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The integration of large-scale public data 
and network analysis uncovers molecular 
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Abstract 

In recent years, a growing interest in the characterization of the molecular basis of psoriasis has been observed. How-
ever, despite the availability of a large amount of molecular data, many pathogenic mechanisms of psoriasis are still 
poorly understood. In this study, we performed an integrated analysis of 23 public transcriptomic datasets encom-
passing both lesional and uninvolved skin samples from psoriasis patients. We defined comprehensive gene co-
expression network models of psoriatic lesions and uninvolved skin. Moreover, we curated and exploited a wide range 
of functional information from multiple public sources in order to systematically annotate the inferred networks. The 
integrated analysis of transcriptomics data and co-expression networks highlighted genes that are frequently dys-
regulated and show aberrant patterns of connectivity in the psoriatic lesion compared with the unaffected skin. Our 
approach allowed us to also identify plausible, previously unknown, actors in the expression of the psoriasis pheno-
type. Finally, we characterized communities of co-expressed genes associated with relevant molecular functions and 
expression signatures of specific immune cell types associated with the psoriasis lesion. Overall, integrating experi-
mental driven results with curated functional information from public repositories represents an efficient approach to 
empower knowledge generation about psoriasis and may be applicable to other complex diseases.

Keywords: Psoriasis, Transcriptomics, Network analysis, Biomarkers, Public data, Druggability

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Psoriasis is a chronic inflammatory disorder of the skin, 
characterized by abnormal keratinocyte differentiation 
and hyper-proliferation of the epidermis, along with 
infiltration of inflammatory cells [1]. Although genetic 
[2] and environmental factors are known to contribute 
to the etiology of this polygenic disease, many of the 
intricate mechanisms of molecular alteration underly-
ing the disease remain largely uncovered [3]. Multiple 

transcriptome studies have pinpointed key pathways 
altered in lesional psoriasis skin [4–8]. However, inte-
grated analysis of multiple homogenized datasets is, to 
date, still limited to a few examples [9, 10]. Although, 
for instance, Piruzian and colleagues [9] report the 
results of an integrated meta-analysis of both protein 
and gene expression datasets (and, therefore, inte-
grating different data types), they still summarize the 
results of single datasets. Moreover, the analytical strat-
egies employed in such studies have an impact on the 
ability to disentangle more complex patterns of molec-
ular deregulation. In fact, while univariate differential 
expression analysis shed light on hundreds (sometimes 
thousands) of dysregulated genes in the lesional skin, 
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it is not straightforward to infer regulatory loops of 
molecular alterations underlying the phenotype.

This gap of knowledge could be filled by exploiting 
the large amount of biological data accumulated in 
recent years. In fact, vast amounts of data have been 
collected in public repositories and made freely avail-
able to the scientific community.

However, integrating such a wealth of data sources is 
still challenging due to the heterogeneity of data for-
mats and the need for extensive manual curation [11].

A rigorous integration and exploitation of public 
data can provide a double benefit. On the one hand, 
already available data can inform the design of novel 
experimental strategies in order to achieve new knowl-
edge. On the other hand, publicly available data may 
provide a shortcut to characterize and interpret de 
novo findings derived from targeted experiments. In 
the context of psoriasis, several repositories, such as 
Pharos (https:// pharos. nih. gov/) [12], Target Valida-
tion [https:// www. targe tvali dation. org], Human Pro-
tein Atlas (https:// www. prote inatl as. org) [13] and 
Clinical Trials (https:// www. clini caltr ials. gov), report 
fundamental information about the state of the art of 
research in this topic, starting from the druggability/
tractability of suitable drug targets to clinical trials and 
large-scale genetic association studies. Such data have 
never been integrated in order to derive new knowl-
edge about the mechanistic events underlying the pso-
riatic phenotype.

Graph theory provides effective models to uncover 
the relevant gene–gene expression relationships both 
in physiological and in pathological conditions [14, 15]. 
In fact, gene co-expression network analysis is currently 
employed to understand the relationship between pairs 
of genes, and ultimately, gene networks or modules rep-
resenting a marker of impaired biological functions in a 
disease [16].

In this study, we have integrated gene expression analy-
sis and co-expression network analysis approaches on 23 
manually curated transcriptomics datasets [17] in order 
to (1) validate and prioritize genes that are already known 
to be associated with psoriasis, (2) uncover novel genes 
never associated with psoriasis before, and (3) create a 
gene-centric compendium of psoriasis-related informa-
tion curated from multiple data repositories. The whole 

analytical pipeline implemented for this study is shown 
in Fig. 1.

Methods
Data collection and preprocessing
All the raw transcriptomics data collected for this study 
are publicly available in the Gene Expression Omnibus 
(GEO) repository. The data consist of 23 microarray-
derived gene expression datasets of both lesional (574 
samples) and non-lesional skin (540 samples) of psoriasis 
patients. GEO IDs of the collected datasets are reported 
in Additional file 1: Table S1.

As described in Federico et  al. [17], the preprocess-
ing of collected transcriptomics datasets was performed 
through the use of the eUTOPIA software [18], which 
implements all of the following steps and the rela-
tive functions. Quality check: for Agilent datasets, each 
sample was evaluated by visual inspection of the array 
pseudo-images, quality check reports and density plots 
of probe intensities. Therefore, outlier samples were 
removed from the analysis. For the Affymetrix datasets, 
outlier samples were detected by computing the Nor-
malized Unscaled Standard Error (NUSE) [19] and the 
Relative Log Expression (RLE) [19] from the affyPLM 
v1.64.0 R package, and the RNA degradation curves 
(RNADeg) from the affy v1.64.0 R package [20]. The dis-
tributions of the values of these three metrics were inves-
tigated by means of boxplots and the sample outlierness 
was evaluated for each measure based on the data distri-
bution. Eventually, a concordance outlierness score was 
computed across the three metrics. In particular, a sam-
ple was removed from the analysis if considered an out-
lier in at least two out of three metrics, one of them being 
the RNA degradation curve. Affymetrix-based studies 
were normalized by using the justRMA from the R affy 
v1.66.0 package [20]. Agilent-based studies were quantile 
normalized with the normalizeQuantiles function from 
the limma v3.44.3 package [21]. In order to investigate 
the effect of unknown batches that might mask biologi-
cal variability, surrogate variable analysis (SVA) was per-
formed with the eUtopia software, which implements 
the sva R package [22]. The analysis was performed by 
using the status of the skin (lesional and non-lesional) as 
variable of interest. The other biological variables (if pre-
sent and if not confounded with the variable of interest) 

Fig. 1 Overview of the analytical pipeline conceived and developed in this study. A Integration of transcriptomics public datasets through a 
gene expression integrated analysis. Differentially expressed genes reported in all of the included DNA microarray platforms were used in order to 
build gene co-expression network models of lesional and non-lesional skin from psoriasis patients. B Network analyses performed on the inferred 
networks. In particular, the analyses carried out in this study include a differential centrality analysis between the lesional and non-lesional skin 
network models, the identification of bridge genes in the lesional network, the functional annotation of co-expression modules of the lesional 
network, the enrichment of immune cell-specific genes and the evaluation of the druggability of the lesional skin network. Panel C shows the 
psoriasis disease map inferred in the present study

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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were used as covariates. Custom annotation files (CDF 
files) were downloaded from Brainarray (http:// brain 
array. mbni. med. umich. edu/ Brain array/ Datab ase/ Custo 
mCDF/ CDF_ downl oad. asp) for Affymetrix-based micro-
arrays. The latest version of Agilent probe annotation was 
retrieved from the Agilent Web site (https:// earray. chem. 
agile nt. com/ earray/). The probesets were mapped to the 
Ensembl gene IDs, and the expression matrix was aggre-
gated by computing the median of the expression of the 
Agilent probes mapping to the same Ensembl transcript 
ID. Only genes that are common to all the platforms were 
included in the analysis. Differentially expressed genes 
for each dataset were identified through the use of the 
limma package by comparing the lesional skin samples 
with the non-lesional skin. Resulting p values were cor-
rected through the Benjamini–Hochberg method, and 
genes having an adjusted p value £ 0.05 were consid-
ered differentially expressed. Moreover, we assessed the 
consistency of deregulation of differentially expressed 
genes across the analyzed datasets. The consistency was 
calculated by computing a consistency score as follows: 
Cg = abs(upDatasets-downDatasets) being “upDatasets” 
the number of datasets in which the gene (g) is upregu-
lated, while “downDatasets” the number of datasets in 
which the gene (g) is downregulated.

Integrated large‑scale transcriptome analysis
We calculated the number of datasets in which every 
gene considered in the analysis resulted to be differen-
tially expressed and used this information to order the 
genes from the most frequently to the least frequently 
altered. Next, we identified the pathways that were sig-
nificantly overrepresented among the lists of differen-
tially expressed genes in each dataset. Similarly, to the 
gene-wise evaluation, we computed the frequency of sig-
nificant alteration of each pathway across the datasets. 
Gene ID conversions were performed through the use of 
the bioMart [23] and the clusterProfiler [24] Bioconduc-
tor packages. The functional annotation was performed 
by using the ReactomePA R package [25]. We defined a 
pathway to be dysregulated when the overrepresentation 
test FDR adjusted p value ≤ 0.05.

The gene and pathway rankings were carried out 
through the use of custom R scripts (https:// github. com/ 
anton iofed erico 87/ PSOnet).

Data scaling
All of the collected microarray datasets were combined 
for cross-platform normalization. In particular, the pamr 
R package (version 1.56.1) [26] was used to mean-adjust 
the combined microarray data based on a batch vari-
able representing the different datasets downloaded from 

GEO. The outcome of the data scaling in mitigating the 
batch effect is shown in Additional file 1: Fig. S1.

Integrated Psoriasis Knowledge Base construction
We built a comprehensive gene-centric annotation, 
namely Integrated Psoriasis Knowledge Base (IPKB), 
reporting aggregated information about psoriasis from 
several categories of databases. In detail, the IPKB con-
tains information annotated in 14 databases, grouped in 
6 categories: druggability/tractability, genetic association, 
cell line-specific expression profiles, HumanKO/Trial, 
immune pathways and modules, and literature-derived 
PSO association, for a total of 22 gene sets (Additional 
file  1: Fig. S2). Column specifications of the IPKB are 
reported in Additional file  1: Table  S2, while its visual 
organization is shown in Additional file 1: Fig. S5.

The IPKB was constructed by collecting data from 
numerous publications and or public databases. Available 
psoriasis genetic data were retrieved from the NHGRI-
EBI GWAS catalog of published genome-wide associa-
tion studies [27] by using the keywords “Psoriasis” and 
“Psoriasis vulgaris” and selecting the genes with asso-
ciation p value≤ 1E−05, and the Open Targets database 
[28], selecting genes with genetic association score ≥ 0.1 
for further analyses. Small molecule and antibody tracta-
bility data were also retrieved from Open Targets. Small 
molecule and biologics druggability data were collected 
from Finan et  al. [29]. Protein localization data were 
downloaded from Pharos [30], Human Protein Atlas [31] 
(URL: http:// www. prote inatl as. org) and from Uva et  al. 
[32]. Immune pathway modules were retrieved from the 
Reactome database [33]. Human knockout (KO) data 
were from Saleheen et al. [34] and from Narasimhan et al. 
[35]. Immune cell-specific scRNA-Seq transcriptional 
signatures were collected from the Human Protein Atlas. 
The IPKB is publicly available in Zenodo (https:// doi. org/ 
10. 5281/ zenodo. 47404 06).

Networks inference and analysis
Two distinct co-expression networks were inferred by 
using the gene expression profiles of the lesional and 
non-lesional skin samples over all the included stud-
ies and the genes common to all the platforms. The co-
expression networks were inferred through the use of the 
INfORM algorithm [36]. We set up INfORM in order to 
build a robust consensus network by using the clr [37], 
aracne [38] and mrnet [39] algorithms with the fol-
lowing correlation and mutual information measures: 
Pearson correlation, Kendall correlation, Spearman cor-
relation, empirical mutual information, Miller–Madow 
asymptotic bias-corrected empirical estimator, Schur-
mann–Grassberger estimate of the entropy of a Dirichlet 
probability distribution and a shrinkage estimate of the 

http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_download.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_download.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_download.asp
https://earray.chem.agilent.com/earray/
https://earray.chem.agilent.com/earray/
https://github.com/antoniofederico87/PSOnet
https://github.com/antoniofederico87/PSOnet
http://www.proteinatlas.org
https://doi.org/10.5281/zenodo.4740406
https://doi.org/10.5281/zenodo.4740406
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entropy of a Dirichlet probability distribution, as imple-
mented in the minet Bioconductor package [40]. In order 
to carry out a network community detection, we used the 
Walktrap algorithm [41], implemented in INfORM. All 
computations performed on the inferred networks were 
carried out through the use of the igraph Bioconductor 
package [42].

Functional annotation
The functional annotations carried out in this study 
were based on the Reactome biological pathways and 
performed through the use of the ReactomePA [25] and 
clusterProfiler Bioconductor packages [24]. Moreover, the 
STRING database [43] was used to inspect the functional 
characteristics of the bridge genes.

Visualization
Visualization of the results was performed through the 
use of the ggplot2 [44] and gplots [45] Bioconductor 
packages. The rendering of co-expression networks was 
performed by employing the Gephi software [46]. In this 
manuscript, we show a reduced representation of the 
actual networks in order to facilitate visualization.

Differential centrality analysis
For each of the networks, their node betweenness, close-
ness and degree centralities were calculated with the 
Python’s NetworkX package (Python 3.6, NetworkX 2.3). 
The nodes were ranked according to each of the cen-
trality measures. For each of the networks, their nodes’ 
median rank based on the rankings of the three centrality 
measures were calculated. To compare the network of the 
lesional skin with the non-lesional one, the absolute dif-
ference between the median ranks of the two networks 
was calculated and the genes were ranked accordingly.

Gene set enrichment analysis
One tail gene set enrichment analyses (GSEA) were 
performed through Kolmogorov–Smirnov statistics, as 
implemented in the stats R package. Overrepresentation 
tests were performed by using the bc3net CRAN package 
[47].

Druggability evaluation of the lesional network
The druggability evaluation of the PSO lesional network 
was performed by using the DrugBank annotation (ver-
sion 5.1.7) [48]. The Anatomical Therapeutic Chemi-
cal (ATC) Classification System was retrieved from the 
josetung/atc GitHub R package. In order to increase the 
specificity of our analysis, we retrieved the drug–target 
associations from DrugBank and considered only drugs 
whose targets are included in one module. The analysis 

was performed by considering the level 2 of the ATC 
codes annotation.

Results
S100A12, PDZK1IP1, LCN2 and CRABP2 are the most 
commonly upregulated genes in the psoriatic lesion
In order to identify genes that are consistently dysregu-
lated in transcriptomic studies of lesional skin samples 
with respect to non-lesional counterparts, we first ana-
lyzed each dataset individually. The number of differen-
tially expressed genes in each dataset ranged from 3717 
in GSE67853 to 100 in GSE57376, with a median of 1863 
(Additional file 1: Fig. S2).The limited amount of clinical 
data did not allow us to infer any relationship between 
the number of differentially expressed genes and phe-
notypic characteristics of the patients. In this regard, we 
verified whether exists a linear relationship between the 
number of differentially expressed genes and the sample 
size of the analyzed datasets. Our analysis showed that 
the sample size has no impact on the amount of differ-
entially expressed genes identified in each dataset (Addi-
tional file 1: Fig. S3). Therefore, we ranked the differential 
expressed genes on the basis of their occurrence across all 
the datasets. As a result, S100A12, PDZK1IP1, LCN2, and 
CRABP2 genes were found to be differentially expressed 
in all 23 PSO datasets. Additional genes belonging to the 
S100 and SerpinB transcription factor families were dif-
ferentially expressed in 22 out of 23 datasets. Overall, 92 
genes were differentially expressed in at least 20 datasets. 
The top 100 ranked gene list derived from the integrated 
gene expression analysis is reported in Additional file 1: 
Table S3.

We then assessed which genes showed the highest 
magnitude of deregulation across all the datasets. There-
fore, we ranked each differentially expressed gene in each 
dataset by a significance score, calculated as follows:

where FC is the fold change between the mean of the 
expression of the lesional samples and the mean of the 
expression of the non-lesional counterparts; adjpval 
is the Benjamini–Hochberg [49] adjusted p value as 
obtained from the differential expression analysis. Our 
analysis highlighted SERPINB4, S100A12, and TCN1 
as the most dysregulated genes over all the datasets 
(Fig.  2). Among the frequently upregulated genes, SER-
PINB4 showed a median logFC across the datasets of 6.3 
[Q1: 5.4; Q3: 7.2] with a maximum of 7.8 in GSE13355; 
S100A12 showed a median logFC of 5.0 [Q1: 4.5; Q3: 6.0] 
and a maximum of 6.7 in GSE30768; and TCN1 had a 
median value of 5.1 [Q1: 4.1; Q3: 5.4] and a maximum of 
7.2 in GSE57376. On the other hand, the top genes found 
to be downregulated in most of the datasets were BTC, 

ss = −log(FC) · log adjpval
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with a median logFC of −3.0 [Q1: −3.3; Q3: −2.6], and 
the strongest downregulation reported in GSE50790; 
WIF1, with a median logFC of -2.5 [Q1: −2.7; Q3: −2.3] 
and a maximum downregulation in GSE50790; and 
PM20D1 with a median of 2.6 [Q1: −2.9; Q3: −2.0] and 
the lowest logFC of −4.5 in GSE47751. Moreover, we 
assessed the consistency of deregulation of differentially 
expressed genes across the analyzed datasets. The con-
sistency was measured by taking into account the num-
ber of datasets in which genes showed the same trend of 
deregulation (up- or downregulated, see Methods). As a 
result, 98.7% of the genes that resulted to be differentially 
expressed in at least 2 datasets showed a full consistency 
of deregulation across the datasets (Additional file 1: Fig. 
S4).

Network analysis highlights genes with aberrant 
co‑expression patterns
The integrated gene expression analysis allowed us to 
identify genes that are dysregulated in the psoriatic 
lesion with respect to the non-lesional skin, giving a 
quantitative perspective of the molecular alterations at 

a transcriptional level of the disease. However, the inte-
grated expression analysis uncovers only one aspect of 
the deregulation underlying the psoriatic phenotype. In 
fact, the molecular buildup of a tissue is not only deter-
mined by the expression patterns of individual genes, 
but also by their co-expression relationships. Therefore, 
to characterize the complex landscape of transcriptional 
alterations that sustain psoriasis, we identified disrupted 
patterns of gene co-expression. To do so, we inferred two 
transcriptome-wide gene co-expression networks from 
both the lesional and the non-lesional skin sample sets, 
respectively.

Since the networks were built from all the genes com-
mon to all of the microarray platforms, both of the net-
works are composed of 7310 genes, while the lesional 
network has 1,136,431 edges and the non-lesional one 
has 1559,790 edges.

The patterns of molecular alterations underlying the 
psoriatic phenotype can be characterized by investigating 
intrinsic topological properties of the inferred networks. 
One aspect that defines the differences between the two 
networks (lesional and non-lesional) is the centrality 

Gene Frequency

S100A12 23

PDZK1IP1 23

LCN2 23

CRABP2 23

TCN1 22

SERPINB4 22

SERPINB3 22

S100A9 22

S100A8 22

PI3 22

LTF 22

Fig. 2 Occurrence of each gene as differentially expressed across the included studies (n = 23). The table reports the top ranked genes and their 
differential expression frequency
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of their genes, a property measuring the number of co-
expression connections that a certain gene holds with the 
others.

The differential centrality analysis allowed us to iden-
tify genes with a significant difference of connectivity 
between the lesional and non-lesional network. Table  1 
shows genes whose connectivity is heavily affected by 
psoriasis, since they are highly central in the lesional net-
work while their centrality is lower in the non-lesional 
network. Specifically, the connectivity of SERPINB4, 
KYNU, S100A12, CASP5, CXCL1, CXCL8 and PNP is 
the most affected. By comparing the results of the differ-
ential centrality analysis with the gene rank obtained by 
the integrated gene expression analysis, we observed that 
several of the top differentially central genes (DCG) were 
also differentially expressed in a large number of data-
sets. For instance, SERPINB4, KYNU, S100A12, PNP and 
CXCL1, which are among the top 10 DCG, resulted to be 

differentially expressed in more than 20 datasets. On the 
contrary, some genes such as YPEL1 and HUS1 appear at 
the top of the DCG but are not differentially expressed in 
any of the collected datasets.

On the other hand, we identified a second set of DCG, 
which showed an opposite pattern of aberrant connectiv-
ity compared to the genes reported in Table 1. Indeed, the 
connectivity of a number of genes is affected so that the 
genes are highly central in the non-lesional network while 
they show a lower centrality in the lesional one (Table 2). 
Therefore, these genes lose a high number of co-expres-
sion connections in the psoriatic lesion in respect of the 
uninvolved skin. IHH, AQP9, ITGB8, CD55, CMA1 are 
the most affected ones, showing this trend of connectiv-
ity. Interestingly, their frequency of differential expres-
sion in the integrated expression analysis is markedly 
low, being detected as differentially expressed in a maxi-
mum of 2 datasets, with the exception of AQP9, detected 

Table 1 Top ten differentially central genes (DCG) between the lesional and the non-lesional network

The rank position in the lesional and non-lesional network, the difference between the ranks and the frequency of differential expression of each gene are reported

Top differentially central genes 
between lesional and non‑lesional 
networks

Rank position 
in the lesional 
network

Rank position in 
the non‑lesional 
network

Difference between 
the networks’ ranks

Frequency of differential expression 
in the integrated expression analysis

SERPINB4 552 7128 6576 22

KYNU 911 7046 6135 22

S100A12 697 6620 5923 23

CASP5 1043 6875 5832 11

CXCL1 1107 6218 5783 20

CXCL8 1781 7135 5354 18

SLC23A2 1637 6983 5346 21

YPEL1 1336 6675 5339 0

PNP 1177 6377 5200 21

HUS1 1048 6232 5184 0

Table 2 Top ten differentially central genes (DCG) between the lesional and the non-lesional network

The rank position in the lesional and non-lesional network, the difference between the ranks and the frequency of differential expression of each gene are reported

Top differentially central genes 
between lesional and non‑lesional 
networks

Rank position 
in the lesional 
network

Rank position in 
the non‑lesional 
network

Difference between 
the networks’ ranks

Frequency of differential expression 
in the integrated expression analysis

IHH 6575 1447 5128 0

AQP9 5756 631 5125 17

ITGB8 6880 1780 5100 1

CD55 6023 949 5074 1

CMA1 5874 852 5022 2

SRPK3 6711 1693 5018 0

ITPR1 6458 1529 4929 1

TUBGCP3 5865 971 4894 0

SYCP2 6570 1820 4750 0

NMB 6389 1726 4663 3
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in 17 studies. An overview of the impact of PSO on the 
co-expression connections in both the lesional and non-
lesional network is shown in Additional file 1: Fig. S6.

Identification of novel candidate genes associated 
with psoriasis
We hypothesized that, by studying the connectivity pat-
terns among known psoriasis genes, it is possible to 
identify additional associated genes. Hence, a gene that 
is connected to two or more known psoriasis-associated 
genes is a strong candidate to be involved in its pathogen-
esis (Fig. 3). Based on this principle, we identified all the 
genes connecting pairs of differentially expressed genes 
(previously identified by the integrated gene expres-
sion analysis) within each of the networks (lesional and 
non-lesional, respectively), and hence acting as a bridge 
(hereafter referred to as “bridge genes”). By this analysis, 
we obtained a set of 1622 and 1940 bridge genes (BG) for 
the lesional network and non-lesional networks, respec-
tively. Consequently, we selected a set of 250 genes acting 
as bridges in the lesional network, but not in the non-
lesional one (Fig. 3). Among the bridge genes connecting 
a large number of differentially expressed gene pairs, we 
identified CACNA1A (Calcium Voltage-Gated Channel 
Subunit Alpha1 A) and its negative regulator CBARP, 
connecting 696 and 562 gene pairs, respectively. Like-
wise, the genes HADH and ATP5MC1, whose protein 
products function in mitochondria, connect a high num-
ber of dysregulated gene pairs (562 and 550, respectively) 
in the lesional network.

In order to characterize the functional properties of the 
bridge genes, we performed a functional annotation by 
using the STRING database. STRING shows a clustering 
of gene products involved in RNA splicing, which is the 
first enriched term in the gene ontology (GO) biological 
process, followed by cellular nitrogen compound meta-
bolic process (both with FDR = 0.0063) (Additional file 1: 
Fig. S7).

Network analysis allows the identification of disease‑relevant 
communities
It is a widespread assumption that genes which are 
tightly co-expressed (whose expression levels are highly 
correlated) are likely to be also co-regulated, as well 
as involved in common functions [50]. Graph mod-
els allow the identification and characterization of such 
communities of genes. In this study, we investigated the 
arrangement of co-expressed genes in both the lesional 
and non-lesional networks by performing a community 
detection analysis. Thus, we identified 13 communities of 
co-expressed genes in the lesional network. The biggest 
community encompasses 1,888 genes, while the smallest 
1 gene, with a median size of 309. In the non-lesional net-
work, we identified 10 communities with a median size 
of 756 genes, with the biggest composed of 1,723 and the 
smallest by 1 gene. All our analyses were limited to mod-
ules composed of at least 10 genes (Additional file 1: Figs. 
S8 and S9).

An interesting aspect we investigated is whether one 
or more network communities exist that enrich the 

Fig. 3 Schematic representation of bridge genes. In blue is shown an example of gene co-expression network. In green are shown the bridge 
genes, acting as connectors among couples of differentially expressed genes, shown in red. The table reports the rank of bridge genes based on the 
number of connected couples of differentially expressed genes
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putative psoriasis-associated genes identified through 
the integrated gene expression analysis. In order to ful-
fill this aim, we performed a GSEA on the gene rank 
derived from the integrated gene expression analysis 
over the identified modules of the lesional network. As 
a result, we obtained that module 2, module 4 and mod-
ule 7 significantly enriched the genes at the top of the 
integrated gene expression analysis rank (p = 2.41e−23, 
p = 1.25e−24, p = 4.89e−07, respectively). Similarly, 
we performed the same analysis to assess whether the 
communities of the lesional network enrich for genes 
whose centrality is significantly different between the 
lesional and the non-lesional network, previously iden-
tified by the differential centrality analysis. We observed 
that module 6 and module 7 significantly enrich the top 
differentially central genes (p = 0.0054 and p = 0.0026, 
respectively). Finally, the same analysis was performed on 
the bridge genes set, in order to verify their enrichment 
over the modules. We found that module 3 significantly 
enriches the bridge genes (p = 1.57e−07) (Fig. 4).

We characterized the biological functions of the gene 
communities identified in the lesional network (fdr < 0.05, 

Fig.  5). Module 2, which is overrepresented by top-
ranked genes of the integrated gene expression analysis, 
is significantly enriched in genes belonging to the extra-
cellular matrix organization and proteoglycans, collagen 
formation, integrin cell surface interactions among oth-
ers, which are expected in skin diseases like psoriasis. 
Interleukin 4 and interleukin 13 signaling pathways are 
also enriched by module 2 and 7. Moreover, interleukins 
signaling pathway is also enriched in module 7, together 
with other immunological pathways, such as interferon 
signaling pathway. However, Module 4 shows the strong-
est immunological signature among all. In fact, the genes 
belonging to this module significantly enrich interleukin 
10 signaling, interleukin 4 and 10 signaling and interferon 
alpha/beta signaling. Modules 5 and 6 overrepresent 
pathways related to generic cell cycle functions, like G1/S 
transition, S phase, transcriptional regulation of P53, 
mRNA splicing. Likewise, module 3, which is over-rep-
resented by bridge genes, enriches mostly for receptorial 
functions, such as G-Protein Coupled Receptors (GPCRs) 
ligand binding, rhodopsin-like receptors, and peptide 
ligand-binding receptors.

Fig. 4 Evaluation of the enrichment of differentially central genes (DCG), bridge genes (BG), immune cell specific genes as well as immune-related 
pathways over the modules detected in the lesional network
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Prior knowledge enables the characterization of lesional 
network gene modules
We further performed an overrepresentation analy-
sis of the gene sets collected in the IPKB in each 
community of the lesional network. This analy-
sis highlighted that, for the category Human KO/
Trial, Module 4 is significantly enriched in two out of 
three gene sets, HumanKOPakistan and ClinicalTrial 
(p = 0.027 and p = 0.001, respectively). Module 3 and 
7 enrich for genes belonging to the HumanKOPaki-
stan and HumanKOBritishPakistani sets (p = 0.003 and 
p = 0.001, respectively). Module 4 is also enriched for 
almost all the gene sets of the category Immune Path-
ways/Modules, with the most significant p = 5.06E−18 
in ImmunePathwayAdaptive. On the other hand, Mod-
ule 7 enriches the ImmunePathwayCytokineSignalling 
(p = 2.12E−05).

Additionally, since psoriasis poses its roots in the 
impairment of the immuno-inflammatory homeostasis, 
we wondered whether the modules of the lesional net-
work are enriched by genes expressed in a specific man-
ner in immune cell lines, which are primarily involved 

in the aberrant response in psoriasis. By exploiting pub-
licly available immune cell type-specific gene expres-
sion signatures from the Human Protein Atlas database, 
which we included in the DGI, we performed a GSEA 
to assess the enrichment of cell type-specific genes over 
the modules of the lesional network. We obtained that 
module 4 is enriched by genes specifically expressed in 
T cells (p = 0.006), monocytes (p = 7.93e−05) and mac-
rophages (p = 0.015). Similarly, module 3 is enriched 
by monocyte-associated genes (p = 0.035) and module 
7 by genes specifically expressed in basal keratinocytes 
(p = 0.01) (Fig. 4).

Immunomodulators and dermatological drugs target specific 
modules of the lesional skin network
We characterized the druggability potential of the rel-
evant modules identified in the previous analytical steps. 
To this end, we defined module-specific drug–target 
gene maps by exploiting publicly available information 
available at DrugBank. All of the modules except mod-
ule 5 and 9 encompass a number of drugs which is higher 
than the number of genes composing the module (Fig. 6). 

Fig. 5 Module-specific pathway enrichment based on the Reactome database. On the x axis are indicated the module and the number of genes 
contributing to the enrichment (in parentheses). On the y axis are indicated significantly enriched pathways
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Moreover, by considering modules with a number of 
genes > 10 and taking into account the frequency of drug-
gable genes over the total number of genes composing 
each module, we found that modules 3, 8, 7, 2 and 4 show 
a higher amount of drug target genes (38%, 38%, 31%, 
31% and 30%, respectively) compared to other modules.

To further characterize the drugs mapping onto the 
lesional network, we restricted our analysis to drugs 
whose targets belong to one specific module only. By 
applying this restraint, we carried out further analyses on 
3090 out of 5317 drugs.

We characterized the module-specific drugs on the 
basis of their therapeutic class as annotated in the second 
level of the World Health Organization (WHO) Anatom-
ical Therapeutic Chemical (ATC) classification system. 
Module 8 contains the highest number of drugs mapped 
with respect to the size of the module (140 drugs, drugs/
genes ratio = 0.92), followed by module 11 (87 drugs, 
drugs/genes ratio = 0.68), module 2 (500 drugs, drugs/
genes ratio = 0.61), module 3 (354 drugs, drugs/genes 
ratio = 0.61) and module 6 (729 drugs, drugs/genes 
ratio = 0.59). Module 4, which we previously identified to 
have a marked immunological profile, encompasses tar-
get genes for 106 drugs, showing a drugs/genes ratio of 
0.41.

While the most represented drug category in module 8 
is anti-emetics and anti-nauseants (A04), for both mod-
ule 8 and module 11 dermatologicals belonging to the 

anti-acne preparations category (D10) are predominantly 
represented (Fig.  7). Potassium Voltage-Gated Channel 
Subfamily H Member 2 (KCNH2) and the Retinoic Acid 
Receptor Alpha (RARA ) play a pivotal role in the drug-
gability of module 8. In fact, KCNH2 protein is a target 
of a high number of drugs, including Erythromycin and 
Chlorobutanol, while the retinoic acid receptor alpha is 
targeted by dermatological compounds including treti-
noin, isotretinoin and adapalene. Interestingly, RARA  
is also targeted by two other retinoids employed in the 
treatment of severe psoriasis, Tazarotene and Etreti-
nate. In module 11, Dapsone and Resorcinol target the 
NAT2 and TPO gene products, respectively. In module 
4, the most represented class of compounds is immu-
nosuppressant (L04). In fact, Alefacept, targeting the T 
cell surface antigen CD2, together with Abatacept and 
Belatacept, targeting the T cell activation antigen CD86 
are among the numerous molecules belonging to this cat-
egory. Also in module 4 Framycetin is represented in the 
medicated dressings category (D09), which is known to 
act on the CXCR4 gene product. Interestingly, module 
4 also encompasses a number of target genes for immu-
nostimulant molecules (L03). Our analysis highlighted 
that IL2RA and IL2RB are targets of Aldesleukin, a com-
pound employed in IL2 replacement therapies, while the 
Colony Stimulating Factor 3 Receptor (CSF3R) is targeted 
by several immunostimulant drugs, such as Filgrastim, 
Lenograstim, Pegfilgrastim and Lipegfilgrastim. Finally, 

Fig. 6 Evaluation of the module-based druggability profile in the PSO lesional network. In light red is shown the number of genes composing the 
module, in green the number of drugs, and in blue the number of druggable genes
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module 2 is enriched by a wide spectrum of pharmaco-
logical categories, ranging from drugs employed in the 
treatment of musculoskeletal disorders (M09), hemato-
logical agents (B06) to drugs used for gastrointestinal dis-
orders (A03) and anti-Parkinson drugs (N06). Given the 
possibility that the druggability signature observed in the 
lesional network model might be influenced by ongoing 
or past therapeutic treatments at the moment of the sam-
pling rather than pathophysiological mechanisms of pso-
riasis, and the lack of clinical information does not allow 
to establish the magnitude of this effect, we repeated the 
analysis on both the lesional and non-lesional networks 
by focusing only on drug targets that resulted consist-
ently differentially expressed across the analyzed datasets 
(Additional file  1: Fig. S10). Common patterns of drug-
gability retrieved in both lesional and non-lesional net-
works might result either from systemic treatments or 
from pathological alterations of the molecular buildup of 

the skin of psoriatic patients. On the other hand, drug-
gability profiles that are specific only to the lesional net-
work should capture potential molecular mechanisms 
that can be used to specifically target localized alterations 
at the level of the lesions. Therefore, we first computed 
the module similarities among the two networks based 
on the gene content (Additional file  1: Fig. S10, panel 
A). We found a significant similarity between module 2 
of the lesional network (L) and the module 3 of the non-
lesional network (NL), module 4 (L)-module 7 (NL), and 
module 8 (L)-module 1 (NL). Subsequently, we profiled 
the druggability of such modules (Additional file  1: Fig. 
S10, panel B). Interestingly, we found anti-acne prepara-
tions (D10) to be specific of the lesional network in mod-
ule 8 and being the second most represented category. 
Similarly, module 2 of the lesional network shows a spec-
ificity for hematological agents (B06) and antibiotics and 
chemotherapeutics for dermatological use (D06).

Fig. 7 Characterization of module-specific drugs based on the Anatomical Therapeutic Chemical classification system (ATC). The figure shows the 
modules with the highest drugs/genes ratio. The plots of the remaining modules are shown in Supplementary materials
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Discussion
In this study, we analyzed a large collection of transcrip-
tomics datasets recently curated [17] in order to gain new 
knowledge about complex patterns of gene alteration 
with a role in the psoriatic phenotype.

By analyzing 23 transcriptomics datasets, we identified 
genes and pathways that are consistently dysregulated 
in the psoriatic lesion as compared to uninvolved skin. 
Our analysis found CRABP2, LCN2, S100A12 and PDZ-
K1IP1 dysregulated in all the datasets, suggesting their 
importance in the definition of the psoriatic phenotype. 
Overall, our differential expression analysis highlighted 
the upregulation of genes involved in inflammatory cas-
cades, such as S100A12, SERPINB4 and TCN1, and the 
pronounced downregulation of genes related to develop-
mental pathways, such as epidermal growth factor fam-
ily members (BTC) and genes involved in WNT signaling 
(WIF1). These results are in line with findings previously 
reported by Swindell and colleagues in 2013, where they 
compared gene expression from integrating different 
transcriptomics datasets [51]. In particular, the authors 
showed that the upregulation of S100A12, SERPINB4 
and TCN1 is specifically marked in keratinocytes as com-
pared to other cell types. Moreover, genes most strongly 
decreased in psoriatic skin (such as BTC and WIF1), most 
were weakly expressed in myeloid-derived cell types, but 
did show specific expression in epidermis.

In addition to known genes associated with psoriasis, 
we also prioritized novel candidates, such as SYNCRIP 
encoding a protein involved in the control of translation 
such as alternative splicing and mRNA maturation [52], 
as well as SASH3 whose protein product could function 
as a signaling adapter protein in lymphocytes [53].

Since it is well known that genes act in a coordinated 
manner in both physiological and pathological condi-
tions, we inferred and analyzed co-expression network 
models representative of the psoriatic lesion and the 
uninvolved skin in order to identify the disrupted pat-
terns of gene co-expression underlying the psoriatic 
lesion.

In the context of graph models, genes are co-expressed 
with variable numbers of other genes (interactors), signi-
fying their relative importance in defining the phenotype 
underlying the gene network. We identified the genes 
with the most different number of interactors in the two 
networks derived from lesional and non-lesional sam-
ples, respectively, highlighting two important aspects. 
First, the deregulation of distinct genes in the lesional 
skin affects the co-expression relationships with other 
genes, which are not necessarily dysregulated. Second, 
this highlights the importance of going beyond the clas-
sical gene expression analysis, which is focused on the 

evaluation of individual genes, failing to capture the com-
plex relationships sustaining biological processes. In fact, 
we identified a few genes with an aberrant co-expression 
connectivity in the lesional network as compared with 
the non-lesional one, which do not show a differential 
expression, such as YPEL1 and HUS1. While YPEL1 
may play a role in the regulation of cell division and in 
the polarization of fibroblasts toward an epithelial-like 
morphology [54], HUS1 product is involved in cell cycle 
arrest following DNA damage. In fact, HUS1 gene is one 
of the top associated genes with Xeroderma pigmento-
sum, since it is responsible for the impaired repair capac-
ity of UV-mediated DNA damages.

While differential expression analysis identified genes 
dysregulated in psoriatic lesions, gene network analysis 
investigating the connectivity patterns among such genes 
in the lesional network revealed 250 non-dysregulated 
genes connecting (bridging) dysregulated ones. As previ-
ous attempts to identify genes associated with psoriasis 
by transcriptomics relied mainly on differential expres-
sion, it is not surprising that 223 of our 250 newly iden-
tified genes have not been associated with psoriasis so 
far according to Open Targets. Thus, we here describe a 
completely new group of genes related to transcriptional 
deregulation in psoriatic lesions, which we call “bridge 
genes,” since they connect couples of differentially 
expressed genes within the lesional network, and, there-
fore, they are putatively associated with psoriasis.

The bridge gene connecting the highest number of 
differentially expressed genes is CACNA1A (Calcium 
Voltage-Gated Channel Subunit Alpha1 A). This gene 
encodes a calcium channel, which regulates intracel-
lular processes such as contraction, secretion, neuro-
transmission and gene expression, suggesting that bridge 
genes have superior/broad-spectrum roles in cell regula-
tion. CACNA1A is not only followed by its related gene 
CBARP (CACN Subunit Beta Associated Regulatory 
Protein), but also by a number of genes involved in mito-
chondrial metabolic activities such as HADH, whose 
enzymatic activity is exploited in the fatty acid beta-oxi-
dation process, and ATP5MC1, coding for a subunit of 
mitochondrial ATP synthase and is responsible for the 
synthesis of ATP during oxidative phosphorylation by 
exploiting the protonic gradient across the mitochondrial 
inner membrane.

Interestingly, we found that many bridge genes are 
significantly co-expressed within module 3, which is 
enriched by genes involved in biological processes such 
as GPCR ligand binding, transmission across chemical 
synapses, and potassium channels indicating that bridge 
genes are related to broadly receptorial functions.
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Pilar Pedro et  al. [55] reports about the role of the 
GPCRs in the translation of extracellular signals into 
intracellular cascades that regulate the activation of 
keratinocytes proliferation and differentiation, includ-
ing major signaling pathways, such as Hedgehog, Hippo 
YAP1 and WNT/B-catenin. In the same work, the 
authors underline the role of the neural–epithelial con-
nection, mediated by β‐adrenergic receptor (βAR) sign-
aling in triggering keratinocyte proliferation, which is 
over-activated in the psoriatic lesion.

Moreover, module 3 is particularly rich in genes associ-
ated with monocytes. The role of hyper-reactive mono-
cytes in the psoriatic phenotype has long been known 
[56]. In fact, Golden et al. observed elevated adhesion of 
monocytes and, in turn, increased formation of aggre-
gates, which they also correlated with disease severity 
and underlying a major role for innate immunity in dis-
ease progression [57].

Module 4 is largely characterized by dysregulated 
genes whose activity lies in immune-related pathways, 
including signaling by interleukins, interferon signal-
ing and chemokines and their receptors. Moreover, it 
encompasses genes which are specifically expressed in 
a reservoir of immune cell types, such as T cells, mono-
cytes and macrophages, underlying its role in the chronic 
auto-inflammatory response characteristic of psoriasis. 
Indeed, a pivotal role for T cells and cells of the myeloid 
lineage, including monocytes and macrophages, is well 
established [58–63].

The immune-related nature of module 4 is reflected 
also by the druggability analysis of the lesional network 
model. In fact, several genes belonging to module 4 
are targets of both immunostimulant and immunosup-
pressive drugs, such as interleukins and chemokines. 
This suggests that this module could be a good reser-
voir of putatively novel pharmacological targets for the 
development of therapeutic approaches with an immu-
nomodulatory action to treat psoriatic lesions. Along 
with these categories of compounds, dermatological 
medications were also represented in module 4. Framy-
cetin (also known as neomycin sulfate), among others, 
is a neomycin component employed in the treatment of 
ocular and skin bacterial infections. To the best of our 
knowledge, this compound is currently not employed 
for the treatment of the psoriatic plaques. Furthermore, 
module 8 showed an interesting scenario regarding its 
drug target content. In fact, we found that the retinoic 
acid receptor alpha (RARA ) is the target of a plethora 
of chemical compounds already employed in the treat-
ment of severe psoriasis plaques. For instance, the topi-
cal agent Tazarotene and oral agent Acitretin (and its 
predecessor Etretinate) are compounds largely used in 
the treatment of psoriatic plaques [64, 65]. Tazarotene 

is a retinoid drug which has been approved in 2019 
by Food and Drug Administration (FDA) in combina-
tion with Halobetasol in psoriasis-affected adults [66]. 
On the other hand, Acitretin is used in severe psoriatic 
manifestations, but its high lipophilic capacity shows 
teratogenic effects and it is contraindicated in preg-
nancy for 3 years prior to conception [67]. Etretinate, a 
metabolic product of Acitretin, is a high lipophilic reti-
noid which was used in severe psoriatic manifestations 
[68], but its use was suspended between 1996 and 1998 
for its teratogenic effects [69].

The limited amount of clinical data made available 
along with the transcriptional profiles annotated in pub-
lic repositories poses some limitations to the present 
study. The lack of detailed clinical information makes 
the identification of gene markers or co-expression com-
munities associated with clinical characteristics impos-
sible, hampering the predictive power of the present 
study. A notable difference in the amount of differentially 
expressed genes arises from the included datasets. The 
lack of clinical information does not allow to infer any 
meaningful relationship between the number of dysreg-
ulated genes and certain clinical parameters of affected 
patients, including severity of the disease and elapsed 
time from the first diagnosis. This drawback poses, as a 
further limitation, the lack of information that could sug-
gest whether one or multiple patients underwent active 
pharmacological therapy. Indeed, the transcriptional sig-
natures underlying the topology of both the lesional and 
the non-lesional network models might be influenced by 
a possible (ongoing or terminated) pharmacological ther-
apy to which some of the patients might be subjected, 
interfering with the pharmacological footprint that we 
investigated. Moreover, this hinders the possibility of 
translating this study to a precision medicine level, mak-
ing possible the characterization of the impaired molecu-
lar relationships at a single-patient resolution.

In conclusion, in this study we combined an integra-
tive gene expression analysis with co-expression network 
analysis in order to identify novel aspects of the psoriatic 
lesion at a molecular level. Our approach allowed us to 
give an insight into the known alterations associated with 
psoriasis by identifying novel genes which can putatively 
act as disease biomarkers. Future mechanistic studies 
elucidate their role in the disease onset and progression, 
while epidemiological studies will be necessary to assess 
their clinical relevance.
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