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Abstract 
The comprehensive chemical description of air pollution is a prerequisite for understanding 

atmospheric transformation processes and effects on climate and environmental health. In this study, 

a prototype vacuum photoionization Orbitrap mass spectrometer was evaluated for field-suitability by 

an online on-site investigation of emissions from a ship diesel engine. Despite remote measurements 

in a challenging environment, the mass spectrometric performance could fully be exploited. Due to 

the high resolution and mass accuracy in combination with resonance-enhanced multiphoton 

ionization, the aromatic hydrocarbon profile could selectively and sensitively be analyzed. Limitations 

from commonly deployed time-of-flight platforms could be overcome, allowing to unravel the oxygen- 

and sulfur-containing compounds. Scan-by-scan evaluation of the online data revealed no shift in exact 

m/z, assignment statistics with root mean square error (RMSE) below 0.2 ppm, continuous high-

resolution capabilities, and good isotopic profile matches. Emissions from three different feed fuels 

were investigated, namely diesel, heavy fuel oil (HFO), and very low sulfur fuel oil (VLSFO). Regulations 

mainly concern the fuel sulfur content, and, thus exhaust gas treatment or new emerging fuels, such 

as the cycle-oil-based VLSFO, can legally be applied. Unfortunately, despite lower CHS-class emissions, 

a substantial amount of PAHs is emitted by the VLSFO with higher aromaticity compared to the HFO. 

Hence, legislative measures might need to take further chemical criteria into account.  
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Introduction 
Air pollution was found to significantly alter the atmospheric physico-chemistry and cause a substantial 

burden to the globe through climate change.1 Aside, air pollution causes considerable environmental 

health effects.2 Therefore, a molecular-level description of the pollution sources is crucial for 

understanding their environmental fate and toxicological impact. Among emission sources, maritime 

transport logistics was shown to play an essential role. In 2015 more than 80% of the global 

transportation of goods was performed via the sea.3 The rising demand for shipping and the lack of 

international restrictions increased the relevance. Consequently, ship emissions have become one of 

the main contributors to air pollution.4  

Shipping emissions exhibit a unique molecular profile,5–7 different from other sources, such as biomass 

burning8 or on-road engine emissions.9,10 Historically, bunker fuels, a heavy residue of fossil petroleum 

refining with a high sulfur content and rich in aromatic constituents, have been used due to market 

availability and low prices. In this context, reduction measures have been introduced to limit emissions, 

such as sulfur emission control areas (SECAs) in epicontinental seas. Here, fuel-sulfur content (FSC) has 

been limited to 0.1% (m/m) since 2015. In 2020, a novel regulation limiting the FSC from 3.5% (m/m) 

to 0.5% (m/m) by the International Marine Organization (IMO) became effective internationally. 

Consequently, these regulations lead to an overall broadening in the market, adapted shipping fuel 

landscape, and emerging novel fuel compositions. The modest analytical procedures given in ISO 8217 

do only specify the propellants, not their exhaust gases. Even so, the sulfur content is regulated, e.g., 

to reduce SOx emissions, the specification for gaseous compounds is very limited. Nonetheless, due to 

the high complexity and challenging molecular profile of ship emissions, it is necessary to use various 

systems that allow us to comprehensively understand the organic matrix. In this regard, state-of-the-

art instrumentation like the aerosol mass spectrometer (AMS)11,12, extractive electrospray ionization 

(EESI)13, or aerosol time-of-flight (ToF)14–16 mass spectrometer have shown tremendous potential. 

Nevertheless, these advanced approaches are targeting the particle phase of the aerosol. 

Complementary it was shown that the in-depth description of the gas phase is of equal importance.17 

Commonly, gaseous compounds can be trapped and sampled on cartridges for subsequent laboratory 

analysis, e.g., for profiling the carbonyls.18,19 Despite high sensitivity and selectivity, the time-

dependent information is often lost. Online mass spectrometric profiling often relies on lower 

resolving time-of-flight mass spectrometry platforms, making it harder to identify species in the 

complex matrix with high confidence. Nonetheless, it was shown that these ToF systems can 

investigate dynamical processes from various emission sources.20–23 Laser-based resonance-enhanced 

multiphoton ionization (REMPI) is frequently deployed, focusing the analyses on polycyclic aromatic 

hydrocarbons (PAHs), which are known for their mutagenic/carcinogenic health effects. Particularly, 

primary engine emissions have shown high contributions of PAHs, for ship emission largely resulting 
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from un- and partially-burned feed fuel. More importantly, due to the high content of heteroatoms 

(nitrogen, sulfur, oxygen, and metals) in the feed fuel, ship emissions contain not only core or alkylated 

PAH species but also nitrogen- and sulfur-containing derivatives (PASH/N-PAHs) as well as oxidized 

components (oxy-PAHs). Discovering this molecular complexity requires high resolution performance 

of mass spectrometers due to the mass spectral overlaps with other compounds. Therefore, molecular-

level monitoring with improved differentiation of PAHs, PASHs, N-PAHs, and oxy-PAHs of ship emission 

sources is of high interest24 and lacks suitable robust field instrumentation. 

We investigate the primary emissions of a marine ship diesel engine by a novel vacuum photoionization 

(REMPI) high-resolution mass spectrometer. For this purpose, a field campaign at an engine facility 

studying three different fuels run by a four-stroke single-cylinder research engine operated at with 

different feed fuels (diesel, very low sulfur fuel oil (VLSFO), heavy fuel oil (HFO)) was realized. These 

complex fossil petrochemical feed fuels result in complex emissions acting as an ambitious testbed for 

the state-of-the-art Orbitrap analyzer-equipped platform. Our recently introduced modified Exactive™ 

Orbitrap (PhotOrbi) deployed with vacuum REMPI is evaluated here.25 The high resolution, spectral 

dynamic range, and mass accuracy of the Orbitrap platform are used to explore not only PAHs but also 

PASHs, N-PAHs, and oxy-PAHs. These compounds have been previously “hidden” from most online 

mass spectrometric approaches. This study aims to demonstrate the field applicability of the robust 

PhotOrbi system for on-site profiling of complex emission profiles in a challenging high-temperature 

and vibrating environment.  
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Material and Method 
Ship Diesel Field Campaign. In this study, the primary ship diesel emissions of three different feed 

fuels, namely a marine gas oil (Diesel, FSC < 0.1 w-%), a heavy fuel oil (HFO, FSC 1.7 w-%), and a very 

low sulfur fuel oil (VLSFO, FSC 0.5 w-%), were investigated. For this purpose, the fuels have been fed 

to a four-stroke single-cylinder research diesel engine (75%/60 kW cruise state and 25%/20kW harbor 

maneuvering engine load, displacement: 3,2 l). Additionally, to address novel IMO regulations, 

measurements were performed with HFO as feed and a wet exhaust treatment system (scrubber). 

Experimental Setup and Sampling. The vacuum photoionization Orbitrap (PhotOrbi) was installed in a 

room directly next to the research ship's diesel engine. A photograph and scheme of the simplified 

experimental setup are given in the Supporting Information (Figure S1). The instrument was coupled 

to the engine exhaust tubing at two connection points. The first one is sampling directly after the 

engine, resulting in high exhaust gas temperatures between 300°C – 400°C, whereas the second point 

is located after the scrubber exhaust treatment. For the latter, a significantly lower exhaust gas 

temperature of about 30 °C has been found. The raw exhaust gas, a mixture of particle and gaseous 

phase, was filtered with a heated filter unit (250 °C, stainless steel holder with a candle filter F-0, 1GF, 

M&C Tech Group, Germany). The connection between the sampling point and filter unit to the exhaust 

gas pipe was realized by a 5 m stainless-steel tube and a heated transfer line operated at 250 °C. A 

modified gas chromatography oven was used to uniformly heat the filter unit as well as the sample 

tubing and dilution in order to prevent saturation and contamination of the mass spectrometer. The 

exhaust gas concentration was regulated and diluted by a flow-controller-adjusted nitrogen supply (≥ 

99.999 v-%) prior to the heated filter unit. Adapting this initial dilution flow and the flow after the 

PhotOrbi inlet (waste split) allowed to regulate the overall sampled exhaust gas and dilution. By 

adjusting the nitrogen flow due to the implementation of a flow controller before the filter and a 

second flow controller between the connection to the PhotOrbi and the membrane pump, the 

incoming exhaust gas flow could be regulated. For the measurements, at sampling point one, a dilution 

ratio of 1:5 was used. At the second sampling point (30°C), less concentrated gas was measured; thus, 

no further dilution was necessary. Following the heated filter and dilution setup, the PhotOrbi is 

connected by a heated, deactivated fused-silica capillary (ID: 250 µm, length: 9 m, 250 °C). The diluted 

primary exhaust emissions are introduced in the mass spectrometer unit by a heated inlet, consisting 

of a heated capillary oven and a heated brass tip (both at 250 °C). Compared to the recently introduced 

PhotOrbi platform, this is a revised version with fewer cold-spots and improved sample transfer also 

for higher molecular weight compounds.25 The injected gas mixture is ionized by (1+1) REMPI process 

inside of the C-trap of the Orbitrap assembly utilizing a KrF excimer laser at a wavelength of 248 nm 

and a laser energy of 192 µJ. Mass spectra were generally acquired with a resolution setting R = 

140,000 at m/z 200, which refers to an acquisition speed of about 2 Hz. The phased time-domain 
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transients were acquired in parallel with mass spectra via the external high-performance data 

acquisition system (FTMS Booster X2, Spectroswiss, Lausanne, Switzerland), as described elsewhere.25 

System performance has been evaluated daily by measuring a standard gas mixture (Figure S2). 

Data evaluation. An extensive description of the mass spectrometric data collection and processing is 

given elsewhere25. In brief, the pre-processing of the recorded data is done by the Peak-by-Peak Base 

Edition software suite (version 2022.7.0, Spectroswiss), which includes conversion of the phased time-

domain transients into the mass spectra represented in the absorption-mode (aFT). The post-

processing is realized by two methods, first by a scan-by-scan evaluation of the collected mass spectral 

information, and secondly by time-domain transient averaging over certain time intervals/processes 

with stable conditions (same feed fuel and load settings). The attribution of the elemental 

compositions is done by a custom MATLAB (MATLAB R2020b) graphical user interface using the 

following boundaries: error width 1 ppm (scan-by-scan processing), 2 ppm (time-segment averaged 

processing); elemental composition restrictions C1−100H1−200N0−1O0−2S0−1, DBE range: 0-30, mass range: 

50-500 Da. 

Results and Discussion 
Studying ship diesel engine emissions – robustness and field versatility. In this study, the recently 

introduced photoionization Orbitrap mass spectrometer was tested and evaluated for the first time 

for its field suit- and applicability. For this purpose, the figures of merit of the high-resolution mass 

spectrometric unit performance as well as the ionization characteristics are discussed in the following. 

This procedure is crucial to observe the instrumental parameters under non-ideal, non-laboratory, 

remote conditions, affected by thermal instability, changing humidity, vibrations, and transport. 

Survey visualization of the time-resolved mass spectrometric information is generally used in ToF mass 

spectrometric approaches23 and allows for a first molecular insight into the overall emission 

characteristics. Exemplarily, Figure 1 displays the daily starting behavior of the ship's diesel engine; the 

changes in the molecular profile can easily be traced. 
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Figure 1: Survey plot (m/z versus time, abundance color-coded) of an exemplary engine launch. From start to 

approximately 200 s the engine is operated with distillate diesel fuel. The change to a residual bunker fuel (heavy 

fuel oil, HFO) leads to an enormous increase in abundance and molecular complexity, traced online via the 

photoionization high-resolution mass spectrometer (PhotOrbi) at about 2 Hz acquisition rate. Ten traces are 

marked exemplarily, and tentative chemical structures are given. 

More in detail, the research engine was launched and operated with clean diesel fuel (DIN EN 590) for 

several minutes. After this heating-up phase, the fuel type was switched to either HFO or VLSFO. In 

this example, the changes in the primary exhaust emissions for the switch from diesel to HFO are 

depicted, both at a nominal load of 20 kW. The photoionization high-resolution mass spectra recorded 

during the starting phase (<200 s), resulting from the combustion of diesel fuel, only featured low 

abundances of polycyclic aromatic hydrocarbons without alkylation (so-called “core” structures) up to 

an m/z of 228, e.g., chrysene. It has to be highlighted that the deployed REMPI scheme solely ionizes 

aromatic constituents, whereas non-aromatic compounds within the primary diesel emission, such as 

alkanes, alkenes, or aldehydes, are not accessed.25 Consequently, an overall minimal number of 

compounds (average 0-200 s, n = 202) has been identified, specifically the pyrogenic formed PAH cores 

with C16H10 (m/z 202) being the dominant ones. Online ToF photoionization MS has been previously 

reported on these compounds within a range of low-v-ppb traces up to v-ppm26 and the here evaluated 

PhotOrbi platform is capable to detect them. Furthermore, unique molecular formula attribution 

below 1 ppm has been achieved despite the low signal-to-noise ratio (Figure S3). During the transition 

phase from the distillate fuel diesel to the bunker HFO feed (200-800 s), the mass spectrometric 

complexity drastically increases with broader coverage in m/z and isobaric diversity, with a maximum 

of up to six signals per nominal mass. Moreover, the total ion current (TIC, Figure S4), as well as the 

abundances of the entirety of the individual signals (extracted ion currents, EICs), significantly 
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increased by several orders of magnitude. Aside from core PAHs, formed primarily pyrogenically, 

alkylated PAHs and polycyclic aromatic sulfur heterocycles (PASH) dominate the mass spectra. These 

compounds can classically be related to a high contribution of unburned fuel27,28, reported for ship 

diesel engines fed with bunker fuels. Even though for PASH (which behave similar to halogenated 

PAHs29,30 due to the heavy atom effect) low ionization cross sections have been reported, due to the 

short lifetime of the excited transition state in the REMPI process, high-concentrations in the primary 

ship diesel emissions of the bunker fuels with sulfur fuel content above 0.5 w-% cause a substantial 

mass spectrometric response. Aside, also more polar constituents, such as oxygen-containing 

compounds, e.g., oxy-PAHs, are detected as a product of incomplete combustion.31 These polar 

compounds can directly and confidentially be differentiated from other constituents, and are of high 

interest with respect to environmental aging and alteration of the emissions as well as toxicological 

effects.32,33 In routinely deployed ToF platforms, these CHO-class species might be analytically hidden 

below strong contributions of alkylated CH-class series and its isotopic fingerprints. 

Given the highly dynamic processes and enormous differences in engine emission and pattern, the 

launching phase and transition from a distillate to residual feed fuel act as ideal case for the Orbitrap 

high-resolution mass spectrometric figures-of-merit, such as resolution, mass accuracy, stability, and 

inter-spectral abundance spread, discussed in the following. For the Fourier transform (FT) mass 

analyzer, being a class of ion traps, controlling and limiting the number of injected ions (charges) is 

crucial for maintaining high performance. Consequently, in this first field deployment of the PhotOrbi 

platform, a conservatively high dilution of the primary exhaust gas and a single-laser-shot ionization 

event per mass spectral recording, should avoid overfilling of the C-trap and Orbitrap, respectively. 

Thus, even though not having automatic gain control (AGC) capabilities, initially provided by 

commercial atmospheric pressure Orbitrap mass spectrometers to regulate the number of injected 

charges, overfilling and space charge effects are safely minimized. Nonetheless, as a drawback, the 

dynamic range of the Orbitrap analyzer is not fully exploited and ratios of roughly 1e2 (100-280) 

between single-scan highest and lowest abundant peak picked signal (noise thresholding factor of one, 

which corresponds to about 5 standard deviations of noise) can be determined (Figure S6 a). Despite 

being one order of magnitude lower than the classically reported ranges, this value has been found to 

be very stable and highly reproducible given a stabilization of the ion load and emission source. Figure 

2 a) displays the time-resolved insight into the isobaric complexity of nominal mass m/z 222. Here the 

analytical benefit of separating and identifying the aerosol compounds can be seen immediately. 

Aside from the most dominant trace, C17H18
+, the radical cation of presumably a C4-alkylated fluorene 

or C3-alkylated dihydroanthracene (double bond equivalence, DBE, of 9), traces of CHS and CHO as well 

as 13C isotopologues of CH-class compounds can be identified. With nominal resolution, these traces 
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would remain hidden, and solely the dominant PAH compound would have been identified. Moreover, 

attribution heavily relies on literature work on comparable emission sources utilizing offline sampling 

and in-depth lab-based characterization, such as gas chromatography coupled with MS(GC-MS).23 

Despite not directly extracting isomeric information, accurate mass information by high-resolution MS 

enables an added additional validation dimension, even if there would have been only one trace per 

nominal mass. Despite sudden occurrence and steady increase in abundance till the steady state at 

roughly 1,000 s, no shifts or distortions of the locations of the m/z traces can be found. This m/z 

stability and accuracy can even be better depicted in Figure 2 b), c), and e), combining scan resolved 

expanded view of the m/z trace of C17H18
+ (m/z 222.1403), the respective EIC as well as histogram 

distribution of the exact peak picked positions. Alkylated fluorene derivatives are common petrogenic-

residuals from the feed fuel and, thus, occur at the switch from clean distillate diesel fuel to heavier 

HFO. Nonetheless, the exact m/z position is not shifting and is centered with a symmetric Gaussian 

distribution with a FWHM of below 0.4 ppm. Mass deviation of the mean value to the theoretical value 

after recalibration is below 0.1 ppm. For the entire broadband molecular complexity, the error 

distribution for the molecular formula attribution can be found in Figure S3 with a root-mean-square-

error (RMSE) of 0.18 ppm for approx. 400 attributed signals. 

The robustness of the high mass resolving power delivered by the FT Orbitrap mass analyzer is crucial. 

Figure 2 d) and f) exemplarily displays the time-resolved FWHM resolution of the already discussed 

C17H18
+ (m/z 222.1403) signal over a time interval of over 1,000 s. As for the m/z position, a stable and 

robust behavior of the FWHM can be found. Resolution is within the specification for a low field D30 

Exactive-series Orbitrap mass analyzer operated in absorption mode. A symmetric Gaussian 

distribution of the m/z FWHM with a resolution of over 140,000 at m/z 200 is registered. Most 

importantly, the resolution is not negatively affected by the abundance of the individual signal or the 

overall number of charges (TIC) with a FWHM of the distribution below 10 %. Interestingly, for very 

low TIC and EIC values (appearing below 500 s) an even improved higher resolution can be observed. 

Common mass splits, such as 12C1H4 versus 16O (~36.4 mDa) and 12C3 versus 32S1H4 (~3.4 mDa), can be 

seen in Figure 2 a), and are fully or sufficiently (at higher m/z) resolved for peak picking within the 

observed analytical m/z range of 50-300 Da. Comparing with other mass analyzers, such as ToF 

platforms, a resolution of at least 60-80,000 is required at m/z 350 (upper end of the here found 

emission pattern) for reliable differentiation of these mass splits; parameters only recently been 

achieved by quadrupole orthogonal-acceleration ToF systems and not reported in a comparable field-

study usage. 

For evaluation of the isotopic fine structure pattern, particularly, simulations of isotopic distributions 

can be helpful, conducted in this work via the FTMS Simulator software tool (Spectroswiss). Figure S6 

Page 9 of 28

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10 
 

b) compares the theoretical and experimental isotopic distribution of C16H10
+ (m/z 202.0777) for the 

averaged spectrometric information. Generally, deviations are below 10 % (theoretical versus the 

experimental abundance of a 13C isotopologue relative to the abundance of this isotopologue) (Figure 

S8). This performance is achieved over several thousands of scans during the online emission 

measurement (Figure S6 and S7) without trend and standard deviation below 2-3 % (relative to the 

monoisotopic signal). Consequently, the high-resolution MS PhotOrbi platform can harvest not only 

exact mass positions of the monoisotopic signals and their respective isotopologues but also an 

isotope-based exclusion of impossible attributions as additional validation. Notably, the response of 

CHS-class compounds has been too weak for an evaluation of the sulfur isotopes (32S 95.02 % versus 

34S 4.21 %). 

The applied REMPI process leads to an efficient and selective ionization of unsaturated constituents.34 

A detailed discussion on the ionization characteristics can be found in the Supplemental Material 

(Figure S9). Briefly, REMPI is selectively exploiting the aromatic portion of the chemical space as a 

crucial fraction with respect to unburned/partially burned fuel (petrogenic) and/or the formation of 

combustion products and soot precursory (pyrogenic).  
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Figure 2: a) Time-resolved visualization of the isobaric complexity at m/z 222, color-coded according to 

abundance. The isobaric interferences can be entirely resolved. b) Extracted ion chromatogram (EIC) of C17H18
+ 

revealing the appearance during the change from diesel to heavy fuel oil and stabilization after approx. 1,000 s. 

c) Time-resolved scatter plot of the exact m/z position, color-coded according to EIC abundance. The mean value 

is marked with a dashed black line, whereas the theoretical value is given as a red dashed line (Δm/z 0.1 ppm). 

d) Time-resolved scatter plot of the resolution of the C17H18
+ signal, color-coded according to EIC abundance. 

Lower ion currents, in the beginning, cause an improved resolution with a later stabilization. Histograms of the 

data from c) and d) are given in Figure S5.  
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Application towards feed fuel emission characteristics. In the following a comparison of the deployed 

feed fuels is discussed. For this purpose, a 5 min response of stabilized engine emissions is summarized 

and elemental composition is attributed. For visualization of the complex mass spectrometric data 

(Figure S10), commonly so-called fingerprint plots, such as the carbon number (#C) versus DBE 

(measure for hydrogen deficiency, i.e., unsaturation/aromaticity), are used. Figure 4 displays the #C 

versus DBE molecular maps ([M]+) for the feed fuels (diesel, HFO, and very low sulfur fuel oil) for the 

CH- and CHO- class. Data for the HFO emissions are given with and without the usage of a wet-scrubber 

for exhaust gas treatment. Despite the softness of the vacuum photoionization, highly alkylated 

constituents are prone to a certain degree of fragmentation, e.g., causing a continuous signal of C15H9 

at m/z 189. These processes generally result in even-electron configuration ([M+H]+/[M-H]-). The 

overall abundance of these artifacts is low and in the single-digit percentage. Beneficially, the 

capabilities of the high-resolution mass analyzer allow for a separation of the even and odd electron-

configuration signals, discussing the intact species solely. It has to be assumed, that this general 

ionization effect was similar in previous studies, but due to the usage of limited ToF technology not 

differentiable from the intact molecular pattern or 13C isotopologues. 

As expected, the distillate diesel fuel shows the least complex emission pattern with a low degree of 

alkylation (horizontal lines) and a maximum carbon number of 22. In contrast, the HFO and VLSFO 

primary emissions exhibit a significantly higher complexity with broader coverage of the molecular 

space, reaching up to carbon number 32. The same observation can be made for the DBE, where for 

the diesel emissions values above 12 are only rarely found and a strong population can be found for 

the non-distillate fuels HFO and VLSFO. Interestingly, for the CHO-class, the diesel emissions only 

reveal a very low number of core-structural motives (DBE series) with a maximum of 5-6 in alkylation 

length. Here, specifically, the oxygen-containing alkylated PAH series of benzo- and dibenzofuran (DBE 

6 and 9) can tentatively be attributed. Concerning the environmental fate or direct toxicological impact 

on humankind, these more polar constituents can be more easily absorbed via the respiratory system 

and might cause other metabolomics pathways compared to CH-class PAHs.35 Moreover, homologous 

series of classical oxidation products of the PAHs, forming oxy-PAHs at DBE 7 or 10, have only slightly 

been observed for the primary diesel emissions. For the HFO and VLSFO emissions also the CH-class 

compounds are the most dominant, but generally longer alkylation pattern can be found. Interestingly, 

the VLSFO exhibits increased abundances for higher DBE values compared to the HFO with DBE 12, 

e.g., pyrene/fluoranthene, being a dominant series, despite significantly lower FSC of the VLSFO. 

Hence, regardless of being considered as cleaner feed fuel in the shipping industry, as given by the 

molecular observation, combustion of the VLSFO will cause a substantial release of larger PAHs with a 

potentially higher carcinogenic impact on environmental health. This phenomenon is also given for 

CHO-class, which for both, HFO and VLSFO, is considerably more complex than the diesel emission 

Page 12 of 28

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13 
 

CHO-class. Here, also oxygenated analogous of the EPA PAHs, such as oxy-pyrene (DBE 12), can be 

attributed. The high content of aromatic constituents, despite a low FSC, was previously validated by 

comprehensive gas chromatography and thermal analysis mass spectrometry investigating various 

bunker fuels and a comparable VLSFO.36 

The molecular diversity of the PASH class is given in Figure 3. In agreement with the very low FSC of 

the diesel fuel of below 0.1 w-%, specified by the DIN EN 590 norm, only three signals at DBE 9 with a 

relative abundance of 0.18 % could be found. These species could also be caused by residues and 

carryover from past usage of the ship diesel engine or from the lubrication oil. The VLSFO exhibits a 

simple distribution, centered at DBE of 10-11, e.g., between dibenzo- (DBE 9) and benzonaptho-

thiophenic (DBE 12) structures, spreading #C 9-24 and DBE 5-16, with a relative abundance of 1 % for 

CHS-class. For the HFO, the broadest CHS-class pattern with the highest number of attributed signals 

is found with a relative abundance of 3.3 %. Here, the homologues series of DBE 9, 11, and 12, are 

dominant, and even DBE 15 series, e.g., dinaptho-thiophens, can be observed. Interestingly, the 

relative abundance of the CHS-class for the three feed fuels being 0.18, 1, and 3.3 % for the diesel, 

VLSFO, and HFO, correlates with the FSC of <0.1, 0.5, and 1.7 w%, respectively. We hypothesize that 

this behavior is partially caused by the ionization cross-sections being dominantly determined by the 

aromatic core structure with low contribution from the alkylation side chains. Hence, as for the 

petroleum-feed fuels, similar thiophenic aromatic motifs can be expected, intercomparison of feed 

fuel results is feasible. 

The effect of the wet-scrubber exhaust gas treatment on the sampled emission and targeted molecular 

profile is very low and almost negligible. CH- and CHO-class plots (Figure 3) are practically identical. 

Solely, a very low impact on the upper carbon number limit (alkylation length) can be concluded based 

on a shift in the observed upper mass limit. Taking into consideration the residence time of a few 

seconds within the scrubber unit as well as the design for SOx removal, this finding is not unexpected. 

Nonetheless, in the context of hazardous emissions by ship diesel engines, legal freighting with HFO 

and the deployed scrubber unit will result in a substantial and almost identical PAH emission pattern. 

Considering the high impact of PAHs on environmental health, further emission reduction and 

treatment actions should be considered by lawmakers37, based on unraveling the molecular diversity 

by the PhotOrbi platform. Due to different sampling locations within the exhaust gas system and, thus, 

difficulties in adjusting the same dilution settings, no statements on the concentrations can be taken 

from this testing campaign data. Data reduction can be made by calculating the abundance-weighted 

mean carbon number and DBE value (“center of gravity”), given in red in Figure 3. Immediately, the 

main differentiation points, such as lower average #C for the diesel emissions and highest average DBE 

for the VLSFO can be depicted. Combined with the at-line data processing and elemental composition 
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attribution feature of the PhotOrbi, these bulk information, based on the molecularly-resolved 

chemical pattern, might rapidly be used for emission characterization and classification, e.g., utilizing 

Kendrick mass defect plot for an entire class overview (Figure S15). 

The online capabilities with >1 Hz time-resolution are discussed from an applicative scenario, 

comparing the switch from diesel fuel to HFO or VLSFO. Figure S16 exemplarily summarizes the 

extracted traces for the CH- and CHO-class, being the dominant compound classes (Figure S11-S14), as 

well as for C16H10O1 (DBE 10) and C15H10S1 (DBE 11). Notably, for both transitions, the abundance of all 

traces substantially increases after switching from the distillate clean diesel fuel to heavier feed fuel. 

In agreement with the FSC, both traces for C15H10S1 are only occurring after the feed fuel change. The 

PhotOrbi platform allows to trace the stabilization behavior and fluctuation of the primary emissions 

on the total ion count level but, more interestingly also for selected compound classes, directly 

calculated at-line from the elemental composition attribution or for individually resolved signals. 

Interestingly, C15H10S1 can be found for both cases with comparable abundance. The signal can 

tentatively be attributed to a methylated derivative of unsaturated thiophene derivatives, such 3-

Methylphenanthro[4,5-bcd]thiophene or 8-Methylacenaphtho[1,2-b]thiophene. 

Figure 4 gives the survey plots (m/z versus time, abundance color-coded) of the engine launch shown 

in Figure 1 (transition from diesel to heavy fuel oil). Here, the elemental composition attributions, 

enabled by the performance of the FT mass analyzer, allowed a back-calculation of the survey profiles, 

selectively visualizing the CH-class, CHO-class, and CHS-class compounds. Different molecular profiles 

can be depicted, particularly from the inset enlargements. Hence, despite the dominance of the CH-

class with one to two orders of magnitude higher abundances, these heteroatom classes can directly 

be made visible online at the emission site. For common lower -resolving time-of-flight platforms, this 

information would be overlaid by the CH-class. However, TOF systems are able to trace faster 

processes up to 2000 Hz.38 These heteroatom-containing compound classes are of high interest in 

environmental health studies and for correlations to a biological response.39,40  
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Figure 3: Carbon number versus DBE visualization of the CH-, CHO-, and CHS-class for the primary exhaust gas 

emissions of various feed fuels (diesel, heavy fuel oil – HFO, very low sulfur fuel oil – VLSFO). HFO emissions after 

the scrubber exhaust gas treatment are given for completion. The displayed data are average chemical speciation 

from 5 min of stable 20 kW load emissions. Data are color-coded according to the relative abundance within the 

respective sample and compound class. Abundance-weighted mean carbon number and DBE values are given in 

red.   
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Figure 4: Survey plots (m/z versus time, abundance color-coded) of the engine launch shown in Figure 1 (diesel 

→ heavy fuel oil) back-calculated based on the elemental composition attribution to a) CH-class, b) CHO-class, 

and c) CHS-class compounds. Zoom into the molecular profile (m/z 215-230) is given as 2D insets.  
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Conclusion 
In this study, we successfully evaluated a vacuum photoionization high-resolution mass spectrometry 

platform (PhotOrbi) for the direct field-usage in a remote non-laboratory environment. The system 

was applied to study the primary combustion emissions of a research ship diesel engine online in the 

immediate vicinity. Despite transportation, fluctuation in surrounding temperature, and vibrations, the 

high-performance of the Orbitrap mass analyzer combined with selective and sensitive REMPI could 

be maintained. More specifically, scan-resolved processing of the mass spectrometric data revealed 

high-resolution (m/Δm) above 140,000 at m/z 200, a high mass accuracy with negligible mass shifts 

and low ppm deviations. 

Applied to the emissions of the ship diesel operated with various feed fuels, the aromatic molecular 

composition could be unraveled. The type of feed fuel substantially affected the observed chemical 

profile. Combustion of the diesel revealed a low complex profile dominated by the PAH core 

compounds. However, expensive diesel fuel is solely being used for testing or domestic shipping. For 

non-compliant HFO, the impact of the wet-scrubber on the gas phase was found to be insignificant. 

The primary HFO emissions resulted in the highest and most complex response for the CHS-class. In 

contrast, for the VLSFO, an increased proportion of species with higher DBE was found. Thus, the 

VLSFO, containing large amounts of cycle oil, a cheap petroleum refining byproduct, can legally be 

applied but causes a substantial release of larger PAHs. These compounds are known for their strong 

environmental and health effects. Conclusively, legislative measures might need to consider further 

chemical criteria beyond bulk properties, such as FSC. 

Future studies will investigate the incomplete combustion products of the thermal degradation of 

lignocellulosic biomass (log wood stove or ambient wildfire events) or industrial processes, such as 

coffee or nut roasting. The high-resolution performance and charge capacity of the Orbitrap mass 

analyzer persuade the application of other light sources, broadening the accessible functionalities, 

such as laser or lamp VUV light sources for single photon ionization.  
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