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Cross-trait assortative mating is widespread and
inflates genetic correlation estimates
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The observation of genetic correlations between disparate human traits has been interpreted as evidence of
widespread pleiotropy. Here, we introduce cross-trait assortative mating (xAM) as an alternative explanation.
We observe that xAM affects many phenotypes and that phenotypic cross-mate correlation estimates are
strongly associated with genetic correlation estimates (R2 = 74%). We demonstrate that existing xAM plausibly
accounts for substantial fractions of genetic correlation estimates and that previously reported genetic
correlation estimates between some pairs of psychiatric disorders are congruent with xAM alone. Finally, we
provide evidence for a history of xAM at the genetic level using cross-trait even/odd chromosome polygenic
score correlations. Together, our results demonstrate that previous reports have likely overestimated the true
genetic similarity between many phenotypes.

M
ethods that use summary statistics
fromgenome-wide association studies
(GWAS) to investigate genetic overlap
across phenotypes have become a fun-
damental statistical tool across many

domains of human complex trait genetics
(1–5). The results of these analyses have been
notable: Many trait pairs, even those with
limited phenotypic similarity, display non-
trivial genetic correlations [for example, 0.209
(SE = 0.042) for attention-deficit hyperac-
tivity disorder (ADHD) and body mass in-
dex (BMI) in (1)]. These findings have been
broadly interpreted as evidence forwidespread
pleiotropy across the phenome (6–8) and, in
the case of psychiatric disorders, have raised
concerns about the suitability of the existing
nosology given evidence for shared genetic
bases (1, 9).

Here, we consider an overlooked source of
potential bias in these findings: cross-trait
assortative mating (xAM), the phenomenon
wherebymates display cross-correlations across
distinct traits. There are several reasons to be
concernedwith this potential oversight: First,
the single-trait linear mixed model, which ge-
netic correlation estimators generalize, is mis-
specified under single-trait assortative mating
(sAM) and overestimates single-nucleotide
polymorphism (SNP) heritability (10). Second,
sAM is widespread across multiple domains
for which substantial genetic correlations have
been observed, including anthropometric, psy-
chosocial, and disease traits (1, 7, 8). Third,
recentworkhas providedgenetic-level evidence
for a history of sAM with respect to some of
these same phenotypes (11). Fourth, xAM is
known to generate spurious results for other
marker-based inference procedures, including
Mendelian randomization (12) and association
studies (13).
We set out to systematically assess the im-

pact of xAM on genetic correlation estimates,
first compiling a large atlas of cross-mate cor-
relations across a broad array of previously
studiedphenotypes using two large population-
based samples (n=81,394; n= 746,566).We find
that these phenotypic cross-mate correlations
explain a major portion of empirical marker-
based genetic correlation estimates for the
same trait pairs (R2 = 74% across samples). We
next demonstrate that xAM biases genetic cor-
relation estimates and yields nontrivial esti-
mates even among traits with uncorrelated
genetic effects. We use a simulation-based ap-
proach to evaluate the extent to which empir-
ical levels of xAM alonemight plausibly explain
genetic correlation estimates among previously
studied traits, finding that, for many trait pairs,
substantial fractions of empirical genetic cor-
relation estimates are congruent with expecta-
tions for etiologically independent traits subject

to xAM. At the same time, we observe that par-
ticular phenotype pairs, such as schizophrenia
and bipolar disorders, evidence substantially
larger genetic correlation estimates than can be
plausibly attributed to xAM-induced artifact.
Lastly, we utilize correlations between even
versus odd chromosome-specific polygenic
scores (PGS) to detect genetic signatures of
xAM, extending a previous approach (11). We
find that cross-trait even/odd PGS correla-
tionsmirror cross-mate phenotypic correlation
patterns and, through this association, explain
substantial variation in empirical genetic cor-
relation estimates.

Results
Genetic correlation estimates mirror cross-mate
phenotypic correlations

We begin by quantifying the extent to which
empirical genetic correlation estimates align
with cross-trait spousal correlations across a
broad array of phenotypes: a set of 20 previous-
ly studied traits measured in the UK Biobank
(UKB) (14) and a collection of six psychiatric
disorder diagnoses ascertained from Danish
civil registry data (15). We estimated cross-mate
correlations for 40,697 spousal pairswithin the
UKB sample and 373,283 mate pairs random-
ly selected from the Danish population. For a
pair of phenotypes Y and Z, there are three
cross-mate correlation parameters: ryy and
rzz, the correlations between mates on Y and
Z, respectively, and ryz, the cross-mate cross-
trait correlation; we generically denote these
quantities rmate and present these estimates
in the diagonal and subdiagonal entries of
Fig. 1, A and B. We also compiled linkage
disequilibrium score regression (LDSC) ge-
netic correlation estimates, denoted r̂b;LDSC,
for each pair of phenotypes, whichwe present
in the superdiagonal entries of Fig. 1, A and
B. All pairwise estimates are provided in
table S1.
Cross-mate correlation structures were di-

verse across the trait pairs that we examined
(fig. S1). Whereas cross-mate single-trait and
cross-mate cross-trait correlations were sim-
ilar for some trait pairs (for example, r̂yy = 0.26,
r̂zz = 0.20, and r̂yz = 0.20 for BMI and hip cir-
cumference), these quantities were of oppos-
ing signs for others (for example, r̂yy ¼ 0:33
and r̂zz ¼ 0:22 versus r̂yz ¼ �0:09 for years
of education and regular smoking). In gen-
eral, cross-mate correlation structures were
not consistentwith sAMalone.When the cross-
mate correlation rzz for a secondary trait Z is
fully mediated through sAM on Y, we expect
that r̂zz ≈ r̂yyŝyz

2; this model fit the data poorly
(fig. S2).
Estimates of r̂b;LDSC were strongly associ-

ated with rmate estimates across both samples
[Fig. 1C; meta-analyticR2 = 74.32%; 95% confi-
dence interval (CI): 67.02%�81.62% in a linear
model; R2 = 76.69%; 95% CI: 73.94%�79.45%
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Fig. 1. Cross-mate phenotypic correlation and genetic correlation estimates.
(A) Correlations among previously studied UK Biobank (UKB) phenotypes.
Diagonal and subdiagonal heatmap entries correspond to cross-mate phenotype
correlation estimates derived from 40,697 putative spouse pairs in the UKB.
Superdiagonal entries correspond to empirical linkage disequilibrium score
regression (LDSC) correlation estimates among unrelated European ancestry UKB
participants. (B) Cross-mate correlation and genetic correlation estimates for
psychiatric disorders. Diagonal and subdiagonal entries reflect cross-mate
tetrachoric correlations among 373,283 spousal pairs sampled from the Danish
population, all of which were significantly greater than zero (maximum p = 1.69e-5).

Superdiagonal entries are previously reported LDSC correlation estimates (23).
(C) Association between empirical cross-mate phenotypic correlation and genetic
correlation estimates (meta-analytic R2 ≈ 74%). Error lines indicate 95%
confidence intervals, and the purple dashed line displays the line of best fit across
all points. All numbers have been rounded to two decimal places. The model
for bone mineral density (BMD) and subjective happiness failed to converge and is
omitted. ADHD: attention-deficit hyperactivity disorder; ALC: alcohol use disorders;
ANX: anxiety disorders; BIP: bipolar disorders; BMI: body mass index; HDL/LDL:
high/low-density lipoprotein; IQ: intelligence quotient; MDD: major depressive
disorder; SCZ: schizophrenia.
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in a Bayesian model accounting for hetero-
skedasticity and estimation error]. The regres-
sion slope did not significantly differ across
the UKB and psychiatric phenotypes in either
model (for example,p= 0.16 for a sample-by-
rmate interaction term in the linear model).
The strength of this association largely per-
sisted when excluding trait pairs with large
genetic correlation estimates: Considering only
trait pairs with estimated genetic correlations
below 0.50 in magnitude yielded R2 = 70.94%;
further restricting to those below 0.30 in mag-
nitude, yielded R2 = 67.88%. This suggests that
the observed association does notmerely reflect
sAM on genetically homogeneous factors.

Defining genetic correlation

Having established that a large degree of the
variance in genetic correlation estimates can
be predicted from phenotypic mating corre-
lations, we now provide theoretical intuition
as to why this might occur [see supplementary
text for further details (16)]. We start by de-
fining three distinct notions of genetic sim-
ilarity between phenotypes. These definitions
are summarized in Table 1.
We consider a pair of phenotypes Y, Z, with

heritable components ‘y , ‘z reflecting the
additive effects of m standardized haploid
variants X1;…; Xm with phenotype-specific
effect vectors by, bz. For simplicity, we assume
that causal variants are initially unlinked and
that both phenotypes have unit variance under
random mating (panmixis), such that the
panmictic heritabilities are h2y;pan ¼ b⊺yby and
h2z;pan ¼ b⊺zbz .
Pleiotropy is present when a locus influ-

ences two ormore phenotypes. Thus, locusXi

is pleiotropic with respect to Y and Z when
both by;i ≠ 0and bz;i ≠ 0, though these effects
might differ substantially in magnitude or
direction. By contrast, the correlation between

effects, which we refer to as the effect corre-
lation rb , indexes the similarity of variant ef-
fects on two phenotypes:

rb ¼ cor by; bz
� �

where the b vectors include all variants, causal
or otherwise, and thus may contain elements
equal to zero. A value of rb > 0 implies both
the existence of pleiotropic loci and that such
loci have similar effects on average, and we
term a pair of traits genetically orthogonal
when rb ¼ 0. Effect correlation is distinct from
the classical definition of genetic correlation as
the correlation between the heritable compo-
nents of two traits (17), whichwe refer to as the
score correlation:

r‘ ¼ cor ‘y; ‘zð Þ

as it reflects the correlation between the
true PGS.
Within the standard linear mixed model

framework,r‘ andrb are equivalent and hence
seldomdiscussed as separate quantities [though
genetic correlation estimates are commonly
interpreted as estimates of rb (4, 18, 19)]. How-
ever, traits with uncorrelated effects can un-
intuitively have correlated PGS. Under xAM,
all causal variants affecting trait Y become
correlatedwith all causal variants affecting trait
Z, and these correlations are directionally con-
sistent with their respective effects [see sup-
plementary text (16)]. As we will demonstrate
in the following section, this results in non-
zero score correlations in the direction of the
cross-mate cross-trait phenotypic correlation,
even for genetically orthogonal traits.

The impact of xAM in simulations

We ran a series of forward-time simulations
using realistic genotype data to investigate the

impact of xAM on multiple measures of ge-
netic correlation. At each generation, individ-
uals (consisting of a set of genotypes together
with two phenotypes) were matched to achieve
target cross-mate correlation parameters, after
which we estimated genetic correlations (r̂b)
using LDSC [denoted r̂b;LDSC (6)], Haseman-
Elston regression [HE, denoted r̂b;HE (20)], and
residual maximum likelihood [REML; ρ̂b;REML

(18)]. We also computed true score correlations
(r‘), which is possible when the true genetic
effects are known. We performed sensitivity
analyses to confirm that our results did not
depend on simulation parameters, including
the number of causal variants (fig. S3), mate
selection algorithm (fig. S4), recombination
scheme (fig. S5), and whether causal vari-
ants with orthogonal genetic effects arose
on overlapping loci (fig. S6). We additionally
investigated the impact of xAM on GWAS
effect estimates and GWAS-basedmethods for
identifying pleiotropic SNPs (figs. S7 to S10),
genetic correlation estimates for binary pheno-
types subject to misdiagnosis (fig. S11), parti-
tioned genetic correlation estimates (fig. S12),
and genetic covariance estimators (fig. S13).

xAM induces nonzero score correlations
among genetically orthogonal traits

We confirmed that xAM induces substan-
tial score correlations across a broad array
of simulation parameters. This is perhaps most
pronounced for traits with orthogonal effects:
Fig. 2A demonstrates the increase in the true
score correlation across multiple generations
of xAM for a pair of traits with rb ¼ 0, rmate ¼
0:5, and h2pan ¼ 0:5. Across simulation repli-
cates, the average score correlation was 0.11
after a single generation of xAM, which in-
creased to 0.24 after three generations.
Notably, this increase in score correlation

induced by xAM does not represent bias: The
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Table 1. Notions of genetic similarity and their relationship to genetic correlation estimators. Under random mating, score correlations and effect
correlations are equal in expectation, imply the existence of pleiotropic loci, and are well captured by widely used genetic correlation estimators. Under xAM,
however, substantial score correlations can arise in the absence of effect correlation or even pleiotropy, and genetic correlation estimators overestimate both
rb and r‘.

Metric of genetic similarity Relation to shared etiology and xAM

Pleiotropy is present at a particular
locus when it influences both phenotypes.

Reflects shared etiology. Substantial numbers of pleiotropic loci imply that overlapping genetic
variants affect both traits, though their effects may not be consistent.

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. .

Effect correlation (rb) refers to the
correlation between standardized genetic effects.

Reflects shared etiology. rb > 0 implies that an overlapping set of variants (at pleiotropic loci) influence
both traits with similar effects on average.

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. .

Score correlation (r‘) refers to the
correlation between true polygenic scores.

Reflects shared etiology, or xAM-induced population structure, or both. Roughly equal to rb under
random mating but larger than rb under xAM owing to long-range sign-consistent LD. r‘ > 0 does
not necessarily imply biological similarity or even the existence of pleiotropic loci.

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. .

Genetic correlation estimators
(r̂b), such as bivariate LD score regression,
are commonly interpreted as estimates
of the effect correlation.

Reflect shared etiology under random mating but produce estimates substantially
greater than both rb and r‘ under xAM, even when rb ¼ 0 or in the complete
absence of pleiotropy.

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. .
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population-level correlation between the her-
itable components of the phenotypes truly does
increase under xAM. However, as we demon-
strate next, genetic correlation estimators be-
comemisspecified under xAM and yield biased
estimates. Still, even unbiased estimates of
score correlation can be driven by either shared
biology, or xAM, or both, further complicating
interpretation (Table 1).

Effect correlation estimates are biased upward

For genetically orthogonal traits, after a sin-
gle generation of xAM, the REML estimator
yielded r̂b = 0.15 and the HE and LDSC es-
timators, which are closely related (21, 22),
both yielded average estimates of r̂b = 0.21,
all of whichwere greater than the true value of

rb = 0.00. After three generations of xAM, this
upward bias became more pronounced, with
REML and LDSC yielding estimates of r̂b =
0.30 and r̂b = 0.44, respectively.

The quantities ρ‘, and ρ̂β are monotonically
related to ρβ, rmate, and h2

pan

Many trait pairs subject to xAM will truly
have correlated genetic effects. Figure 2B
illustrates the relationship between rb, r‘,
and r̂b for two traits with h2pan= 0.5. Except-
ing the case of rb = 1.0 (genetically identical
phenotypes), results remained consistent with
the genetically orthogonal case: rb was lower
than r‘ , which was in turn lower than the up-
wardly biased r̂b estimates provided by REML,
HE, and LDSC. For example, when rb = 0.25,

LDSC yielded r̂b= 0.62 after three generations
of xAM. We note that whereas the true effect
correlation varies in Fig. 2B, the cross-mate
correlations remain fixed, demonstrating that
the potential for xAM-induced bias is present
even when cross-mate cross-trait correlations
partially reflect shared genetic bases. The im-
pact of xAM on both r‘ and r̂b was greater for
traits under stronger xAM (Fig. 2C) and for
traits with greater heritabilities (Fig. 2D).

xAM biases annotation- and
locus-level analyses

Partitioned genetic correlation estimators evi-
denced similar biases as genome-wide esti-
mators under xAM, even when supplied with
annotations directly relevant to bivariate
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C D

Fig. 2. Impact of xAM on genetic correlation estimates in forward-time
simulations. Score correlation (r‘) and genetic correlation estimates (̂rb) for two

phenotypes with true effect correlation rb, panmictic heritabilities h2pan, and all

cross-mate correlations set to rmate. (A) xAM increases the true score correlation
among genetically orthogonal phenotypes. HE, LDSC, and REML estimators all

further overestimate rb, and the magnitude of this bias increases over

subsequent generations. (B) After three generations of xAM, r̂b estimates are

upwardly biased for genetically distinct phenotypes. (C) The impact of three
generations of xAM increases with the cross-mate correlation. (D) The impact of
three generations of xAM increases with the panmictic heritabilities.
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genetic architecture. Further, this bias was
greatest at regions relevant to only one of the
two phenotypes (fig. S12).
In association studies, GWAS effect estimates

for SNPs causal for the focal trait were biased
upward in magnitude, whereas those causal
for a secondary, unrelated trait under xAM
with the first were biased toward their effects
on that trait (figs. S7 to S9). These biases were
asymptotically non-negligible (fig. S9). As a
result, xAM increased the likelihood of reject-
ing the null hypothesis of no association at all
SNPs causal for either trait, increasing both
statistical power and false-positive rates (fig.
S10). Eventually, all variants affecting a second-
ary phenotype subject to xAM with the GWAS
phenotype will reach genome-wide significance
as sample size becomes large. However, spurious
effect estimates will remain attenuated (figs. S7
to S9), implying that methods for identifying
cross-trait heterogeneity in GWAS estimates
may have the potential to differentiate trait-
specific signal from xAM-induced artifacts.

xAM alone can plausibly explain
substantial variance in empirical genetic
correlation estimates

Wenext sought to quantify the extent towhich
empirical ρ̂β estimates for previously studied
trait pairs could be explained by xAM alone,
assuming genetic orthogonality. We proceeded
with a simulation-based approach, which we
present for the UKB and psychiatric pheno-
types in turn.
Within each sample, we identifiedmate pairs

and estimated phenotypic cross-mate correla-
tions. We then used these estimates, together
with empirical heritability estimates, as inputs
to a forward-time simulation where separate,
nonoverlapping collections of causal variants
were assigned to each phenotype, such thatrb=
0.0. At each generation, we estimated the effect
correlation,rb, usingmethod ofmoments. These
projected effect correlation estimates, whichwe
denote r̂xAM, can be interpreted as expected
LDSC genetic correlation estimates for genet-
ically orthogonal traits under xAM consistent
with empirical spousal correlations.
We next compared r̂xAM to empirical LDSC

estimates derived in real data, which we denote
r̂emp. To simplify discussion, we define the ratio

ĝ ¼ r̂xAM=r̂emp

which measures the projected LDSC effect cor-
relation estimate due to xAM-induced artifact
relative to the empirical LDSC effect correlation
estimate for a given phenotype pair (Fig. 3A).

Expected effect correlation estimates for
UKB phenotypes in the absence
of pleiotropy

We restricted our attention to 132 (of 190 pos-
sible) pairs of UKBphenotypeswith nominally

significant (p<0.05) LDSC genetic correlation
estimates (table S1).We first obtained pedigree-
based heritability estimates for each of the
traits of interest from the literature, using
estimates derived in demographically compa-
rable samples (table S2). Together with the
phenotypicmating correlations (Fig. 1A), these
comprised inputs to forward time simulations
that we used to compute r̂xAM.
Across 132 trait pairs, 42 evidenced ĝ val-

ues significantly greater than zero (their 95%
credible intervals did not include zero) after a
single generation of xAM, which increased to
74 trait pairs after three generations. Across all
trait pairs (including those not significantly dif-
ferent from zero), the inverse varianceweighted
average ĝ estimate was 0.25 (SE = 0.005). Figure
3B presents the first 20 pairs in descending
order of ĝ, and Fig. 3C presents the raw pro-
jected and empirical effect correlation estimates
across all 132 pairs (see table S3 and figs. S14
and S15 for detailed results spanning five gen-
erations of xAM). Finally, Fig. 3D displays aver-
age ĝ values within and between qualitative
phenotypic domains.

Expected effect correlation estimates
among psychiatric disorders in the
absence of pleiotropy

We next estimated ρ̂xAM for a collection of six
psychiatric disorders, using correlations esti-
mated in spousal pairs randomly selected from
the Danish population (table S4).We then com-
pared these projections to the LDSC genetic
correlation estimates reported by Grotzinger
and colleagues (23).
Across all pairwise combinations of dis-

orders, we observed an average ratio of ĝ =
0.29 (SE = 0.016; Fig. 4, A and B) after five
generations of xAM. Some trait pairs evidenced
considerably greater empirical genetic correla-
tion estimates thanmight be explained by xAM
alone (for anxiety disorders and major depres-
sion, ĝ = 0.21; 95% CI: 0.17�0.25), whereas for
other pairs this discrepancy was modest (for
alcohol use disorder and schizophrenia, ĝ =
0.83; 95% CI: 0.59�1.24; see table S5 and fig.
S16 for complete results).

xAM exacerbates bias due to misdiagnosis

After additional simulations demonstrated that
xAM further inflates genetic correlation es-
timates in the context of diagnostic errors
(Fig. S11), we extended ourmethod for estimat-
ing r̂xAM to incorporate misdiagnosis. Re-
sults were heterogeneous across disorder pairs
(fig. S17). For example, whereasmoderate rates
of diagnostic errors (5%), together with three
generations of xAM, yielded genetic correla-
tion estimates for ADHD and major depres-
sion on par with published estimates (̂g = 0.97;
95% CI: 0.73�1.22), substantial diagnostic er-
rors (15%) after five generations of xAM yielded
estimates well below previously published esti-

mates for bipolar disorders and major depres-
sion (ĝ = 0.37; 95% CI: 0.12�0.62). Figure 4C
highlights the potential impacts of xAM and
diagnostic errors on four selected trait pairs,
and fig. S17 presents results for all pairs.

Genetic evidence for xAM recapitulates empirical
cross-mate correlations

Cross-mate phenotypic correlation estimates
(rmate) explained substantial variance in the
cross-chromosome even/odd PGS correlations
in a linear model (r̂‘;eo; R

2 = 47.66%; Fig. 5A).
This association, which is congruent with ex-
pectations under phenotypically mediated
xAM [supplementary text (16)], persisted when
accounting formeasurement error and hetero-
skedasticity, and across PGS p-value thresh-
olds (fig. S18).
Additionally, cross-trait even/odd chromo-

some PGS correlations were positively associ-
ated with empirical LDSC genetic correlation
estimates (̂rb;LDSC;R

2 = 34.81%; Fig. 5B). This is
consistent with the hypothesis that empirical
effect correlation estimates are capturing ad-
ditional structure beyond the signatures of
biological overlap. Further, regressing r̂b;LDSC

on r̂‘;eo and r̂yz simultaneously revealed that
the association between r̂b;LDSC and r̂‘;eo is
mediated via r̂yz (DR2 < 0.001; partial effect
p = 0.48 for r̂‘;eo versus p < 5e-8 for r̂yz). Thus,
alternative sources of structure independent
from xAMdo not appear to explain the positive
association between r̂‘;eo and ρ̂b;LDSC.

Discussion

Nonzero effect correlation estimates have been
widely interpreted as evidence for overlapping
genetic bases. It is therefore surprising that
substantial variation in genetic correlation
estimates can be explained by cross-mate phe-
notypic correlations. Given the strength of this
association, the consequences of the random
mating assumption implicit in all commonly
used genetic correlation estimators warrant
critical attention.
Our results show that cross-mate phenotypic

correlations among many pairs of phenotypes
are strong enough that one or more gen-
erations of xAM would substantially inflate
genetic correlation estimates. Further, the cor-
relation structures of even/odd chromosome
PGS coincide with expectations after one or
more generations of xAM. We conclude that
xAM comprises a source of systematic bias in
the study of genetic similarity across complex
traits, one that subverts the widespread inter-
pretation of genetic correlation as a direct in-
dex of biological similarity.
Our findings mirror recent results regard-

ing the potential impacts of assortativemating
across other areas of statistical genetics, in-
cluding marker-based heritability estimation
(10) and Mendelian randomization (12). Our
results also complicate the interpretation of a
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number of multivariate analytic frameworks.
For example, genomic structural equationmod-
eling (24), which takes marker-based genetic
correlation estimates as inputs, will propagate
xAM-induced biases. This does not mean such

methods are fundamentally flawed, but instead
demonstrates the importance of developing
unbiased effect correlation estimators given the
centrality of genetic correlation estimates in
modern statistical genetics.

With this in mind, we comment on poten-
tial approaches to disentangling true effect
correlation from xAM-induced artifact. First,
family-based designs for addressing xAM (25)
are increasingly being applied to molecular
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A
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D

Fig. 3. Empirical and expected genetic correlations among UK Biobank
phenotypes. (A) We computed the expected LDSC genetic correlation estimate
in the absence of pleiotropy and after a given number of generations of xAM
(r̂xAM), which we compared to empirical LDSC estimates (r̂emp) to obtain the

ratio ĝ ¼ r̂xAM=r̂emp. (B) The top 20 ĝ estimates across previously studied UKB

phenotype pairs with nominally significant (p < 0.05) r̂emp values. (C) Projected

versus empirical LDSC estimates for all UKB phenotypes with nominally
significant genetic correlation estimates. (D) Inverse variance weighted average
ĝ estimates within and between qualitatively similar phenotypic domains. Error
bars throughout represent 95% credible intervals.
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genetic data with promising results (26). Sec-
ond, we conjecture that approaches aimed at
characterizing effect heterogeneity across multi-
ple phenotypes may provide a viable means
for identifying trait-specific loci: Although all
trait-specific loci for either of two traits will
achieve genome-wide significance in large sam-
ple GWAS of either trait, effect estimates will
remain substantially larger at causal loci. Fi-
nally, we propose that directly modeling the
dependence between genotypes and their ef-
fects will allow the differentiation of effect cor-
relations and score correlations in samples of
unrelated individuals.
There are several limitations to the current

investigation. Foremost among these are the
numerous assumptions about population dy-
namics required tomodel xAM, including but
not limited to panmictic heritabilities, stability
of cross-mate phenotypic correlation structures
over succeeding generations, stability and

transmissability of environmental factors, and
the extent to which mating patterns reflect
social versus genetic homogamy.We proceeded
under the tractable dynamical framework of
two additive phenotypes subject to primary-
phenotypic xAM with constant cross-mate
correlations, stable nonheritable sources of vari-
ation, and no vertical transmission. Though
each of these assumptions is likely untenable
for particular trait pairs, thereby compromising
the accuracy of our projections, we hypothesize
that the qualitative phenomenonwhereby xAM
inflates genetic correlation estimates will per-
sist for many traits. Nonetheless, we caution
that these projections are contingent upon
multiple consequential decisions. Constructing
a generative model that reconciles the associa-
tion between empirical mating patterns and
genetic correlation estimates is an ill-posed
inverse problem for which there aremultiple
solutions and of which we have only explored

a subset. At the same time, existing methods
are only able to sidestep these decisions by
making the strong (and often incorrect) as-
sumption that mating is random.
Lastly, we remark that xAM is, in essence, a

form of population structure not captured by
conventional principal-component– or mixed-
model–based correction. Given the increasing
evidence that existingmethods fail to complete-
ly address structural factors, even in ostensibly
ancestrally homogeneous groups (27), a broader
characterization of population structure and
methods for addressing such structure will
likely be necessary to generate results that
are maximally clinically relevant and can be
applied equitably.
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dashed line corresponds to ĝ ¼ 1 across all panels.
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A B

Fig. 5. Genetic level evidence consistent with xAM in the UK Biobank.
(A) Correlation between even and odd chromosome-specific polygenic scores
(PGS) as a function of the cross-mate phenotypic correlation. For a single trait,
the vertical axis reflects the correlation between even and odd chromosome

scores ‘̂even, ‘̂odd and the horizontal axis reflects the cross-mate correlation.

For a pair of traits Y, Z, the vertical axis reflects a single parameter to which

the correlations between ‘̂y;even, ‘̂z;odd and between ‘̂y;odd, ‘̂z;even are both
constrained, and the horizontal axis reflects the cross-mate cross-trait correlation.
(B) Cross-trait even/odd PGS correlations as a function of empirical LD score
regression genetic correlation estimates.
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Cross-trait assortative mating is widespread and inflates genetic correlation
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Nonrandom selection
Many studies have examined correlations between complex traits, assuming that correlations implied a genetic
connection even when there was no clear biological overlap. It had been proposed that overlapping genes with
pleiotropic effects contribute to multiple different psychiatric disorders or even across disease categories such as
psychiatric and metabolic conditions. By combining analysis of phenotype data from two large, population-based
cohorts with in silico simulations, Border et al. demonstrated that many correlations between human traits can be
explained instead by cross-trait assortative mating, which is an individual’s tendency to choose a mate with specific
characteristics that have no genetic relationship (see the Perspective by Grotzinger and Keller). —YN
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