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Rare and common genetic determinants of 
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Garrod’s concept of ‘chemical individuality’ has contributed to 
comprehension of the molecular origins of human diseases. Untargeted 
high-throughput metabolomic technologies provide an in-depth snapshot of 
human metabolism at scale. We studied the genetic architecture of the human 
plasma metabolome using 913 metabolites assayed in 19,994 individuals 
and identified 2,599 variant–metabolite associations (P < 1.25 × 10−11) within 
330 genomic regions, with rare variants (minor allele frequency ≤ 1%) 
explaining 9.4% of associations. Jointly modeling metabolites in each region, 
we identified 423 regional, co-regulated, variant–metabolite clusters 
called genetically influenced metabotypes. We assigned causal genes for 
62.4% of these genetically influenced metabotypes, providing new insights 
into fundamental metabolite physiology and clinical relevance, including 
metabolite-guided discovery of potential adverse drug effects (DPYD and 
SRD5A2). We show strong enrichment of inborn errors of metabolism-causing 
genes, with examples of metabolite associations and clinical phenotypes of 
non-pathogenic variant carriers matching characteristics of the inborn errors 
of metabolism. Systematic, phenotypic follow-up of metabolite-specific 
genetic scores revealed multiple potential etiological relationships.

The plasma metabolome refers to the complete set of circulating metabo-
lites and provides a snapshot of human physiology and a person’s ‘chemi-
cal individuality’. The human metabolome is strongly influenced by a 
variety of endogenous and exogenous factors, including genetic as well as 
dietary-, drug- and disease-related influences. A range of high-throughput 

technologies now enable examination of the genetic regulation of bio-
chemical individuality at the population scale. Existing targeted and 
untargeted platforms provide highly synergistic information due to 
limited overlap in their coverage of the metabolome1. Very large-scale 
(Nmax ≈ 120,000) genetic studies exist for targeted platforms (up to 168 
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(Metabolon HD4), as previously described8 (Supplementary Table 1). 
Metabolites with annotated identities were classified into eight broad 
classes relating to the metabolism of lipids (33.0%), amino acids (16.8%), 
xenobiotics (10.1%), nucleotides (2.5%), peptides (2.2%), carbohydrates 
(2.1%), cofactors and vitamins (1.9%) and ‘energy’ (0.8%); additional 
compounds had an unannotated but unique chemical identity (30.8%) 
(Supplementary Table 2). In a two-stage genome-wide association 
meta-analysis (including validation in an additional 5,698 participants 
from the EPIC-Norfolk study; Extended Data Fig. 1), we identified 1,847 
associations of 330 genomic regions with 646 metabolites (Supple-
mentary Table 3). Conditional analysis of these regional associations 
identified 2,599 conditionally independent variant associations 
(P < 1.25 × 10−11; Methods and Supplementary Table 4). We mapped 
annotated metabolites to 48 established metabolic pathways (Fig. 1). 
Additionally, we inferred a data-driven metabolic network (Methods) 
to include metabolites and genetic associations identified, but not 
covered, by current pathway representations. Both networks (along 
with details for all association results) can be explored on our webserver 
at https://omicscience.org/apps/mgwas.

metabolites) using nuclear magnetic resonance (NMR)2,3, but only a 
few, smaller-scale studies (Nmax ≈ 8,000) have been conducted using 
the much broader metabolite coverage of untargeted methods (up to 
644 metabolites), which have each reported fewer than 150 loci4,5. In this 
Article we present a systematic investigation of the genetic architecture 
of over 900 metabolites in almost 20,000 men and women. We perform 
exact conditional analyses, examine allelic heterogeneity and identify 
genetic co-regulation of multiple metabolites by investigating shared 
genetic influences on sets of regionally associated metabolites from 
across a broad array of pathways. Based on the identified genetic associa-
tions and manual literature-based curation, we define high-confidence 
causal genes regulating these metabolites and systematically examine 
their clinical relevance across over 1,400 phenotypes.

Results
Discovery and fine-mapping for individual metabolites
We quantified plasma levels of 913 metabolites for 14,296 individu-
als of European ancestry from two cohort studies (INTERVAL6 and 
EPIC-Norfolk7) using an untargeted mass spectrometry-based platform 
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Fig. 1 | An established map of metabolic pathways. Map of metabolic pathways 
highlighting 204 of the 632 annotated metabolites analyzed in this study (dark 
gray and red circles), including 154 with genetic associations (red circles). We 
also mapped 51 metabolites to class nodes (indicated by star symbols). Of the 
46 class nodes, 22 are red, indicating that they contain at least one metabolite 
with a genetic association. Genes (grey and lime green squares) and causal 

genes regulating associations discovered in the study (lime green squares; as 
explained in the section ‘Identification of genetically influenced metabotypes’) 
are illustrated. Downward-pointing arrowheads indicate a process and upward-
pointing triangles indicate a source. The inset focuses on the tryptophan 
metabolism pathway. An interactive version is available on the accompanying 
webserver at https://omicscience.org/apps/mgwas.
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The majority (n = 206; 62.4%) of genomic regions associated with 
multiple metabolites (Fig. 2; https://omicscience.org/apps/mgwas), 
including half (n = 165) with multiple annotated metabolites, specifi-
cally 83 (25.2%) associated only with metabolites from within the same 
class and 82 (24.8%) associated with metabolites from across classes. 
The FADS1/FADS2 locus associated with the most annotated metabo-
lites (94 lipids), but extensive pleiotropy was also evident for many 
other regions, including within-class pleiotropy (PCSK9 and MFSD2A) 

and across-class pleiotropy (AGPAT1, ABCG2/PPM1K, GCKR, SLC22A1 
and ABCC1/PLA2G10).

The phenotypic variance explained by conditionally independ-
ent variants ranged from 0.2% to 51% (mean 5.2%) (Fig. 3a,b and Sup-
plementary Table 5). The mean was highest for amino acid (6.36%; 
n = 124) and energy (7.36%; n = 2) classes and lower for peptide 
(2.65%; n = 12), carbohydrate (2.69%; n = 10) and xenobiotic (3.41%; 
n = 38) classes. The range in variance explained suggests different 
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Fig. 2 | Circular plot illustrating the genomic location of regional 
associations with metabolites. Metabolites occupy circular bands, within 
colored sections for each of the assigned metabolic classes: amino acid (n = 124), 
carbohydrate (n = 10), cofactors and vitamins (n = 15), energy (n = 2), lipid 
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genetic architectures both between and within classes. For annotated 
metabolites (n = 461) and unannotated compounds (n = 185) with at 
least one association, the mean variance explained (5.08% and 5.65%, 
respectively) and the mean number of associated variants (4.05 (range 
1–16) and 3.95 (range 1–16), respectively) were similar. For common 
(minor allele frequency (MAF) > 5%), low-frequency (1% < MAF ≤ 5%) 
and rare (MAF ≤ 1%) variants, the maximum variances explained  
for any single metabolite were 48.4%, 27.7% and 9.3%, respectively 
(Fig. 3a,b and Supplementary Table 5).

Functional annotation using Ensembl Variant Effect Predictor 
(VEP) indicated that 177 (11.6%) of the conditionally independent vari-
ants had a direct functional consequence on the transcript (Fig. 3d). 
In total, 692 (26.6%) conditionally independent associations had large 
absolute effect sizes (β) (>0.3 s.d. per allele), 439 (63.4%) of these with 
low-frequency or rare variants (Fig. 3c). Overall, 245 (9.4%) associations 

were with rare variants, which accounted for 152 (9.9%) of condition-
ally independent variants. We used whole exome sequence (WES) data 
from a subset of INTERVAL participants9 for technical validation of 
rare variant associations and found a strong correlation of effect sizes 
(R2 = 0.98; Extended Data Fig. 2), confirming that the associations were 
not genotyping or imputation artefacts.

Of the 330 associated genomic regions, 225 were not reported 
by the previous largest genetic studies using the Metabolon assay4,5. 
For overlapping metabolites, we replicated 302 (83.2%) reported 
region–metabolite associations (involving 106 genomic regions 
and 226 metabolites; associations with either the reported variant 
or the variant in linkage disequilibrium (LD), r2 > 0.1) at P < 5 × 10−8 
(Methods). For those metabolites, our conditional analyses identi-
fied a further 212 conditionally independent variant–metabolite 
associations independent of the previously reported associations 
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(Supplementary Table 6). In addition, within previously reported 
regions we identified associations with an additional 424 metabolites 
(1,046 conditionally independent variant–metabolite associations), 

demonstrating the value of both larger sample size and broader 
quantification of metabolites for identifying genetic determinants 
of metabolite variation.
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catalyzes the ATP-dependent hydrolysis of 5-oxoproline to glutamic acid 
(5-oxoproline and the structurally closely related 6-oxopiperidine-2-carboxylic 

acid associated in this cluster). GIM 2: four variants associating with S-1-pyrroline-
5-carboxylate and the unannotated metabolites X-11315 and X-11334; the causal 
gene is PYCR3, a pyrroline-5-carboxylate reductase that generates proline 
from S-1-pyrroline-5-carboxylate (the strongest associated metabolite in this 
cluster). GIM 3: a single variant associating with aspartate; the causal gene is 
GPT, encoding alanine aminotransferase, which takes alanine as a substrate and 
produces glutamate, which is one step removed from the associated metabolite 
aspartate. GIM 4: a single variant associating with the unannotated metabolite 
X-23639. b, Regional association indicating genomic positions of the associated 
variants (black lines) and causal genes (in red). c, Manhattan plot of chromosome 
eight, with the y axis capped at 120 for clarity. All P values presented were derived 
from linear mixed models.
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Identification of genetically influenced metabotypes
Within genomic regions, we grouped metabolites influenced by at least 
one shared genetic signal into genetically influenced metabotypes 
(GIMs)10. We defined these co-regulated metabolite sets by identifying 
the minimal set of variants from all metabolite-specific conditionally 
independent lead- and secondary metabolite-associated variants that 
explained all regional metabolite associations (Extended Data Fig. 1).  
To illustrate, one 2.55-Mb region on chromosome 8 showed associa-
tions between eight variants and seven metabolites, which were par-
titioned into four distinct GIMs (Fig. 4; https://omicscience.org/apps/
mgwas). We identified 423 GIMs, which included up to 15 lead genetic 
variants (median = 1) and up to 89 metabolites (median = 2). For 264 
(62.4%) GIMS, we assigned one of 253 likely causal genes (or gene sets) 
by extensively mining the biochemical literature (Methods and Sup-
plementary Table 7).

Biological insights from GIMs
GIMs can provide insights into the diverse ways in which genetic vari-
ation influences metabolism and chemical individuality. We identify 
examples of GIMs with important clinical implications (for example, 
SRD5A2 and DPYD), providing insights into fundamental metabolite 
physiology, indicating different roles of a multi-functional protein 
(TTR, SLC7A2 and SLC7A5), and with tissue-specific effects through 
the same protein (for example, CPS1).

We identified variation near SRD5A2, the gene product being a 
target of antiandrogen drugs for the treatment of male-pattern bald-
ness and benign prostatic hyperplasia11, as associated with eight steroid 
metabolites of steroid hormone biosynthesis, including six androgen 
metabolites (Fig. 5 and Supplementary Table 7). SRD5A2 encodes ster-
oid 5α-reductase 2 (SRD5A2), which activates testosterone to dihy-
drotestosterone, the most potent ligand for the nuclear androgen 
receptor; SRD5A2 is also involved in the inactivation of gluco- and 
mineralocorticoids12,13. We observed genetic associations consistent 
with lower SRD5A2 activity, with lower levels of conjugates of androster-
one, epiandrosterone, 3α-androstanediol and 3β-androstanediol (that 
is, metabolites downstream of 5α-reduction of androgenic steroids), 
but higher levels of the major 5β-reduced androgen metabolite etio-
cholanolone (Fig. 5). Specifically, lower levels of androsterone sulfate 
and epiandrosterone sulfate have been reported to indicate reduced 
SRD5A2 activity14, and inhibitors of SRD5A2, such as finasteride, are 
widely used to treat enlarged prostate and male-pattern hair loss11. 
Although direct evidence of causality is currently lacking, depression 
and suicidality have been reported by antiandrogen users15,16, and 
manufacturers are required to list these as potential adverse effects 
in some countries. Variants in the SRD5A2 region have been previously 
associated with the risk of male-pattern baldness17. We performed 
colocalization using HyPrColoc18 and identified a shared genetic signal 
between multiple androgen metabolites and male-pattern baldness 
(posterior probability for a shared causal variant across all phenotypes 
(PP) = 0.97), with rs112881196 being a potential driver of this signal. 
This variant is 176 kb upstream of SRD5A2, in strong LD (r2 > 0.9) with 
the strongest genome-wide association analysis (GWAS) lead variant at 
this locus, and showed directionally consistent associations indicating 
greater SRD5A2 activity and risk of male-pattern hair loss. We identified 
a separate, shared genetic association between androsterone sulfate, 
epiandrosterone sulfate and depression19 (PP = 0.98) (Methods), with 
rs62142080 the most likely causal variant. In line with the increased risk 
of depression reported in antiandrogen drug users, the major allele (T) 
of rs62142080 was associated with lower metabolite levels and a higher 
risk of depression19 (P = 9.36 × 10−6; Fig. 5), supporting concerns about 
widespread use of SRD5A inhibitors15,16.

Another clinically relevant example is related to DPYD, encod-
ing dihydropyrimidine dehydrogenase, an enzyme involved in the 
breakdown of pyrimidines such as uracil and thymine. Variants that 
reduce DPYD activity can limit the breakdown of commonly used 

fluoropyrimidine cancer chemotherapies, such as 5-fluorouracil and 
capecitabine, causing severe or life-threatening toxicity in 10–40% of 
patients treated20. Several variants near DPYD are routinely used to iden-
tify patients who should be started on a reduced chemotherapy dose, 
but an estimated 70–80% of early-onset life-threatening 5-fluorouracil 
toxicities are not adequately identified by current screening panels20,21. 
We identified four variants in the DPYD region at which minor alleles 
were specifically associated with higher plasma uracil levels (Supple-
mentary Table 7), including two rare variants currently recommended 
for pre-treatment screening20 (rs3918290: MAF 0.5%, βmarginal = 1.243, 
Pmarginal = 1.49 × 10−38; rs67376798: MAF 0.8%, βmarginal = 0.768, Pmar-

ginal = 2.23 × 10−25) (Supplementary Table 8). We also identified two 
common variants with more modest effect sizes (rs60392383: MAF 
20.6%, βmarginal = 0.111, Pmarginal = 8.16 × 10−12; rs72977723: MAF 12.1%, 
βmarginal = 0.308, Pmarginal = 2.03 × 10−54) (Supplementary Tables 7 and 8).  
The variant rs72977723 tags the toxicity-associated ‘HapB3’ haplo-
type, which is included in screening recommendations by measuring 
rs56038477 (ref. 20). Although we found rs56038477 to be associated 
with uracil in single-variant analyses (Pmarginal = 1.06 × 10−11), this associa-
tion was almost completely attenuated in a joint statistical model with 
rs72977723 (rs56038477: Pjoint = 0.342; rs72977723: Pjoint = 3.11 × 10−45; 
Supplementary Table 9), suggesting that rs72977723 better captures 
the effects of the HapB3 haplotype on uracil breakdown. We found 
that a substantial fraction (17.8%) of our participants carry the minor 
allele of rs72977723 but do not carry other alleles used for screening, 
suggesting that the addition of rs72977723 to screening panels could 
identify a substantial number of additional individuals who are at risk 
of treatment-induced toxicity.

Distinct GIMs that share the same causal gene can highlight differ-
ent functions of the same gene product, such as for multi-functional 
transporters. TTR encodes transthyretin (TTR), which is involved in 
the transport of both the thyroid hormone thyroxine and retinol (by 
forming a complex with the retinol binding protein, RBP)22. We found 
two GIMs that included variants probably affecting TTR function dif-
ferently (Supplementary Table 7). The first GIM was represented by a 
rare variant (rs184097503) in perfect LD with rs28933981 (p.T119M), 
which is known to enhance the stability of TTR and leads to higher 
plasma TTR levels and greater thyroxine transport capacity23. In line 
with this, we found a strong association of the minor allele (C) with 
higher thyroxine levels (P = 1.14 × 10−12) but no association with retinol 
(P = 0.573) levels (Supplementary Table 8). The second GIM was rep-
resented by a common variant (rs1667237) at which the minor allele 
(C) was strongly associated with higher retinol (P = 1.72 × 10−14) levels. 
Although this variant was only modestly associated with higher thyrox-
ine levels in our study (P = 0.003), a strong proxy (rs1080094, r2 = 0.98) 
has been robustly associated with circulating free thyroxine, that is, 
the non-protein-bound fraction, in a study of ~50,000 participants24. 
Although thyroxine has several transporters, retinol is exclusively 
transported by the TTR–RBP complex, suggesting that this lack of 
redundancy for retinol transport could explain the stronger associa-
tion with plasma retinol levels seen for this GIM.

Other examples of GIMs capturing multiple functions of a gene 
include those of the membrane solute transporters, SLC7A2, distinct 
variants being associated with either lysine or arginine levels, and 
SLC7A5, distinct variants being associated with either kynurenine or 
imidazole lactate levels (Supplementary Table 7).

We observed tissue segregation of GIMs mapping to the same 
causal gene. For example, two GIMs at CPS1 harbor associations with 
either glycine-related metabolites (rs1047891) or citrulline (rs13411696 
and rs114764732) (Supplementary Table 7). CPS1 encodes carbamoyl 
phosphate synthetase, a key liver and small-intestine enzyme regulat-
ing entry into the urea cycle. Disease-causing mutations have been 
implicated in the allosteric N-acetyl-l-glutamate-binding domain25, 
and the missense variant rs1047891 (p.T1405N) potentially causes 
an amino-acid change in the N-acetyl-l-glutamate-binding domain, 
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Fig. 5 | Clinical implications of genetic variation at the SRD5A2 locus.  
a, Stacked regional association plots for eight steroid metabolites, the risk 
of male-pattern baldness and depression in a 2-Mb window around the most 
likely causal gene, SRD5A2. Association statistics (P values from linear mixed 
models) for levels of plasma metabolites were derived from linear regression 
models as described in the text, and summary statistics for male-pattern 
baldness and depression were extracted from the literature17,19. The two-color 
gradients indicate the LD (r2) with the candidate causal variants identified 
using multi-trait colocalization: rs112881196 (blue, lead signal for male-pattern 
baldness) and rs62142080 (orange, lead signal for depression). b, Forest plot 
showing effect estimates (box) and 95% confidence intervals for rs112881196 
(top panel) and rs62142080 (lower panel) across all traits considered. Effects 
for depression are given as odds ratios, because logistic regression models 

were used for association testing, whereas effects for all other traits were 
estimated using linear regression models. Effect estimates and corresponding 
standard errors for male-pattern baldness and depression were obtained from 
the same studies as described in the text. Sample sizes for metabolites are 
described in Supplementary Table 8. Open symbols indicate non-significant 
effects (P > 0.05). c, Scheme describing the putative mechanism by which the 
two genetic variants nearby SRD5A2 alter steroid metabolism. Lower plasma 
levels of metabolites downstream of 5α-reduction of androgenic steroids but 
higher levels of the main 5β-reduced androgen metabolite etiocholanolone 
indicate lower activity of steroid 5α-reductase 2 (SRD5A2) conferred by variants 
associated with a lower risk for male-pattern baldness (via rs112881196) but 
increased risk for depression (via rs62142080). Parts of this figure were created 
with BioRender.com.
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influencing enzyme activation and thereby restricting flux into the 
urea cycle (primarily in the liver), with consequential effects on glycine 
metabolism. This is a known association with an established much 
stronger effect in women and a causal role in coronary disease26. In the 
small intestine, which lacks the full complement of urea-cycle enzymes, 
CPS1 contributes to the generation of citrulline, a metabolite used as a 
clinical biomarker of intestinal function and enterocyte mass27. Thus, 
the citrulline-associated GIM may reflect a tissue-specific effect of 
altered CPS1 expression. We observed a shared signal between the 
citrulline GIM and CPS1 expression (using HyPrColoc; PP > 0.8) for 10 
of the 49 GTEx (V8) tissues28, although not in tissues known for high 
CPS1 expression.

Genes known to cause IEMs
IEMs are metabolic diseases caused by rare genetic variants that lead 
to metabolite deficiency and/or accumulation, with severe phenotypic 
consequences if left undetected or untreated29,30. Many of the identified 
associations with metabolite levels in this population-based study are 
in or near genes known to cause IEMs, as has previously been reported 
for PCSK9, LPL and CPS1 (refs. 1,31). We identified an eightfold enrichment 
of genes known to cause IEMs among the causal genes (Methods; fold 
enrichment of 8.10, P = 7.88 × 10−57). After accounting for overlapping 
signals across detected GIMs, 88 (27.50%) regions harbored at least 
one of 97 IEM genes (Supplementary Table 10). Within these regions, 
we identified 14 known or likely pathogenic IEM variants (as annotated 
within ClinVar32, for the variant or proxies in LD (r2 > 0.6 or D′ > 0.9); 
Supplementary Table 11). These variants (MAF 0.09–7.90%) had associa-
tions with an absolute β of 0.526–1.97 per 1 s.d. difference in metabolite 
levels per allele, and mapped to genes known to cause amino-acid dis-
orders, fatty-acid-oxidation disorders and mitochondrial disorders. In 
addition, we identified 185 variants without established pathogenicity 
in ClinVar (MAF 0.09–49.54%, having associations with absolute β of 
0.0628–2.75 per 1 s.d. difference in metabolite levels per allele) that 
had primary or secondary IEM-specific metabolite consequences, that 
is, were most strongly associated with a metabolite that was identical 
or closely related to those affected in the corresponding IEM (Sup-
plementary Table 12).

We investigated whether carriers of non-pathogenic variation at 
IEM genes had phenotypic features characteristic of those seen in IEM 
patients and found evidence for common representation of IEM-related 
features for several genes. For example, orthostatic hypotension-1 
(OMIM #223360) is an autosomal recessive disorder characterized by 
mutations in dopamine beta hydroxylase (DBH), which converts dopa-
mine to norepinephrine. Mutation carriers have higher plasma levels 
of dopamine and low levels of norepinephrine (noradrenaline) and epi-
nephrine (adrenaline), leading to dysregulation of autonomic functions 
such as control of temperature, blood pressure and vascular tone33,34 
(Extended Data Fig. 3). We identified associations of a missense variant 
in DBH (rs6271, p.R549C, MAF = 7.45%) with lower levels of the norepi-
nephrine catabolite vanillylmandelate (β per minor (T) allele = −0.164, 
P = 8.00 × 10−13), as well as lower systolic and diastolic blood pressure 
and lower risk of hypertension in independent, non-overlapping stud-
ies35–38. We found strong evidence of a shared genetic signal for these 
IEM characteristic features (PP = 0.97), with rs6271 as the likely under-
lying causal variant in multi-trait colocalization analysis (Extended 
Data Figs. 4 and 5). We observed similar phenotypic convergence for 
a common intergenic variant, rs10840516 (MAF = 24%). The likely 
causal gene, tyrosine hydroxylase (TH), catalyzes the conversion of 
tyrosine to levodopa upstream of the biochemical reaction catalyzed 
by DBH. Mutations at the TH gene can lead to dysregulated dopamine 
metabolism, which in turn may also affect pulse rate and blood pres-
sure regulation (Extended Data Fig. 3)39. Variant rs10840516 associated 
with higher plasma levels of 3-methoxytyrosine, dopamine sulfate 
and higher pulse rate in the UK Biobank (β per minor (A) allele 0.012, 
P = 1.10 × 10−6). Multi-trait colocalization provided strong evidence of 

a shared genetic signal between these traits (PP = 0.79; likely causal 
variant rs11564705, in high LD (r2 ≥ 0.97) with rs10840516; Extended 
Data Figs. 4 and 5).

GIMs enable variant to function annotation at GWAS loci
The high-confidence causal gene assignment for GIMs can guide iden-
tification of disease-causing mechanisms at known GWAS loci. We 
systematically investigated associations of GIM defining variants (or 
proxies; at r2 > 0.8) with clinical outcomes using the NHGRI-EBI GWAS 
Catalog and PhenoScanner40 (Supplementary Table 13). Variants within 
54 GIMs were associated (P < 5 × 10−8) with the lead variant for at least 
one of 41 categories of complex diseases, including coronary artery 
disease (CAD; 13 GIMs) and chronic kidney disease (CKD, eight GIMs) 
(Supplementary Table 13). Causal genes for these GIMs included estab-
lished genes for CAD (for example, PCSK9, SORT1 and LDLR), age-related 
macular degeneration (LIPC and APOE/APOC[1,2,4]), Crohn’s disease 
(GCKR and FADS2) and CKD (GATM). Causal genes for 15 GIMs are targets 
of approved drugs or clinical-phase drug candidates41 (Supplementary 
Table 13). We followed up rs17014016 in PPM1K, recently reported to be 
associated with an increased risk of breast cancer42. PPM1K encodes a 
phosphatase essential to catabolism of branched-chain amino acids 
(BCAAs)43. We demonstrate that the genetic associations at PPM1K 
with the BCAA catabolites 2-aminobutyrate, isobutyrylcarnitine and 
gamma-glutamyl-2-aminobutyrate colocalize (PP = 0.98) with the 
association with breast cancer (Methods and Extended Data Fig. 6), 
supporting a role for BCAA catabolism in breast cancer etiology44.

From molecules to clinical presentations
To systematically test how genetic variation in metabolite levels is 
linked to a broad spectrum of diseases, we imputed genetically pre-
dicted metabolite levels (‘metabolite scores’) in UK Biobank partici-
pants using weighted genetic scores, and estimated their associations 
with 1,457 collated disease terms (‘phecodes’)45 derived from electronic 
health records (Methods). We considered 155 annotated metabolites 
with at least two associated, non-pleiotropic, genetic variants. We iden-
tified 60 metabolite score–phecode associations at a 5% false discovery 
rate, involving 33 metabolites and 44 phecodes (Fig. 6 and Supple-
mentary Table 14). Results included well-established links between 
metabolites and diseases, such as urate and gout (odds ratio (OR) per 
1-s.d.-higher metabolite level, 2.22; 95% CI, 2.11–2.35; P = 5.9 × 10−186), 
bile acids and cholelithiasis (for example, glycohyocholate: OR, 0.57; 
95% CI, 0.51–0.64; P = 2.7 × 10−23) and complex lipids and hypercholes-
terolemia (for example, 1-dihomo-linoleoyl-GPC (20:2): OR, 1.84; 95% 
CI, 1.60–2.21; P = 1.4 × 10−17).

For these prioritized associations, we tested for a dose–response 
relationship using a Mendelian randomization (MR) framework (Meth-
ods) and identified 30 pairs with apparent dose–response relation-
ships, with ten providing strong evidence; that is, there were at least 
three variants in the score and no evidence for between-variant het-
erogeneity (P > 0.05, Methods). These included a positive association 
between plasma levels of homoarginine and risk of CKD (OR, 1.16; 95% 
CI, 1.09–1.23; P = 6.5 × 10−7; Extended Data Fig. 7), which contrasts with 
observational studies linking higher homoarginine levels with lower 
renal and cardiometabolic disease risk46,47. Our analysis provides an 
important advance from previous MR analysis using fewer instru-
ments, which yielded null results48, highlighting the need to closely 
monitor kidney function when adopting supplementation strate-
gies with homoarginine49 due to the potential adverse effects. Much 
attention for a possible involvement of arginine-related metabolites 
in cardiometabolic disease has been paid to either arginine itself50 
or its possible adverse catabolites, (a)symmetric dimethylarginine 
(ADMA and SDMA), based on their suggested vasodilatory role51,52, 
with some evidence from single-locus MRs for a putative adverse effect 
of higher arginine on CAD53. Although our metabolomics platform 
cannot distinguish between ADMA/SDMA, we observed only weak 
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evidence for a possible role of arginine in cardiometabolic and renal 
disease (for example, diabetic retinopathy, P = 6.1 × 10−4, or cystic 
kidney disease, P = 1.1 × 10−3). The observations that genetic variants 
associated with homoarginine are probably linked to transporters with 
specific affinity to homoarginine (SLC15A19 and SLC7A7) and that the 
known CKD intergenic variant rs1145091 (near GATM) was the strongest 

variant for plasma homoarginine levels argue for a possible distinct 
role of plasma homoarginine compared to arginine-related metabo-
lites in plasma in CKD pathology. Furthermore, genetically predicted 
plasma levels of 3-methylglutarylcarnitine were inversely associated 
with benign neoplasms of the colon (OR, 0.89; 95% CI, 0.85–0.94; 
P = 6.2 × 10−6). 3-Methylglutarylcarnitine is a downstream catabolite 
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Fig. 6 | Summary of phenome-wide associations with metabolite scores. 
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of leucine metabolism, and elevated plasma levels are used to diag-
nose 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency54,55, an 
IEM characterized by frequent metabolic acidosis with a severe liver 
phenotype but no reported impact on neoplasms of the colon. The 
multi-locus nature of our observation points towards a protective role 
of high 3-methylglutarylcarnitine plasma levels outside of the IEM, an 
observation that warrants further experimental follow-up to establish 
possible underlying mechanisms.

Discussion
Human metabolism and metabolic responses are highly individual 
and are dysregulated in many common and rare diseases. By conduct-
ing the largest genetic study of untargeted metabolomics, we have 
identified hundreds of genetic variants acting in complex metabolic 
hotspots in the genome and with large effects on many circulating 
metabolites. We used this information to define GIMs, which repre-
sent the genetic basis of chemical individuality and explain a sub-
stantial amount of inter-individual differences in plasma levels of 
over 600 metabolites. To investigate the consequences of genetic 
differences in chemical individuality for human health, we pursued 
a variety of approaches with phenotypic follow-up for a large range 
of rare and common human conditions. We show convergence of 
metabolic and phenotypic presentations of genes known to cause 
rare IEMs with variants at these genes identified in this study of the 
general population.

Previous studies generally treated metabolites as distinct entities 
in association analysis1,4,5,56, and very few considered the extensive local 
co-regulation of either biochemically related or seemingly unrelated 
metabolites (that is, those across different biochemical classes10). Our 
approach to systematically identify such metabolic hotspots in the 
genome provides a framework that will probably provide additional 
insights for other domains of molecular traits such as gene or protein 
expression, but also to disentangle genetic co-regulation in the medi-
cal phenome more generally, as exemplified by the multiple signals 
at SRD5A2.

The lack of identification of causal genes remains one of the most 
important limitations for the successful translation of GWAS findings 
so far. The intrinsic biochemical link between the function of proteins 
encoded by genes close to metabolite-associated variants provides 
direct metabolically informed evidence for causal gene assignment 
based on decades of biochemical experiments. We have exemplified 
how this information can identify causal genes for, and provide mecha-
nistic insight into, known loci for diverse diseases, as well as providing 
examples of genetically predicted metabolite levels robustly associated 
with complex diseases.

We have previously shown hundreds of associations between 
plasma metabolite levels and future onset of multiple diseases8, and 
have hypothesized that few of those are likely to be causal, but instead 
reflect ‘common antecedents’ underlying both metabolite levels and 
disease risk. The genetic approaches for causal inference used in this 
study appear to support this notion, as we found few examples with 
strong genetic support for a causal association between a metabolite 
and a disease. However, the associations identified here will enable 
causal assessment for future metabolome-wide association studies 
across many diseases. This provides a cost-effective and rapid way to 
(de)prioritize exposures for assessment in randomized trials, to avoid 
failures, such as has been seen for vitamin C and diabetes57 or selenium 
and prostate cancer58. Furthermore, more diverse and large-scale 
efforts will identify genetic determinants for those metabolites not 
yet captured here or those for which we have identified only single or 
non-specific variants.

A third of compounds investigated were unannotated, so future 
work will include further triangulation of associated variants and 
causal gene assignment to assist their identification. Our results 
rely on individuals of European ancestry, and investigation in other 

ancestries will probably provide additional insights59,60. We note that, 
for certain metabolites, measurement error might have contributed 
to low estimates of variance explained. Our phenome-wide approach 
using metabolite scores could be extended at multiple levels: (1) 
genome-wide scores will probably provide more statistical power, 
although at the cost of biological specificity, (2) we could use a more 
refined approach to select metabolite- or pathway-specific genetic 
instruments to generate metabolite scores and (3) we could extend 
application to studies with greater numbers of disease cases.

Our results reveal a genomic landscape that accounts for chemi-
cal individuality, with important and potentially actionable insights 
for human health. Future integration with molecular layers providing 
complementary information, such as protein or gene expression, and 
obtained in diverse populations will further help translate how our 
genome shapes our health to derive treatment options for diseases.
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Methods
Contributing studies and metabolite measurements
Study description. Samples from two UK-based cohort studies—
EPIC-Norfolk and INTERVAL—were included in the current analyses6,7.

INTERVAL. The INTERVAL study (https://www.intervalstudy.org.uk) 
comprises up to 50,000 participants nested within a randomized trial 
of varying blood donation intervals recruited at 25 centers of England’s 
National Health Service Blood and Transplant (NHSBT). All INTERVAL 
participants gave informed consent before joining the study, and the 
National Research Ethics Service approved the study (11/EE/0538). 
INTERVAL participants were not compensated for participation. Partici-
pants completed an online questionnaire, including questions about 
demographic characteristics (for example, age, sex and ethnicity), 
anthropometry (height and weight), lifestyle (for example, alcohol 
and tobacco consumption) and diet. Participants were non-fasting 
and generally in good health, because blood donation criteria exclude 
people with a history of major diseases (such as myocardial infarction, 
stroke, cancer, human immunodeficiency virus and hepatitis B or C) 
and those who have had recent illness or infection. INTERVAL blood 
samples were taken at baseline, and ethylenediaminetetraacetic acid 
plasma was stored at −80 °C.

EPIC-Norfolk. The EPIC-Norfolk study (https://www.epic-norfolk. 
org.uk) is a population-based prospective cohort study, nested within 
the European Prospective Investigation of Cancer (EPIC) study, which 
had the primary aim of exploring the connections between cancer, 
diet and lifestyle. EPIC-Norfolk recruited 30,446 men or women aged 
between 40 and 79 years at baseline, from NHS GP practices in Norfolk, 
UK, between 1994 and 1997. At baseline, information on diet, lifestyle 
and self-reported previous diagnosis of disease were collected, and 
25,639 participants attended a clinic examination to take blood samples 
and anthropometric measures. The EPIC-Norfolk study was approved 
by the Norwich Local Ethics Committee (previously known as Norwich 
District Ethics Committee) (REC ref: 98CN01); all participants gave 
their informed written consent before entering the study. Partici-
pants did not receive any compensation for their involvement in the 
EPIC-Norfolk study.

Participants of both studies were generally non-fasting at the 
time of blood sampling. INTERVAL participants were non-fasting 
blood donors and EPIC-Norfolk participants were not specifically 
requested to fast (4.4% of EPIC-Norfolk participants were fasted  
(≥6 h since last meal)).

A total of 19,994 individuals of European ancestry contrib-
uted to the current analysis; 14,296 individuals for discovery (5,841 
EPIC-Norfolk samples and 8,455 INTERVAL samples) and 5,698 individu-
als (from EPIC-Norfolk) for validation (Supplementary Table 1). The 
mean age in the discovery sample was 59.8 years in the EPIC-Norfolk 
study and 44.0 years in the INTERVAL study, with 53.3% females in 
EPIC-Norfolk and 48.8% in INTERVAL.

Non-targeted metabolomics. Plasma metabolites were measured 
using the untargeted DiscoveryHD4 platform (Metabolon), which uses 
ultra-high-performance liquid chromatography/tandem accurate mass 
spectrometry and references to a library of biochemicals of known 
and unknown identity based on standards with mass-to-charge ratio 
(m/z), retention time/index and chromatographic data. An in-depth 
description of the process is described in ref. 8. Metabolites were clas-
sified by Metabolon into eight broad named classes relating to the 
metabolism of lipids, amino acids, xenobiotics, nucleotides, peptides, 
carbohydrates, cofactors and vitamins, and ‘energy’. In addition, there 
are compounds with undetermined chemical identity (unannotated 
compounds). The unannotated compounds represent recurring bio-
logical entities that have been detected over time across many different 
studies completed at Metabolon, which has allowed the assignment of 

these features as unique metabolites despite the lack of full structural 
elucidation. The process used by Metabolon to associate features 
relating to the same compound into one library entry has previously 
been described61. In addition, analysis of the various feature types is 
described in ref. 62.

Measurements were made independently in EPIC-Norfolk and 
INTERVAL. Metabolite values were natural-log-transformed, win-
sorized to 5 s.d. from the mean, residuals were calculated from a 
multivariable linear regression model adjusting for age and sex (meas-
urement batch and study-specific variables), and the residuals were 
standardized (mean = 0, s.d. = 1). Following quality control (QC), 913 
metabolites were present in at least 200 participants within the dis-
covery. For INTERVAL, two sub-cohorts of 4,316 and 4,637 participants 
were created through random sampling from the INTERVAL study and 
metabolites were measured within these two sub-cohorts (or batches) 
separately. Within each batch, sample-specific metabolite values were 
median-normalized for run day (median set to 1 for run-day batch) and 
imputed (‘ScaledImpData’) by Metabolon. These imputed values were 
identified using the raw data (‘OrigScale’) provided by Metabolon and 
were reset to missing prior to QC. Metabolites were then excluded if 
measured in only one batch or in fewer than 100 samples. We did not 
observe any technical variability between the batches, so the batches 
were merged prior to the QC and genetic analysis including batch as 
a covariate to adjust for any residual batch effects. Metabolite values 
were natural-log-transformed, then winsorized to 5 s.d. from the 
mean where the values exceeded mean ± 5 × s.d. of the metabolite. 
Residuals were then calculated, adjusting for age, sex (self-reported), 
Metabolon batch, INTERVAL center, plate number, appointment 
month, the lag time between the blood donation appointment and 
sample processing, and the first five ancestry principal components. 
Before the genetic analysis, these residuals were standardized to a 
mean of 0 and s.d. of 1. For EPIC-Norfolk, untargeted metabolomics 
measurements were made in 2015–2017, separately in three batches, 
using the DiscoveryHD4 platform (Metabolon). Citrated plasma 
samples were stored in the gas phase of liquid nitrogen at −175 °C for 
long-term storage. Samples were transferred to short-term storage 
at −70 °C and shipped on dry ice to Metabolon. Initially, metabolites 
were measured in a diabetes case cohort (N = 1,503); for the present 
analysis we consider only the sub-cohort of the case cohort (N = 857). 
Subsequently two sets of ~6,000 samples were measured (N = 5,994 
and N = 6,173; the latter including almost 200 duplicates), which 
were quasi-random selections. Due to the timing of measurements, 
EPIC-Norfolk samples were divided into a set to contribute to the ‘dis-
covery set’ and a separate ‘validation set’. The combined sub-cohort 
and first quasi-random selection were treated as the EPIC-Norfolk 
constituent of the ‘discovery set’ and the second quasi-random selec-
tion constituted the ‘validation set’. Following the exclusion of dupli-
cated samples, samples from participants withdrawn from the study, 
samples without genotype data passing QC, the total numbers of 
EPIC-Norfolk individuals in the discovery and validation sets were 
5,841 and 5,698, respectively. For the case cohort, metabolite levels 
scaled to set the median equal to 1, provided by Metabolon, were 
used. For the two sets of ~6,000 samples, values were additionally 
normalized by the volume extracted before being scaled to set the 
median equal to 1. Imputed values were not used. Metabolites were 
excluded if measured in fewer than 100 samples in the respective 
discovery/validation set. Within the measurement batch, among 
genotyped samples, metabolite values were natural-log-transformed 
and winsorized to 5 s.d. from the mean (using Stata 14.2). Within the 
discovery/validation set, samples without genotype data passing 
QC were excluded, residuals were calculated using linear regression 
adjusting for age and sex (self-reported but participants with sex 
chromosomes discordant from self-reported sex were excluded) (and 
measurement batch), and the residuals were standardized to a mean 
of 0 and s.d. of 1 (using R version 3.2.2).
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Metabolites were matched between studies based on the Metabo-
lon ‘chemical id’ where present or names in the case of unannotated 
metabolites. A complete list of metabolites, chemical IDs (CHEMI-
CAL_ID) and compound IDs (COMP_ID) for each constituent measure-
ment batch are given in Supplementary Table 2.

Genotyping and imputation
The genotyping protocol and QC for the INTERVAL samples (up to 
50,000) have been described previously in detail6. In short, DNA 
extracted from buffy coat was used to assay ~830,000 variants on 
the Affymetrix Axiom UK Biobank genotyping array at Affymetrix. 
Genotyping was performed in multiple batches of ~4,800 samples 
each, and sample QC was performed, including exclusions for sex 
mismatches, low call rates, duplicate samples, extreme heterozygosity 
and non-European descent. Multidimensional scaling was performed 
using PLINK v1.9 to create components to account for ancestry in 
genetic analyses. Before imputation, additional variant filtering steps 
were performed to establish a high-quality imputation scaffold. In sum-
mary, 654,966 high-quality variants (autosomal, non-monomorphic, 
bi-allelic variants with Hardy–Weinberg equilibrium (HWE) P > 5 × 10−6, 
with a call rate of >99% across the INTERVAL genotyping batches in 
which a variant passed QC, and a global call rate of >75% across all 
INTERVAL genotyping batches) were used for imputation. Variants 
were phased using SHAPEIT3 and imputed using a combined 1000 
Genomes Phase 3-UK10K reference panel. Imputation was performed 
via the Sanger Imputation Server (https://imputation.sanger.ac.uk) and 
resulted in 87,696,888 imputed variants. Variants with MAF < 0.01% or 
INFO (imputation INFO score) of <0.3 were excluded before further 
analysis. For EPIC-Norfolk, samples (N = 21,448) were genotyped on 
the Affymetrix UK Biobank Axiom array chip by Cambridge Genomic 
Services. Sample and variant QC followed the Affymetrix Best Practices 
guidelines. Samples were excluded based on DishQC < 0.82 (fluores-
cence signal contrast), call rate of <97%, heterozygosity outliers and 
sex discordance checks. Variants were excluded if the call rate was <95% 
or HWE P ≤ 1 × 10−6. Monomorphic variants and those with cluster prob-
lems detected using Affymetrix SNPolisher were excluded. Genotype 
imputation was performed using two different reference panels, the 
Haplotype Reference Consortium (HRC) (release 1) reference panel 
and the combined UK10K + 1000 Genomes Phase 3 reference panel. 
After pre-imputation QC, 21,044 samples remained for imputation. 
All variants imputed using the HRC reference panel were included, and 
additional variants imputed using only the UK10K + 1000 Genomes 
reference panel were added to create a combined imputed set. Vari-
ants with imputation quality INFO < 0.4 or minor allele count (MAC) 
of ≤2 were excluded. All positions were on genome assembly GRCh37.

Discovery GWAS and meta-analysis
GWASs were performed separately in INTERVAL (N = 8,455) and 
EPIC-Norfolk (N = 5,841), for each metabolite using BOLT-LMM63 (ver-
sion 2.2). Where BOLT-LMM failed, for example, due to an invalid her-
itability estimate close to 0 or 1, the analysis was run using SNPTEST 
(version 2.5.1 or 2.5.2)64,65. In SNPTEST analyses, related individuals were 
excluded and the first genetic principal components (five for INTERVAL 
and four for EPIC-Norfolk) were included. Variants with MAF < 0.01%, 
imputation quality INFO < 0.3, HWE P < 1 × 10−6 or exact alleles unknown, 
and associations with absolute (effect) >10 or standard error <0 or >10 
were excluded. In INTERVAL, for variants with both imputed and geno-
typed data, imputed data were used if the INFO score was greater than 
0.6; otherwise, genotyped data were used. Study-specific results were 
pooled using inverse-variance weighted fixed-effect meta-analyses and 
METAL66, applying a MAC threshold of >10 in each study.

Definition of genomic regions
To define regions, all associations with P < 5 × 10−8 in the meta-analysis 
and P < 0.01, MAC > 10 and consistent direction of effect in both studies 

were taken forward. Pairwise LD was calculated within the INTERVAL 
study (N ≈ 50,000). For each individual metabolite, sentinel variants 
(with the largest −1*log10(P)) were identified and the range of positions 
of variants in LD (r2 ≥ 0.1) was used to define the region. For sentinel 
variants with no other variants in LD, a region around the sentinel 
variant (±500 kb) was created. In the next step, sentinel variants for 
all metabolites were considered. Pairwise LD was calculated for each 
sentinel variant, and regions with sentinel variants in LD (r2 > 0.6) were 
merged and a further 250 kb was added to either side of each region to 
avoid having variants in the margin of the locus. Overlapping regions 
were merged until all defined regions were non-overlapping.

Validation of metabolite–region associations
We validated regional sentinel variant–metabolite associations by 
meta-analyzing the discovery and validation data. The GWAS for the 
validation data was performed using the same protocol as for the dis-
covery data. Associations were considered validated if the association 
was significant after correction for multiple testing (P < 5.48 × 10−11) in 
the validation meta-analysis, with consistent direction of effect in all 
three constituent GWASs.

Conditional analysis
Exact conditional analysis was performed using combined 
individual-level data from INTERVAL and EPIC-Norfolk discovery sets. 
We performed forward stepwise regression analyses, adjusting for 
fixed effects of the study and the top genetic principal components and 
considering variants with consistent direction of effect and P < 0.01 in 
both discovery datasets. Region-wide association analyses were per-
formed using SNPTEST (version 2.5.2). Initially, we conditioned on the 
most strongly associated regional variant from marginal analyses and 
estimated the association of each other regional variant independently 
in the conditional model. We then identified the variant with the lowest 
P value from the tested regional variants, added it to the conditional 
model, and re-estimated associations of all other regional variants 
using the updated conditional model. This process was repeated itera-
tively until no further regional variants were significant at P < 1.25 × 10−8. 
The P < 1.25 × 10−8 threshold was calculated using the Bonferroni cor-
rection, adjusting for the maximum number of variants (n = 39,297) 
and metabolites (n = 102) tested at any region. We fitted a final linear 
regression model (R version 3.2.2), and excluded any selected variants 
not significant at P < 1.25 × 10−8 in the full conditional model. In a small 
number of instances (n = 49; 2.65%), no regional variant, including the 
lead variant, associated at P < 1.25 × 10−8 (which was more stringent than 
the discovery analysis threshold of P < 5 × 10−8). In this situation we ran 
conditional analyses conditioning on the lead variant and, if no other 
variants were found to be associated at P < 1.25 × 10−8, we retained only 
the original lead variant.

Technical validation of rare variant associations
To ensure that rare variant associations were not due to technical arte-
facts of the imputation, we performed a technical validation using WES 
data in a subset of 3,924 samples from the INTERVAL study9. We looked 
up associations from analysis of the INTERVAL WES data for 122 (49.8%) 
of the total 245 rare variant associations for which variants and metabo-
lites overlapped. All associations were directionally consistent with our 
analysis with an almost perfect correlation of effects (r2 = 98.33), and 
118 were at least nominally significant (P < 0.05) (Extended Data Fig. 2).

Definition of GIMs
A matrix (‘matrix.ref’) was created with the variants from the conditional 
analysis for all regionally associated metabolites as rows, metabolites as 
columns and −log10(P) for conditional association with each metabolite 
as individual elements of the matrix (Extended Data Fig. 1). The variant 
with the largest −log10(P) for association with any metabolite in ‘matrix.
ref’ was selected, and −log10(P) for association of the selected variant 
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with all the metabolites within the matrix was calculated and added to 
a new matrix called ‘matrix.out’. This variant was removed from ‘matrix.
ref’ and the −log10(P) for the association of each of the remaining vari-
ants in the ‘matrix.ref’ was calculated, conditioning on the variant(s) 
in ‘matrix.out’. The steps were repeated by selecting the next variant 
with the largest −log10(P) within ‘matrix.ref’, adding it to ‘matrix-out’ 
and estimating the associations of each variant and each metabolite in 
‘matrix-ref’, conditioning on all variants in ‘matrix-out’. This was repeated 
until no variant–metabolite association was identified in ‘matrix.ref’ 
with a −log10(P) > −log10(5 × 10−8). Every time we selected the variant 
with the largest −log10(P) for association with any given metabolite 
within ‘matrix.ref’, we ensured that this variant–metabolite associa-
tion had the same direction of effect with a P value for association with 
the metabolite of less than 0.01 in both INTERVAL and EPIC-Norfolk. A 
marker order number was assigned to indicate the order in which variants 
were included in ‘matrix.out’. In the last step, we created metabotypes 
within the locus using the genetic associations within ‘matrix.out’ with 
−log10(P) > −log10(5 × 10−8). Starting with the first variant, all metabolites 
with a significant association were selected, then we selected all variants 
associated with any one of these metabolites. This step was repeated until 
no variant or metabolite was added to the metabotype.

We reviewed all GIMs manually to check whether adjacent regions 
with the same metabolites were inadvertently split, and identified ten 
such regions. These adjacent regions were manually merged, and the 
GIMs were recalculated within the merged (extended) region. This 
method of defining GIMs was ‘hypothesis-free’ and inclusive, based 
on genetic associations. It did not take account of existing biological 
relationships or phenotypic correlations between metabolites. We 
examined phenotypic correlations among metabolites within GIMs 
and include these in Supplementary Table 15.

The −log10(P)s in the matrices, along with the +/− that represent 
the direction of effect (Supplementary Table 7), are for the associations 
from stepwise selection mentioned above; that is, they are conditional 
on only the variants with lower marker order numbers (column ‘Marker 
Order (Conditional Analysis)’), as opposed to all the variants in the 
GIMs in that region.

Causal gene annotation
The biochemical investigation of living systems preceded GWAS by 
many decades. Often, the names of genes and proteins reflect their 
biochemical activity. We used both these facts to deduce the likely 
causal genes at many of the metabolite-associated variants. Specifi-
cally, we used automated approaches to identify potential supporting 
information for the 20 closest protein-coding genes to each lead vari-
ant, using distance from lead variant to the ‘gene body’ (transcription 
start site to transcription end site) of each gene. This information was 
manually reviewed to identify the most likely causal gene for each locus.

To leverage the fact that many gene names directly reflect their 
known substrates (for example, phenylalanine hydroxylase), we used 
the following approaches:

	1.	 Fuzzy text match (Ruby Gem fuzzy_match, score > 0.5) of any 
synonym of the metabolite name (from HMDB) to the name of 
the gene (entrez) or the name of the protein or a synonym of the 
name of the protein (UniProt).

	2.	 Fuzzy text match of the class of the metabolite (from HMDB) to 
the name of the protein (UniProt).

	3.	 Fuzzy text match of any synonym of the metabolite to the 
names of any rare diseases caused by the gene (OMIM) after 
removing the following stop words: uria, emia, deficiency, 
disease, transient, neonatal, hyper, hypo, defect, syndrome, 
familial, autosomal, dominant, recessive, benign, infantile, 
hereditary, congenital, early-onset, idiopathic.

To leverage known biochemical pathway knowledge we used the 
following approaches:

	1.	 Lookup of candidate genes in HMDB’s interacting proteins 
annotation

	2.	 Match of KEGG maps between each metabolite and each  
gene (no direct connection required, just co-occurrence  
on a KEGG map).

	3.	 Fuzzy text match of any synonym of the metabolite to the set 
of GO biological processes with fewer than 500 human genes 
to which each gene was assigned after removing the follow-
ing non-specific substrings from the name of the biological 
process: metabolic process, metabolism, catabolic process, 
response to, positive regulation of, negative regulation of,  
regulation of.

Any positive hits from the above automated analyses were manu-
ally reviewed, as well as any supporting primary literature. If the exist-
ing experimental evidence convincingly supported one of the 20 genes 
at the locus, that gene was selected as the biologically most likely causal 
gene. If there was no clear experimental evidence for any of the 20 clos-
est genes, no causal gene was manually selected. In some cases, two or 
more genes at a locus had equally strong experimental evidence. This 
is especially the case with nearby paralogs arising from gene duplica-
tion. In these cases, multiple causal genes have been flagged, indicat-
ing that one or more of the selected genes may be contributing to the 
metabolite–variant association.

Assessing novelty of associations
We assessed the novelty of variant associations using associations 
reported by the previous two largest genetic studies that used the Metab-
olon assay4,5. Based on a 250-kb-distance-based window, we identified 631 
region–metabolite associations reported by these studies. Of these, 83 
region–metabolite associations were with ratios and were excluded from 
the comparison. Of the remaining 548 region–metabolite associations, 
we identified 302 region–metabolite associations as significant in our 
study (at P < 5 × 10−8; Supplementary Table 6). Within the remaining 246 
region–metabolite associations, for 185 region–metabolite associations 
we were not able to map the metabolite to our study. Therefore, of the 363 
region–metabolite associations (involving 118 genomic regions and 243 
metabolites) where metabolites were directly mapped to our study, we 
replicated (at P < 5 × 10−8; associations with either the reported variant or 
a variant in LD, r2 > 0.1) 302 (83.2%) of the region–metabolite associations 
(involving 106 genomic regions and 226 metabolites).

Colocalization
Where we report results from colocalization analyses, the analyses 
were performed using HyPrColoc18. In the first step we performed 
pairwise colocalization to derive the list of metabolites that colocalize 
with the outcome. The selected set of metabolites were then colocal-
ized using the multi-trait colocalization framework described in the 
HyPrColoc manuscript18. We report only the colocalizations with a PP 
greater than 0.8. The following datasets were used in the colocaliza-
tion analysis: gene expression (GTEx Analysis Release V8)28, breast 
cancer42 and depression19.

Enrichment of genes known to cause IEMs
Genes were mapped to metabolic regions using two methods: (1) 
manual annotation of likely causal genes based on the biochemical 
literature as previously described and (2) a gene set consisting of the 
closest gene to any conditionally independent variant. For method (2), 
the closest gene was identified using Variant Effect Predictor (VEP), and 
genes within 5 kb of conditionally independent variants and their prox-
ies (r2 > 0.6) were identified using SNiPA. These genes were assessed 
for known causal links to IEMs using a list of 785 known IEM genes 
downloaded from the Orphanet database67.

We tested whether there was enrichment of IEM genes among 
all genes annotated to metabolite-associated regions compared to 
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the percentage of known IEM-linked genes67 (n = 785; 4%) among 
genome-wide protein-coding genes (N = 19,817)68, using a two-tailed 
binomial test. As a sensitivity analysis, enrichment was assessed using 
less specific methods of assigning genes to metabolic regions, where 
genes were identified within 500 kb of conditionally independent 
variants or within the genomic region using GENCODE. Supplemen-
tary Table 16 provides a summary and comparison of these methods.

Phenotypic assessment of metabolite-associated variants at 
the DBH and TH loci
Complex phenotype associations reported in GWAS Catalog, Phe-
noScanner40 and UK Biobank at a significance threshold of P = 1 × 10−5 
were identified for rs6271 at the DBH locus, rs10840516 at the TH locus, 
and any variants that were in strong LD (r2 ≥ 0.8). Associations for 
which the phenotypes were related to one or more symptoms of the 
corresponding IEMs, orthostatic hypotension (OMIM #223360) and 
Segawa syndrome (OMIM #605407), as reported in IEMBase and other 
relevant literature, were tested for colocalization with metabolite 
levels. A list of associations at DBH and TH loci that were prioritized 
is provided in Supplementary Table 17. To test for colocalization 
between variant–metabolite associations and variant–phenotype 
associations, multi-trait colocalization was implemented using the R 
package ‘HyPrColoc’ (v1.0)18. To maximize statistical power, summary 
statistics from UK Biobank were used for phenotypes relating to blood 
pressure, hypertension, body fat composition and medication, and 
summary statistics from the SSGAC consortium were used for ‘Years 
of schooling’ (Supplementary Table 17). The prior probability that a 
variant is associated with a single trait (prior1) was set to 1 × 10−4, and 
the prior probability that a variant is associated with one trait, given it 
is already associated with another (prior2), was set to 0.98. Regional 
and alignment probability thresholds were set to 0.5. Cluster stability 
was assessed by using more stringent prior2 values (0.99, 0.999) and 
regional and alignment threshold values (0.6, 0.7, 0.8, 0.9). Only vari-
ants present in all included traits were considered for a given locus and 
any variants with a standard error of zero were removed.

GIMs enable variant-to-function annotation at GWAS loci
To identify complex diseases associated with the sentinel variants (or 
proxies at r2 > 0.8) for our 423 GIMs, we queried the NHGRI-EBI GWAS 
catalog and other GWAS cataloged within PhenoScanner40,69. A total of 
97 phenotypes from the GWAS catalog were then manually classified 
into 52 disease categories with EFO terms before investigating the LD 
between the GIM variants and top disease variant and further colocali-
zation for specific selected associations using HyPrColoc18. To assess 
whether the causal genes are druggable, we looked at whether the genes 
are either targets of approved small molecules and biotherapeutic 
drugs (Tier 1) or clinical-phase drug candidates or encode targets with 
known bioactive drug-like small-molecule binding partners as well as 
those with ≥50% identity (over ≥75% of the sequence) with approved 
drug targets (Tier 2), as reported in ref. 41.

Phenome-wide associations of metabolite levels
To facilitate phenome-association studies for metabolites, we imputed 
plasma metabolite levels in UK Biobank participants using conditionally 
independent metabolite-associated variants (Supplementary Table 4)  
with exact variant mappings. We created weighted (by the marginal 
effect) summed scores of the genetic load for metabolite levels for 
each of 155 metabolites with at least two variants and a clear metabo-
lite annotation (using Stata 14.0 and R 3.6.0). We included only vari-
ants associated (P < 5 × 10−8 in the marginal statistics) with fewer than 
five metabolites to minimize the impact of horizontal pleiotropy. 
We used these genetic scores as exposure variables, testing for asso-
ciations with 1,457 phecodes, adjusting for age, sex (reported, but 
participants with sex chromosomes discordant from reported sex 
were excluded), genotype batch, test center and the first ten genetic 

principal components. We performed logistic regression models 
(using R 3.6.0) within up to 351,967 unrelated participants of white 
European ancestry70. To generate phecode-based outcome variables, 
we mapped ICD-10, ICD-9, Read version 2 and Clinical Terms Version 
3 (CTV3) terms from self-report or medical health records, including 
cancer registry, death registry, hospitalization (Hospital Episode 
Statistics) and primary care (subset, N = 214,667), to the phecodes45,71. 
We used any code that was recorded, irrespective of whether it con-
tributed to the primary cause of death or hospital admission, to define 
phecodes. We adjusted all analyses for test center to account for 
regional differences in coding systems and case ascertainment. For 
each participant and phecode, we kept only the first entry, irrespec-
tive of the original dataset, generating a first occurrence dataset. We 
dropped codes that were before or in the participants’ birth year to 
minimize coding errors from electronic health records. To account 
for multiple testing, we applied the Benjamin–Hochberg procedure 
to the full list of genetic score to phecode associations tested, con-
trolling the false discovery rate at 5%. To test whether single vari-
ants rather than the genetic score for a metabolite accounted for 
the observed associations, we repeated the same analysis for single 
variants only, and flagged all examples for which the strongest single 
variant was more strongly associated with the phecode compared to 
the composite score. To further test for a dose–response relationship, 
we adapted a two-sample MR framework72. We used heterogeneity 
estimates from an inverse-variance weighted MR along with MR-Egger 
to test for horizontal pleiotropy, and Cochran’s Q statistic to test for 
heterogeneity among effect estimate ratios for each variant included.

Reconstruction of the metabolic network using Gaussian 
graphical models
We imputed missing values for 749 metabolites with fewer than 30% 
missing observations in each of the INTERVAL and EPIC-Norfolk dis-
covery datasets, individually within the study. Missing observations 
were imputed using multivariate imputation by chained equations 
(MICE), implemented using R (3.3.3) and the R package ‘mice’ (version 
2.46.0)73 with the method ‘norm’, as previously proposed for metabo-
lomics data74. Imputation was performed on the residuals after taking 
metabolite measures that were median-normalized for assay run day, 
natural-log-transformed, winsorized to 5 s.d. and regressing out the 
effects of age, sex and study-specific covariates. The imputation model 
for each metabolite considered other metabolites (with fewer than 30% 
missing values). Thirty multiple imputations were performed, each 
with 50 iterations of the chain. This procedure reasonably assumes 
that the missing metabolite values can be explained by the values and 
relationships between the observed metabolite values, but are inde-
pendent of the unobserved metabolite values.

To construct a data-derived metabolic network75, we estimated 
partial correlations between metabolites in the following manner. 
Within each study, for each of the 30 imputed datasets, imputed meas-
ures were standardized (mean = 0, s.d. = 1) and used to estimate par-
tial correlations between metabolites with the R package ‘GeneNet’76 
(version 1.2.13). Partial correlation estimates were transformed using 
Fisher’s z transformation with the R package ‘psych’77 (version 1.7.8), 
and estimates for the 30 sets were pooled within the study using Rubin’s 
rules78. The pooled estimates for the two studies were meta-analyzed 
using a fixed-effect, inverse-variance weighted method implemented 
using the R package ‘meta’79 (version 4.3-0) and back-transformed to 
correlation estimates.

The Gaussian graphical models (GGMs) resulting from inclusion 
of absolute partial correlations greater than 0.10, 0.12 or 0.15 can 
be viewed at http://omicscience.org/apps/mgwas. In the networks, 
nodes (circles) represent metabolites and black edges the partial 
correlations between metabolites. Solid lines indicate positive partial 
correlations and dashed lines negative partial correlations. To the 
GGMs we added the GWAS results by connecting candidate genes 
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(gray squares) to metabolites (green edges). Candidate genes were 
from two sources: (1) ‘From literature’, which are those annotated as 
the causal gene for a GIM in which the metabolite lies (as described in 
the section ‘Causal gene annotation’) and (2) ‘SNiPA / VeP’, which are 
genes annotated to the variants defining a GIM in which the metabo-
lite lies by SNiPA/VeP. We used a systems biology approach to annotate 
compounds based on their metabolic neighborhood and genetic 
associations in the generated network to enable prediction of path-
way membership and chemical identity for unannotated metabolites 
present in the imputed dataset (n = 224)80 (Supplementary Tables 18 
and 19).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this Article.

Data availability
We provide open access to all summary statistics for academic use 
through an interactive webserver: https://omicscience.org/apps/
mgwas. Metabolite raw relative abundances are available at https://
www.ebi.ac.uk/metabolights/ (project codes: MTBLS833 and 
MTBLS834). The EPIC-Norfolk data can be requested by bona fide 
researchers for specified scientific purposes via the study website 
(https://www.mrc-epid.cam.ac.uk/research/studies/epic-norfolk/). 
Data will either be shared through an institutional data sharing agree-
ment or arrangements will be made for analyses to be conducted 
remotely without the need for data transfer. INTERVAL study data 
from this paper are available to bona fide researchers from helpdesk@
intervalstudy.org.uk and information, including the data access pol-
icy, are available at http://www.donorhealth-btru.nihr.ac.uk/project/
bioresource.

Code availability
Code used for analysis in this study is available on GitHub (https://
github.com/MRC-Epid/MetabolomicsGWAS_INTERVAL_EPICNorfolk).
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Extended Data Fig. 1 | Study design and method of defining genetically 
influenced metabotypes. Following the discovery meta-analyses 
(INTERVAL + EPIC-Norfolk), validation of sentinel variants and metabolite 
specific conditional analysis, we identified 2,599 independent variant-metabolite 
associations. In the next step, we performed a joint variant-metabolite 
refinement within each region that contained more than one metabolite to group 

metabolites influenced by at least one shared genetic signal. We defined these 
co-regulated metabolite sets by identifying the minimal set of variants from all 
metabolite-specific conditionally independent lead and secondary metabolite 
associated variants that explained all regional metabolite associations. The 422 
metabotypes identified through this method were manually curated to identify 
the causal genes associated with these GIMs.

http://www.nature.com/naturemedicine


Nature Medicine 

Article https://doi.org/10.1038/s41591-022-02046-0

Extended Data Fig. 2 | Comparison of rare variant effect sizes with WES 
results. Comparison of rare variant effect sizes between the discovery 
meta-analysis, and the WES analysis in a subset of 3,924 samples from the 

INTERVAL study (R2 = 98.33). 122 (46.2%) of all rare variant associations were 
testable using WES analysis. All 122 were directionally consistent and 118 were at 
least nominally significant (P-value < 0.05).
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Extended Data Fig. 3 | Common variants at IEM genes have metabolic and 
phenotypic consequences mimicking those observed in corresponding 
IEM. a) Rare mutations at the DBH and TH genes are known to cause the IEMs 
orthostatic hypotension (OMIM #223360, coloured in orange) and Segawa 

syndrome (OMIM #605407, coloured in blue). b) In this study, we found common 
variants at these genes that are associated with metabolic and phenotypic 
consequences mimicking those observed in the corresponding IEMs.
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Extended Data Fig. 4 | Colocalisation of metabolic and phenotypic 
associations at DBH and TH. a) At GIM547.3, the DBH variant rs6271 is a 
strong likely-causal candidate variant for shared signals between decreased 
plasma vanillylmandelate levels, decreases in automated readings of systolic 
and diastolic blood pressure (N = 436,424), and a decrease in self-reported 

hypertension in UK Biobank (N = 462,933). b) At GIM604.1, the TH variant 
rs11564705 (MAF = 24%, r2 = 0.98 with the variant rs10840516 identified in this 
study) is a strong likely-causal candidate variant for shared signals between 
increased plasma levels of 3-methoxytyrosine and dopamine sulfate (2) and an 
increase in automated readings of pulse rate in UK Biobank (N = 436,424).
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Extended Data Fig. 5 | Sensitivity analyses heatmaps for colocalisation analyses at DBH and TH. Sensitivity analyses heatmaps for colocalisation at a) DBH and b) 
TH. Heatmaps showing the proportion of clusters that traits share across tested configurations of prior2 values (0.99, 0.999) and regional and alignment thresholds 
(0.6, 0.7, 0.8, 0.9).
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Extended Data Fig. 6 | Colocalisation between PPM1K and BCAA-catabolites. Stacked regional plots showing colocalization between breast cancer and 
BCAA-catabolites, 2-aminobutyrate, isobutyrylcarnitine and gamma-glutamyl-2-aminobutyrate colocalise (PP = 0.98) within PPM1K.
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Extended Data Fig. 7 | Dosage plot for homoarginine and chronic renal 
failure variant associations. Dosage plot showing, for each variant in the 
homoarginine metabolite score, the estimated risk of chronic renal failure 
(log(OR per allele) versus the estimated effect on homoarginine levels (per 1 s.d. 
change per allele). Each dot represents the point estimates from the respective 

linear/logistic regression models using the genetic variant as exposure and 
either the metabolite or disease status as outcome (n = 334577, n cases=16389; 
for metabolite, n = 14295 cases for chronic renal failure). Lines indicate 
95%-confidence intervals.
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