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Abstract. As part of the Large Scale Biosphere-Atmosphere
Experiment in Amazonia – Smoke, Aerosols, Clouds, Rain-
fall and Climate (LBA-SMOCC) campaign, detailed surface
and airborne aerosol measurements were performed over the
Amazon Basin during the dry to wet season from 16 Septem-
ber to 14 November 2002. Optical and physical proper-
ties of aerosols at the surface, and in the boundary layer
(BL) and free troposphere (FT) during the dry season are
discussed in this article. Carbon monoxide (CO) is used
as a tracer for biomass burning emissions. At the surface,
good correlation among the light scattering coefficient (σs

at 545 nm), PM2.5, and CO indicates that biomass burning
is the main source of aerosols. Accumulation of haze dur-
ing some of the large-scale biomass burning events led to
high PM2.5 (225µg m−3), σs (1435 Mm−1), aerosol opti-
cal depth at 500 nm (3.0), and CO (3000 ppb). A few rainy
episodes reduced the PM2.5, number concentration (CN) and
CO concentration by two orders of magnitude. The correla-
tion analysis betweenσs and aerosol optical thickness shows
that most of the optically active aerosols are confined to a
layer with a scale height of 1617 m during the burning sea-
son. This is confirmed by aircraft profiles. The average mass
scattering and absorption efficiencies (545 nm) for small par-
ticles (diameter Dp<1.5µm) at surface level are found to be
5.0 and 0.33 m2 g−1, respectively, when relating the aerosol
optical properties to PM2.5 aerosols. The observed mean sin-
gle scattering albedo (ωo at 545 nm) for submicron aerosols
at the surface is 0.92±0.02. The light scattering by particles

Correspondence to:D. Chand
(duli@mpch-mainz.mpg.de)

(1σs /1CN) increase 2–10 times from the surface to the FT,
most probably due to the combined affects of coagulation
and condensation.

1 Introduction

The gas and particle emissions from tropical biomass burn-
ing influence the physical, chemical and optical properties of
the atmosphere (Andreae et al., 1988, 2002; Crutzen and An-
dreae, 1990; Andreae and Crutzen, 1997; Hobbs et al., 1997,
2003; Artaxo et al., 1998, 2001, 2002; Andreae and Mer-
let, 2001, Ramanathan et al., 2001). Smoke aerosols contain
a significant amount of partially oxidized organic material
and black carbon or soot, which may have significant cli-
matic implications (IPCC, 2001). Aerosol particles interact
directly with the incoming solar radiation by the scattering
and absorption of light (Charlson et al., 1992; Rosenfeld,
2000; Andreae et al., 2004) and because they act as cloud
condensation nuclei (CCN), thereby affecting indirectly the
Earth’s radiation budget. The importance of aerosol particles
for climate forcing is recognized, but the magnitude of their
contribution is highly uncertain (IPCC, 2001). It is thought
that particles, through their combined direct and indirect ef-
fects, may currently have an influence of potentially simi-
lar magnitude, but opposite sign, as greenhouse gas forcing
(IPCC, 2001). Aerosol radiative forcing may range from net
heating to net cooling, depending on the aerosol properties
as well as on the albedo of the boundary layer and free tro-
posphere aerosols. Particles, with their short atmospheric
lifetimes, have significant vertical, horizontal and temporal
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concentration gradients. These spatial gradients correspond
to significant local/regional as well as global aerosol forc-
ing effects. For example, smoke layers over the Amazon
basin can have significant regional effects by reduction of
regional photosynthetically active radiation up to 45% (Eck
et al., 1998). Because of their light absorbing properties, the
presence of aerosol particles can result in the radiative forc-
ing at the surface being much larger than at the top of the
atmosphere (Satheesh and Ramanathan, 2000; Ramanathan
et al., 2001; Proćopio et al., 2003, 2004).

Biomass burning, particularly in the tropics, is a major
source of atmospheric trace gases and particles (Andreae and
Merlet, 2001). Being the world’s largest rain forest area con-
taining approximately one quarter of all tropical rainforests,
the Amazon Basin is subject to one of the highest rates of
deforestation in the world (Gash et al., 1996). About 80% of
the global burning activity is taking place in the tropics and
one third of it occurs in South America alone. Under suitable
meteorological conditions, the local chemical, physical, and
optical characteristics of aerosols can be much different from
the global or regional averages and these characteristics, in
turn, are strongly influenced by local and regional sources
and perturbations, e.g., forest emissions, fires, dust, sea salt,
etc., leading to further spatial and temporal inhomogeneity.

Aerosol optical properties over the Amazon Basin have
been studied in the previous LBA and SCAR-B experiments
(e.g., Eck et al., 1998, 2003; Kotchenruther and Hobbs, 1998;
Martins et al., 1998; Reid et al., 1998; Reid and Hobbs, 1998;
Ross et al., 1998, Guyon et al., 2003a, 2004; Reid et al.,
2005a, b). In these studies, the variability in aerosol optical
properties has been analyzed based on either surface or air-
borne measurements. However, so far, it is not understood
how aerosol properties at the surface relate to those aloft in
the boundary layer (BL)1 and free troposphere. In addition
to the limited surface observations, only a few series of in-
situ vertical profile measurements of aerosol optical proper-
ties (e.g., light absorption, light scattering, hemispheric back-
scattering) have been made over the Amazon Basin (e.g.,
Kotchenruther and Hobbs, 1998; Reid et al., 1998, 2005a, b;
Ross et al., 1998; Guyon et al., 2003a, c). To our knowledge,
almost no simultaneous observations of optical properties of
aerosols and trace gases at the surface and aloft are available
over the Amazon Basin in the biomass burning season.

This paper describes the vertical distribution of aerosol op-
tical and physical properties over the Amazon Basin during
the 2002 biomass burning season. The observations of light
scattering (σs), light absorption (σa), aerosol optical thick-
ness (AOT), aerosol number density (CN), aerosol mass con-
centration (PM2.5), and carbon monoxide (CO) are being
used to address the following scientific questions: (1) How
doesσs vary at the surface, in the boundary layer and free tro-

1 Boundary layer (BL) is the lowest layer of the atmosphere near
ground affected by diurnal heat, moisture or momentum transfer to
or from the surface.

posphere? (2) How doesσs vary vertically at different sites
over the Amazon Basin? (3) How do̊Angstr̈om exponent
observations from the airborne measurements compare with
vertically integrated measurements using a sunphotometer?

2 Instrumentation and methods

2.1 Observational sites

The measurements were made over the Amazon Basin dur-
ing the Large Scale Biosphere-Atmosphere Experiment in
Amazonia – Smoke, Aerosols, Clouds, Rainfall and Cli-
mate (LBA-SMOCC) from 16 September to 14 Novem-
ber in 2002. Detailed surface observations of aerosols and
trace gases were made in the state of Rondônia, Brazil at a
pasture site “Fazenda Nossa Senhora Aparecida” (10.76◦ S,
62.32◦ W, 315 m above mean sea level (a.m.s.l.)), here-
after FNS. This experimental site is located about 57 km
north-west of the town of Ji-Paraná (10.88◦ S, 61.85◦ W,
235 m a.m.s.l.). A few small hills (300–400 m a.m.s.l.) are
located about 1–4 km from FNS. One hill, known as “Abra-
cos Hill”, is one of the AERONET (Aerosol Robotic Net-
work) sites and provides column integrated aerosol optical
thickness (AOT) measurements using sun-photometry obser-
vations (Holben et al., 1998). Further details on the FNS
site can be found elsewhere (Kirkman et al., 2002; Trebs et
al., 2004). Airborne measurements in the BL and free tropo-
sphere (FT, up to 4200 m) over the Amazon Basin were taken
as far as 800 km from FNS. Some selected flight tracks along
with the geographical location of the surface measurement
site FNS are shown in Fig. 1. More details on this campaign
are given in Andreae et al. (2004).

2.2 Measurements and methods

The surface observations at FNS over the Amazon basin were
conducted from the middle of the smoky dry season (16
September) to the onset of the wet season (14 November),
when pollution levels approached background conditions. In
this study, we make use of ground based observations from
16 September to 8 October representing the biomass burning
season during the SMOCC campaign.

Aerosol mass (PM2.5) andσs measurements at FNS were
made using dried air (RH<40%) sampled from an inlet in-
stalled at about 10 m above the ground level. The hygro-
scopic growth in scattering coefficient atRH 30–50% is low
(<10%) for the observed submicron aerosols (<1.5µm).
The details of the measured parameters are given in Table 1.
The σs andσa of dried aerosols at FNS were measured for
the submicron size particles. An impactor with a cut off
diameter at 1.5µm was used to remove the bigger parti-
cles (Table 2). Before selection through the impactor, the
aerosols were dried by passing them through a Permapure
Nafion drier. The drier unit and impactor (with and without
impaction plate) were characterized for aerosol losses using
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Table 1. Summary of the optical and physical properties of aerosols along with CO concentration at surface (S), boundary layer (BL) and
free troposphere (FT) during the biomass burning season. The availability of measurements at S, BL and FT are shown by right (

√
) sign and

the “x” shows the parameters with no observations.

Parameter with units Symbols Measurements
S BL FT

Light scattering coefficient at 545, 550 nm (Mm−1) σ s
√ √ √

Light absorption coefficient at 532 nm (Mm−1) σ a
√

x x
Condensation nuclei (cm−3) CN

√ √ √

Aerosol mass (g cm−3) PM2.5
√

x x
Aerosols optical thickness at 440, 670 nm AOT Column integrated
Carbon monoxide (ppb) CO

√ √ √

Single scattering albedo (usingσs andσa) at 545 nm* ωo
√

x x
Excess ratio (1σs /1CN) 1σ s /1CN

√ √ √

Excess ratio (1σs /1CO) 1σ s /1CO
√ √ √

Excess ratio (1σs /1PM2.5) or Mass scattering efficiency (m2 g−1)* 1σ s /1PM2.5
√

x x
Excess ratio (1σa /1PM2.5) or Mass absorption efficiency (m2 g−1)* 1σ a /1PM2.5

√
x x

* To matchσs wavelength, theσa observation at 532 nm are converted to 545 nm. The calculatedωo, σa andσs are presented at 545 nm

Table 2. The size cut-point (aerodynamic diameter) of the aerosols property is given by Dp−cut.

Aerosol parameter Dry/Ambient Symbol Dp−cut

Light scattering coefficient (545 nm) at ground (FNS) (D) σ s 1.5µm
Light scattering coefficient (550 nm) in BL (aircraft) (A) σ s –
Light absorption coefficient at 532 nm* (D) σ a 1.5µm
Condensation nuclei (cm−3) (A) CN –
Aerosols optical thickness at 440, 670 nm (A) AOT –
Particulate mass (A) PM2.5 2.5µm
Single scattering albedo for FNS observations (D) ωo 1.5µm
Mass absorption efficiency (m2 g−1) (D) αa 1.5µm†

Mass scattering efficiency (m2g−1) (D) αs 1.5µm†

* To match theσ s wavelength, theσ a observation at 532 nm are converted to 545 nm
† based on correlations ofσ s andσ a with PM2.5; (A) Ambient aerosol; (D) Dry aerosol

ammonium sulfate particles in the lab at the same flows as
used in the field campaign. We used a series of lab experi-
ments to characterize the losses in the impactor and Nafion
drier. First, dried particles of the desired diameter were se-
lected using the SMPS, and then these size-selected aerosols
were counted before and after passing through the Nafion
tube. Similar experiments were conducted using the com-
bined (Nafion+impactor) units. To avoid particle losses in
the lines, smooth bends were used and the flow was opti-
mized. Most of the losses are confined to very small sizes
(diameter<60 nm) that have very little effect on the measured
σs andσa . Using Mie theory and the measured on-site par-
ticle size distributions we found a 2–4% reduction inσs and
σa during the burning season. All theσs andσa data sets
at FNS were corrected for these losses. Non-lambertian cor-
rection onσs is applied for dried aerosols as per Anderson
and Ogren (1998). The radiance research (RR) nephelome-

ter, photoacoustic spectrometer (PAS) and particle soot ab-
sorption photometer (PSAP) were operating downstream of
the impactor-drier units, and the losses observed by these in-
struments were of the same order.

Airborne measurements of aerosols and trace gases were
made from 25 September to 19 October (about 31 flights).
For this study, we make use of the airborne measurements
of σs , aerosol number density (CN), limited available size
distribution (diameter, Dp=42–346 nm) and carbon monox-
ide (CO) from selected flights (numbers 4, 6, 7, 8 and 24),
which include measurements conducted directly above FNS
and its surroundings. A Scanning Mobility Particle Sizer
(SMPS, TSI Model 3080) was used to measure the diam-
eter of the submicron aerosols during the airborne obser-
vations. The flight tracks of these observations along with
dates are shown in Fig. 1 with complementary data in Ta-
ble 3. Most of the flights were conducted during afternoon
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Figure 1. (a) Overview map showing the geographical location of the surface site FNS. 

The picture is an aerial view of the site. (b) Flight tracks for flights 4, 6, 7, 8, and 24. The 

positions of FNS and the nearby Ji-Paraná airport are shown by the circle and cross sym-

bols, respectively. 

 

-100 -80 -60 -40 -20 0 20

L
at

it
ud

e

-90

-75

-60

-45

-30

-15

0

15

30

(a)

Longitude

-55-56-57-58-59-60-61-62-63-64

L
at

it
ud

e

-9

-10

-11

-12

-13

-14

-15

Flight 06 (30 Sep)
Flight 07 (30 Sep)
Flight 08 (01 Oct)
Flight 24 (15 Oct)

FNS

Ji-Parana Airport

(b)

Flight 04 (28 Sep)

 

FNS 

Fig. 1. (a)Overview map showing the geographical location of the
surface site FNS. The picture is an aerial view of the site.(b) Flight
tracks for flights 4, 6, 7, 8, and 24. The positions of FNS and the
nearby Ji-Parańa airport are shown by the circle and cross symbols,
respectively.

hours (14:00 LT=18:00 UT) when the BL was well devel-
oped. Flights 6 and 7 were conducted on the same day dur-
ing morning and afternoon hours, respectively. The measure-
ments were taken up to a height of 4200 m. The time sched-
ule of the studied parameters, their symbols, and further de-
tails on the surface and airborne observations are given in
Tables 1–4. Some other details on the aircraft measurements
can be found in Guyon et al. (2005).

The time resolution of theσs andσa measurements at FNS
was one minute; they were averaged over longer intervals
(30 min) to match the averaging time of the aerosol mass
(PM2.5) measurement. A real-time aerosol mass monitor,
the Tapered Element Oscillating Microbalance (TEOM, se-
ries 1400a, Rupprecht & Patashnick Inc.) was used to mea-
sure PM2.5 aerosol mass concentration with a time resolu-
tion of 30 min. The TEOM inlet was heated to 50◦C for
drying the aerosols. The aerosol number density was mea-
sured using a TSI condensation particle/nuclei (CN) counter
(model 3022A) with a minimum detection size of 8 nm. At
the ground site CO was measured with the Thermo Environ-
mental Instrument Inc. analyzer (Model 48C Gas Filter Cor-
relation) with a minimum detection limit of 40 ppb. Because

of the high ambient humidity, a cooler was used to remove
water from the sample stream prior to the CO analyzer. The
CO measurements on the aircraft were made using an Aero-
Laser (AL5002) instrument operating at 1 Hz. Prior to sam-
pling, the air was dried using a Nafion drier in the CO instru-
ment. The CO,σs and CN were measured both at the ground
site and on the aircraft. The airborne observations are com-
pared with measurement at FNS during fly-by over FNS at
height of 150–600 m. These data (1–3 min every flight) were
used to compare the observations at surface and aloft. The
CN are found higher in the airborne observations by 5–10%
compared to FNS. Also, the ratios of theσs and CO from air-
borne observation were higher compared to FNS by 10–25%
during these fly-by flights.

Under suitable wind conditions, the transport of pollu-
tants from fossil fuel combustion (like cars and trucks from
a nearby road) contaminated the data for short periods. The
time periods with winds coming from the direction of the
road, having high CO, nitric oxides (NOx) and low single
scattering albedo (ωo) were assumed to be affected by cars
and trucks; these data (<5% of the total data set) were re-
moved and not considered in this study. Aerosol properties,
for instance,σs , σa , AOT and PM2.5 averaged for 30 min
intervals were used to derive the intensive optical properties
like ωo, mass scattering efficiency (αs), mass absorption ef-
ficiency (αa) andÅngstr̈om exponent (̊a). The dried size dis-
tribution of aerosols (Dp=10–414 nm) in the BL and FT was
measured using a TSI scanning mobility particle sizer (SMPS
model 3080). In some of the flights the size scans were made
to smaller sizes only (Dp=346 nm). Since most of the small-
est aerosols do not contribute significantly to the in light scat-
tering, the always available size range from 42 up to 346 nm
are used for calculating the scattering efficiency (1σs /1CN).
The size scans were made over 2 min each. The next section
describes the details of the methods and measurements used
to derive the optical properties.

2.3 Aerosol optical properties

2.3.1 Aerosol light scattering

The light scattering properties of the dried aerosols were
measured using two Radiance Research (RR, model M903)
and one TSI (TSI, model 3563) nephelometers. The RR
nephelometer measuresσs at a single wavelength (545 nm)
whereas the TSI nephelometer measuresσs at three wave-
lengths (450, 550, 700 nm). The RR nephelometers were
employed at the ground site (FNS) for simultaneous mea-
surements of light scattering of dried and ambient aerosols.
The TSI nephelometer was used for airborne observations.
The calibrations of the nephelometers and the basic measure-
ment strategy adopted herein have been described by Ander-
son and Ogren (1998). All the nephelometers used at the sur-
face as well as in the airborne observations were calibrated
during the field campaign using particle-free air and CO2 as a
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Table 3. Correlations of light scattering coefficient (σs) with CO and CN from the airborne (boundary layer-BL and free troposphere-FT
550 nm) and surface observations (545 nm) at FNS. The flights, shown by the respective numbers were conducted on the dates given in
brackets in column 1. The correlation coefficients (r2) of the slopes1σs /1CN and1σs /1CO are given in parenthesis.

O
bs

er
va

tio
ns

Flight No [Date] (1σ s /1CN)BL (1σ s /1CN)FT (1σ s /1CO)BL (1σ s /1CO)FT

(Mm−1 cm−3) (Mm−1 cm−3) (Mm−1 ppb−1) (Mm−1 ppb−1)

A
irb

or
ne

04 [28 September] 0.011 (0.14) 0.12 (0.79) 0.36 (0.55) 1.02 (0.80)
06 [30 September] 0.015 (0.64) 0.037 (0.76) 0.38 (0.67) –
07 [30 September] 0.018 (0.76) 0.026 (0.50) 0.38(0.67) –
08 [1 October] 0.019 (0.57) 0.033 (0.55) 0.38(0.67) –
24 [15 October] 0.019 (0.57) 0.076 (0.73) 0.40 (0.60) 1.50 (0.45)

S
ur

fa
ce

16 Septmber–8 October 0.03 (0.30) – 0.43 (0.88) –

Table 4. AverageÅngstr̈om exponent calculated from the airborne (nephelometer,ås) and integrated (sunphotometer,åe) observations.
The wavelengthsλ1 andλ2 used for computing the̊Angstr̈om exponent from the nephelometer and the sunphotometer are 450–700 nm and
440–670 nm. In addition to the averageåe during the airborne observation days, an averageÅngstr̈om exponent is also calculated for the
entire burning period. SD represents the standard deviation from the number of observations shown by the counts. Each count from airborne
observations is 1 s whereas for the sunphotometer it is about 15 min.

Observations Flight No (Date)
Ångstr̈om Exponent, Ångstr̈om Exponent,

ås (450–700 nm) åe (440–670 nm)
Airborne nephelometer Sunphotometer
Avg. SD Counts Avg. SD Counts

Individual days

– (21 September) – – – 1.74 0.05 8
– (25 September) – – – 2.01 0.04 11
– (5 October) – – – 1.85 0.02 10
04 (28 September) 1.90 0.33 10106 1. 70 0.05 11
06 (30 September) 1.98 0.41 8103 1.57 0.04 7
07 (30 September) 2.06 0.35 11149 1.57 0.04 7
08 (1 October) 2.11 0.31 5269 1.40 0.13 13
24 (15 October) 1.98 0.19 13166 1.53 0.06 3

Burning events (16–27 September) – – – 1.8 0.2 122

span gas. All the nephelometers were inter-compared by run-
ning them parallel to each other after the end of the airborne
campaign. After including calibration factors, truncation cor-
rection and non-lambertian correction, good agreement was
found (within 5%) in all the nephelometers at surface. Mea-
surements of the total scattering coefficient in the RR and
TSI nephelometers cover the angles 9–170◦ and 7–170◦, re-
spectively. The RR nephelometer data at FNS are corrected
for the truncated angles using Mie calculations. The trun-
cated angles (0–9◦, 170–180◦) contribute about 4% of the
total light scattering by the dried fine aerosols (Dp<1.5µm)
in the biomass burning season. The truncation angles in
the TSI nephelometer are slightly smaller (0–7◦, 170–180◦)

compared to the RR nephelometer. Based on the Mie calcu-
lations performed by us and Guyon et al. (2003c), the con-
tribution by the truncated angles may be 4–16% of the total
light scattering depending on the particle size distribution.
However, due to unavailability of complete size distribution,
σs is not corrected for truncation errors for the airborne ob-
servations using the TSI nephelometer. All the data from
both the nephelometers (RR and TSI) presented in this arti-
cle are converted to a standard temperature (25◦C) and pres-
sure (1000 hPa) using the method described by Anderson and
Ogren (1998). The estimated combined accuracy ofσs is
<10%.
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The spectral dependence ofσs can be derived from the
multi-wavelength (TSI nephelometer) measurements. This
dependence is an intensive parameter in the sense that it de-
pends on the aerosol size distribution and refractive index
but, contrary toσs (at a wavelengthλ) not on the aerosol
concentration. It is generally assumed that the wavelength
dependence of the scattering coefficient from the nephelome-
ter can be described in the visible spectrum by an empirical
equation as a power law ofλ (Ångstr̈om, 1929):

σs(λ) = βsλ
−ås (1)

whereσs(λ) is the scattering coefficient at wavelengthλ, βs

is a constant, and̊as is the non-dimensional̊Angstr̈om expo-
nent. In order to cover the widest possible spectral range, we
computeås from the nephelometer measurements at 450 nm
and 700 nm to obtain̊as i.e.,

ås = −
log[σs(λ1)/σs(λ2)]

log(λ1/λ2)
(2)

The variability inås can be used to provide an insight on the
types of aerosol from the nephelometer observations, since
Mie theory shows that̊as increases with decreasing aerosol
particles size. For instance,ås values for fine anthropogenic
aerosol encountered in polluted areas are typically larger than
1, whereas̊as is low (∼0.3) in regions dominated by coarse
mode desert dust (Horvath and Trier, 1993; Eck et al., 1999).
The mass scattering efficiencyαs is derived by normalizing
the scattering coefficientσs with PM2.5 obtained from the
TEOM.

2.3.2 Aerosol light absorption

Theσa of aerosol particles was measured by a Particle Soot
Absorption Photometer (PSAP) calibrated using a Photoa-
coustic spectrometer (PAS) as a reference. The PSAP mea-
suresσa based on the attenuation of light (565 nm) through a
particle-loaded filter. Although Bond et al. (1999) have pro-
vided a calibration for the PSAP using laboratory-generated
model aerosols and an optical extinction cell combined with
an integrating nephelometer as reference, its validity for at-
mospheric aerosol is questionable, since the calibration is
likely to depend on parameters such as aerosol size, single
scattering albedo andRH (Weingartner et al., 2003, Arnott
et al., 2003). In order to correct for potentially resulting sys-
tematic errors, we calibrated the PSAP in the field with a
PAS (Arnott et al., 1999), which measuresσa (532 nm) by
converting the absorbed energy into an acoustic wave (Ter-
hune and Anderson, 1977). In contrast to filter-based meth-
ods like the PSAP, the PAS measurement is performed on
particles in their suspended state, i.e., sampling artefacts due
to filter-particle interactions (Arnott et al., 2005) are avoided,
and the PAS can be calibrated in the field using NO2 as cal-
ibration gas (Arnott et al., 2000; Schmid et al., 2005). Lab-
oratory studies with soot and biomass burning aerosols have
shown good agreement between the PAS (accuracy 5%) and

an optical extinction cell (Schnaiter et al., 2005). To avoid
potential complications in both PAS and PSAP due to ele-
vatedRH (Arnott et al., 2003), both the instruments were
operated with dried aerosol (RH<50%). The known PAS
cross-sensitivity to NO2 (Arnott et al. 2000) was corrected
based on continuous NO2 measurements with a NOx ana-
lyzer (Trebs et al., 2006). For the PSAP calibration, the PAS
and PSAP were operated in parallel for several days during
the campaign as described in detail by Schmid et al. (2005).
The calibration revealed that for relative humidity (RH) be-
tween 35% and 50% (inside the PSAP) the Bond-corrected
PSAP overpredictedσa by about 18%. On the other hand,
for some sampling periods with lowRH (between 20% and
35%), as encountered during nighttime due to a higher dry-
ing efficiency of the nafion unit, theσa ratio of the PSAP
(with Bond correction) and PAS decreased for unknown rea-
sons from 1.18 to 0.65 possibly. Hence, the Bond correc-
tion, that is based on laboratory-generated nigrosin and am-
monium sulfate aerosol, shows satisfactory agreement with
the PSAP field calibrations except for some nighttime peri-
ods. After correcting for these systematic errors we assume
the accuracy ofσa measurements to be<15%.

Analogous toαs , the mass absorption efficiency (αa) is
computed by normalizingσa with the aerosol mass concen-
tration obtained from PM2.5. Furthermore, the single scat-
tering albedo (ωo) is defined as

ωo =
σs

σs + σa

(3)

Since the light scattering and absorption coefficients (i.e.σs ,
σa ) were measured at 545 nm and 532 nm, respectively, we
convertedσa from 532 to 545 nm using a power law rela-
tionship as given in Eq. (1), where the absorptionÅngstr̈om
exponent was determined from the 450 and 615 nm chan-
nel of a multiple wavelengths Aethalometer (AE30, Magee
Scientific) (Arnott et al., 2005), which was operated in par-
allel with a slightly larger inlet cutoff diameter than the
PSAP (2.5µm versus 1.5µm) and under ambient conditions.
Henceforth,σs , σa andωo will be presented at 545 nm. For
the high pollution events, the absorptionÅngstr̈om exponent
reached values of about 2, which is close to what Kirchstet-
ter et al. (2004) reported for biomass smoke particles from
Africa.

Due to the elevated operating temperature in the TEOM
(50◦C), some of the organic matter have evaporated from
aerosols. Simultaneous observations of TEOM and filter-
based gravimetric mass indicate that the difference in gravi-
metrical and TEOM measurement of PM2.5 resulted in an
underestimation of PM2.5 by 8%. This correction based on
gravimetric method is applied in the PM2.5 data. This cor-
rection propagates in theσs andσa calculations.

2.3.3 Aerosol optical thickness

A sunphotometer (CIMEL, model CE 318-1) described by
Holben et al. (1998) was set up on Abracos hill about 4 km
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from the ground station FNS as a part of the AERONET
network. The sunphotometer is used to measure column
aerosol optical thickness (AOT) at 7 wavelengths (340, 380,
440, 500, 670, 870 and 1020 nm). The AOT data have been
screened for cloud events according to a standardized proce-
dure (Smirnov et al., 2000). The value of the AOT is indica-
tive of the extinction of the solar radiation due to the colum-
nar aerosol content and, similar toσs , the wavelength depen-
dence of AOT can be expressed by a power law empirical
equation (̊Angstr̈om, 1929):

AOT(λ) = βeλ
−åe (4)

where

åe=−
log[AOT(λ1)/AOT(λ2)]

log(λ1/λ2)
(5)

To calculate theÅngstr̈om exponent (̊ae), we will be using
the AOT at two wavelengths, 440 nm and 670 nm, which are
very close to the̊as wavelengths (450, 700 nm) measured by
the nephelometer. The̊Angstr̈om exponents from two inde-
pendent methods (ås , åe) provide information on the aerosol
size distribution averaged over height during the airborne ob-
servations as well as over the atmospheric column using the
AOT measurements.

2.3.4 Excess ratios

Biomass burning emission information is usually represented
in two basic forms: emission ratios or emission factors (An-
dreae and Merlet, 2001). These parameters relate the emis-
sion of a particular species of interest to that of a reference
species, such as CO2 to CO (for gases) andσs to CO (for
aerosols-gases). To obtain “excess” concentrations, the am-
bient background concentrations must be subtracted from the
values measured in the sample air. The method for calcula-
tion of the excess emission ratio (ER) is discussed in detail
in Andreae and Merlet (2001) and in Le Canut et al. (1996),
i.e.,

ER =
1y

1x
(6)

where1y/1x is the average slope of correlation of species
“y” with respect to “x” in a biomass burning environment
(plume and/or haze mixed in the background air). The ad-
vantage of this method is that it is not necessary to estimate
the background concentration of the species while comput-
ing the ER. Equation (6) is used to calculate the excess ratios
of σs to CO,σs to CN,σs to PM2.5, andσa to PM2.5 for both
the regional haze as well as smoke plumes.

3 Results and discussions

3.1 Measurements at the ground site FNS

Figure 2 shows the 30-min averaged time series ofσs , σa ,
PM2.5 and CO for the burning season at FNS. A large

Date (2002)

16
 S

ep
  

19
 S

ep
  

22
 S

ep
  

25
 S

ep
  

28
 S

ep
  

01
 O

ct
  

04
 O

ct
  

07
 O

ct
  

C
O

 a
nd

 σ
s

0

1000

2000

3000

4000

(b)   σs (Mm-1)
CO (ppb)

(a)  PM2.5 (μg m-3) 
σa (Mm-1)

Rain Intensity (au)

PM
2.

5 
an

d 
σ a

0

50

100

150

200

250

Fig. 2. Temporal variation of PM2.5 (diamonds), light absorption
coefficient at 545 nm (σa , squares), light scattering coefficient at
545 nm (σs , solid circles) and CO mixing ratio (open circles) at
30 min intervals in the biomass burning season at the surface sta-
tion (FNS). The rainfall (arbitrary units) is shown by the vertical
bars.

variability up to 2 orders of magnitude is observed inσs ,
σa , PM2.5, and CO with values ranging 5–1435 Mm−1, 1–
70 Mm−1, 2–225µg m−3, and 300–3500 ppb, respectively.
The highest levels inσs , σa , PM2.5 and CO were observed
during the heavily burning-influenced periods on 21, 25–26
September and 5 October (see Fig. 2). The lower values were
typically observed after the rain events (e.g., 24 Septem-
ber, 27 September, 28 September–2 October). Some of the
rainfall events, for instance on 28 September (vertical bars,
Fig. 2), resulted in dramatic reduction of aerosol and CO
concentrations. The simultaneous decrease in concentrations
of aerosols and CO indicates that the clean-up was due to
air mass replacement followed by fire suppression, while the
role of scavenging was likely low. Since most of the period
(16 September–8 October) is dominated by biomass burning
aerosols (except for a few rain events), the aerosol properties
along with CO are representative of biomass burning condi-
tions.

Figure 3 shows the correlations ofσswith PM2.5, CN, CO
and alsoσa with PM2.5 at the pasture site FNS during the
burning period. There are two populations of points inσa

andσs . The number of points in the second population is
less than 1% of total data, so correlations are dominating by
the first population. Theσs andσa of the aerosols are posi-
tively correlated with PM2.5, CN and CO. Good correlation
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Fig. 3. Scatter plots and regression lines for 30-min averaged data of(a) light scattering coefficient (σs) at 545 nm versus aerosol mass
concentration (PM2.5) at the ground station (FNS) during the biomass burning season. Similarly,(b) the light absorption coefficient (σa) at
545 nm versus PM2.5,(c) σs versus CO, and(d) σs versus aerosol number concentration (CN). The slopes are least-square-fitted lines. The
corresponding correlation coefficients (r2) of these parameters are shown on the respective plates.

is found betweenσs and PM2.5 (r2=0.93) as well as between
σs and CO (r2=0.88). The correlation betweenσa and PM2.5
(r2=0.70) is not as good as forσs and PM2.5. Poor correla-
tion (r2=0.30) is observed betweenσs and CN.

The average slopes ofσs and σa with PM2.5
(1σs /1PM2.5, 1σa /1PM2.5) are the average mass
scattering efficiency (αs) and mass absorption efficiency
(αa), 5.0 and 0.33 m2 g−1, respectively, during the burning
period. The observed1σs /1CO is 0.433 Mm−1 ppb−1

(Fig. 3c). We note here that since the cut point (Dp) for the
measurements ofσs andσa is 1.5µm, compared to PM2.5,
our values are a lower estimate of the trueαs and αa for
these particles. The mass difference between PM1.5 and
PM2.5 is less than 10% of PM2.5 during the dry season
(Chand et al., 20062).

The averageωo for dried aerosols (RH=20–40%), calcu-

2 Chand, D., Schmid, O., Vestin, A., Artaxo, P., Frank, G. P.,
Guyon, P., Gatti, L. V., Swietlicki, E., and Andreae, M. O.: Diurnal
variations in optical properties of aerosols at a pasture site over the
Amazon Basin, in preparation, 2006.

lated using Eq. (3), is about 0.92±0.02. Thisωo is consistent
with theωo calculated from the AERONET data (0.92) ob-
tained from the nearby site Abracos hill (4 km from FNS).
Also, the observedωo is close to the earlier study conducted
over the Amazon basin (Dubovik et al., 2002). At higherRH
(>60%), theωo may be higher compared to the observed
ωo at drier conditions. Theωo and other optical parame-
ters showed pronounced diurnal variations, which will be dis-
cussed in detail in Chand et al. (2006)2. The hourly average
values ofωo at midnight (00:00 local time, LT) and mid-
day (12:00 LT) are 0.91±0.02 and 0.94±0.02, respectively.
The daytime aerosols are representative of a deeper bound-
ary layer height (∼1600 m) than night time aerosols with a
boundary layer height of about 200 m. Due to different mix-
ing and transport times in the BL during day and night, the
daytime aerosols are generally more aged than the aerosols in
night time (Rissler et al., 2006). Observations of higher scat-
tering efficiency for the aerosols at higher altitudes compared
to those near ground (Sect. 3.2) corroborate our observation
of higherωo during day time. The size distribution and Hy-
groscopic Tandem Differential Mobility Analyser (HTDMA)
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observations show that the daytime aerosols have higher
modal diameter compared to night time aerosols, most likely
due to more aged aerosols being present in day time (Rissler
et al., 2006; Chand et al., 20062). The value ofωo increases
with increasing size (ageing) of aerosols. Under humid con-
ditions, theωo is likely to increase even higher, when the
ageing effect is taken into account together with the higher
relative humidity.

Using CO as a conservative tracer of biomass burning (An-
dreae and Merlet, 2001), the good correlation betweenσsand
CO indicates that most of the aerosols which contribute toσs

have originated from biomass combustion. Also, good corre-
lations ofσs with PM2.5 and CO indicate that the scattering
efficiency from the haze particles is relatively independent of
the absolute pollution level during the burning period. The
correlation betweenσs and CN is not good at FNS. The poor
correlation coefficient betweenσs and CN is due to the large
variability in the very small particles (<40 nm), which make
a negligible contribution to light scattering. After exclud-
ing the aerosols below 40 nm, there is significant correlation
(r2>0.60) betweenσs and CN yielding a scattering efficiency
of 0.016 Mm−1 per particle per cm3 (Chand et al., 20062).

The average mass scattering efficiency (αs=5.0 m2 g−1)

of the submicron dried aerosols observed in this study is
consistent with the earlier observations during the LBA-
EUSTACH 2 campaign in September–October 1999 over the
Amazon Basin (Guyon et al., 2003b). However, the mass ab-
sorption efficiency (αa=0.33 m2 g−1) in this study is about
10% higher than during the LBA-EUSTACH 2 campaign.
The αs and αa of aged smoke aerosols over the tropical
forest discussed by Reid et al. (2005a) are 4.1 m2 g−1 and
0.5 m2 g−1, respectively. The airborne observations of rel-
atively young aerosols during the “Smoke Clouds Aerosols
and Radiation Brazil” (SCAR-B) campaign showed a lower
αs (2.8–3.6 m2 g−1) and higherαa (0.7–1.1) over the Ama-
zon Basin (Reid el., 1998a, b). The differences in obser-
vations ofαa in this study with the LBA-EUSTACH 2 and
SCAR-B observations is likely due to different burning con-
ditions, (flaming vs. smoldering), and higher particle concen-
trations leading to faster growth during aging processes.

3.2 Airborne measurements

The vertical structure and evolution of the aerosols from
biomass burning can be assessed by measuringσs along with
other parameters (e.g., CN, CO) at the surface and aloft in
the BL and FT. For example, correlations ofσs with CO at
different altitudes can be used to get some insights on mix-
ing/dilution of the aerosols when the air is transported from
the BL to the FT. Similarly, correlations ofσs with CN at dif-
ferent altitudes can be used to get some information on evolu-
tion/ageing (coagulation, condensation, etc.) of the aerosols
when the air is transported from the BL to the FT.

Inter-comparison between the observations at FNS and on
the aircraft was made using day time observations during the

seven fly-by flights at heights of 150–600 m above FNS. The
ratios of theσs and CO from airborne observation are higher
by (10–25%) during these fly-by flights. This could be at-
tributed to the combined effects of higher CN, higher modal
diameter of aerosols and lower CO at the upper heights. Fig-
ures 4a, c, e show scatter plots ofσswith CN from the air-
borne observations. The flight tracks of the covered regions
are shown in Fig. 1. The excess ratios (1σs /1CN) repre-
sent the scattering efficiency of aerosols during the vertical
profiles covering BL and FT. Depending on the altitude and
nature of the aerosols (haze or fresh plumes), the scattering
efficiency (1σs /1CN) varies significantly, as shown in Ta-
ble 3.

Similar to the variations at the ground site FNS,σs is pos-
itively correlated with CN in the BL as well as in the FT.
However, unlike at FNS, the airborne observations show a
better correlation betweenσs and CN. The aerosols during
airborne observations show two populations during most of
the flights. The transition between the two populations is
at an altitude between 1200 and 2000 m. These modes, as
shown by the slopes in Figs. 4a, b, c, e, and f, could be due to
different ageing, size distributions andRH in the BL and FT.
The good correlation (high r2) in both modes indicates that
most of the particles become optically active and contribute
to light scattering when transported up from the surface to
the BL and FT.

Figures 4b, d and f show the correlation ofσs with CO
from the airborne observations for flights 4, 6, 7, 8 and 24. A
summary of1σs /1CO at 550 nm in the BL and FT is given
in Table 3. Similar to the observations at the ground (FNS),
the light scattering is positively correlated with CO in the
BL with 1σs /1CO in the range of 0.36–0.40 Mm−1 ppb−1.
This value from the airborne observations is close to the sur-
face observations at FNS (1σs /1CO=0.42 Mm−1 ppb−1). A
good agreement in1σs /1CO between the ground and air-
borne observations in the BL covering a large area suggests
that the biomass burning aerosol sampled at FNS reflects
sources typical for the entire region, with similar emission
characteristics as over the rest of the Amazon Basin (Ta-
ble 3). Comparing the variations ofσs with CN and CO in
the BL and FT, the magnitude of vertical change is higher
in 1σs /1CN than in1σs /1CO (Table 3). The increase in
1σs /1CN with height suggests a substantial reduction in the
relative abundance of small, weakly scattering particles in the
FT compared to the particles in the BL. The particles light
scattering efficiency (1σs /1CN) increases 2–10 times from
the surface to the FT, most probably due to the combined ef-
fects of coagulation and condensation when the air parcel get
aged. In addition, the large scale meteorology may also play
important role in deciding the1σs /1CN. Reid et al. (1998)
has suggested a complicated effect of meteorology on optical
properties of aerosols over the Amazon basin.
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Fig. 4. Scatter plots and regression lines of the light scattering coefficient (σs) from the airborne observations at 550 nm against aerosol
number concentration (CN) and CO for flight 4(a, b); flights 6, 7, 8(c, d); and flight 24(e, f). The slopes in the BL and FT are shown by
the dashed and continuous lines, respectively.

The increase in1σs /1CN reflects in an analysis of par-
ticle volume as a function of altitude. Figure 5 shows the
total volume normalized with numbers (Vn=ratio of total vol-
ume to the total number of aerosols) for the size range 42–
346 nm (Dp) of dried aerosols as a function of height during
flights 4, 6, 7, 8 and 24. The Vn increases with height show-
ing maximum level at 2000–3000 m (700–800 hPa) during all
the flights. The ratio of highest Vn in FT (∼2500 m) to the
lowest Vn in BL (500 m) varies from 1.3–1.6. Higher aerosol
volume (Vn) aloft suggests that condensation of organic and
possibly inorganic vapors as well as coagulation play impor-
tant roles in changing the physical (size) properties of aerosol
particles during ageing.

Some meteorological conditions (e.g., a strong BL inver-
sion as observed on Flight 4 and 24), can increase the dif-
ference in1σs /1CN between the BL and FT. The strong
inversion reduces the transport/mixing of air from the FT to
the BL, and the ageing of the aerosols in the FT increases
Vn and 1σs /1CN. Assuming thatσa per particle is inde-
pendent of altitude during ageing, the increased1σs /1CN
corresponds to an increase inωo up to 7% (from 0.92 to
0.98) for the aerosols in the FT. This assumption is corrob-
orated by the lowerωo during the night hours (0.91) for
less aged aerosols and the higherωo in day time (0.94) for
aged aerosols. More details on the diurnal variation in opti-
cal properties of aerosols at the surface site (FNS) over the
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Figure 5. Vertical variation in number-normalized total volume of aerosol (Vn) in the 
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Fig. 5. Vertical variation in number-normalized total volume of
aerosol (Vn) in the size range 42–346 nm (mobility, Dp) during the
flights 4, 6, 7, 8 and 24. The curves are polynomial fits based on the
least squared method.

Amazon Basin are being included in another manuscript un-
der preparation (Chand et al., 20062).

3.3 Vertically integrated measurements

In order to determine whether the characteristics of aerosols
measured by sunphotometry at the ground agree with in-situ
measurements in the atmospheric column (BL and FT), we
compared the̊Angstr̈om exponents derived from independent
sunphotometer (åe) and aircraft (̊as) measurements. A brief
summary of̊ae andås is given in Table 4. The mean airborne
ås from the individual flights vary in the range of 1.9 to 2.1
whereas the column integratedåe varies in the range of 1.4 to
2.0. The mean values ofåe andås are 2.0±0.4 and 1.8±0.2,
respectively. The small difference betweenåe and ås sug-
gests that (1) the absorption coefficient is not as wavelength
dependent as the scattering coefficient, leading to minimal
effect of light absorption on the̊Angstr̈om exponent, (2) the
sunphotometer results at FNS are regionally representative,
and that the aerosols in the FT above the ceiling height of the
aircraft did not significantly influence the value ofåe.

Convective activity enhances the vertical mixing and
transport of aerosols in the atmosphere during the
dry/burning period. An indication of the vertical extent of
the aerosol column during the burning dominated period can
be provided by an aerosol index called “optical scale height”
(OSH). OSH is defined as the height (in m) of a homoge-
neous aerosol column having the same extinction coefficient
(σext=σs+σa) as the one determined at ground level, and the
same AOT as the one measured by the sunphotometer. A
plate of AOT (550 nm) vs.σs at FNS (AOT is adjusted to the
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Figure 6. Scatter plot of light scattering coefficient (σs) with aerosol optical thickness 
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Fig. 6. Scatter plot of light scattering coefficient (σs) with aerosol
optical thickness (AOT) (bothσs and AOT at 550 nm) during the
biomass burning season (16 September–7 October). The AOT data
are taken between 11:00 to 14:00 LT. The OSH and the correlation
coefficient (r2) also given in the figure.

same wavelength asσs using Eqs. 4 and 5) yields a slope cor-
responding to an OSH of 1617 m (Fig. 6). The observed OSH
is very close to the average height of the day time bound-
ary layer (1600 m) during the burning season obtained by
radiosonde measurements (G. Fisch, personal communica-
tion; Fisch et al., 2004). The OSH is consistent with the
height (1200–2000 m) where the sharp transition is observed
in 1σs /1CN, as discussed in Sect. 3.2. Also, this is consis-
tent with most of the optically active aerosols being confined
to lower heights (i.e., the BL) during the burning period, as
was also shown by Andreae et al. (2004; see their Fig. 2).
Haze layers at higher elevations were commonly observed
during the aircraft flights, but were optically much thinner
than the CBL aerosol layer. This is further supported by the
vertical profiles of CN andσs (Fig. 7). Due to large horizon-
tal coverage and sampling of cleaner air (background) and
smoke plumes, there is large vertical variability in bothσs

and CN. However, as an average, most of the optically active
aerosols are below 2000 m (Fig. 7). This is consistent with
the OSH, as shown by Fig. 6.

4 Summary and conclusions

Detailed ground and airborne measurements were taken over
the Amazon Basin during the LBA-SMOCC experiment con-
ducted during the dry season (September–October, 2002).
These results have shed light on the optical and physical
properties of biomass burning aerosols. The relationships be-
tween observations at the ground and in the BL and FT have
been investigated.
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Figure 7. Vertical variations in light scattering coefficient (σs) and aerosol number den-

sity (CN) from the airborne observations (flights 6, 7 and 8) during the biomass burning 

season (Sep-Oct) over the Amazon Basin. 

Fig. 7. Vertical variations in light scattering coefficient (σs 550 nm) and aerosol number density (CN) from the airborne observations
(flights 6, 7 and 8) during the biomass burning season (September–October) over the Amazon Basin.

In general, all the aerosol extensive properties and CO
showed large variability during the biomass burning season.
During some of the most intensive burning periods, very
high mass loading (PM2.5>225µg m−3) resulted in scatter-
ing coefficients as high as 1435 Mm−1 at 545 nm. At the
same time, the aerosol optical depth at 500 nm reached val-
ues of more than 3 and CO exceeded 3000 ppb. A few rain
events reduced the aerosol loadings and optical effects by two
orders of magnitude.

The mass scattering and absorption efficiencies,αs and
αa , relative to PM2.5 dried aerosols at about 545 nm at/near
the ground are found to be 5.0 and 0.33 m2 g−1, respectively.
The observedωo of dried aerosols at 545 nm is 0.92±0.02.
The 1σs /1CN in the free troposphere (between 1600 to
4200 m a.m.s.l.) is about 1.6 to 10.9 times higher than in
the BL (below 1600 m a.m.s.l.). Assuming the same absorp-
tion efficiency of aerosols with altitude, this increase ofσs in
the FT can increaseωo up to 7% from 0.92 to 0.98.

TheÅngstr̈om exponent (2.0±0.4) computed from the air-
borne observations below 4200 m is close to theÅngstr̈om
exponent (1.8±0.2) calculated by column integrated (sun-
photometer) measurements. This suggests that (1) the ab-
sorption coefficientσa is not as wavelength dependent as the
scattering coefficientσs , leading to minimal effect of light
absorption on the̊Angstr̈om exponent and, (2) the sunpho-
tometer results at FNS are regionally representative, and (3)
the aerosols in the FT above the ceiling height (4200 m)
of the aircraft do not significantly influence the value of
column-integrated̊Angstr̈om exponent̊ae.

The strong correlation ofσs with PM2.5 and CO indicates
that (1) most of the aerosol mass has originated from biomass
combustion and (2) the smoke-laden air with different CO
and mass loading has similar source (sameαs) and emis-
sion characteristics. Theσs does not correlate well with the
aerosol number concentration (CN) at the ground, however,
it has a better correlation aloft in the BL and FT. This indi-
cates that the ageing process plays an important role in the
optical and physical properties of aerosols.
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The correlation analysis betweenσs and aerosol AOT sug-
gests that most of the aerosols are confined to the lower
levels of the atmosphere (<1617 m) during the burning sea-
son. This is consistent with the vertical variability ofσs and
CN. Similar levels of1σs /1CO at surface site and airborne
observations covering a large area in the BL again suggest
that the burning activities over the Amazon Basin have sim-
ilar sources and fuel emission characteristics. Larger varia-
tion in σs with CN than with CO suggest that condensation-
coagulation plays an important role in changing the radiative
properties of aerosols. The scattering efficiency of aerosols
(Vn) increases with height, having a maximum at 1700–
3000 m.

This is the first study presenting a comprehensive data set
on optical properties of aerosols at the ground, BL and FT
in the dry season over the Amazon Basin. This data set,
along with the data from the SCAR-B and LBA-EUSTACH2
campaigns, can be used to validate the optical parameters re-
trieved from satellites. The combined ground, airborne and
remote sensing observations can be valuable to assess the
role of biomass burning and its impact at local, regional and
global scales.
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