiovascular diseases ◼ coronary disease ◼ kidney diseases ◼ stroke

Chronic kidney disease (CKD), a major public 
health burden, affects >10% of the adult popula-
tion globally.1,2 Kidney failure is associated with a 

high risk of cardiovascular disease (CVD) and all-cause 
mortality.3–5 Strong associations have also been reported 

between non–dialysis-dependent CKD and these out-
comes in both people without manifest CVD and patients 
with ischemic CVD, heart failure, high blood pressure, or 
diabetes.2,6,7 These observations have led to guideline 
recommendations that patients with CKD should be 
regarded as being at very high risk of CVD.8,9

It is not known, however, whether mild-to-moder-
ate kidney dysfunction is causally relevant to CVD or 
whether the increase in CVD risk associated with kid-
ney dysfunction is related to changes in known risk fac-
tors, such as blood pressure and dyslipidemia, which 
seem to be a direct result of kidney dysfunction.10–12 
An approach to help evaluate the causal relevance of 
kidney dysfunction to CVD is Mendelian randomiza-
tion. Mendelian randomization uses genetic variants 
specifically related to a particular exposure to compare 

Clinical Perspective

What Is New?
• In people without manifest cardiovascular disease 

or diabetes, there is a nonlinear causal relation-
ship between kidney function and coronary heart 
disease.

• Even mildly reduced kidney function is causally 
associated with higher risk of coronary heart dis-
ease with a possible risk threshold for eGFR value 
of ≈75 mL·min–1·1.73 m–2.

• The effect of reduced kidney function on coronary 
heart disease is independent of traditional cardio-
vascular risk factors.

What Are the Clinical Implications?
• Preventive approaches that can preserve and mod-

ulate kidney function can help prevent cardiovascu-
lar diseases.

• Given the nonlinear causal relationship, it may be a 
preferable strategy to identify individuals in the pop-
ulation with mild-to-moderate kidney dysfunction 
and target them for renoprotective interventions 
alongside routine strategies to reduce cardiovas-
cular risk.

Nonstandard Abbreviations and Acronyms

CHD Coronary heart disease 
CKD Chronic kidney disease
CVD Cardiovascular diseases
eGFR Estimated glomerular filtration rate
EPIC-CVD  European Prospective Investigation into 

Cancer and Nutrition – Cardiovascular 
Disease Study

GRS Genetic risk score
MVP Million Veteran Program
UKB UK Biobank
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genetically defined population subgroups with differ-
ent average levels of the exposure. The independent 
segregation of alleles at conception means that these 
genetically defined subgroups should not differ system-
atically with respect to confounding variables, creating 
a natural experiment analogous to a randomized trial. 
Therefore, compared with conventional observational 
analyses, Mendelian randomization analyses provide 
more reliable insights into causal relationships between 
risk factors and disease outcomes.13,14

Previous Mendelian randomization analyses that have 
assumed a linear dose-response relationship between 
kidney function and CVD have reported null associa-
tions.14,15 However, observational analyses have reported 
U-shaped associations of CVD risk with creatinine-based 
estimated glomerular filtration rate (eGFR), a measure 
of kidney function. Therefore, drawing on multiple large-
scale population bioresources, we evaluated the causal 
relevance of eGFR to coronary heart disease (CHD) and 
stroke, using Mendelian randomization methods tailored 
to nonlinear relationships,16–20 which require concomitant 
information on eGFR, genetic determinants of eGFR, 
and first-ever CVD outcomes in the same individuals.

METHODS
The data, code, and study material that support the findings 
of this study are available from the corresponding author on 
reasonable request.

Study Design and Study Overview
This study involved interrelated components (Figure 1). First, 
we characterized observational associations between eGFR 
and incident CHD or stroke, using data from the Emerging Risk 
Factors Collaboration,21 EPIC-CVD (European Prospective 
Investigation into Cancer and Nutrition–Cardiovascular Disease 
Study),22 Million Veteran Program (MVP),23 UK Biobank 
(UKB),24 collectively involving 648 135 participants, who had 
serum creatinine measurements but no known CVD or diabetes 
at baseline. Second, we constructed a genetic risk score (GRS) 
for eGFR by computing a weighted sum of eGFR-associated 
index variants reported in a discovery genome-wide associa-
tion study from the CKDGen consortium comprising 567 460 
participants with European ancestry,25 none of whom were from 
MVP, EPIC-CVD, or UKB. Third, we used this GRS to conduct 
Mendelian randomization analyses in a total of 413 718 partici-
pants (ie, EPIC-CVD, MVP, UKB), with concomitant individual-
level information on genetics, serum creatinine, and disease 
outcomes. Fourth, to assess the potential for interference by 
horizontal pleiotropy26 and explore potential mechanisms that 
could mediate associations between eGFR and CVD outcomes, 
we studied our GRS for eGFR in relation to several established 
and emerging risk factors for CVD.

Data Sources
Information on each of the data sources used in the analysis 
is provided in the Expanded Methods in the Supplemental 
Material. In brief, Emerging Risk Factors Collaboration, a 

global consortium of population cohort studies with harmo-
nized individual-participant data for multiple CVD risk factors, 
has included 47 studies with available information on serum 
creatinine and diabetes status at recruitment.21 EPIC-CVD, a 
case-cohort study embedded in the pan-European EPIC pro-
spective study of >500 000 participants, has recorded data on 
serum creatinine and imputed genome-wide array data from 
21 of its 23 recruitment centers.22 MVP, a prospective cohort 
study recruited from 63 Veterans Health Administration medi-
cal facilities throughout the United States, has recorded serum 
creatinine, and imputed genome-wide array data are available 
for a large subset of its participants.23 UKB, a prospective 
study of 22 recruitment centers across the United Kingdom, 
has cohort-wide information on serum creatinine and imputed 
genome-wide array data.24 Relevant ethical approval and par-
ticipant consent were already obtained in all studies that con-
tributed data to this work.

Estimation of Kidney Function
Kidney function was estimated using creatinine-based eGFR, 
calculated using the Chronic Kidney Disease Epidemiology 
Collaboration equation.27 Creatinine concentration was mul-
tiplied by 0.95 for studies in which measurements were not 
standardized to isotope-dilution mass spectrometry.25,28 In 
a subset of participants with available data, kidney func-
tion was also defined using the Chronic Kidney Disease 
Epidemiology Collaboration cystatin C–based equation29 and 
albuminuria measured as spot urine albumin-to-creatinine 
ratio (Expanded Methods).

Observational Analyses
Primary outcomes were incident CHD and stroke. Details of 
end-point definitions for each study are provided in Table S1. 
Participants in the contributing studies were eligible for inclu-
sion in the present analysis if they met all of the following cri-
teria: (1) aged 30 to 80 years at recruitment; (2) had recorded 
information on age, sex, circulating creatinine, and diabetes sta-
tus; (3) had a creatinine-based eGFR of <300 mL·min–1·1.73 
m–2; (4) did not have a known history of CVD or diabetes at 
baseline; (5) had complete information on the risk factors of 
smoking status, systolic blood pressure, total cholesterol, high-
density lipoprotein cholesterol, and body mass index; and (6) 
had at least 1 year of follow-up data after recruitment.

Hazard ratios for associations of creatinine-based eGFR 
with incident CHD and stroke were calculated using Cox 
regression, stratified by sex and study center, and when appro-
priate, adjusted for traditional vascular risk factors (defined 
here as age, systolic blood pressure, smoking status, total cho-
lesterol, high-density lipoprotein cholesterol, and body mass 
index) on a complete-case basis. To account for the EPIC-CVD 
case-cohort design, Cox models were adapted using Prentice 
weights.30 To avoid overfitting models, studies contributing <20 
incident events to the analysis of a particular outcome were 
excluded from the analysis. Fractional polynomials were used 
to characterize nonlinear relationships of creatinine-based 
eGFR with risk of CHD and stroke, adjusted for age and CVD 
risk factors.31 Study-specific estimates for each outcome were 
pooled across studies using multivariable random-effects 
meta-analysis, using a reference point of 90 mL·min–1·1.73 m–2. 
When information on urinary biomarkers in UKB was available, 
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participants were grouped into tenths on the basis of levels 
of urinary albumin-to-creatinine ratio to assess the shapes of 
associations between urinary biomarkers and CVD risk, using 
participants without albuminuria as the reference group.32

GRS for Kidney Function
Using individual-participant data from EPIC-CVD, MVP, 
and UKB, we calculated a GRS33 weighted by the condi-
tional effect estimated of the genetic variants associated 
(P<5×10–8) with creatinine-based eGFR in CKDGen,25 a 
global genetics consortium that has published genome-wide 
association study summary statistics for creatinine-based 
eGFR. Of the 262 variants associated with creatinine-based 
eGFR, 37 were excluded because of ancestry heterogeneity 
as reported in CKDGen,25 4 were excluded because of  asso-
ciations (P<5×10–8) with vascular risk factors as reported 
in previous genome-wide association studies (ie, smoking 

status, alcohol consumption, and education attainment),34 
and 3 were excluded because of missingness in at least 1 of 
the contributing studies, leaving 218 variants for the primary 
GRS for creatinine-based eGFR.

In sensitivity analysis, we constructed 2 restricted GRSs 
using 126 and 121 genetic variants that were likely to be 
relevant for kidney function on the basis of their associations 
with cystatin C–based eGFR35 and blood urine nitrogen,25 
respectively. Sensitivity analysis was also conducted using a 
GRS that included all 262 transancestry eGFR-associated 
index variants. Furthermore, to evaluate traits that could 
mediate or confound (through horizontal pleiotropy) the asso-
ciations between genetically predicted eGFR and outcomes, 
we tested associations of GRSs for eGFR with a range of 
cardiovascular risk factors in UKB and EPIC-CVD and with 
167 metabolites measured using targeted high-throughput 
nuclear magnetic resonance metabolomics (Nightingale 
Health Ltd) in UKB.

Figure 1. Study design and overview.
CHD indicates coronary heart disease; CKDGen, CKD Genetics consortium; CVD, cardiovascular disease; eGFR, estimated glomerular 
filtration rate; EPIC-CVD, European Prospective Investigation into Cancer and Nutrition–Cardiovascular Disease; ERFC, Emerging Risk Factors 
Collaboration; MVP, Million Veteran Program; NMR, nuclear magnetic resonance; and UKB, UK Biobank. 
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Mendelian Randomization Analyses
To account for the nonlinear relationship between eGFR and risk 
of CVD outcomes in observational analyses, we performed a strat-
ified Mendelian randomization analysis using methods described 
previously.16–20 For each participant, we calculated the residual 
eGFR by subtracting the genetic contribution determined by the 
GRS from observed eGFR. Participants were grouped on the 
basis of their residual eGFR into 5-unit categories between 45 
and <105 mL·min–1·1.73 m–2, plus <45 and ≥105 mL·min–1·1.73 
m–2. By stratifying on residual eGFR, we compared individuals in 
the population who would have an eGFR in the same category 
if they had the same genotype and reduced the potential influ-
ence of collider bias. We then calculated Mendelian randomiza-
tion estimates for each eGFR category using the ratio method 
with the GRS as an instrumental variable, adjusting for age, age-
squared, sex, study center, and the first 10 principal components. 
Stratum-specific estimates were combined across studies using 
fixed-effect meta-analysis and plotted as a piecewise-linear 
function of eGFR, with pointwise confidence intervals calcu-
lated by resampling the stratum-specific estimates. Sensitivity 
analyses used non-parametric doubly-ranked stratification 
method. Detailed methods describing statistical analysis are in 
the Expanded Methods. Analyses used STATA 15.1 and R 3.6.1.

RESULTS
Among the 648 135 participants without history of CVD 
or diabetes at baseline, the mean age was 57 years, 57% 
were men, and 4.4% had creatinine-based eGFR <60 
mL·min–1·1.73 m–2 (Table 1, Tables S2 and S3). During 
6.8 million person-years of follow-up, there were 42 858 
incident CHD outcomes and 15 693 strokes. Up to 
413 718 participants of European ancestry from EPIC-
CVD, MVP, and UKB contributed to the main genetic 
analyses (Figure 1). Distributions of serum creatinine 
concentration and creatinine-based eGFR were broadly 
similar across studies (Figures S1 and S2).

Observational Associations of eGFR With 
Cardiovascular Outcomes
For both CHD and stroke, there were U-shaped asso-
ciations of creatinine-based eGFR. Compared with par-
ticipants with creatinine-based eGFR values between 
60 and 105 mL·min–1·1.73 m–2, risks of both CHD and 
stroke were higher in people with eGFR <60 or >105 
mL·min–1·1.73 m–2 (Figure 2, Figure S3). The shapes of 
these associations did not change substantially after 
adjustment for several traditional risk factors (Figure 2). 
Associations were similar in men and women, in clinically 
relevant subgroups (ie, smokers, people with obesity, or 
hypertension; Figure S4), in the different studies contrib-
uting to this analysis (Figure S5), and when participants 
with a history of diabetes or missing information on car-
diovascular risk factors were included (Figures S6 and 
S7). Similar associations were also observed for isch-
emic stroke (Figure S3).

For the 338 044 participants in UKB with available 
data on serum cystatin C and urinary albumin-to-cre-
atinine ratio, there were broadly similar associations of 
CHD or stroke with cystatin C–based eGFR as creati-
nine-based eGFR equations, but only when eGFR values 
were lower than ≈90 mL·min–1·1.73 m–2. However, there 
was no evidence of higher risk of CHD in participants 
with cystatin C–based eGFR values >105 mL·min–1·1.73 
m–2 (Figure S8), in contrast with creatinine-based eGFR 
values >105 mL·min–1·1.73 m–2. Levels of urinary micro-
albumin and urinary albumin-to-creatinine ratio showed 
approximately linear associations with risk of CHD and 
stroke, which were somewhat attenuated after adjust-
ment for traditional risk factors (Figure S9). Compared 
with participants with a creatinine-based eGFR of 75 
to <90 mL·min–1·1.73 m–2 and without albuminuria, par-
ticipants with albuminuria had higher risk of CHD and 
stroke (Figure S10).

Mendelian Randomization of Genetically 
Predicted eGFR With Cardiovascular Outcomes
The GRS for eGFR (Table S4) explained 2.0% of variation 
in creatinine-based eGFR in EPIC-CVD, 2.2% in MVP, 
and 3.2% in UKB. A 1 SD increase in the GRS for eGFR 
was associated with 0.18 SD higher creatinine-based 
eGFR (Table S5, Figure S11). The GRS for eGFR was 
not associated with body mass index, diabetes, smoking 
status, or low-density lipoprotein cholesterol concentra-
tions but showed modest associations with lipoprotein(a), 
triglycerides, blood pressure, and hemoglobin A1c mea-
surement (Figure S11). Modest associations were also 
observed between the GRS for eGFR and triglyceride-
related lipoprotein subclasses in a subset of participants 
with available data (Figure S12).

In nonlinear Mendelian randomization analysis, we 
observed a curvilinear relationship between genetically 
predicted eGFR and CHD (Figure 3). Among participants 
with eGFR <60 mL·min–1·1.73 m–2, each 5 mL·min–1·1.73 
m–2 lower genetically predicted eGFR was associated with 
14% (95% CI, 3%–27%) higher risk of CHD (Table 2). 
There was no clear evidence of association among par-
ticipants with eGFR >75 mL·min–1·1.73 m–2 (Figure 3). 
Similar, but not statistically significant, associations were 
observed for stroke (Table 2, Figure 3). Overall, stratum-
specific localized average causal estimates and nonlin-
ear Mendelian randomization estimates were compatible 
across the studies contributing to this analysis (Table S6, 
Figure S13). Findings were supported in analyses using 
the non-parametric doubly-ranked stratification (Table 
S7, Figure S14). Similar associations were observed in 
analyses that further adjusted for systolic blood pressure, 
lipoprotein(a), hemoglobin A1c, and triglycerides (Figure 
S15), included participants with a history of diabetes at 
baseline (Figure S16), or used ischemic stroke as the 
stroke outcome (Figure S17). Results were also similar 
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using GRS for cystatin C–based eGFR, blood urine nitro-
gen, or variants associated with creatinine-based eGFR 
regardless of ancestry heterogeneity (Figure S18).

DISCUSSION
In analyses combining genetic, biomarker, and clinical 
data in ≈640 000 participants, our study has suggested 
that, in people without manifest CVD or diabetes, even 
mildly reduced kidney function is causally associated 
with a higher risk of CVD outcomes. Our results provide 
novel causal insights and highlight the wider potential 
value of preventive approaches that can preserve and 
modulate kidney function.

First, our study estimated a dose-response curve for 
genetically predicted eGFR and CHD, identifying an eGFR 
value of ≈75 mL·min–1·1.73 m–2 as a possible risk threshold. 
Therefore, the causal relationship of kidney function with 
CHD is nonlinear in shape, in contrast with those for blood 
pressure and low-density lipoprotein cholesterol, which 
each have approximately log-linear relationships with CHD 
risk across their range of values. In contrast with population-
wide strategies to improve blood pressure and low-density 
lipoprotein cholesterol levels, this finding implies that it may 
be a preferable strategy to identify those in the population 
with mild-to-moderate kidney dysfunction and target them 

for renoprotective interventions alongside routine strate-
gies to reduce cardiovascular risk. For example, the use 
of renoprotective interventions, such as renin angiotensin 
aldosterone system inhibitors36 and inhibitors of sodium-
glucose cotransporter 2, might provide a potential means 
to do so.37 Our findings encourage additional evaluation of 
such agents in patients with CKD without manifest CVD or 
diabetes.38,39

Second, we found that our GRS for eGFR was mod-
estly associated with several established and emerging 
CVD risk factors, including plasma concentration of pro-
atherogenic lipids (eg, lipoprotein(a), triglycerides, and 
triglyceride-related lipoprotein subclasses), hemoglobin 
A1c values, and blood pressure, consistent with previ-
ous studies.11,40 However, adjustment for such factors did 
not materially alter the associations between eGFR and 
atherosclerotic CVD, indicating that they are unlikely to 
mediate or confound the associations between geneti-
cally predicted kidney dysfunction and CHD or stroke 
and limiting the likelihood that results are subject to influ-
ences of horizontal pleiotropy. These results suggest that 
the effect of reduced kidney function on CVD is indepen-
dent of traditional cardiovascular risk factors and under-
scores the potential importance of direct preservation of 
renal function to prevent CVD, in addition to control of 
known risk factors.

Table 1. Study-Level and Participant-Level Characteristics of the Contributing Data Sources

Characteristics ERFC EPIC-CVD UKB MVP 

Location 47 cohorts from 19 
countries

21 centers from 8 Eu-
ropean countries

England, Scotland, 
and Wales

United States

Years of recruitment 1964–2008 1990–2002 2006–2010 2011–Present

No. of participants 129 601 20 985 350 193 147 356

Age at baseline 58.3 (8.9) 56.3 (9.0) 56.3 (8.1) 57.9 (11.9)

Men 68 278 (52.7) 9670 (46.1) 155 284 (44.3) 128 610 (87.3)

Body-mass index, kg/m2 26.3 (4.3) 26.1 (4.0) 27.1 (4.6) 29.0 (5.5)

Systolic blood pressure, mm Hg 135 (20) 138 (21) 137 (19) 130 (16)

Current smoker 38 381 (29.6) 6233 (29.7) 36 422 (10.4) 14 394 (9.77)

High-density lipoprotein cholesterol, mmol/L 1.4 (0.4) 1.4 (0.4) 1.5 (0.4) 1.3 (0.4)

Total cholesterol, mmol/L 5.8 (1.1) 6.2 (1.2) 5.8 (1.1) 4.8 (1.0)

Creatinine, mg/dL 0.94 (0.22) 0.82 (0.23) 0.81 (0.18) 1.0 (0.4)

Estimated glomerular filtration rate, mL·min–1·1.73 m–2

 ≥105 11 121 (8.6) 3113 (14.8) 44 303 (12.7) 17 988 (12.2)

 90 to <105 32 971 (25.4) 9400 (44.8) 165 603 (47.3) 41 461 (28.1)

 75 to <90 44 654 (34.5) 5524 (26.3) 100 351 (28.7) 46 200 (31.4)

 60 to <75 30 751 (23.7) 2306 (11.0) 33 895 (9.7) 29 552 (20.1)

 <60 10 105 (7.8) 642 (3.1) 6041 (1.7) 12 155 (8.2)

 Mean estimated glomerular filtration rate 84.5 (16.6) 92.1 (14.8) 91.2 (13.1) 84.9 (18.1)

Incident coronary heart disease events 10 390 (8.0) 7638 (36.4) 13 863 (4.0) 10 967 (7.4)

Incident stroke events 4838 (3.7) 3572 (17.0) 4544 (1.3) 2739 (1.8)

Data are n, n (%), or mean (SD). Participants with a history of diabetes or cardiovascular diseases at recruitment, or incomplete information on creatinine, body 
mass index, systolic blood pressure, smoking status, high-density lipoprotein cholesterol, or total cholesterol were excluded. ERFC indicates Emerging Risk Factors 
Collaboration; EPIC-CVD, European Prospective Investigation into Cancer and Nutrition–Cardiovascular Disease Study; MVP, Million Veteran Program; and UKB, 
UK Biobank. 
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Third, our data help to resolve controversies about the 
relevance to CHD of higher-than-average eGFR. In con-
trast with the observation that higher-than-average creati-
nine-based eGFR values are associated with higher CHD 
risk at >105 mL·min–1·1.73 m–2, we found that genetically 
predicted higher eGFR values were not associated with 
CHD risk in this same group. This discordance implies dif-
ferent pathophysiological meanings of creatinine-based 

eGFR values >105 mL·min–1·1.73 m–2 (which may rep-
resent a transient state of hyperfiltration before progres-
sion to poorer kidney function and CKD) and genetically 
predicted higher eGFR values (which represent a lifelong 
tendency toward exposure to better kidney function). This 
explanation is supported by our findings showing that the 
association between higher creatinine-based eGFR val-
ues and higher CHD risk was principally in participants 

Figure 2. Observational associations of eGFR levels with risk of coronary heart disease and stroke (n=648 135).
Participants with missing information on age and CVD risk factors (systolic blood pressure, total and high-density lipoprotein cholesterol, body 
mass index, and smoking status) were excluded from the analyses. Hazard ratios were estimated using Cox regression, adjusting for age and CVD 
risk factors (systolic blood pressure, total and high-density lipoprotein cholesterol, body mass index, and smoking status), and stratified by sex and 
study center. The reference point is 90 mL·min–1·1.73 m–2. Shaded regions indicate 95% CIs. CVD indicates cardiovascular disease; and eGFR, 
estimated glomerular filtration rate. 

Figure 3. Associations of genetically predicted eGFR with risk of coronary heart disease and stroke (n=413 718).
The reference point is 90 mL·min–1·1.73 m–2. Gradients at each point of the curve represent the localized average causal effect on coronary heart 
disease or stroke per 5 mL·min–1·1.73 m–2 change in genetically predicted eGFR. The vertical lines represent 95% CIs. Analyses were adjusted for 
age, age-squared, sex, study center, and the first 10 principal components of ancestry. eGFR indicates estimated glomerular filtration rate. 
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who had albuminuria (and, therefore, preexisting kidney 
damage) at entry into the study.

Fourth, our results are broadly consistent with a causal 
relationship between eGFR and stroke. The lack of sta-
tistically significant findings in our Mendelian random-
ization analysis for stroke outcomes principally reflects 
the lower power of our study to evaluate a GRS with 
stroke compared with CHD. It may also be attributable 
to pathogenetic heterogeneity in stroke diagnoses (eg, 
cardioembolic, small vessel disease, and hemorrhagic 
subtypes may be less driven by atherosclerotic pathol-
ogy than other ischemic stroke subtypes).41,42

Our study had major strengths, including a large 
sample size, access to individual-participant data, use 
of multiple genetic causal inference methods tailored 
to the evaluation of nonlinear disease associations, and 
an updated GRS that explains more variation in eGFR 
than previous analyses.14 However, there are also poten-
tial limitations. First, Mendelian randomization assump-
tions state that the only causal pathway from the genetic 
variants to the outcome is through eGFR. Although we 
assessed the potential for interference by horizontal plei-
otropy, there is the possibility of residual confounding by 
unrecognized effects of genotypes on other risk factors 
and by adaptation during early life to compensate for 
genetically lower eGFR. Second, to reduce the scope for 
confounding by ancestry (population stratification), our 
analyses were limited to participants of European ances-
tries. This limitation means that our findings might not 
be applicable to other populations, and additional stud-
ies on this topic are needed, especially in non-European 
ancestry populations. Third, although serum creatinine is 
used routinely for estimating eGFR, true measurement 
of GFR requires the use of inulin, iohexol, or iothalamate. 
Assay of serum creatinine is liable to interference from 
other serum components (eg, bilirubin and glucose)43,44 
and autoimmune activation45 and is sensitive to changes 
in individuals’ muscle mass (eg, sarcopenia). Assessment 
of cystatin C, an analyte that enables an alternative cal-
culation of eGFR without the potential limitations of cre-
atinine, was available only in a subset of the participants 
we studied. However, our genetic analyses restricted to 

genetic variants additionally associated with other bio-
markers of kidney function showed results consistent 
with those for creatinine-based eGFR. Last, we used the 
2009 Chronic Kidney Disease Epidemiology Collabora-
tion equation to calculate eGFR. However, our analysis 
was limited to populations with European ancestry, in 
which the 2009 and 2021 Chronic Kidney Disease Epi-
demiology Collaboration equations provide similar esti-
mates of eGFR.46

CONCLUSIONS
In people without manifest CVD or diabetes, mild-to-
moderate kidney dysfunction was causally related to 
cardiovascular outcomes, highlighting the potential car-
diovascular benefit of preventive approaches that im-
prove kidney function.
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the number of participants from each contributing study, and HR estimates within each stratum were meta-analyzed using inverse variance weighting and fixed effects.

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 6, 2022



ORIGINAL RESEARCH 
ARTICLE

Circulation. 2022;146:1507–1517. DOI: 10.1161/CIRCULATIONAHA.122.060700 November 15, 2022 1515

Gaziano et al Kidney Dysfunction and CVDs

en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain (P.A., 
A.G.d.l.C., D.P., C. Santiuste). Division of Clinical Epidemiology and Aging Re-
search (V.A.), Department of Cancer Epidemiology (S.K.J., R.K., V.K.), German 
Cancer Research Center (DKFZ), Heidelberg, Germany. Division of Family Medi-
cine and Primary Care, Department of Neurobiology, Care Sciences and Society 
(NVS), Karolinska Institutet, Stockholm, Sweden (J.A., H.B.). School of Health and 
Social Studies, Dalarna University, Falun, Sweden (J.A.). Wellbeing & Preventable 
Chronic Diseases (WPCD) Division, Menzies School of Health Research, Charles 
Darwin University, Darwin, NT, Australia (E.L.M.B.). Baker Heart and Diabetes In-
stitute, Melbourne, VIC, Australia (E.L.M.B., M.I.). Institute of Medicine, School of 
Public Health and Community Medicine (C.B.), Institute of Medicine, Department 
of Molecular and Clinical Medicine (P.-O.H., A.R.), Sahlgrenska Academy, Univer-
sity of Gothenburg, Sweden. National Institute for Public Health and the Environ-
ment (RIVM), Bilthoven, the Netherlands (J.M.A.B., W.M.M.V.). Network Aging 
Research (NAR), Heidelberg University, Germany (H.B.). Studium Patavinum 
(E.C.), Department of Medicine (V.T.), University of Padua, Italy. Dipartimento di 
Salute Mentale e Fisica e Medicina Preventiva, Università degli Studi della Cam-
pania ‘Luigi Vanvitelli’, Caserta, Italy (P.C.). William Harvey Research Institute, 
NIHR Barts Biomedical Research Centre, Queen Mary University of London, UK 
(J.A.C.). Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (J.C.). 
Larner College of Medicine, The University of Vermont, Burlington (M.C.). The 
Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical 
Center, Tel Hashomer, Israel (R.D.). School of Public Health, Department of Epide-
miology and Preventive Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel 
(R.D.). Feinstein Institutes for Medical Research, Northwell Health, Manhasset, 
New York, NY (R.D., K.W.D.). Amsterdam University Medical Centers, VUMC, the 
Netherlands (R.T.d.J.). Department of Cardiovascular, Endocrine-metabolic Dis-
eases and Aging, Istituto Superiore di Sanità, Rome, Italy (C.D., L. Palmer). Depart-
ment of Clinical Sciences, Malmö, Lund University, Sweden (G.E., O.M.). Interna-
tional Agency for Research on Cancer (IARC), World Health Organization, Lyon, 
France (H.F., E.W.). 12 Octubre Hospital Research Institute, Madrid, Spain 
(A.G.d,l,C.). Faculty of Medicine, University of Iceland, Reykjavik, Iceland and Ice-
landic Heart Association, Kopavogur, Iceland (V.G.). Medical School Faculty of 
Health & Medical Sciences, The University of Western Australia, Perth, WA, Aus-
tralia (G.J.H.). Region Västra Götaland, Sahlgrenska University Hospital, Depart-
ment of Medicine Geriatrics and Emergency Medicine/Östra, Gothenburg, Swe-
den (P.-O.H., A.R.). School of Public Health (A.K.H., I.T., E.R.), The George Institute 
for Global Health (M.W.), Imperial College London, UK. Department of Internal 
Medicine, Division of Nephrology and Transplantation, Erasmus MC, University 
Medical Center Rotterdam, the Netherlands (E.J.H.). Public Health, Department of 
Social Medicine, Osaka University Graduate School of Medicine, Suita, Japan 
(H.I.) University of Eastern Finland (UEF), Kuopio, Finland (J.K.). Department of 
Neurology & Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria 
(S.K.). Clinical Epidemiology Team, Institute of Health Economics, Medical Univer-
sity of Innsbruck, Innsbruck, Austria (S.K., P.W.). Institute of Epidemiology and 
Medical Biometry, University of Ulm, Germany (W.K.). Deutsches Herzzentrum 
München, Technische Universität München, Germany (W.K.). German Centre for 
Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance  (W.K.). 
School of Public Health, University of Washington, Seattle (R.A.K.). Danish Cancer 
Society Research Center, Copenhagen, Denmark (C.K., A.T.). Medical Research 
Council Integrative Epidemiology Unit, University of Bristol, UK (D.A.L.). Popula-
tion Health Science, Bristol Medical School, UK (D.A.L.). Department of Surgical 
and Perioperative sciences, Urology and Andrology, Umeå University, Sweden 
(B.L.). University Paris-Saclay, UVSQ, Inserm, Villejuif, France (C. MacDonald). In-
stitute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, 
Italy (G.M.). Helmholtz Zentrum München, Munich, Germany (C. Meisinger). Na-
varra Public Health Institute, IdiSNA, Pamplona, Spain (C.M.I.). Red de Investig-
ación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Pamplona, 
Spain (C.M.I.). Graduate School of Medical Sciences, Kyushu University, Fukuoka, 
Japan (T.N.). London School of Hygiene & Tropical Medicine, UK (D.N.). Herlev 
and Gentofte Hospital (B.G.N.), Frederiksberg Hospital B.G.N.), Copenhagen Uni-
versity Hospital, Copenhagen, Denmark. Department of Clinical Medicine, Faculty 
of Health and Medical Sciences (B.G.N.), Department of Public Health (A.T.), Uni-
versity of Copenhagen, Denmark. Julius Center for Health Sciences and Primary 
Care, University Medical Center Utrecht, Utrecht University, the Netherlands 
(C.O.-M., Y.T.v.d.S., W.M.M.V.). Escuela Andaluza de Salud Pública (EASP), Grana-
da, Spain (D.P.). Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 
Spain (D.P.). Consejería de Sanidad del Principado de Asturias Oviedo, Asturias, 
Spain (J.R.Q.G.). Unit of Cancer Epidemiology, Città della Salute e della Scienza 
University-Hospital, Turin, Italy (C. Sacerdote). Department of Social and Environ-
mental Medicine, Kanazawa Medical University, Uchinada, Japan (M.S.). Depart-
ment of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Spain (C. 
Santiuste). German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, 
Germany (M.B.S.). German Center for Diabetes Research (DZD), Neuherberg, 
Germany (M.B.S.). Institute of Nutritional Science, University of Potsdam, Germa-

ny (M.B.S.). Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, It-
aly (S.S.). Department of Medical Sciences, Uppsala University, Sweden (J.S.). 
Hyblean Association for Epidemiological Reserach AIRE - ONLUS, Ragusa, Italy 
(R.T.). Universitätsmedizin Greifswald, Institut für Community Medicine, Abteilung 
SHIP/ Klinisch-Epidemiologische Forschung, Germany (H.V.). College of Public 
Health, University of Iowa (R.B.W.). University College London, UK (S.G.W.). The 
George Institute for Global Health, Camperdown, NSW, Australia (M.W.). Depart-
ment of Public Health Medicine, Faculty of Medicine, and Health Services Re-
search and Development Center, University of Tsukuba, Japan (K.Y.). Unit of 
Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of 
Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de 
Llobregat (Barcelona), Spain (R.Z.-R.). Center for Data and Computational 
Sciences, VA Boston Healthcare System, Boston, MA (S.P.). Department of Bio-
statistics, Boston University School of Public Health, MA (D.R.G.). VA Pal Alto 
Epidemiology Research and Information Center for Genomics, VA Palo Alto 
Health Care System, CA (P.S.T.). Medicine (Cardiovascular Medicine), Stanford 
University of School of Medicine, CA (P.S.T.). Office of Research and Develop-
ment, Veterans Health Administration, Washington, DC (S.M.). Department of 
Veterans Affairs, Tennessee Valley Health Care System, Vanderbilt University, 
Nashville (T.L.E.). Medicine/Epidemiology, Vanderbilt Genetics Institute, Vander-
bilt University Medical Center, Nashville, TN (T.L.E.). Department of Surgery, 
Corporal Michael Crescenz VA Medical Center and Perelman School of Medi-
cine, University of Pennsylvania, Philadelphia (S.M.D.). Internal Medicine, VA 
Atlanta Healthcare System, Decatur, GA (P.W.F.W.). Emory University School of 
Medicine (Cardiology), Emory University, Atlanta, GA (P.W.F.W.). Center for 
Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, 
MA (T.A.G.). Health Data Research UK Cambridge, Wellcome Genome Campus 
and University of Cambridge, UK (M.I., J.D., A.S.B., A.M.W., E.D.A.), The Alan Tur-
ing Institute, London, UK (M.I.). Computational Medicine, Berlin Institute of 
Health at Charité – Universitätsmedizin Berlin, Germany (C.L.). Department of 
Human Genetics, Wellcome Sanger Institute, Hinxton, UK (J.D.). Division of Ne-
phrology & Hypertension, Department of Medicine, Tennessee Valley Health 
Care System and Vanderbilt University Medical Center, Nashville (A.M.H.). Cam-
bridge Centre for AI in Medicine, UK (A.M.W.). Health Data Science Centre, 
Human Technopole, Milan, Italy (E.D.A.).

Acknowledgments
The authors thank investigators and participants of the several studies that con-
tributed data to the Emerging Risk Factors Collaboration. We thank all EPIC 
(European Prospective Investigation into Cancer) participants and staff for their 
contribution to the study, the laboratory teams at the Medical Research Council 
Epidemiology Unit for sample management and Cambridge Genomic Services for 
genotyping, S. Spackman for data management, and the team at the EPIC-CVD 
Coordinating Centre for study coordination and administration. The authors also 
thank the participants of the VA Million Veteran Program and its collaborators. 
Acknowledgment of VA Million Veteran Program leadership and staff contribu-
tions can be found in the Supplemental Material Note. This research has been 
conducted using the UK Biobank Resource under Application Number 31852.

Sources of Funding
The Emerging Risk Factors Collaboration (ERFC) coordinating center was under-
pinned by program grants from the British Heart Foundation (BHF; SP/09/002; 
RG/13/13/30194; RG/18/13/33946), BHF Centre of Research Excellence 
(RE/18/1/34212), the UK Medical Research Council (MR/L003120/1), and 
the National Institute for Health and Care Research (NIHR) Cambridge Biomedi-
cal Research Centre (BRC-1215-20014), with project-specific support received 
from the UK NIHR, British United Provident Association UK Foundation, and an 
unrestricted educational grant from GlaxoSmithKline. This work was supported by 
Health Data Research UK, which is funded by the UK Medical Research Coun-
cil, the Engineering and Physical Sciences Research Council, the Economic and 
Social Research Council, the Department of Health and Social Care (England), 
the Chief Scientist Office of the Scottish Government Health and Social Care 
Directorates, the Health and Social Care Research and Development Division 
(Welsh Government), the Public Health Agency (Northern Ireland), the BHF, and 
the Wellcome Trust. A variety of funding sources have supported recruitment, 
follow-up, and laboratory measurements in the studies contributing data to the 
ERFC, which are listed on the ERFC website (www.phpc.cam.ac.uk/ceu/erfc/
list-of-studies). EPIC-CVD (European Prospective Investigation into Cancer and 
Nutrition–Cardiovascular Disease Study) was funded by the European Research 
Council (268834) and the European Commission Framework Programme 7 
(HEALTH-F2-2012-279233). The coordination of EPIC is financially supported 
by International Agency for Research on Cancer (IARC) and also by the Depart-
ment of Epidemiology and Biostatistics, School of Public Health, Imperial Col-
lege London which has additional infrastructure support provided by the NIHR 
Imperial Biomedical Research Centre (BRC). The national cohorts are supported 

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 6, 2022

https://www.ahajournals.org/doi/suppl/10.1161/CIRCULATIONAHA.122.060700
www.phpc.cam.ac.uk/ceu/erfc/list-of-studies@line 2@
www.phpc.cam.ac.uk/ceu/erfc/list-of-studies@line 2@


OR
IG

IN
AL

 R
ES

EA
RC

H 
AR

TI
CL

E

November 15, 2022 Circulation. 2022;146:1507–1517. DOI: 10.1161/CIRCULATIONAHA.122.0607001516

Gaziano et al Kidney Dysfunction and CVDs

by: Danish Cancer Society (Denmark); Ligue Contre le Cancer, Institut Gustave 
Roussy, Mutuelle Générale de l’Education Nationale, Institut National de la Santé 
et de la Recherche Médicale (INSERM) (France); German Cancer Aid, German 
Cancer Research Center (DKFZ), German Institute of Human Nutrition Pots-
damRehbruecke (DIfE), Federal Ministry of Education and Research (BMBF) 
(Germany); Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy, Compag-
nia di SanPaolo and National Research Council (Italy); Dutch Ministry of Public 
Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Re-
search Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), 
World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); 
Health Research Fund (FIS) - Instituto de Salud Carlos III (ISCIII), Regional Gov-
ernments of Andalucía, Asturias, Basque Country, Murcia and Navarra, and the 
Catalan Institute of Oncology - ICO (Spain); Swedish Cancer Society, Swedish 
Research Council and County Councils of Skåne and Västerbotten (Sweden); 
Cancer Research UK (14136 to EPIC-Norfolk; C8221/A29017 to EPIC-Ox-
ford), Medical Research Council, United Kingdom (1000143 to EPIC-Norfolk; 
MR/M012190/1 to EPIC-Oxford). The establishment of the EPIC-InterAct 
subcohort (used in the EPIC-CVD study) and conduct of biochemical assays 
was supported by the EU Sixth Framework Programme (FP6) (grant LSHM_
CT_2006_037197 to the InterAct project) and the Medical Research Council 
Epidemiology Unit (grants MC_UU_12015/1 and MC_UU_12015/5). This re-
search is based on data from the Million Veteran Program, Office of Research and 
Development, and Veterans Health Administration and was supported by award 
I01-BX004821 (principal investigators, Drs Peter W.F. Wilson and Kelly Cho) and 
I01-BX003360 (principal investigators, Dr Adriana M. Hung). Dr Damrauer is 
supported by IK2-CX001780. Dr Hung is supported by CX001897. Dr Tsao is 
supported by BX003362-01 from VA Office of Research and Development. Dr 
Robinson-Cohen is supported by R01DK122075. Dr Sun was funded by a BHF 
Programme Grant (RG/18/13/33946). Dr Arnold was funded by a BHF Pro-
gramme Grant (RG/18/13/33946). Dr Kaptoge is funded by a BHF Chair award 
(CH/12/2/29428). Dr Mason is funded by the EU/EFPIA Innovative Medicines 
Initiative Joint Undertaking BigData@Heart grant 116074. Dr Bolton was funded 
by the NIHR BTRU in Donor Health and Genomics (NIHR BTRU-2014-10024). 
Dr Allara is funded by a BHF Programme Grant (RG/18/13/33946). Prof In-
ouye is supported by the Munz Chair of Cardiovascular Prediction and Preven-
tion and the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). 
Prof Inouye was also supported by the UK Economic and Social Research 878 
Council (ES/T013192/1). Prof Danesh holds a British Heart Foundation Profes-
sorship and a NIHR Senior Investigator Award. Prof Wood is part of the Big-
Data@Heart Consortium, funded by the Innovative Medicines Initiative-2 Joint 
Undertaking under grant agreement No 116074. Prof Wood was supported by 
the BHF-Turing Cardiovascular Data Science Award (BCDSA\100005). Prof Di 
Angelantonio holds a NIHR Senior Investigator Award.

Disclosures
Where authors are identified as personnel of the International Agency for Re-
search on Cancer/World Health Organization, the authors alone are responsible 
for the views expressed in this article, and they do not necessarily represent the 
decisions, policy, or views of the International Agency for Research on Cancer/
World Health Organization. The views expressed are those of the author(s) and 
not necessarily those of the National Institute for Health Research or the Depart-
ment of Health and Social Care. This publication does not represent the views of 
the Department of Veterans Affairs or the United States government. Dr Staley is 
now a full-time employee at UCB. Dr Sun is now an employee at Regeneron Phar-
maceuticals. Dr Arnold is now an employee of AstraZeneca. Dr Danesh serves on 
scientific advisory boards for AstraZeneca, Novartis, and UK Biobank, and has 
received multiple grants from academic, charitable and industry sources outside of 
the submitted work. Adam Butterworth reports institutional grants from AstraZen-
eca, Bayer, Biogen, BioMarin, Bioverativ, Novartis, Regeneron and Sanofi.

Supplemental Material
Expanded Methods

Tables S1–S7

Figures S1–S18

REFERENCES
 1. Global, regional, and national burden of chronic kidney disease, 1990–

2017: a systematic analysis for the Global Burden of Disease Study 2017. 
Lancet. 2020;395:709–733. doi: 10.1016/S0140-6736(20)30045-3

 2. Levey AS, Coresh J. Chronic kidney disease. Lancet. 2012;379:165–180. 
doi: 10.1016/S0140-6736(11)60178-5

 3. Di Angelantonio E, Chowdhury R, Sarwar N, Aspelund T, Danesh J, 
Gudnason V. Chronic kidney disease and risk of major cardiovascular dis-

ease and non-vascular mortality: prospective population based cohort study. 
BMJ. 2010;341:c4986. doi: 10.1136/bmj.c4986

 4. Fox CS, Matsushita K, Woodward M, Bilo HJG, Chalmers J, Heerspink HJL, 
Lee BJ, Perkins RM, Rossing P, Sairenchi T, et al. Associations of kidney 
disease measures with mortality and end-stage renal disease in individuals 
with and without diabetes: a meta-analysis. Lancet. 2012;380:1662–1673. 
doi: 10.1016/S0140-6736(12)61350-6

 5. Baigent C, Burbury K, Wheeler D. Premature cardiovascular disease in 
chronic renal failure. Lancet. 2000;356:147–152. doi: 10.1016/S0140- 
6736(00)02456-9

 6. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lan-
cet. 2017;389:1238–1252. doi: 10.1016/S0140-6736(16)32064-5

 7. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong 
PE, Coresh J, Gansevoort RT. Association of estimated glomerular filtration 
rate and albuminuria with all-cause and cardiovascular mortality in general 
population cohorts: a collaborative meta-analysis. Lancet. 2010;375:2073–
2081. doi: 10.1016/S0140-6736(10)60674-5

 8. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, 
Benetos A, Biffi A, Boavida J-M, Capodanno D, et al. 2021 ESC Guide-
lines on cardiovascular disease prevention in clinical practice. Eur Heart J. 
2021;42:3227–3337. doi: 10.1093/eurheartj/ehab484

 9. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, 
Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, et al. 2018 AHA/
ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/
PCNA Guideline on the management of blood cholesterol: a report of the 
American College of Cardiology/American Heart Association Task Force 
on Clinical Practice Guidelines. Circulation. 2019;139:e1082–e1143. doi: 
10.1161/CIR.0000000000000625

 10. Said S, Hernandez GT. The link between chronic kidney disease and car-
diovascular disease. J Nephropathol. 2014;3:99–104. doi: 10.12860/jnp. 
2014.19

 11. Yu Z, Coresh J, Qi G, Grams M, Boerwinkle E, Snieder H, Teumer A, Pattaro 
C, Köttgen A, Chatterjee N, et al. A bidirectional Mendelian randomization 
study supports causal effects of kidney function on blood pressure. Kidney 
Int. 2020;98:708–716. doi: 10.1016/j.kint.2020.04.044

 12. Bulbul MC, Dagel T, Afsar B, Ulusu NN, Kuwabara M, Covic A, Kanbay 
M. Disorders of lipid metabolism in chronic kidney disease. Blood Purif. 
2018;46:144–152. doi: 10.1159/000488816

 13. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemi-
ology contribute to understanding environmental determinants of disease?. 
Int J Epidemiol. 2003;32:1–22. doi: 10.1093/ije/dyg070

 14. Charoen P, Nitsch D, Engmann J, Shah T, White J, Zabaneh D, Jefferis B, 
Wannamethee G, Whincup P, Mulick Cassidy A, et al. Mendelian randomisa-
tion study of the influence of eGFR on coronary heart disease. Sci Rep. 
2016;6:28514. doi: 10.1038/srep28514

 15. Morris AP, Le TH, Wu H, Akbarov A, van der Most PJ, Hemani G, Smith 
GD, Mahajan A, Gaulton KJ, Nadkarni GN, et al. Trans-ethnic kidney func-
tion association study reveals putative causal genes and effects on kidney-
specific disease aetiologies. Nat Commun. 2019;10:29. doi: 10.1038/ 
s41467-018-07867-7

 16. Staley JR, Burgess S. Semiparametric methods for estimation of a nonlinear 
exposure-outcome relationship using instrumental variables with applica-
tion to Mendelian randomization. Genet Epidemiol. 2017;41:341–352. doi: 
10.1002/gepi.22041

 17. Sun YQ, Burgess S, Staley JR, Wood AM, Bell S, Kaptoge SK, Guo Q, Bolton 
TR, Mason AM, Butterworth AS, et al. Body mass index and all cause mor-
tality in HUNT and UK Biobank studies: linear and non-linear mendelian 
randomisation analyses. BMJ. 2019;364:l1042. doi: 10.1136/bmj.l1042

 18. Biddinger KJ, Emdin CA, Haas ME, Wang M, Hindy G, Ellinor PT, Kathiresan 
S, Khera AV, Aragam KG. Association of habitual alcohol intake with risk 
of cardiovascular disease. JAMA Netw Open. 2022;5:e223849. doi: 
10.1001/jamanetworkopen.2022.3849

 19. Arvanitis M, Qi G, Bhatt DL, Post WS, Chatterjee N, Battle A, McEvoy 
JW. Linear and nonlinear mendelian randomization analyses of the as-
sociation between diastolic blood pressure and cardiovascular events: 
the J-curve revisited. Circulation. 2021;143:895–906. doi: 10.1161/ 
CIRCULATIONAHA.120.049819

 20. Emerging Risk Factors Collaboration/EPIC-CVD/Vitamin D Studies Collab-
oration. Estimating dose-response relationships for vitamin D with coronary 
heart disease, stroke, and all-cause mortality: observational and Mendelian 
randomisation analyses. Lancet Diabetes Endocrinol. 2021;9:837–846. doi: 
10.1016/S2213-8587(21)00263-1

 21. The Emerging Risk Factors Collaboration. Danesh J, Erqou S, Walker M, 
Thompson SG, Tipping R, Ford C, Pressel S, Walldius G, Jungner I, Folsom 
AR, et al, The Emerging Risk Factors Collaboration: analysis of individual 

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 6, 2022



ORIGINAL RESEARCH 
ARTICLE

Circulation. 2022;146:1507–1517. DOI: 10.1161/CIRCULATIONAHA.122.060700 November 15, 2022 1517

Gaziano et al Kidney Dysfunction and CVDs

data on lipid, inflammatory and other markers in over 1.1 million participants 
in 104 prospective studies of cardiovascular diseases. Eur J Epidemiol. 
2007;22:839–869. doi: 10.1007/s10654-007-9165-7

 22. Danesh J, Saracci R, Berglund G, Feskens E, Overvad K, Panico S, 
Thompson S, Fournier A, Clavel-Chapelon F, Canonico M, et al. EPIC-
Heart: the cardiovascular component of a prospective study of nutrition-
al, lifestyle and biological factors in 520,000 middle-aged participants 
from 10 European countries. Eur J Epidemiol. 2007;22:129–141. doi: 
10.1007/s10654-006-9096-8

 23. Gaziano JM, Concato J, Brophy M, Fiore L, Pyarajan S, Breeling J, 
Whitbourne S, Deen J, Shannon C, Humphries D, et al. Million veteran pro-
gram: a mega-biobank to study genetic influences on health and disease. J 
Clin Epidemiol. 2016;70:214–223. doi: 10.1016/j.jclinepi.2015.09.016

 24. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott 
P, Green J, Landray M, et al. UK biobank: an open access resource for iden-
tifying the causes of a wide range of complex diseases of middle and old 
age. PLoS Med. 2015;12:e1001779. doi: 10.1371/journal.pmed.1001779

 25. Wuttke M, Li Y, Li M, Sieber KB, Feitosa MF, Gorski M, Tin A, Wang L, Chu 
AY, Hoppmann A, et al. A catalog of genetic loci associated with kidney 
function from analyses of a million individuals. Nat Genet. 2019;51:957–
972. doi: 10.1038/s41588-019-0407-x

 26. Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, 
Hartwig FP, Holmes MV, Minelli C, Relton CL, et al. Guidelines for performing 
Mendelian randomization investigations. Wellcome Open Res. 2019;4:186. 
doi: 10.12688/wellcomeopenres.15555.2

 27. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, 
Kusek JW, Eggers P, Van Lente F, Greene T, et al. A new equation to es-
timate glomerular filtration rate. Ann Intern Med. 2009;150:604–612. doi: 
10.7326/0003-4819-150-9-200905050-00006

 28. Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, Van Lente 
F. Expressing the Modification of Diet in Renal Disease Study equation for 
estimating glomerular filtration rate with standardized serum creatinine val-
ues. Clin Chem. 2007;53:766–772. doi: 10.1373/clinchem.2006.077180

 29. Shlipak MG, Matsushita K, Arnlov J, Inker LA, Katz R, Polkinghorne KR, 
Rothenbacher D, Sarnak MJ, Astor BC, Coresh J, et al. Cystatin C versus 
creatinine in determining risk based on kidney function. N Engl J Med. 
2013;369:932–943. doi: 10.1056/NEJMoa1214234

 30. Prentice RL. A case-cohort design for epidemiologic cohort studies and dis-
ease prevention trials. Biometrika. 1986;73:1–11. doi: 10.1093/biomet/73.1.1

 31. White IR, Kaptoge S, Royston P, Sauerbrei W. Meta-analysis of non-linear 
exposure-outcome relationships using individual participant data: a compari-
son of two methods. Stat Med. 2019;38:326–338. doi: 10.1002/sim.7974

 32. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management 
of Chronic Kidney Disease. Kidney Int Suppl. 2013;3:1–150.

 33. Burgess S, Thompson SG. Use of allele scores as instrumental variables 
for Mendelian randomization. Int J Epidemiol. 2013;42:1134–1144. doi: 
10.1093/ije/dyt093

 34. Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, 
Butterworth AS, Staley JR. PhenoScanner V2: an expanded tool for search-
ing human genotype-phenotype associations. Bioinformatics. 2019;35: 
4851–4853. doi: 10.1093/bioinformatics/btz469

 35. Stanzick KJ, Li Y, Schlosser P, Gorski M, Wuttke M, Thomas LF, Rasheed H, 
Rowan BX, Graham SE, Vanderweff BR, et al. Discovery and prioritization of 
variants and genes for kidney function in >1.2 million individuals. Nat Com-
mun. 2021;12:4350. doi: 10.1038/s41467-021-24491-0

 36. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-
converting-enzyme inhibition on diabetic nephropathy. The Collabora-
tive Study Group. N Engl J Med. 1993;329:1456–1462. doi: 10.1056/ 
NEJM199311113292004

 37. Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, Lewis JB, 
Riddle MC, Voors AA, Metra M, et al. Sotagliflozin in patients with diabetes 
and recent worsening heart failure. N Engl J Med. 2021;384:117–128. doi: 
10.1056/NEJMoa2030183

 38. Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene 
T, Hou F-F, Mann JFE, McMurray JJV, Lindberg M, Rossing P, et al. 
Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 
2020;383:1436–1446. doi: 10.1056/NEJMoa2024816

 39. Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filippatos G, 
Brueckmann M, Ofstad AP, Pfarr E, Jamal W, et al. SGLT2 inhibitors in 
patients with heart failure with reduced ejection fraction: a meta-analysis 
of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020;396:819–
829. doi: 10.1016/S0140-6736(20)31824-9

 40. Aguilar-Ramirez D, Alegre-Díaz J, Herrington WG, Staplin N, Ramirez-Reyes 
R, Gnatiuc L, Hill M, Romer F, Torres J, Trichia E, et al. Association of kidney 
function with NMR-quantified lipids, lipoproteins, and metabolic measures 

in Mexican adults. J Clin Endocrinol Metab. 2021;106:2828–2839. doi: 
10.1210/clinem/dgab497

 41. Dichgans M, Pulit SL, Rosand J. Stroke genetics: discovery, biology, and clin-
ical applications. Lancet Neurol. 2019;18:587–599. doi: 10.1016/S1474- 
4422(19)30043-2

 42. Sun L, Clarke R, Bennett D, Guo Y, Walters RG, Hill M, Parish S, Millwood 
IY, Bian Z, Chen Y, et al. Causal associations of blood lipids with risk of 
ischemic stroke and intracerebral hemorrhage in Chinese adults. Nat Med. 
2019;25:569–574. doi: 10.1038/s41591-019-0366-x

 43. Bargnoux A-S, Kuster N, Cavalier E, Piéroni L, Souweine J-S, Delanaye P, 
Cristol J-P. Serum creatinine: advantages and pitfalls. J  Lab Precis Med. 
2018;3:71. doi: 10.21037/jlpm.2018.08.01

 44. Delanaye P, Cavalier E, Cristol JP, Delanghe JR. Calibration and precision 
of serum creatinine and plasma cystatin C measurement: impact on the 
estimation of glomerular filtration rate. J Nephrol. 2014;27:467–475. doi: 
10.1007/s40620-014-0087-7

 45. Altay S, Onat A, Ozpamuk-Karadeniz F, Karadeniz Y, Kemaloglu-Oz T, Can 
G. Renal “hyperfiltrators” are at elevated risk of death and chronic diseases. 
BMC Nephrol. 2014;15:160. doi: 10.1186/1471-2369-15-160

 46. Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y, Crews DC, 
Doria A, Estrella MM, Froissart M, et al. New creatinine- and cystatin c-based 
equations to estimate GFR without race. N Engl J Med. 2021;385:1737–
1749. doi: 10.1056/NEJMoa2102953

 47. Hellwege JN, Velez Edwards DR, Giri A, Qiu C, Park J, Torstenson 
ES, Keaton JM, Wilson OD, Robinson-Cohen C, Chung CP, et al. 
Mapping eGFR loci to the renal transcriptome and phenome in 
the VA Million Veteran Program. Nat Commun. 2019;10:3842. doi: 
10.1038/s41467-019-11704-w

 48. Hunter-Zinck H, Shi Y, Li M, Gorman BR, Ji S-G, Sun N, Webster T, Liem A, 
Hsieh P, Devineni P, et al. Genotyping array design and data quality control 
in the Million Veteran Program. Am J Hum Genet. 2020;106:535–548. doi: 
10.1016/j.ajhg.2020.03.004

 49. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew 
EY, Levy S, McGue M, et al. Next-generation genotype imputation service 
and methods. Nat Genet. 2016;48:1284–1287. doi: 10.1038/ng.3656

 50. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini 
JL, McCarthy S, McVean GA, Abecasis GR. A global reference for human 
genetic variation. Nature. 2015;526:68–74. doi: 10.1038/nature15393

 51. Loh PR, Danecek P, Palamara PF, Fuchsberger C, Reshef YA, Finucane HK, 
Schoenherr S, Forer L, McCarthy S, Abecasis GR, et al. Reference-based 
phasing using the Haplotype Reference Consortium panel. Nat Genet. 
2016;48:1443–1448. doi: 10.1038/ng.3679

 52. Fang H, Hui Q, Lynch J, Honerlaw J, Assimes TL, Huang J, Vujkovic M, 
Damrauer SM, Pyarajan S, Gaziano JM, et al. Harmonizing genetic ancestry 
and self-identified race/ethnicity in genome-wide association studies. Am J 
Hum Genet. 2019;105:763–772. doi: 10.1016/j.ajhg.2019.08.012

 53. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, 
Vukcevic D, Delaneau O, O'Connell J, et al. The UK Biobank resource with 
deep phenotyping and genomic data. Nature. 2018;562:203–209. doi: 
10.1038/s41586-018-0579-z

 54. Allen NE, Arnold M, Parish S, Hill M, Sheard S, Callen H, Fry D, Moffat S, 
Gordon M, Welsh S, et al. Approaches to minimising the epidemiological 
impact of sources of systematic and random variation that may affect bio-
chemistry assay data in UK Biobank. Wellcome Open Res. 2020;5:222. doi: 
10.12688/wellcomeopenres.16171.2

 55. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang 
HM, Fuchsberger C, Danecek P, Sharp K, et al. A reference panel of 64,976 
haplotypes for genotype imputation. Nat Genet. 2016;48:1279–1283. doi: 
10.1038/ng.3643

 56. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputa-
tion method for the next generation of genome-wide association studies. 
PLoS Genet. 2009;5:e1000529. doi: 10.1371/journal.pgen.1000529

 57. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, 
Kusek JW, Manzi J, Van Lente F, Zhang YL, et al. Estimating glomeru-
lar filtration rate from serum creatinine and cystatin C. N Engl J Med. 
2012;367:20–29. doi: 10.1056/NEJMoa1114248

 58. Burgess S, Ference BA, Staley JR, Freitag DF, Mason AM, Nielsen SF, Willeit 
P, Young R, Surendran P, Karthikeyan S, et al. Association of lpa variants with 
risk of coronary disease and the implications for lipoprotein(a)-lowering thera-
pies: a mendelian randomization analysis. JAMA Cardiol. 2018;3:619–627. doi: 
10.1001/jamacardio.2018.1470

 59. Tian H, Mason AM, Liu C, Burgess S. Relaxing parametric assumptions 
for non-linear Mendelian randomization using a doubly-ranked stratifica-
tion method [published online ahead of print June 28, 2022]. bioRxiv. doi: 
10.1101/2022.06.28.497930

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 6, 2022


