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ABSTRACT

Accurately functioning genetic networks should be responsive to signals but prevent
transmission of stochastic bursts of expression. Existing data in mammalian cells suggests that
such transcriptional “noise” is transmitted by some genes and not others, suggesting that noise
transmission is tunable, perhaps at the expense of other signal processing capabilities.
However, systematic claims about noise transmission in genetic networks have been limited by
the inability to directly measure noise transmission. Here we build a mathematical framework
capable of modeling allelic correlation and noise transmission. We find that allelic correlation
and noise transmission correspond across a broad range of model parameters and network
architectures. We further find that limiting noise transmission comes with the trade-off of being
unresponsive to signals, and that within the parameter regimes that are responsive to signals,
there is a further trade-off between response time and basal noise transmission. Using a
published allele specific single cell RNA-sequencing dataset, we found that genes with high
allelic odds ratios are enriched for cell-type specific functions, and that within multiple signaling
pathways, factors which are upstream in the pathway have higher allelic odds ratios than
downstream factors. Overall, our findings suggest that some degree of noise transmission is
required to be responsive to signals, but that minimization of noise transmission can be
accomplished by trading-off for a slower response time.

INTRODUCTION

Cells must balance stability of their internal workings and responsiveness to external changes.
One way in which such information processing is accomplished is via genetic networks, in which
the products of certain genes regulate the expression of other genes (or themselves). A core
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function of these genetic networks is to respond to and process signals and translate them into
changes in gene expression. However, genetic networks are also subject to random fluctuations
in the numbers and activity of the constituent molecules (i.e., molecular “noise”) (Becskei and
Serrano, 2000; Elowitz et al., 2002; Løbner-Olesen, 1999; Ozbudak et al., 2002; Raj and van
Oudenaarden, 2008; Raser and O’Shea, 2005; Symmons and Raj, 2016). Such noise threatens
the accurate functioning of genetic networks because, if transmitted and amplified through the
network, noise may mimic the presence of a signal even when no such signal exists. In human
cells, the few existing studies show that noise transmits in some contexts but not others,
suggesting that the degree of noise transmission of a genetic network may be an important,
tunable feature (Jena et al., 2021; Shah and Tyagi, 2013). What remains unclear is what the
consequences of suppressing noise transmission may be; in particular, what other signal
processing limitations must networks have to achieve such noise suppression?

The current data in human cells suggests that some systems limit noise transmission while
others do not, but the scarcity of data makes systematic conclusions difficult to make.
Consequently, it is hard to say which genetic networks either allow or block noise transmission
and what sorts of tradeoffs may arise from those constraints. For instance, one potential tradeoff
could be that increased noise transmission is the cost of having an ability to respond to dynamic
signals. An illustration of such a potential tradeoff is the expression of the immediately early
genes FOS and JUN. In serum-starved HeLa cells, serum stimulation induced noisy and
uncorrelated transcription of C-FOS and C-JUN that was buffered by heterodimerization of their
protein products, preventing more noise in two of the downstream targets (Shah and Tyagi,
2013). However, in mouse epidermis, Fos, Jun, and other immediate response genes showed
correlated expression in single cells, suggesting that upstream variability was consistently
transmitted downstream to multiple targets in the same cell (Jena et al., 2021). Notably, in
mouse epidermis, the Mapk1, Fos, Jun pathway is an important developmental signal,
controlling basal stem cell and keratinocyte differentiation (Hiratsuka et al., 2020; Mehic et al.,
2005). Thus, in an active, developing context, the Fos-Jun pathway may exhibit high noise
transmission, but in the resting context of in vitro HeLa cells, the same pathway blocks
transmission of noise. This example raises the possibility that the design and parameters of
genetic networks may be tweaked to make different tradeoffs when faced with different
functional requirements.

It is currently difficult to directly measure noise transmission due to lack of experimental tools, so
in order to circumvent this limitation, we sought to develop a more easily-measurable proxy for
noise-transmission. Presently, most available data consists of either static measurements of
endogenous RNA; real time measurements of multiple RNA or protein species in the same
pathway would allow direct measurements of noise transmission, but this technology is just
emerging and is technically challenging (Cohen et al., 2008; Frenkel-Morgenstern et al., 2010;
Wan et al., 2021; Zimmer et al., 2017).The limited experimental data measuring noise
transmission has led to a lack of models describing noise transmission and its consequences.
We thus sought to build a framework that could model noise transmission while also being
easily related to ample and readily accessible experimental data. Such a framework would not
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only circumvent experimental challenges but also allow us to re-examine existing data for
evidence of signal processing tradeoffs that may arise from limiting noise transmission.

Can the correlation between expression of two copies of a gene over time serve as an indicator
for noise transmission (Figure 1A)? Though previously considered for two copies of a gene in
E.coli (Elowitz et al., 2002), we propose that the degree of expression correlation between two
endogenous alleles of a gene similarly can be a proxy for noise transmission. For an intuition as
to how allelic correlation is related to noise transmission, consider an upstream regulator that
controls expression of two alleles of a gene equally. With a constant low level of regulator, each
allele will burst independently, leading to low allelic correlation. With a constant high level of
regulator, each allele will independently burst albeit at a higher rate. However, with a transient
spike in the upstream regulator, will both alleles simultaneously burst? If so, then the variability
has been transmitted from the upstream regulator to both downstream alleles, leading to high
allelic correlation. The transmission of variability that results in correlated alleles is conceptually
similar to noise transmission and is also measured by single cell RNA sequencing or RNA FISH
(Deng et al., 2014; Levesque and Raj, 2013; Levesque et al., 2013; Reinius et al., 2016;
Symmons et al., 2019). Should the correspondence between allelic correlation and noise
transmission hold, mathematical models that include both measurements could be tuned to fit
available data and also could generate testable hypotheses.

Here we describe a mathematical framework to test the correspondence between allelic
correlation and noise transmission and to model the signal processing tradeoffs that may result
from limiting noise transmission. We simulated networks of varying size and connectivity defined
by a large range of parameters to find that in this minimal model, allelic correlation and noise
transmission are tightly coupled across a broad range of parameters and network architectures.
We further found that response to external signals was only possible in simulations that also
exhibited high noise transmission, but that among simulations that could respond to signals,
there simulations could trade a slower signal response time for less basal noise transmission. To
test these predictions, we looked at an allele specific single cell RNA-sequencing dataset and
found that upstream members of three signaling pathways had high allelic odds ratios in
agreement with the results from our model. Overall, we demonstrated that noise transmission
could be inferred by allelic correlation and that limiting noise transmission in genetic networks
led to the trade-off of being unresponsive to external signals.

RESULTS

Selection of mathematical framework to model both correlated allelic expression and
noise transmission

Description of mathematical model

Our goal was to measure noise transmission in mathematical models of genetic networks and
systematically describe the tradeoffs in signal response that arise from reducing noise
transmission. However, noise transmission remains difficult to measure directly from
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experiments. We sought out a proxy for noise transmission that is readily measured
experimentally and thus would allow us to use more experimental data. Recent advances in
RNA FISH and single cell RNA sequencing have made correlation between alleles in single
cells easier to measure, and so we wanted to establish whether there was a systematic
quantitative relationship between allelic correlation and noise transmission which we could
exploit. In order to do so, we needed to simultaneously model allelic correlation and noise
transmission across broad swaths of parameters and in many configurations of genetic
networks.

We wanted to construct a model with the minimal components needed to recapitulate allelic
correlation, transcriptional noise transmission, and transcriptional response to signals. Because
promoter leak can modulate expression noise in certain cases (Huang et al., 2015; Venturelli et
al., 2012), we used a leaky telegraph model as a starting point for our model (Figure 1B). In the
inactive state, the promoter produces gene product at a very low “leak” rate but can
stochastically enter the active state to produce a large “burst” of gene product. These
transcriptional bursts are one critical means by which variability is created (Raj et al., 2006). We
took this well-known model of transcription (Ham et al., 2020; Kepler and Elston, 2001; Peccoud
and Ycart, 1995; Raj et al., 2006; Schuh et al., 2020; Thomas et al., 2014) and used it as the
basis for modeling gene network interactions. Each gene in the network has two alleles, each
with identical but independent chemical reactions and rates. Each allele produces a gene
product that is computationally distinguishable but is equivalent in terms of functionality in the
model; i.e., both are equally capable of binding a downstream promoter and affecting
consequent gene expression. The chemical reactions of our model include reversible switching
of the gene between an active (ron) and inactive (roff) state, with an additional rate of switching to
the active state from promoter binding from an upstream regulator (radd). radd depends on the
total amount of gene product of both alleles of the regulating node to which we applied a Hill
function, which includes additional parameters: Hill coefficient n (to capture the cooperativity of
the interaction) and dissociation constant k (to capture the affinity of the transcription factor).
When the gene is in the inactive state, the gene is transcribed as a Poisson process at a very
low basal rate (rprod), and when the gene is active, the rate becomes higher by a constant factor
(d, where d ≥ 1) for a total of d*rprod. We consider degradation of RNA as a Poisson process with
rate rdeg. Overall, our model has a total of eight independent parameters per allele (see methods
for table summarizing the parameters). For simplicity, we assumed all alleles to be governed by
the same parameters.

Definition of metrics and initial characterization of model

We expected that the above model would be able to capture ranges of allelic correlation and
noise transmission. We could use the time traces of simulations of our model to see whether our
model could produce different values of allelic correlation and noise transmission. Spontaneous
bursting of gene expression in our model is considered “noise,” and thus noise transmission is
when a burst in expression of the upstream gene triggers the bursting of a downstream gene
(Figure 1C). We refer to this co-expression of upstream and downstream genes as input-output
correlation. In contrast, we defined allelic correlation to be when both alleles of the same gene

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2021. ; https://doi.org/10.1101/2021.11.26.470134doi: bioRxiv preprint 

https://paperpile.com/c/kPL4Ms/m12Y+GlpJ
https://paperpile.com/c/kPL4Ms/m12Y+GlpJ
https://paperpile.com/c/kPL4Ms/Q2E5
https://paperpile.com/c/kPL4Ms/30c1+CH1l+0Q2Z+Q2E5+ym9u+xecc
https://paperpile.com/c/kPL4Ms/30c1+CH1l+0Q2Z+Q2E5+ym9u+xecc
https://doi.org/10.1101/2021.11.26.470134
http://creativecommons.org/licenses/by-nc-nd/4.0/


burst at the same time. Importantly, these two phenomena need not be inherently coupled, since
the promoter and gene product of each allele is a separate species with a separate chemical
reaction in our model. Our model extended a multi-node leaky-telegraph network model of
transcription to include multiple alleles, thus permitting simultaneous measurement of allelic
correlation and noise transmission.

To establish that we were able to differentiate high and low allelic and input-output correlations
and to qualitatively assess which parameters lead to each situation, we used Gillespie’s
algorithm (Gillespie, 1977) to simulate the simplest possible network of a single upstream gene
connected to a single downstream gene. We then visually inspected time traces of simulations
across parameters (Figure 1D). By manual inspection of the time traces, we found instances of
parameters for which both allelic and input-output correlation were low, i.e., alleles rarely burst
together and upstream bursts were not transmitted downstream (Figure 1D, left plots). We also
found parameter sets for which allelic and input-output correlation were high, i.e., bursts were
always transmitted downstream and both alleles always burst together (Figure 1D, right plots).
Finally, we found a small set of parameters with seemingly intermediate allelic and input-output
correlation, in which an upstream burst would often transmit downstream, but only triggered a
single allele (Figure 1D, bottom plots). These individual observations confirmed that our model
could be tuned to both transmit and block transmission of noise. We conclude that, at least in
the small number of parameter sets we could visually inspect, allelic correlation can serve as a
proxy for input-output correlation.

To assess the generality of any findings, we aimed to test networks of varying size and structure
with a large number of parameter sets. We wanted to find network configurations that admitted
high and low allelic and input-output correlation and test the effects of network size and
connectivity. In our model, nodes represented genes and directed edges represented regulating
interactions between genes. The connectivity, or number of ingoing edges for any node in the
network, indicates the number of regulating interactions for each gene. For the sake of simplicity
and computational tractability, we used symmetric networks, which capture most network
interactions without loss of generality but have a far more limited set of parameters (Schuh et
al., 2020). We also only analyzed networks of distinct isomorphism classes because our
assumption of symmetric behavior means that isomorphic networks are formally equivalent. We
additionally excluded networks that were compositions of smaller subnetworks to prevent
re-analyzing networks. We chose to highlight results from a five node connectivity one network,
although we also ran simulations with other numbers of nodes and degrees of connectivities
(Figure S1).

Allelic odds ratio captures high correlated allelic expression as a ridge in radd/roff

parameter space

Though we saw low and high allelic correlation in a limited number of parameter sets, we
wanted to systematically determine which parameter values led to high and low allelic
correlation. To do so, we first needed a single metric to capture the degree of allelic correlation
in a given simulation. To that end, we developed an algorithm to calculate the odds ratio of
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simultaneous expression of both alleles of a given gene (Figure 2A). We first selected a
threshold value and binarized the entire time series simulation data. We used a threshold of
three molecules to exclude instances of “promoter leak” from an inactive promoter that result in
production of a small number of RNA molecules. After binarizing both alleles of a gene, we
summarized whether neither, one, or both alleles were on at each timepoint in a contingency
table. Finally, we computed the odds ratio for that gene. Since all networks were symmetric, the
odds ratios should in principle be equal for each gene in a given simulation: therefore, for ease
of visualization and analysis, we used the mean odds ratio across all genes in a given
simulation. An odds ratio of greater than one indicates that alleles express at the same time
more often than expected if they were independent processes, an odds ratio of one means the
alleles are expressed at the same time no more than expected by chance, and an odds ratio of
less than one indicates that the alleles are expressing less than expected by chance, which is
usually interpreted as anticorrelation.

Having established a single metric to summarize allelic correlation for a given simulation, we
simulated large parameter sweeps across radd, roff, k, and n to find parameters leading to
different values of allelic correlation. When holding all other parameters constant, there was a
ridge of high odds ratio in the parameter space defined by radd and roff (Figure 2B). We found
identical ridges of odds ratio across different values of k and n (Figures S2, S3A, S3B). The
region of parameter space to the left of the ridge (low radd/roff) consisted of simulations with lower,
purely monoallelic expression. Approaching the ridge, allelic odds ratio increases exponentially
to intermediate correlation before reaching a peak. These results closely matched results from a
(non-leaky) telegraph transcriptional bursting model of two alleles of a single gene, which also
showed a ridge of correlated allelic expression in the parameter space defined by ron (this paper
did not model interactions between genes, so only used a basal rate of activation) and roff

(Larsson et al., 2021).

Notably, we saw several examples where the odds ratio for allelic correlation became undefined
or took on a numeric value that did not fit the standard interpretation of an odds ratio. In the
region of parameter space corresponding to low radd/roff, most simulations were undersampled
due to low total expression, causing odds ratios < 1, spuriously indicating anticorrelation
between alleles. At very high radd/roff ratios and simulations approached a constantly high
expression state, the odds ratio approached non-numeric values because of zero values in the
contingency table. We therefore lumped together non-numeric odds ratios as indicative of
constantly high expression. Overall, we found that low radd/roff simulations exhibited low allelic
correlation, with increasing allelic correlation up to a ridge of radd/roff, past which constitutively
high biallelic expression dominated, indicating that our model is capable of recapitulating a
range of allelic correlation values and can distinguish uncorrelated allelic, highly correlated
allelic, and fully biallelic expression.

We wondered whether network size and connectivity had an effect on allelic correlation, since
network connectivity could lead to more activating interactions for each gene, increasing the
chance for both alleles to simultaneously express when concurrently influenced by multiple
regulators. Holding simulation parameters and network connectivity constant (at a connectivity

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2021. ; https://doi.org/10.1101/2021.11.26.470134doi: bioRxiv preprint 

https://paperpile.com/c/kPL4Ms/x2YP
https://doi.org/10.1101/2021.11.26.470134
http://creativecommons.org/licenses/by-nc-nd/4.0/


of one), the odds ratio slightly decreased with increasing network size (Figures S4A, S4B). The
decrease in odds ratio with network size was expected given that our networks were symmetric:
any given burst of activity that could lead to correlated allelic expression will affect a smaller
fraction of genes in a larger network given constant parameters. Looking across varying radd and
roff for networks of order two and five, the overall distribution of the odds ratio is similar but with
an overall decreased magnitude for the five node network compared to the two node network
(Figure S4C). In a five node network, increasing connectivity from one to four caused an
increase in odds ratio with constant parameters , meaning that more regulating genes led to
coordinated allelic expression (Figure S4D). As expected, at the same connectivity, self-looping
in the network also increased the odds ratio. We additionally found that the “ridge” of odds ratio
is shifted leftward with increasing connectivity and with the addition of self-looping (Figure S4E).
Thus, high and low allelic correlations are possible in a range of network architectures, and
changing the size and especially the connectivity of the network can have a modest effect on
allelic correlation.

Analysis of ‘multi-bursts’ captures the degree of noise transmission in simulated genetic
networks

Input-output correlation corresponded closely with allelic correlation in a limited context. To
show whether this correspondence held across many parameter values, we developed several
metrics for input-output correlation. We looked at bursts involving multiple genes as the result of
input-output correlation (Figures S5A, S5B, S5C). When a given gene bursts in our model, it
may or may not cause its downstream target to burst. This propensity corresponds to
input-output correlation. In turn, that downstream target may or may not cause its downstream
target to burst, and so on. Thus, the bursting of the initial gene can cause a “multi-burst” of
subsequent activity. In simulations with low input-output correlation and low noise transmission,
these multi-bursts involved few genes and were short-lived. But in simulations with high
input-output correlation and high noise transmission, multi-bursts involved more genes, were
longer, and often looped back around to the start of the network. In the limiting case of very high
input-output correlation, a single burst can cause a multi-burst that lasts the entire length of the
simulation. Thus, we reasoned that the mean number of genes in a multi-burst, the mean
multi-burst length, and the number of multi-bursts per unit time were adequate measurements of
the input-output ratio of a simulation (Figure S5D).

We calculated the above input-output correlation metrics for simulations with the parameter sets
and network architectures described above to find conditions leading to different values of
input-output correlation. Similarly to allelic correlation, we found that while holding other
parameters constant, all input-output correlation metrics increased with increasing radd and
decreased with increasing roff (Figures S5E, S5F, S5G). Like allelic correlation, there was a
notable ridge in radd roff space for mean multi-burst length and number of multi-bursts. (For the
mean number of genes in a multi-burst, there was no such ridge since the number of genes in a
single, simulation-long multi-burst is well defined as equal to the network size.) We found similar
ridges across different values of k (affinity) and n (cooperativity) (Figures S6, S7). Additionally,
we found that increased network size did not change input-output correlation with constant
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parameters and increased connectivity increased input-output correlation with constant
parameters (Figures S8) Overall, all three of the input-output correlation metrics we evaluated
showed that low input-output correlation occurs at low radd/roff values, with increasing input-output
correlation with increasing radd/roff.

Allelic odds ratio follows the relative amount of noise transmission across a systematic
range of parameter values and network architectures

So far, we have established metrics for allelic and input-output correlation and found that they
appeared in the same region of parameter space, at least in the limited number of cases we
checked by eye (Figure 1D). We wanted to confirm this correspondence across a more
systematic range of parameter space—in principle, it was possible that in some parameter
regimes for which there is an increased correlation of input signal to a given gene’s output may
also result in both output alleles to burst at an increased rate but still cause no more co-bursting
than expected by chance. In such a situation, we would expect no correspondence between
allelic and input-output correlation in our measurements. Conversely, it could be that in
parameter regimes that lead to high values of input-output correlation, the input would cause
both output alleles to burst nearly simultaneously and thus show more co-bursting than
expected by chance. Given that bursts tend to occur on a shorter timescale than the dynamics
of signals, we reasoned that the latter scenario might be more likely, because relatively slow
fluctuations in the signal could lead to both alleles firing when the signal is high and both alleles
not firing when the signal is low, which would look (in aggregate) like an allelic correlation.

To confirm that allelic and input-output correlation corresponded across simulation conditions,
we began with visual inspections of their distributions across parameter space (Figure 3A). First,
we noticed that both measurements were primarily determined by the radd and roff parameters of
our model. Further, both metrics followed a similar ridged distribution in the parameter space of
radd and roff. Both allelic and input-output correlation followed similar distributions when changing
k and network connectivity as well (Figures S9A, S9B). To quantitatively measure the
correspondence between the two metrics across this parameter space, we scaled the odds ratio
and normalized mean genes in a multi-burst both scaled to between 0 and 1 by subtracting
each value by the minimum value and dividing by the range (min-max normalization). We
plotted the min-max normalized odds ratio and mean genes in a multi-burst against radd for three
constant values of roff and fit exponential curves from which we calculated the Km parameter of fit
(Figure 3B). We found the fit curves to be similar by eye, but with Kmm values at smaller radd for
odds ratio than for mean genes in a multi-burst. The offset of Km holds across values of roff,
indicating that simulations start to have allelic correlation before having high input-output
correlation in our models (Figure 3B, dashed lines). Taken together, we concluded that our
model indicates that the relative amount of allelic correlation could provide information for the
relative amount of input-output correlation, thus enabling the use of existing allelic correlation
data to help answer questions regarding noise transmission.
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Parameter regimes with high noise transmission have more frequent and longer
correlated deviations from baseline expression

We next were curious what comparative advantages and disadvantages different parameter
regimes leading to different levels of input-output correlation may have. Given that noise has
been shown to be beneficial in specific contexts (Raj and van Oudenaarden, 2008; Symmons
and Raj, 2016), we wondered whether there were potential advantageous functional properties
to genetic networks that allowed noise transmission to occur. Specifically, we reasoned that
parameter sets which blocked noise transmission (had low input-output correlation) would have
lower variability in expression over time but would also be unresponsive to perturbation.
Conversely, we predicted that networks with parameter sets that permitted noise transmission
(had high input-output correlation) would have more expression variability over time but would
be better poised to respond to signals. Does this trade-off between responsiveness and blocking
noise transmission exist in our model? To test our above predictions for the variability of
simulations with low or high input-output correlation, we picked representative parameter sets
from each region of parameter space and looked at variability over time in a three node
connectivity of one network (Figures 3C, 3D, 3E). We considered the median mRNA count of
each simulation to be the “baseline” expression of each simulation, and so the distance over
time from the median captured the deviation from the baseline. Simulations in the part of
parameter space that had high input-output and allelic correlation were at further distances from
the median for longer times. Another way to capture how far a simulation is from baseline is by
plotting the position of the simulation in the expression space defined by the levels of
expression of its three genes. We found that simulations in the high input-output correlation
region of parameter space are pulled away from the median by an initial bursting of a gene
which then transmits to many other genes in the network, causing a long time before the
simulation returns to the median. Thus, in simulations with high input-output correlation, a single
burst of a gene causes a long-lasting multi-burst that prevents the network from returning to its
median for a lengthy period of time.

Conversely, simulations of the part of parameter space with low input-output and allelic
correlation had comparatively low expression. When a given gene spontaneously expressed,
that expression would rarely transmit downstream to cause a second gene to burst. At the part
of parameter space where input-output correlation is the highest (or undefined, depending on
the metric used) and allelic odds ratio was undefined, and the expression levels in the
simulations were all constantly high, fluctuating about a steady state. Simulations at the
extremes of parameter space had comparatively low distance from the median compared to
simulations in the middle part of parameter space corresponding to high input-output and allelic
correlation. These simulated results suggested that gene regulatory networks in parameter
regimes that block noise transmission also would show lower deviation from median expression
over time, meaning that such networks would have consistent expression in a basal state.
Networks which permit noise transmission would instead frequently deviate far from the median
expression over time, leading to longer and often concurrent expression of multiple genes in the
network. These long periods of unwanted expression of multiple genes could lead to aberrant
downstream responses.
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Noise transmission is required for signal responsiveness but is minimized by trading-off
response time

Though high input-output correlation led to potential aberrant downstream responses, these
networks were also the ones which most readily transmitted upstream expression variability to
activate downstream genes. We reasoned that this observed transmission of random bursts of
expression also indicated that high input-output correlation networks were primed for
transmission of information. We therefore wondered if high input-output ratio also marked
networks that were more responsive to perturbation. To answer this question, we modeled an
extrinsic signal input to our network as a node with a constant, high level of RNA (400
molecules) that influenced the activation of a downstream node in the network with a constant
radd-signal = 1 (Figure 4A). We initialized the network without the external signal to minimize
initialization artifacts. We then ran 100 replicates of introducing the external signal and took the
average of the gene expression over time to estimate the final steady state of each gene in
presence of the signal. We calculated the dynamic range (dynamic range = log2(pre-signal
mean expression value / post-signal mean steady state)) for each gene, and the time to reach
0.666 of the post-signal mean for each gene (time constant). We found that the dynamic range
in response to signal was maximal in a ridge that overlapped with the ridges of allelic correlation
and input-output correlation (Figures 4B, 4C). Both to the left and the right of the ridge, there
was little possible dynamic range in response to an external signal. Only the narrow region of
parameter space that led to high input-output correlation and thus high noise transmission was
poised to respond to external signal.

Thus, for a given desired dynamic range to respond to an external signal, there is a minimum
noise transmission that is required. We wondered, however, if there could be any other
advantage in signal processing from increasing noise transmission beyond the minimum. We
hypothesized that further increasing input-output correlation may permit networks to respond
more quickly to signal at the cost of higher noise transmission. We tested whether there was a
trade-off between the time constant (time to reach 0.666 of post-signal steady state) and basal
noise transmission by analyzing simulations which were responsive to signal (log2 fold change
greater than two). We found that the time constant for such simulations was negatively
correlated with the input-output correlation, measured by total genes in a multi-burst (Figure
4D). That is, simulations with higher basal input-output correlation were faster to respond to
external signals. This change in response time was modest, with the slowest time constant of
5.84 time units and the fastest with 4.21 time units, but we found that this effect held across
values of k. We found that there is a narrow region of parameter space that allows
responsiveness to signal in our model, and that within that region, there is a trade-off between
response time and basal network fidelity to noise.
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Testing model findings with a published allele-resolved single cell RNA sequencing
dataset

Genes with high allelic odds ratios are enriched for cell-type specific functions

Armed with the correspondence between allelic correlation and noise transmission, we
wondered if we could use sequencing data on allelic correlation to infer the noise transmission
properties of genes across the genome. We used a recent single cell RNA sequencing dataset
in which the authors performed allele-resolved single cell RNA sequencing on mouse embryonic
stem cells and adult fibroblasts (Larsson et al., 2019). Using these data, the authors could infer
transcriptional kinetic parameters for each gene. According to their two-state model of
transcription, Larsson et al. assumed a parameter space defined by ron, equivalent to burst
frequency, and roff, corresponding to gene inactivation (they did not fit an radd term for additional
gene regulation from other genes). We plotted the odds ratio for allelic expression in the
parameter space defined by parameters ron and roff estimated from these real data (Figure 5A,
supplementary table 1). For ease of visual interpretation, we binned the parameter space (ron

was binned into groups of size 0.03 units, and roff was binned into groups of size 0.04 units) and
took the mean odds ratio of all genes within that bin, excluding non-numeric odds ratios, which
we can then optionally overlay onto the resulting heatmap (Figure 5A, S10). The distributions of
allelic odds ratios were similar between embryonic stem cells and adult fibroblasts, and both
distributions had a ridge of low allelic odds ratio. We noted that the distributions of allelic odds
ratios for embryonic stem cells and fibroblasts appeared to be missing the region of low odds
ratio at low ron values compared to the distributions in our models, likely due to technical
drop-outs from single cell RNA sequencing.

To find which functional categories were enriched among genes with high odds ratio in each
region of parameter space, we performed functional enrichment analysis. We grouped genes
according to their odds ratio and ron values, using an odds ratio of ten as a cut-off for low or high
odds ratio and likewise a cutoff of one for low or high ron. Genes in each category were
subsequently subject to functional annotation analysis using EnrichR (Chen et al., 2013;
Kuleshov et al., 2016; Xie et al., 2021). The functional enrichment of genes with high allelic odds
ratios and high ron values were largely similar between the two cell types and consisted largely
of house-keeping genes and genes associated with the cell cycle (e.g. control of transitions
between growth and mitotic phases) (Figures 5B, 5C, supplementary tables 2 and 3). One may
expect cell cycle genes to have high odds ratios because they are often expressed only at
particular parts of the cell cycle, and thus in a population of asynchronous cells there could be a
concordance between expression from the two alleles. In contrast, the functional enrichments of
genes with high allelic odds ratios and low ron values were not shared between the two cell
types. Instead, these gene sets were specific to the function of each particular cell type. In
embryonic stem cells, these genes were enriched for functions in differentiation, development,
and morphogenesis, but in adult fibroblasts, these genes were enriched for functions including
regulation of microtubule cytoskeleton and mitosis. Thus, genes with high odds ratios and low
ron values often had functions specific to that cell type. Our model predicts that these cell
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type-specific genes should be poised to respond to external cues, which may make sense for
genes that must perform important cell-type specific functions.

Our analysis appeared to identify two groups of genes with high allelic odds ratio: those with
relatively high ron value, which functional annotation analysis appeared to indicate were essential
(“housekeeping”) genes, largely common between the two cell types, and those with
comparatively lower ron value, which appeared to have cell-type specific function. We expected
this latter category of genes to be more prone to burst transmission, and consequently be more
likely to show expression only in rare cells (Figure 5D). We sought to capture this rare cell
expression using the Gini coefficient as a metric (Jiang et al., 2016; Schuh et al., 2020; Shaffer
et al., 2017; Torre et al., 2018). Indeed, genes with low ron and high odds ratio tended to have
lower expression and higher Gini coefficient than those with high odds ratio and high ron (Figure
5E, S11, supplementary table 4). Thus, genes with higher odds ratios and low expression
tended to be expressed only in rare cells, in agreement with our hypothesis that genes with high
allelic odds ratios were more prone to long correlated deviations from baseline.

Upstream factors in signaling pathways have higher allelic odds ratios than downstream factors

Our model suggested that genes that need to be responsive to perturbation would have higher
noise transmission and thus higher allelic odds ratio. Genes involved in dynamic cellular
responses to either external or internal cues may need to be more sensitive to transcriptional
regulation by external perturbation. We therefore wondered whether genes involved in externally
or internally cued signaling pathways would have high allelic odds ratios. We found that genes
encoding proteins that specifically regulate response to external signals had higher allelic odds
ratios than all genes encoding proteins involved at all levels of the response to specific signals
known to be relevant to fibroblast biology (growth factors such as FGF, TGF, and TGF-b) which
in turn had higher allelic odds ratios than UDP-N-acetylglucosamine metabolism, which we
considered to be internally regulated and not necessarily an externally cued pathway (Figure 5F,
supplementary table 5).

We further found that genes which are upstream in all three pathways had higher allelic odds
ratios than their downstream counterparts (Figure 5G). Notably, there was a strict and consistent
trend of decreasing odds ratio in more downstream genes. Decreasing allelic odds ratio in more
downstream genes suggests that noise transmission was maximal at the start of a signaling
pathway but then decreased downstream, which perhaps indicates that the upstream factors in
these signaling pathways are tuned to be more responsive to transcriptional regulation.

DISCUSSION

We demonstrated that a mathematical model of transcription that includes transcription-factor
regulation can produce both correlated and uncorrelated allelic expression and that allelic
expression correlation closely approximated noise transmission. Parameter sets which led to
low noise transmission also produced uncorrelated allelic expression. We also find that some
degree of noise transmission is required for a given genetic network to respond to signals,
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which is also reflected in higher allelic correlation. More noise transmission, however, also leads
to greater and longer deviations from basal expression and thus may mimic presence of signal
even when no signal exists. To minimize such aberrant network activation while remaining
responsive to signals, genetic networks can trade-off response speed to signals. We show that
in a recent allele specific single cell RNA-sequencing dataset, genes with high allelic odds ratios
are enriched for cell-type specific functions, and that within multiple signaling pathways, genes
which are upstream in the pathway have higher allelic odds ratios than downstream genes.
Together, our findings suggest that noise transmission, as more easily measured by allelic
correlation, must be tightly tuned in genetic networks to allow appropriate signal responsiveness
but prevent untriggered activation.

Our work adds to a growing body of evidence suggesting that the autosomal random
monoallelic expression observed in allele specific scRNA-seq datasets can be explained by the
transcriptional burst hypothesis (Larsson et al., 2021; Rv et al., 2021). However, to date there is
no consensus as to any underlying biological advantage that arises from uncorrelated allelic
expression. Our findings suggest that uncorrelated allelic expression may very well be a
signature of an evolutionary pressure to minimization of noise transmission. We show that
networks with high noise transmission (and high allelic correlation) have longer deviations from
baseline expression and that these deviations often involve expression of multiple genes. These
long, correlated deviations from baseline may in turn cause aberrant activation of downstream
cellular processes leading to deleterious effects. Moreover, given the large number of genetic
networks and many points of connection between them, if all such networks were to transmit
noise, then a random burst would cause a perhaps infinitely long deviation from the basal state.
In other words, without some ability to minimize noise transmission, cells would not be able to
maintain a basal transcriptional state.

Of course, some genetic networks need to be responsive to perturbation, and our model
suggests that such networks must allow a higher degree of noise transmission and thus higher
allelic correlation. Genes and genetic networks which require high fidelity but not fast response
times should be expected to show low allelic expression correlation. Genes that need to rapidly
respond to signals, however, must approach parameter values which lead to higher noise
transmission and thus higher allelic expression correlation. Indeed, our analysis of an existing
allele specific single-cell RNA-sequencing dataset corroborates these predictions from our
model. Genes with high allelic odds ratios and high Gini coefficients were enriched for functions
related to cell-type specific signaling pathways, suggesting that genes that encode factors
responsible for responding to external signals are poised for response. Our hypothesis was
further supported by the striking finding that the allelic odds ratio decreased from upstream to
downstream in signaling pathways that respond to external signals. Despite the theoretical
downsides to noise transmission as reflected by high allelic odds ratio, our consistent
observation of high allelic odds ratios upstream in signaling pathways is consistent with our
hypothesis that noise transmission is needed for signal responsiveness.

In our model, once a given network is able to respond to external signals, there is an additional
optimization for either signal transmission speed or fidelity to noise in the absence of signal.
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This trade-off implies that responding quickly comes at the cost of greater aberrant activation
due to stochastic, unsignaled bursts. On the other hand, if untriggered activation of a given
network were greatly deleterious, then that network may be optimized to respond more slowly in
order to more efficiently block transmission of noise. Slow-responding but high fidelity networks
may help explain the long timescales of processes that need to be carefully coordinated, such
as development (Gregor et al., 2007; Milo et al., 2002). Given the relatively narrow region of
parameter space in which the trade-off between basal noise and response speed occurs,
emerging technologies to measure multiple RNA species over time in single cells to directly
measure noise transmission will be able to more precisely define the limits of these trade-offs
(Wan et al., 2021). Alternatively, mathematical models to infer transcriptional noise and
dynamics from static measurements may be extended to specifically estimate noise
transmission (Gorin and Pachter, 2020; Ham et al., 2021; Komorowski et al., 2011; Munsky et
al., 2012; Skinner et al., 2016).

This work suggests that changes in parameters and network architecture lead to changes in
signal processing that are intrinsically tied to how genetic networks transmit noise. Network
inference studies of gene expression data show that network connectivity can change during
state transitions (Moignard et al., 2015; Schlauch et al., 2017). Our results show that at constant
parameters, an increase in network connectivity could move a given network from unresponsive
to signal to responsive and vice versa. Moreover, there is evidence that noise itself may be a
tunable parameter of genetic networks. Changes in promoter architecture have been shown to
either increase or decrease transcriptional variability and expression timing (Ali and Brewster,
2021; Blake et al., 2006; Jones et al., 2014), providing a tuning method on evolutionary
time-scales. On much shorter timescales, epigenetic and DNA repair mechanisms provide
another mechanism by which a genetic network can be tuned into or out of signal response
regimes (Desai et al., 2021; Weinberger et al., 2012). We posit that transmission of noise is a
“necessary evil” of signal responsiveness, and there may be other such tradeoffs as well.

SUPPLEMENTAL INFORMATION

Supplemental information contains 11 figures and 4 tables
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MAIN FIGURE CAPTIONS

Figure 1. An allele-specific transcriptional bursting-based network model can be tuned to
either block or transmit noise, as captured by the degree of allelic expression correlation.

(A) Schematic of a population of cells responding to either an upstream signal (top) or noise
(bottom). When some cue causes an upstream gene to burst (top, left), that signal needs to be
transmitted to the downstream gene to cause it to burst (top, right). When there is no cue and
there are random bursts in the upstream node (bottom, left), cells in which the bursts in the
upstream genes occur may have activation of the downstream genes (bottom, right). This noise
may transmit to both alleles of the downstream gene, causing co-expression of the alleles.

(B) Schematic of allele-specific transcriptional bursting-based network model for example two
node network. Gene A and gene B both are modeled as having two identical alleles with DNA in
either an inactive (off) or activate (on) state, with transitions governed by rates ron and roff. Each
allele of the gene produces distinct mRNA, synthesized with rates rprod and d*rprod in the inactive
and active states respectively. mRNA from each allele degrades with rate rdeg. Gene regulation
is modeled by a Hill function using the sum of mRNA counts from both alleles of a regulating
gene as an input, governed by Hill coefficient n, dissociation constant k, and rate radd. Regulation
is applied equally to the DNA of both alleles.

(C) Schematic of examples of allelic correlation and input-output correlation for two genes with
two alleles each. Allele correlation is when both alleles burst at the same time. Input-output
correlation is when the bursting of either allele of a gene causes bursting of its regulated gene.

(D) Schematic of parameter space with real example traces of a two node, two allele network
with gene A regulating gene B. Depending on the parameters chosen, simulations of the
network show low or high allelic and input-output correlation. We observe that allelic correlation
qualitatively corresponds to input-output correlation.
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Figure 2. Odds ratio for allelic expression shows a ridge of high allelic correlation in the
parameter space defined by radd and roff

(A) For each gene in a simulation, we set a threshold of 3 molecules and binarize the RNA
count over time for each allele. At each time point, we are interested if neither, only one, or both
alleles are expressed. We calculate the contingency table using each time point as an
observation. We then calculate the odds ratio where a higher odds ratio means more
co-expression of the alleles and an odds ratio of one is no more co-expression than by chance.
Finally, we calculate the mean odds ratio across all genes in a given simulation.

(B) A heatmap showing the distribution of log transformed mean odds ratio in the parameter
space defined by rates radd and roff. Other parameters are held constant at k=110, ron = 0.00025,
rprod = 0.0001, rdeg = 0.01, n = 1, d = 10000. There is a ridge of high mean odds ratio with
uncorrelated allelic expression to the left and constitutive expression of both alleles to the right.
Four example traces show a range of odds ratios. Top traces are gene product counts over
time. Bottom traces are the binarized values of each allele over time.

Figure 3. The degree of allelic correlation corresponds with the relative degree of noise
transmission across parameter space, marking parameter sets with high variability over
time.

(A) Comparison of distributions of log transformed mean odds ratio (proxy for allelic correlation)
and the mean number of genes in a multi-burst (proxy for input-output correlation) shows similar
distributions in radd-roff parameter space.

(B) The log mean odds ratio and mean genes in burst for three sets of parameters with constant
roff (A) fit to similar exponential curves. Log mean odds ratio and mean genes in burst were
min-max normalized and fit with

(C,D,E) Visualization and analysis of variability for representative simulations from marked
regions of the exponential curve. RNA count summed over both alleles for each gene in a three
node network, connectivity one network is plotted individually over time (top graph) colored by
gene. The euclidean distance from the median is plotted over time (middle graph) with color as
the simulation time. The position of the simulation over time is plotted in the three-dimensional
gene expression space (bottom graph) is colored by time with median values indicated by the
black point. Higher distance over time and longer deviations from the median show that
parameter set (D) from the growth part of the curve is more variable over time.

Figure 4. High input-output correlation parameter sets allow response to external signals
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with a trade-off between response time and baseline noise transmission.

(A) Schematic and example traces of signal response simulations. In the absence of an external
signal (yellow node), simulations are pre-run to allow initialization of values. Then an external
signal is added with strong regulation on a single node of the network. The external signal
addition is repeated 100 times. The value of each gene and each time is averaged. From this
averaged response, we calculate the steady state and time constant, defined as the time it
takes to reach 0.66 of the steady state.

(B) Heatmap of dynamic range, defined as the log2 fold-change of the post signal steady state to
the pre-signal mean value for the red node in the parameter space defined by radd and roff with k
= 110 shows a ridge of high dynamic range in the region of high allelic and input-output
correlation.

(C) Heatmap of the time constant for the same node and same parameter space shows a
similar ridge.

(D) All parameter sets which show at least a 4 fold response to signal show an inverse
relationship between mean total nodes and the time constant across many values of k.

Figure 5. Cell-type specific gene expression identifies functional correlates of model
findings.

(A) Heatmap displaying allelic odds ratio values in relation to ron (burst frequency) and roff based
on allele-resolved single cell RNA sequencing measurements detailed in Larsson, et al.
Measurements from mouse embryonic stem cells and mouse adult fibroblasts show a similar
distribution of values.

(B) Functional annotation, using EnrichR, of distinct groups of genes, identified by their ron and
odds ratio values. Regions of high odds ratio (>10) corresponded either to genes with ron > 1,
which confer essential “housekeeping” functions, or to ron < 1, which confer cell-type specific
functions differing between embryonic stem cells and adult fibroblasts.

(C) Schematic diagram displaying the enriched functional categories of genes with allelic odds
ratio >10.

(D) Schematic diagram displaying the predicted differences between high odds-ratio genes with
ron > 1 and ron < 1. Genes with ron < 1 are stipulated to have lower expression and burst
frequency on average, but display coordinated high expression states, as indicated by a high
Gini coefficient.

(E) Correspondence between allelic odds ratio and Gini coefficient. (Top) heatmaps displaying
Gini coefficient in relation to ron and roff. Regions of high odds ratio and low ron occupy a region of

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2021. ; https://doi.org/10.1101/2021.11.26.470134doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.26.470134
http://creativecommons.org/licenses/by-nc-nd/4.0/


parameter space with high Gini coefficient. (Bottom) scatterplots relating odds ratio to Gini
coefficient, illustrating two distinct groups of genes with high odds ratio: one with high Gini
coefficient, and one with low Gini coefficient.

(F) Comparison of allelic odds ratio by gene ontology (GO) pathway, specifically comparing
genes regulating responses to external signals, individual signaling pathways, and internal
pathways.

(G) Reconstruction of TGF-b, PGDF, and FGF signaling pathways annotated with allelic odds
ratio. Odds ratios strictly and consistently decrease in proximal to distal pathway members.

METHODS

Network architecture

We use a network model originally developed in Schuh et al. with minimal modifications. Briefly,
our model consists of nodes, which represent genes, and directed edges, which represent
regulation by another gene. For a network of N nodes, we define an N*N adjacency matrix such
that

Aij = 1, if there is an edge from node i to node j

0, else.

We restrict our networks in three ways. First, we only consider symmetric networks, i.e.
networks in which the number of ingoing and outgoing edges within a node and across nodes is
identical and either all nodes have a self-loop or not. Second, we constrain our analysis to at
least weakly-connected networks. Our final restriction is to only consider non-isomorphic
networks, i.e. we discard networks if a bijection exists from the edge space of that network to
another in the analysis such that any edge of the first network is projected to the particular edge
of the second. Please see Schuh et al. for complete details (Schuh et al., 2020).

These restrictions greatly diminished the number of possible network structures, and allowed us
to analyze networks of sizes 2, 3, 4, and 5 nodes which correspond to a total of 24 network
architectures.

Transcriptional bursting model

Our model extends the leaky telegraph model presented in Schuh et al. to include two identical
alleles of each gene. In this model, DNA can take on either an active or an inactive state, which
translates to a low or a high rate of production of gene products respectively. The inactivation or
activation of each allele of a given gene are identical but independent processes. We include
interaction terms to the model, where the gene product of an upstream gene influences the rate
of DNA activation of the downstream gene dependent on the network structure. We consider a
gene product as one mRNA that is faithfully and immediately translated to one protein. We
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therefore consider the amount of regulation dependent on the mRNA count. The mRNA from
each allele are independent but identical: the strength of the regulation depends on the sum of
the mRNA from each allele. We model the regulation using the Hill function, given by:

f(mRNAA1, mRNAA2) = (mRNAA1 + mRNAA2)n/(kn + (mRNAA1 + mRNAA2)n),

where mRNAA1 is the mRNA count of gene A, allele 1, mRNAA2 is the mRNA count of gene A,
allele 2, n is the Hill coefficient and k is the dissociation constant, n,k >0.

For each allele of each gene, the transitions between inactive and active states along with
mRNA production and degradation are modeled by chemical reactions as described previously.
Briefly, there are three chemical species: the DNA inactive state, the DNA active state, and the
mRNA. The three species interact with each other according to these five chemical reactions:

I -> A

A -> I

I -> I + mRNA

A -> A + mRNA

mRNA -> null.

The chemical reactions are explained by the eight rates/parameters:

Parameter Description

ron The rate of DNA activation

roff The rate of DNA inactivation

rprod The rate of mRNA synthesis

rdeg The rate of mRNA degradation

radd Parameter controlling magnitude of additional
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DNA activation rate from gene regulation

d Factor by which mRNA synthesis rate is
increased when DNA is in active state

k Dissociation constant of Hill function

n Hill coefficient

The full model for a single allele which is regulated by gene A, consisting of two alleles A1 and
A2, is given below:

Chemical reaction Reaction rate Reaction propensity

I -> A ron + radd * (mRNAA1 + mRNAA2)n/(kn +
(mRNAA1 + mRNAA2)n)

(ron + radd * (mRNAA1 +
mRNAA2)n/(kn + (mRNAA1 +
mRNAA2)n))*I

A -> I roff roff * A

I -> I + mRNA rprod rprod * I

A -> A + mRNA d*rprod d*rprod*A

mRNA -> null rdeg rdeg * mRNA

Where I,A ∈ {0,1}, and I+A=1, and I = 0 marks DNA as in an active state and I = 1 marks DNA
as in an active state. mRNAA1 and mRNAA2 are the mRNA counts of allele 1 of gene A and allele
2 of gene A respectively at the given time, and the parameters are as given above.

In cases where more than one gene influences the expression of a gene, we add the Hill
function terms of the respective influencing genes. For example, if the activation of a given allele
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is influenced by gene A and gene B, both with two alleles 1 and 2, then the rate of the chemical
reaction I -> A would be:

ron + radd * ((mRNAA1 + mRNAA2)n/(kn + (mRNAA1 + mRNAA2)n) + (mRNAB1 + mRNAB2)n/(kn +
(mRNAB1 + mRNAB2)n)

Parameters

We sought parameter sets which would provide examples of high and low allelic and
input-output correlation and then wide ranges of parameters to be able to systematically test
correspondence between allelic and input-output correlation. A priori, we expected terms in our
model that controlled regulation between nodes to be most important for these phenomena. In
our model, regulation is at the level of DNA activation, which corresponds to a shift in mRNA
steady state from rprod/rdeg to d * rprod/rdeg. This is controlled by constant term ron and variable term
radd, which varies according to a Hill function that depends on the count of the regulating mRNA.
We wanted activation of DNA that was not due to regulation to be rare so that any DNA
activation in the presence of a high count of regulating mRNA could reasonably be attributed to
regulation. Consequently, we used a constant low value of ron but varied radd as a parameter of
interest in our study. Additionally, since the length of each transcriptional burst is exponentially
distributed with parameter roff, we also varied roff in our study. We also varied k, which serves as
the set point for half regulation in the Hill function. In a supplemental parameter set, we varied
the Hill coefficient n.

Parameter ensemble one- 700 parameter sets

Parameter Values

rdeg 0.01

rprod 0.0001

radd 0.0010, 0.0022, 0.0046, 0.0100, 0.0215,
0.0464, 0.1000, 0.2154, 0.4642, 1.0000

roff 0.0100, 0.0167, 0.0278, 0.0464, 0.0774,
0.1292, 0.2154, 0.3594, 0.5995, 1.0000

ron 0.00025
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d 100000

k 20, 50, 80, 110, 140, 170, 200

n 1

Parameter ensemble two (supplemental data only)- 500 parameter sets

Parameter Values

rdeg 0.01

rprod 0.0001

radd 0.0010, 0.0022, 0.0046, 0.0100, 0.0215,
0.0464, 0.1000, 0.2154, 0.4642, 1.0000

roff 0.0100, 0.0167, 0.0278, 0.0464, 0.0774,
0.1292, 0.2154, 0.3594, 0.5995, 1.0000

ron 0.00025

d 100000

k 10

n 0.2, 0.5, 1.0, 2.0, 4.0
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Simulations

We used Gillespie’s next reaction method to simulate our transcriptional bursting model across
parameter ensemble one and two (a total of 1200 parameter sets) and 24 network architectures.
To adequately sample simulations with low expression, we simulated 20 million time units for
Gillespie simulations used to calculate summary statistics. For more manageable file sizes, we
used separate 1 million time unit simulations to pull examples of RNA traces. Additionally, to
keep file sizes small, we ran parameter ensembles one and two separately. Initialization
conditions (t=0) for all simulations was for all DNA to be inactive and all mRNA counts to be 0
molecules. Though the initialization conditions are arbitrary, we allow mRNA counts to reach
steady state before visualization and analysis (see below). We performed all simulations in
MATLAB 2019a and 2020a.

Odds ratio analysis

For each simulation, we calculated the odds ratio for simultaneous expression from both alleles
of each gene. To allow for each simulation to reach steady state, we first trim the first 100 time
units. We then binarize the expression of each individual allele based on whether it exceeds a
threshold of 3 molecules to exclude counting small amounts of promoter leak. For each gene,
we then use the matlab function crosstab to calculate the contingency table for the binarized
expression over time of both alleles of the gene. We then calculate the odds ratio for each gene
using the MATLAB function fishertest if the resulting contingency table is 2x2; in cases where
the contingency table is not 2x2 (such as when two or more values are zero), we assign the
odds ratio to be NaN. Since all networks are symmetric with the same parameters for all genes,
all genes should have the same odds ratio and so we take the mean of the odds ratio from each
gene. We export the data to R for visualization.

Multi-burst analysis

We analyzed “multi-bursts” for each simulation by first trimming the initial 100 time units. We
then sum the gene product counts from both alleles at each timepoint. Next we binarize the
expression of each gene based on whether the gene product count exceeds 3 molecules and
count the number of genes that are above that threshold at each timepoint. We then find all
distinct time intervals in which at one or more time points, two or more genes are expressed
above the threshold. These are multi-bursts. For each multi-burst, we calculate the number of
time units the multi-burst lasts and the number of genes that exceed the expression threshold
during the burst. We then calculate the mean of the burst length and number of genes involved
in the burst for across all bursts in the simulation. We also count the total number of bursts in
the simulation. We export the data to R for visualization.

Distance analysis

We calculated distance from the median for each simulation by trimming the first 100 time units
and summing the gene product counts from both alleles at each timepoint for each gene. We
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then calculated the median gene product count for each gene over the length of the simulation.
For each gene at each timepoint, we took the square of the difference between the median gene
product count and the gene product at that time point. We exported the data to R for
visualization

External signal network and simulations

We extended our network model described above to include one additional node that could be
independently modulated to simulate the effect of external signals on the rest of the network.
We began with a 5 node, degree 1 network and added a 6th node with a directed edge to node
1. Since we consider this 6th node as an external signal, all chemical reactions for that node
were discarded from the model and the gene product count was initialized to either 0 or 400
molecules. The value of 400 molecules was chosen to be much greater than any k value used
in the simulations to exert a strong regulation on the network from the signal. In the chemical
reaction for gene 1, the signal was given a separate term given by

radd-signal * (mRNAsignal)n/(kn + (mRNAsignal)n)

where radd-signal = 1 and mRNA = 0 or 400. Notably, the degradation reaction for the signal node
was discarded, so the amount of signal mRNA was constant over time.

Since we are interested in the immediate response dynamics to signal, our strategy for other
analyses to arbitrarily set initialization conditions and then only analyze data subsequent to
trimming would not be appropriate. Instead, we opted to “pre-run” the simulation without the
presence of the external signal (gene product count of node 6 = 0) and then use the conditions
at the end of the pre-run to initialize a simulation that included an external signal. Since any
given end conditions may not be representative of the steady state of a given simulation, we
simulated 100 pre-runs to use as initialization conditions. For each initialization condition from
the 100 pre-runs, we then ran 100 replicate simulations with the gene product count of node 6
set to 400 molecules for a total of 10,000 replicates in the presence of signal for each parameter
set.

Dynamic range and time constant calculations

For each parameter set, we want to calculate the change in mean expression that results from
stimulation with the signal. In the absence of a signal, we sum the gene product counts of each
allele of each gene. We find the mean expression value of each gene before signal addition by
taking the mean value of the gene product count for each gene over time, after trimming the first
100 time units (to account for initialization time). Since we perform 100 replicates of the pre-run
(no signal), we have 100 mean expression values for each gene for each parameter set. Each
of the 100 pre-run replicates maps to 100 post-signal replicates; we took the mean value for
each gene (after summing alleles) at each time point over the 100 post-signal replicates that
correspond to a given pre-run. The resulting matrix represents the mean value at each time
point after exposure to signal (see Figure 4D). Using the matrix, we find the mean value over
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time of each gene. This is approximately equal to the maximum steady state value in response
to the signal since the time to reach the steady state is small in comparison to the length of the
simulation (~5 time units v. 200 time units). We then calculate the time constant, i.e. it takes for
each gene to reach 0.666 of its maximum (steady-state) value. If the starting value pre-signal is
greater than 0.666 of its max value, we set these time constants to 0. We export the data to R
for further analysis and visualization.

In R, we take the mean expression of each gene across all 100 pre-run replicates, resulting in a
single pre-signal mean expression for each gene in each parameter set. We do likewise and
take the mean of the steady state of each gene across all 100 signal replicates. We then
calculate the dynamic range as

Dynamic range = log2(pre-signal mean expression value / post-signal mean steady state)

Functional Enrichment analysis

A dataset (Larsson et al., 2019) comprising allele-resolved single cell RNA sequencing data
from 188 embryonic stem cells and 224 mouse adult fibroblasts, along with kinetic parameters
for genes comprised therein, was used for functional enrichment analysis. Data were binarized,
with each cell being considered to express or not express a given gene, for each allele. Allelic
odds ratios were subsequently calculated for each gene.

Gini coefficients were also computed for each gene(Jiang et al., 2016), using Reads Per
Kilobase of Transcript (RPKM). In this analysis, a Gini coefficient of 0 implies that for a gene, all
cells within a population have the expression. A Gini coefficient of 1 suggests a completely
unequal distribution of gene expression that only one cell expresses the gene.. We used the
MATLAB function gini (Gini coefficient and the Lorentz curve
(https://www.mathworks.com/matlabcentral/fileexchange/28080-gini-coefficient-and-the-
lorentz-curve/, MATLAB Central File Exchange. Retrieved October 24, 2019.).To relate Gini
coefficients, computed on each allele independently, to allelic odds ratio, which summarizes
data from both alleles, the average Gini coefficient was used for each gene. Visualizations were
performed using R.

Using EnrichR (https://maayanlab.cloud/Enrichr/), functional enrichment analysis was carried
out for all genes with allelic odds ratio > 10, odds ratio < 10, odds ratio between 0 and 5, and
genes with non-numeric allelic odds ratio. This analysis takes as input lists of genes and
identifies among them overrepresented functional categories, as identified by a predetermined
list of pathways or “gene ontologies.” Among genes with allelic odds ratio > 10, we subsequently
analysed those with ron > 1 and ron <1. In particular, enrichments comprised within the 2021
Gene Ontology Biological Process library were considered.
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