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A B S T R A C T   

Background and Aims: Observational research has indicated that proton pump inhibitors (PPIs) might increase the 
long-term risk of cardiovascular events. This study evaluated the evidence from observational studies for an 
effect of PPI monotherapy on the risk of incident cardiovascular events and cardiovascular mortality. 
Methods: The databases MEDLINE, EMBASE, and Scopus were systematically searched up to September 2021. 
The primary outcome was first cardiovascular event, i.e. first myocardial infarction or first ischaemic stroke. The 
secondary outcome was cardiovascular mortality. Studies were included following a detailed risk of bias 
assessment with the ROBINS-I tool. Sensitivity and bias analyses adjusted for potential publication bias, immortal 
time bias, and unmeasured confounding. 
Results: We included ten studies with 75,371 first cardiovascular events, as well as seven studies on cardiovas
cular mortality with 50,329 cardiovascular deaths in total. The pooled hazard ratios (HRs) for PPI use and 
cardiovascular events were 1.05 with a 95% confidence interval of (0.96; 1.15) before and 0.99 (0.93; 1.04) after 
adjusting for observational study design bias. The pooled HRs for PPI use and cardiovascular mortality were 1.27 
(1.11; 1.44) before and 1.06 (0.96; 1.16) after adjusting for publication bias and observational study design bias. 
Conclusion: It is questionable, whether PPI monotherapy constitutes a cardiovascular risk factor.   

1. Introduction 

1.1. Rationale 

Proton pump inhibitors (PPIs) are widely used to treat disorders 
characterized by excessive gastric acid production [1] and have been 
sold over-the-counter for more than one decade. Alongside, PPIs are 
used for gastroprotection in patients on dual antiplatelet therapy con
sisting of asprin in combination with a P2Y12 inhibitor such as 

clopidogrel, prasugrel or ticagrelor to prevent secondary myocardial 
infarctions and ischaemic strokes. Two different questions, therefore, 
arise regarding a potentially increased cardiovascular risk associated 
with PPI intake. The effect of PPI intake on secondary events as part of 
dual antiplatelet therapy is a question of short-term effects in a high-risk 
population and is examined most appropriately by clinical trials [2,3]. 
The effect of PPI intake as a treatment of gastroesophageal diseases on 
primary events is a question of long-term effects in a low-risk population 
requiring both a large study population and long study period and thus 
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best addressed by an observational study design. 
Unfortunately, observational studies examining the effect of PPI 

intake on cardiovascular outcomes are especially prone to bias as PPI 
intake might be associated with cardiovascular morbidity. Associations 
between PPI intake and cardiovascular outcomes could therefore indi
cate a causal effect of PPI intake or stem from residual confounding. 
Since the most recent meta-analyses [4–7] found a higher risk of car
diovascular outcomes associated with PPI therapy, several large obser
vational studies have been published that analysed this association in 
more detail. 

It is therefore time to have an updated look at the evidence regarding 
the relationship between PPI therapy and incident cardiovascular out
comes and to apply a rigorous risk of bias assessment of the included 
studies [8]. 

1.2. Objectives 

We performed a systematic review and meta-analysis to evaluate the 
effect of PPI therapy on the risk of first acute cardiovascular events, i.e. 
first myocardial infarction or first ischaemic stroke. In addition, we 
examined the effect on cardiovascular mortality. 

2. Methods 

2.1. Eligibility criteria 

2.1.1. Population 
We included observational studies in populations free of prevalent 

cardiovascular disease at inclusion for the analysis of first myocardial 
infarction. Likewise, populations free of prevalent cerebrovascular dis
ease at inclusion were considered for the analysis of first stroke. For the 
analysis of cardiovascular mortality, we included study populations with 
and without prior cardiovascular events. 

2.1.2. Intervention 
The intervention under investigation was intake of PPIs (ATC Code 

A02BC). We included studies addressing an as-started [9] effect as well 
as studies addressing an on-treatment [9] effect. The as-started effect 
(also known as intention-to-treat analysis) is the effect of the initial 
treatment, regardless of treatment continuation. It assumes an irre
versible long-term effect of a point treatment. The on-treatment effect 
(similar to a per-protocol analysis) is the effect of continuous treatment 
and assumes a reversible effect of treatment. More generally, under a 
reversible effect model time under risk is attributed to the current 
exposure, whereas in an irreversible effect model all time under risk 
after a point treatment is attributed to this baseline exposure. 

2.1.3. Comparators 
We included effect estimates comparing PPI intake versus H2RA 

(histamine-2 receptor antagonist; ATC Code A02BA) intake as an active 
comparator [10] as well as estimates comparing PPI intake versus no 
intake. 

2.1.4. Outcomes 
The primary outcomes were first myocardial infarction and first 

ischaemic stroke. The secondary outcomes were the combined outcome 
of incident cardiovascular events (i.e. the combination of first myocar
dial infarction or first ischaemic stroke) and cardiovascular mortality. 

2.1.5. Information sources, search strategy and study selection 
We searched for peer-reviewed studies in English language in the 

PubMed / MEDLINE, EMBASE, and Scopus electronic databases from 
their respective inception dates until 16 September 2021. The search 
strings used for each of the databases can be found in Supplementary 
Table S1. 

Two authors (MN, IR) independently screened all titles and abstracts 

after initial removal of duplicates. Original research articles reporting 
treatment effect estimates and meeting our eligibility criteria were 
included. Single-case studies, cross-sectional studies, case-control 
studies without density sampling and randomized controlled trials 
were disregarded. Then, two authors (MN, IR) independently performed 
full-text reviews to decide on the inclusion of studies for the detailed risk 
of bias assessment. Studies were excluded if they had an unsuitable 
study design, inept selection of treatment controls or used a qualitative 
study design. All discrepancies were resolved by consensus. 

2.2. Risk of bias assessment and data extraction 

The risk of methodological bias was assessed by two review authors 
(MN, IR) independently, using the “Risk Of Bias In Non-randomised 
Studies - of Interventions“ (ROBINS-I) [8] tool. This tool draws on the 
concept of considering each study as an emulated target trial [11]. In 
this context, risk of bias is separately judged in seven domains using 
signalling questions and the ratings within each domain are carried 
forward to an overall risk of bias judgement. Disagreements were 
resolved by discussion. Details about the reasons that lead to attributing 
overall serious risk of bias to individual studies are given in Supple
mentary Table S2. 

We performed double data extraction for details on the study design 
and on the statistical analysis. Where data were missing or unclear, we 
contacted the corresponding author. The authors of one article [12] 
provided additional information upon request. For one study [13] we 
had to estimate the number of events. Where studies reported multiple 
effect estimates, we used data from the analysis with the lowest risk of 
bias and the longest follow up time. We used adjusted hazard ratios 
(HRs) and corresponding 95% confidence intervals (CIs) to present and 
synthesize the results. 

2.3. Statistical analysis 

We used the Hartung-Knapp-Sidik-Jonkman random-effects meta- 
analysis approach with inverse-variance weighting which showed to 
produce adequate standard errors even when the number of studies is 
small [14,15] to estimate the between-study variance (τ2) and combine 
study-specific log HRs. We estimated pooled HRs, with corresponding 
95% CIs and 95% prediction intervals (PIs) [16]. The 95% CI from a 
random-effects model contains highly probable values for the pooled 
HR. The 95% PI estimates where the true HR is to be expected in 95% of 
future studies under similar conditions factoring in the variability of the 
effect over different settings [17]. We reported the percentage of total 
variation due to heterogeneity (I2). Cochran’s Q statistic was used to test 
for between-study heterogeneity. 

Subgroup analyses examined the effects of geographic region (Asia, 
Europe, United States), follow up time (up to or more than 5 years), 
study size (up to or more than 2,000 events), proportion of prevalent 
cardiovascular disease at study inclusion (up to or more than 20%), use 
of an active comparator / new user design (yes, no) and risk of bias 
(moderate, serious). All statistical tests were two-sided. The statistical 
software R (version 4.1.2, Foundation for Statistical Computing, Vienna, 
Austria; packages meta, metafor, metamisc [18], and metasens [19]) 
was used. 

2.4. Sensitivity and bias analyses 

Random-effects meta-analysis of observational studies can produce 
biased estimates of pooled effect sizes if the synthesized individual 
studies are subject to unmeasured confounding or selection bias [20]. 
Thus, in order to detect outliers and influential studies we analysed 
Baujat plots [21,22]. We then examined possible effects due to inclusion 
of small studies, selective publication of positive findings, and sensitivity 
to unobserved confounding and selection bias. Publication bias and 
small study effects (funnel plot asymmetry) were examined using the 
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regression-based tests proposed by Debray et al. [18]. If the tests indi
cated bias, we applied the trim-and-fill method [19], the Copas selection 
model [19] and adjusted for small study bias using the Rücker 
regression-based shrinkage estimator [19]. 

In addition, we quantified bias introduced by analytical and clinical 
study design choices using meta-regression. Due to the small number of 
studies we calculated the p-value for the meta-regression model using a 
permutation test [23]. Following a two-stage approach [24], we further 
adjusted each study individually for bias introduced by publication bias 
and study design choices. Finally, random-effects meta-analysis of these 
bias-adjusted HRs was performed to estimate a pooled bias-adjusted HR. 

3. Results 

3.1. Systematic review and qualitative analysis 

After removal of duplicate publications our literature search identi
fied a total of 7,038 publications (Fig. 1). Examination of titles and 
abstracts and a full-text review of 39 studies left us with 17 studies for a 

detailed risk of bias assessment [8]. Only studies with moderate or 
serious risk of bias were included in the analyses. Studies with critical 
risk of bias were excluded (Supplementary Table S3). Two studies [25, 
26] estimated the effect on myocardial infarction and ischaemic stroke 
separately in their study populations. Rooney et al. [27] estimated the 
effect on ischaemic stroke and cardiovascular mortality in one study 
population, while Landi et al. [28] estimated the effect on myocardial 
infarction in two separate study populations. Thus, in total, five esti
mates regarding myocardial infarction [25,26,28,29] and five estimates 
regarding ischaemic stroke [25–27,30,31] were combined for the anal
ysis of acute cardiovascular events (24,547 cases of first ischaemic 
stroke and 50,824 cases of first myocardial infarction). In the analysis of 
cardiovascular mortality, the estimates of seven studies with 50,329 
cardiovascular deaths were included [12,13,27,32–35]. 

Studies differed in size (58–28,207 events), study design (compar
ator H2RA or non-user; new use or prevalent use), duration of follow-up 
(maximum follow-up between 4 and 231 months), study population 
characteristics (age and sex structure, prevalence of comorbidities), and 
statistical analysis (reversible/irreversible effect model, adjusted 

Fig. 1. PRISMA Flowchart Flowchart of the inclusion of studies in the review. Four studies each yielded two separate effect estimates.  
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Table 1 
Characteristics of included studies (ordered by outcome, year).  

Author, year Data Source Continent, Country Outcome, 
No. cases 

Comparator Max follow-up HR (95% CI) Robins-I Effect model Statistical Model New user  
design 

Nolde,  
2021 (MI) 

Claims Data Europe, 
Germany 

MI, 
4,606 

H2RA 120 
months 

0.96 
(0.80-1.16) 

Moderate Irreversible Weighted Cox Yes 

Landi,  
2018 (a) 

Claims Data (Truven  
Marketscan Commercial) 

North America, 
US 

MI, 
21,670 

H2RA 36 
months 

0.94 
(0.88-0.99) 

Moderate Irreversible Weighted Cox Yes 

Landi,  
2018 (b) 

Claims Data (Truven  
Marketscan Medicare) 

North America, 
US 

MI, 
23,556 

H2RA 36 
months 

0.96 
(0.92-1.01) 

Moderate Irreversible Weighted Cox Yes 

Sehested, 
2018 (MI) 

Linked 
registers 

Europe, 
Denmark 

MI, 
863 

Non-user 12 
months 

1.12 
(0.95-1.27) 

Serious Irreversible Multi-variable Cox No 

Shih, 
2014 

Claims Data Asia, 
Taiwan 

MI, 
129 

Non-user 4 
months 

1.58 
(1.11-2.25) 

Serious Irreversible Matched Cox Yes 

Nolde, 
2021 (IS) 

Claims Data Europe, 
Germany 

IS, 
18,393 

H2RA 120 
months 

0.98 
(0.89-1.08) 

Moderate Irreversible Weighted Cox Yes 

Rooney, 
2020 (IS) 

Cohort Study North 
America, 
US 

IS, 
122 

Non-user 84 
months 

0.92 
(0.60-1.44) 

Serious Irreversible Multi-variable Cox No 

Nguyen, 
2018 

Cohort Studies 
(Nurses’ 
Health Study & Health 
Professionals Follow-up Study) 

North America, 
US 

IS, 
2,599 

Non-user 144 
months 

1.08 
(0.91-1.27) 

Serious Reversible Time-varying Cox No 

Sehested, 
2018 (IS) 

Linked 
registers 

Europe, 
Denmark 

IS, 
1,198 

Non-user 12 
months 

1.20 
(1.06-1.36) 

Serious Irreversible Multi-variable Cox No 

Wang, 
2017 

EHR Asia, 
Taiwan 

IS, 
2,235 

H2RA 143 
months 

1.11 
(1.02-1.21) 

Moderate Irreversible Matched Cox Yes 
(30 days 
washout) 

Brown, 
2021 

EHR 
(General Practice  
Research Database) 

Europe, 
UK 

CVM, 
28,207 

H2RA 231 
months 

1.14 
(1.07-1.22) 

Moderate Irreversible Weighted Cox Yes 

He, 
2021 

EHR  
(UK Biobank) 

Europe, 
UK 

CVM, 
352 

H2RA 
(regular use) 

121 
months 

1.26 
(0.89-1.79) 

Moderate Irreversible Multi-variable Cox No 

Rooney, 
2020 (CVM) 

Cohort Study North 
America, 
US 

CVM, 
121 

Non-user 84 
months 

1.36 
(0.87-2.12) 

Serious Irreversible Multi-variable Cox No 

Xie, 
2019 

EHR 
(US Department of Veterans Affairs) 

North 
America, 
US 

CVM, 
18,148 

H2RA 120 
months 

1.25 
(1.10-1.44) 

Moderate Irreversible Weighted Cox Yes 

Adelborg, 
2018 

Linked 
registers 

Europe, 
Denmark 

CVM, 
3,220* 

H2RA 60 
months 

1.23 
(1.08-1.41) 

Serious Irreversible Matched Cox Yes 

De Francisco,  
2018 

EHR 
(European Clinical Database) 

Europe, 
Spain 

CVM, 
223 

Non-user 30 
months 

1.67 
(1.03-2.71) 

Serious Irreversible Matched Cox No 

Shah, 
2015 

Cohort Study North 
America, 
US 

CVM, 
58 

Non-user 96 
months 

2.00 
(1.07-3.78) 

Serious Irreversible Multi-variable Cox No 

HR: hazard ratio; MI: myocardial infarction; IS: ischaemic stroke; CVM: cardiovascular mortality; 
EHR: Electronic health records; H2RA: H2 receptor antagonists 
Weighted Cox: Cox regression model using balancing weights to adjust for baseline confounding 
* estimated 
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Table 2 
Additional characteristics of included studies (ordered by outcome, year).  

Author, year Study Population PREV CVD Adjusted Covariates Remarks The seven domains of the ROBINS-I 
CF SEL INT DEV MISS OUT REP 

Nolde,  
2021 (MI) 

Age ≥ 18 No Age, Sex, COME, COMO, TI, ASP, CLO  o + + + + + +

Landi,  
2018 (a) 

Working population;  
age 18–65 

1.4 % stroke Age, Sex, COME, COMO, TI, CLO, health care utilization Additional on-treatment effect 
estimate 

o + + + + + +

Landi,  
2018 (b) 

Retired population; age ≥ 65 8.9 % stroke Age, Sex, COME, COMO, TI, CLO, health care utilization Additional on-treatment effect 
estimate 

o + + + + + +

Sehested, 
2018 (MI) 

Patients after elective upper endoscopy;  
age 30–99 

No Age, Sex, COME, COMO, TI, ASP, SES In patients after upper endoscopy - + + + + + +

Shih, 
2014 

Age 18–80 12.4 % CEVD Age, Sex, COME, COMO, ASP, CLO, SES, health care 
utilization  

o - + + + + o 

Nolde, 
2021 (IS) 

Age ≥ 18 No Age, Sex, COME, COMO, TI, ASP, CLO  o + + + + + +

Rooney, 
2020 (IS) 

5th visit of a cohort study; 
age 69–90 

No Age, Sex, Race, Education, COME, Diabetes, Livestyle, Lab  - - - + o + o 

Nguyen, 
2018 

Age 30–75 5.0 %  
CVD 

Age, Sex, COME, COMO, TI, ASP, Livestyle Only study assuming reversible 
causal effect 

- o o + o + +

Sehested, 
2018 (IS) 

Patients after elective upper endoscopy;  
age 30–99 

No Age, Sex, COME, COMO, TI, ASP, SES In patients after upper endoscopy - + + + + + +

Wang, 
2017 

Age ≥ 20 17.4 % CAD 
1.2 %  
MI 

Age, Sex, COME, COMO, ASP, CLO, SES, health care 
utilization  

o o + + + + +

Brown, 
2021 

Age ≥ 18 8.2 % CHD; 
4.5 % 
CEVD 

Age, Sex, COME, COMO, ASP, CLO, Livestyle, SES, health 
care utilization  

o + + + + + +

He, 
2021 

Age 37–73 No Age, Sex, Race, COME, COMO, TI, ASP, SES, Education, 
Livestyle  

o o o + o + +

Rooney, 
2020 
(CVM) 

5th visit of a cohort study; 
age 69–90 

No Age, Sex, Race, Education, COME, Diabetes, Livestyle, Lab  - - - + o + o 

Xie, 
2019 

Veterans;  
96% male 

25.2 % 
CVD 

Age, Sex, Race, COME, COMO, TI, Livestyle, SES, health 
care utilization, Lab  

o o o o + + +

Adelborg, 
2018 

Patients hospitalized with first-time heart 
failure; 
mostly older 

53.6 % 
CAD; 
14.8 %  
stroke 

Age, Sex, COME, COMO, TI, SES In patients with heart failure o - o + + + +

De Francisco,  
2018 

Hemodialysis 
Patients; 
age ≥ 18,  
mostly older 

40.0 %  
on anti- 
platelets 

Age, Sex, COME, COMO, Lab, ASP/CLO combined In patients on hemodialysis - - + + o + +

Shah, 
2015 

Patients after non-emergent elective 
coronary angiogram 

76% CAD Age, Sex, Race, COME, COMO, Lab, Livestyle In patients after coronary 
angiogram 

- - - + o + o 

MI: myocardial infarction; IS: ischaemic stroke; CVM: cardiovascular mortality; 
PREV CVD: prevalent cardiovascular disease; CF: confounding; SEL: selection; INT: intervention; DEV: deviations; MISS: missing; OUT: outcome; REP: reporting; MI: myocardial infarction; CEVD cerebrovascular disease; 
CVD cardiovascular disease; CHD: coronary heart disease; CAD: coronary artery disease; COME: comedications; COMO: comorbidities; TI: treatment indications; SES: socio-economic status; ASP: aspirin; CLO: clopidogrel; 
+: low risk of bias; o: moderate risk of bias; -: serious risk of bias 
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covariates). Detailed characteristics of all included studies are shown in 
Tables 1 and 2. Among studies with a cardiovascular mortality endpoint 
there was large variation of the proportion of prevalent cardiovascular 
disease at study inclusion and some studies [13,32,34] were undertaken 
in clinical populations with high cardiovascular morbidity. In particular, 
the two large studies [12,35] on cardiovascular mortality examined 
all-cause mortality and reported cause-specific mortality as part of their 
subgroup analyses. This broader scope also meant that eligibility criteria 

were not tailored specifically for studying cardiovascular mortality and 
patients with prevalent cardiovascular disease were included, which 
possibly biased effect estimates due to confounding by indication. 

3.2. Meta-analysis 

3.2.1. Cardiovascular events 
The random-effects meta-analysis yielded pooled HRs of 1.05 with a 

Fig. 2. (a–d). Forest plot of random-effects 
meta-analyses for (a) myocardial infarc
tion, (b) ischaemic stroke, (c) acute cardio
vascular events, (d) cardiovascular 
mortality Study-specific hazard ratios (HR) 
are represented by black diamonds (with 
their 95% confidence interval [CI] as error 
bars). HRs were combined using a Hartung- 
Knapp-Sidik-Jonkman random-effects 
model, yielding a pooled HR and its 95% CI 
and 95% prediction interval. The dotted 
line represents the pooled HR. Two-sided P 
value for between-study heterogeneity 
based on Cochran Q statistic.   
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95% confidence interval of (0.83; 1.32) (Fig. 2a) for first myocardial 
infarction, 1.08 (0.97; 1.20) (Fig. 2b) for first ischaemic stroke and 1.05 
(0.96; 1.15) (Fig. 2c) for first cardiovascular events. All CIs and all PIs 
included the null. There was moderate to substantial heterogeneity 
(46.9%-71.2%) between studies. Stratified analyses suggested that 
studies with a serious risk of bias (HR 1.16), small studies (HR 1.18), and 
studies conducted in an Asian population (HR 1.13) resulted in higher 
risk estimates (Table 3). 

3.2.2. Cardiovascular mortality 
The pooled HR for PPI use and cardiovascular mortality was 1.27 

(1.11; 1.44) (Fig. 2d). Heterogeneity between studies was low (17.9%). 
In the stratified analyses, we found smaller effect estimates in large 
studies and in studies following an active comparator new user design 
[10] (Table 3). 

3.3. Sensitivity and bias analyses 

3.3.1. Cardiovascular events 
The Baujat plot confirmed that the studies of Landi et al. [28] had the 

largest influence on the effect estimate (Supplementary Fig. S1). 
Analysis of funnel plot asymmetry (Supplementary Fig. S2), Egger 

test (p-value 0.069) and Debray test (p-value 0.095) (Supplementary 
Table S4) showed little evidence for small study bias. According to the 
contour-enhanced funnel plot (Supplementary Fig. S2) the reported es
timates were sufficiently explained under the null. 

Meta-regression analysis estimated the effect of study design choices 
summarized by the ROBINS-I assessment (moderate or serious) to 0.16 
on the log(HR) scale with a standard error of 0.06 and a p-value of 0.030. 
We adjusted the reported HRs and CIs accordingly (Supplementary 
Table S5). Meta-analysis of these bias-adjusted HRs yielded a pooled 

bias-adjusted HR of 0.99 (0.93; 1.04) (Fig. 3a). 

3.3.2. Cardiovascular mortality 
The Baujat plot (Supplementary Fig. S3) identified the study of 

Brown et al. [12] as the most influential study for the effect estimate. 
Despite the small number of studies included, analysis of funnel plot 
asymmetry (Supplementary Fig. S4), Egger test (p-value 0.005) and 
Debray test (p-value 0.039) (Supplementary Table S4) showed strong 
evidence for small study bias. We calculated pooled HRs adjusted for 
small study bias (Supplementary Table S6) using the trim-and-fill 
method [HR 1.19 (1.01; 1.39)] (Supplementary Fig. S5), Copas selec
tion model [HR 1.17 (1.09; 1.25)] and Rücker’s shrinkage procedure 
[HR 1.16 (1.07; 1.26)] (Supplementary Fig. S6). 

Multiple meta-regression analysis estimated the bias introduced on 
the log(HR) scale by deviating from an active comparator, new user 
design to 0.21 (standard error 0.07) and by including patients with 
prevalent cardiovascular disease to 0.0025 (standard error 0.0009) per 
1% increase (Supplementary Fig. S7) with a p-value of 0.019 for the 
meta-regression model. Reported HRs and CIs were adjusted for both 
publication bias according to Rücker’s shrinkage procedure and design 
bias (Supplementary Table S5). Meta-analysis of these bias-adjusted HRs 
yielded a bias-adjusted pooled HR of 1.06 (0.96; 1.16) (Fig. 3b). 

4. Discussion 

Our study adds information to the safety evaluation of PPIs, a 
question of high clinical relevance [36,37], as PPIs are amongst the most 
frequently used medications [1]. This meta-analysis combined ten 
studies on cardiovascular events including 24,547 cases of first ischae
mic stroke and 50,824 cases of first myocardial infarction, as well as 
seven studies on cardiovascular mortality with 50,329 cardiovascular 

Table 3 
Subgroup meta-analyses.  

Cardiovascular Events (10 studies) 
Subgroup No. of studies HR (95% CI) I2, % Τ2 P 

Risk of bias (ROBINS-I)  
moderate  
serious  

5 
5  

0.99 (0.91–1.07) 
1.16 (0.96–1.40)  

63.0 
23.3  

0.0029 
0.0185 

0.031  

Follow-up time  
short studies (≤ 5 years)  
long studies (> 5 years)  

5 
5  

1.09 (0.87–1.37) 
1.04 (0.95–1.13)  

82.7 
18.1  

0.0294 
0.0024 

0.53  

Number of events  
small studies (≤ 2000)  
big studies (> 2000)  

4 
6  

1.18 (1.08–1.29) 
0.98 (0.95–1.01)  

59.0 
32.2  

0.0249 
0.0030 

0.062  

Geographic region  
Asia  
Europe  
US  

2 
4 
4  

1.13 (1.04–1.23) 
1.06 (0.99–1.13) 
0.96 (0.92–0.99)  

72.4 
62.4 
0  

0.0402 
0.0073 
0.0017 

0.084  

Cardiovascular Mortality (7 studies) 
Subgroup No. of studies HR (95% CI) I2, % Τ2 P 
Risk of Bias (ROBINS-I)  

moderate  
serious  

3 
4  

1.17 (1.03–1.34) 
1.39 (1.02–1.89)  

0 
14.1  

0.0320 
0.0195 

0.097  

Active comparator / new user design  
yes  
no  

3 
4  

1.18 (1.04–1.34) 
1.46 (1.08–1.99)  

3.3 
0  

0.0010 
0.0142 

0.033  

Prevalent cardiovascular disease  
≤ 20%  
> 20%  

3 
3  

1.16 (1.01–1.32) 
1.27 (0.98–1.66)  

0 
0  

0.0017 
0.0095 

0.16  

Follow-up time  
short studies (≤ 5 years)  
long studies (> 5 years)  

2 
5  

1.32 (0.26–6.78) 
1.25 (1.05–1.50)  

29.9 
18.6  

0.0195 
0.0173 

0.72  

Number of events  
small studies (≤ 2000)  
big studies (> 2000)  

4 
3  

1.46 (1.08–1.99) 
1.18 (1.04–1.34)  

0 
3.3  

0.0142 
0.0010 

0.033  

Geographic region  
Europe  
US  

4 
3  

1.22 (1.02–1.45) 
1.36 (0.84–2.21)  

11.2 
5.3  

0.0098 
0.0242 

0.37  

CI: confidence interval; HR: hazard ratio (calculated in the Hartung-Knapp-Sidik-Jonkman random-effects model); I2: percentage of total variance explained by τ2; τ2: 
between-study variance; P: p-value of Q test for subgroup differences. 
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deaths in total. The pooled HRs for PPI use and cardiovascular events 
were 1.05 (0.96; 1.15) before and 0.99 (0.93; 1.04) after adjusting for 
observational study design bias. The pooled HRs for PPI use and car
diovascular mortality were 1.27 (1.11; 1.44) before and 1.06 (0.96; 
1.16) after adjusting for publication bias and observational study design 
bias. 

An effect of PPI intake on cardiovascular events has been discussed 
for more than a decade. PPIs, especially omeprazole, seem to attenuate 
clopidogrel’s antiplatelet effects by inhibiting CYP2C19, which metab
olises clopidogrel to its active metabolites [2]. Besides that, several 
mechanisms have been suggested, by which PPIs might directly affect 
cardiovascular risk via impaired vascular endothelial function [38,39] 
or accelerated endothelial aging [40]. Evidence for an effect indepen
dent of clopidogrel inhibition was conflicting between randomized trials 
and observational studies [5]. While randomized trials showed no dif
ferences between PPI users and placebo-users [3,5], observational 
studies indicated a potentially increased cardiovascular risk for PPI users 
[4,5]. This seemed concerning, as observational studies are better suited 
to detect long-term effects and the combined CI of (0.25; 5.73) from 
randomized trials [5] could not reject the observational effect estimate. 

Our analyses showed that this discrepancy can be resolved by 
adjusting for observational study design bias. First, we minimized the 
effects of clopidogrel inhibition by observing first cardiovascular events 
only. Second, we analysed each study’s risk of bias in detail using the 
ROBINS-I tool [8] and excluded studies with critical risk of bias. Finally, 
we adjusted individual study estimates for bias introduced by study 
design choices and combined the adjusted estimates to the pooled 
bias-adjusted HR of 0.99 (0.93; 1.04), which coincides with estimates 
from randomized trials [3]. Especially, risk of bias in individual studies 

could have been reduced by applying a new user design, as prevalent PPI 
therapy might be a sign of a pre-existing cardiovascular condition and 
the inclusion of prevalent PPI users would therefore introduce indication 
bias. By design, studies on cardiovascular mortality included patients 
with prior cardiovascular disease, which increased the potential for bias 
due to interaction with clopidogrel and confounding by indication. 
Furthermore, we found considerable publication bias among studies on 
cardiovascular mortality. After adjusting individual study estimates for 
publication and study design bias we yielded a bias-adjusted pooled HR 
of 1.06 (0.96; 1.16) consistent with the analysis of cardiovascular 
events. 

Although we did not find an overall effect of PPI therapy on the risk 
of cardiovascular events, the subgroup analysis revealed that the two 
studies [29,31] in Asian populations reported substantially higher effect 
estimates than studies from other regions. Unfortunately, the number of 
studies was not sufficient to decide, whether this is pure coincidence or 
actual effect modification. 

The limitations of this meta-analysis stem mostly from the limita
tions of the data used in the individual studies. Especially, exposure to 
PPI therapy was usually identified using dispensed prescriptions and use 
of over-the-counter medications and combination products was not 
captured. PPI therapy was considered a point treatment. Effects of long- 
term intake or cumulative dose-dependent effects were not accessible. 
Long-term and high-dose users of PPIs were part of the analyses, but 
their cardiovascular risk might have been diluted by mostly short-term 
and low-dose PPI users. 

In conclusion, this qualitative and quantitative synthesis of all 
available prospective observational studies suggests that PPI intake as a 
limited treatment of gastroesophageal diseases does not increase the risk 

Fig. 3. (a,b). Forest plot of bias-adjusted random-effects meta-analyses for (a) acute cardiovascular events, (b) cardiovascular mortality Study-specific hazard ratios 
(HR) are represented by black diamonds (with their 95% confidence interval [CI] as error bars). HRs were combined using a Hartung-Knapp-Sidik-Jonkman random- 
effects model, yielding a mean hazard ratio and its 95% CI and 95% prediction interval. The dotted line represents the pooled HR. Two-sided P value for between- 
study heterogeneity based on Cochran Q statistic.(a) HR and 95%-CI adjusted for bias introduced by study design (serious risk of bias) (b) HR and 95%-CI adjusted for 
publication bias and bias introduced by study design (prevalent cardiovascular disease, prevalent use, non-user control). 
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of first cardiovascular events. Reports of increased cardiovascular 
mortality can largely be explained by publication bias and observational 
study design biases, such as indication bias and unmeasured con
founding. In combination with results from randomized trials it seems 
therefore questionable, whether PPI intake constitutes a cardiovascular 
risk factor independent of any possible interaction with clopidogrel. 
Further studies might investigate the cardiovascular risk of PPI therapy 
in Asian populations. 

5. Registration and protocol 

This review was registered at the PROSPERO database 
(CRD42020197513). It was designed and conducted in accordance with 
the Cochrane Handbook of Systematic Reviews [41] and has been 
authored according to the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) 2020 guideline [42]. 
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