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We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) 402 

of type 2 diabetes (T2D) in 180,834 cases and 1,159,055 controls (48.9% non-European 403 

descent) through the DIAMANTE (DIAbetes Meta-ANalysis of Trans-Ethnic association 404 

studies) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining 405 

stringent genome-wide significance (P < 5 x 10-9), which were delineated to 338 distinct 406 

association signals. Fine-mapping of these signals was enhanced by the increased sample size 407 

and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% 408 

of T2D associations to a single variant with >50% posterior probability. This improved fine-409 

mapping enabled systematic assessment of candidate causal genes and molecular 410 

mechanisms through which T2D associations are mediated, laying the foundations for 411 

functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D 412 

prediction across diverse populations. Our study provides a step towards more effective 413 

clinical translation of T2D GWAS to improve global health for all, irrespective of genetic 414 

background. 415 

  416 



The global prevalence of type 2 diabetes (T2D) has quadrupled over the last 30 years1, affecting 417 

approximately 392 million individuals in 20152. Despite this worldwide impact, the largest T2D 418 

genome-wide association studies (GWAS) have predominantly featured populations of 419 

European ancestry3-6, compromising prospects for clinical translation. Failure to detect causal 420 

variants that contribute to disease risk outside European ancestry populations limits progress 421 

towards a full understanding of disease biology and constrains opportunities for development 422 

of therapeutics7. Implementation of personalized approaches to disease management depends 423 

on accurate prediction of individual risk, irrespective of ancestry. However, genetic risk scores 424 

(GRS) derived from European ancestry GWAS provide unreliable prediction when deployed in 425 

other population groups, in part reflecting differences in effect sizes, allele frequencies and 426 

patterns of linkage disequilibrium (LD)8.  427 

To address the impact of this population bias, recent T2D GWAS have included 428 

individuals of non-European ancestry9-11. The DIAMANTE (DIAbetes Meta-ANalysis of Trans-429 

Ethnic association studies) Consortium was established to assemble T2D GWAS across diverse 430 

ancestry groups. Analyses of the European and East Asian ancestry components of DIAMANTE 431 

have previously been reported6,10. Here, we describe the results of our multi-ancestry meta-432 

analysis, which expands on these published components to a total of 180,834 T2D cases and 433 

1,159,055 controls, with 20.5% of the effective sample size ascertained from African, Hispanic, 434 

and South Asian ancestry groups. With these data, we demonstrate the value of analyses 435 

conducted in diverse populations to understand how T2D-associated variants impact 436 

downstream molecular and biological processes underlying the disease, and advance clinical 437 

translation of GWAS findings for all, irrespective of genetic background. 438 

 439 

 440 

RESULTS 441 

 442 

Study overview. We accumulated association summary statistics from 122 GWAS in 180,834 443 

T2D cases and 1,159,055 controls (effective sample size 492,191) across five ancestry groups 444 

(Supplementary Tables 1-3). We use the term “ancestry group” to refer to individuals with 445 

similar genetic background: European ancestry (51.1% of the total effective sample size); East 446 

Asian ancestry (28.4%); South Asian ancestry (8.3%); African ancestry, including recently 447 

admixed African American populations (6.6%); and Hispanic individuals with recent admixture 448 

of American, African, and European ancestry (5.6%). Each ancestry-specific GWAS was imputed 449 

to reference panels from the 1000 Genomes Project12,13, Haplotype Reference Consortium14, or 450 

population-specific whole-genome sequence data. Subsequent association analyses were 451 

adjusted for population structure and relatedness (Supplementary Table 4). We considered 452 

19,829,461 bi-allelic autosomal single nucleotide variants (SNVs) that overlapped reference 453 

panels with minor allele frequency (MAF) > 0.5% in at least one of the five ancestry groups 454 

(Extended Data Fig. 1 and Methods). 455 

 456 

Robust discovery of multi-ancestry T2D associations. We aggregated association summary 457 

statistics via multi-ancestry meta-regression, implemented in MR-MEGA15, which models allelic 458 

effect heterogeneity correlated with genetic ancestry. We included three axes of genetic 459 

variation as covariates that separated GWAS from the five major ancestry groups (Extended 460 



Data Fig. 2 and Methods). We identified 277 loci associated with T2D at the conventional 461 

genome-wide significance threshold of P < 5 x 10-8 (Extended Data Fig. 3 and Supplementary 462 

Table 5). By accounting for ancestry-correlated allelic effect heterogeneity in the multi-ancestry 463 

meta-regression, we observed lower genomic control inflation (λGC = 1.05) than when using 464 

either fixed- or random-effects meta-analysis (λGC = 1.25 under both models), and stronger 465 

signals of association at lead SNVs at most loci (Extended Data Fig. 4). Of the 277 loci, 11 have 466 

not previously been reported in recently published T2D GWAS meta-analyses6,10,11 that account 467 

for 78.6% of the total effective sample size of this multi-ancestry meta-regression (Extended 468 

Data Fig. 3 and Supplementary Note). Of the 100 and 193 loci attaining genome-wide 469 

significance (P < 5 x 10-8) in East Asian and European ancestry-specific meta-analyses, 470 

respectively, lead SNVs at 94 (94.0%) and 164 (85.0%) demonstrated stronger evidence for 471 

association (smaller P-value) in the multi-ancestry meta-regression (Extended Data Fig. 5 and 472 

Supplementary Note). These results demonstrate the power of multi-ancestry meta-analyses 473 

for locus discovery afforded by increased sample size, but also emphasize the importance of 474 

complementary ancestry-specific GWAS for identification of associations that are not shared 475 

across diverse populations. 476 

The conventional genome-wide significance threshold does not allow for different 477 

patterns of LD across diverse populations in multi-ancestry meta-analysis. We therefore derived 478 

a multi-ancestry genome-wide significance threshold of P < 5 x 10-9 by estimating the effective 479 

number of independent SNVs across the five ancestry groups using haplotypes from the 1000 480 

Genomes Project reference panel13 (Methods). Of the 277 loci reported in this multi-ancestry 481 

meta-regression, 237 attained the more stringent significance threshold, which we considered 482 

for downstream analyses. Through approximate conditional analyses, conducted using 483 

ancestry-matched LD reference panels for each GWAS, we partitioned associations at the 237 484 

loci into 338 distinct signals that were each represented by an index SNV at the same multi-485 

ancestry genome-wide significance threshold (Methods, Supplementary Tables 6-8, and 486 

Supplementary Note). Allelic effect estimates for distinct association signals from approximate 487 

conditional analyses undertaken in admixed ancestry groups were robust to the choice of 488 

reference panel (Supplementary Note). 489 

 490 

Allelic-effect heterogeneity across ancestry groups. Allelic-effect heterogeneity between 491 

ancestry groups can occur for several reasons, including differences in LD with causal variants 492 

or interactions with environment or polygenic background across diverse populations. An 493 

advantage of the multi-ancestry meta-regression model is that heterogeneity can be 494 

partitioned into two components. The first captures heterogeneity that is correlated with 495 

genetic ancestry (i.e. can be explained by the three axes of genetic variation). The second 496 

reflects residual heterogeneity due to differences in geographical location (for example 497 

different environmental exposures) and study design (for example different phenotype 498 

definition, case-control ascertainment, or covariate adjustments between GWAS). We observed 499 

136 (40.2%) distinct T2D associations with nominal evidence (PHET < 0.05) of ancestry-correlated 500 

heterogeneity compared to 16.9 expected by chance (binomial test P < 2.2 x 10-16). In contrast, 501 

there was nominal evidence of residual heterogeneity at just 27 (8.0%) T2D association signals 502 

(binomial test P = 0.0037), suggesting that differences in allelic effect size between GWAS are 503 



more likely due to factors related to genetic ancestry than to geography and/or study design 504 

(Supplementary Note).   505 

 506 

Population diversity improves fine-mapping resolution. We sought to quantify the 507 

improvement in fine-mapping resolution offered by increased sample size and population 508 

diversity in the multi-ancestry meta-regression. For each of the 338 distinct signals, we first 509 

derived multi-ancestry and European ancestry-specific credible sets of variants that account for 510 

99% of the posterior probability (π) of driving the T2D association under a uniform prior model 511 

of causality (Methods). Multi-ancestry meta-regression substantially reduced the median 99% 512 

credible set size from 35 variants (spanning 112 kb) to 10 variants (spanning 26 kb), and 513 

increased the median posterior probability ascribed to the index SNV from 24.3% to 42.0%. The 514 

99% credible sets for 266 (78.7%) distinct T2D associations were smaller in the multi-ancestry 515 

meta-regression than in the European ancestry-specific meta-analysis, while a further 26 (7.7%) 516 

signals were resolved to a single SNV in both (Fig. 1, Supplementary Table 9, and 517 

Supplementary Note). Causal variant localization was also more precise in the multi-ancestry 518 

meta-regression than a meta-analysis of GWAS of European and East Asian ancestry, which 519 

together account for 79.5% of the total effective sample size, highlighting the important 520 

contribution of the most under-represented ancestry groups (African, Hispanic, and South 521 

Asian) to fine-mapping resolution (Fig. 1 and Supplementary Note).  522 

We next attempted to understand the relative contributions of population diversity and 523 

sample size to these improvements in fine-mapping resolution at the 266 distinct T2D 524 

associations that were more precisely localized after the multi-ancestry meta-regression. We 525 

down-sampled studies contributing to the multi-ancestry meta-regression to approximate the 526 

effective sample size of the European ancestry-specific meta-analysis, while maintaining the 527 

distribution of population diversity (Methods and Supplementary Table 10). The associations 528 

were better resolved in the down-sampled multi-ancestry meta-regression at 137 signals 529 

(51.5%), compared with 119 signals (44.7%) in the European ancestry-specific meta-analysis 530 

(Fig. 1 and Supplementary Table 11). These results highlight the value of diverse populations 531 

for causal variant localization in multi-ancestry meta-analysis, emphasizing the importance of 532 

increased sample size and differences in LD structure and allele frequency distribution between 533 

ancestry groups that has also been reported for other complex human traits16. 534 

 535 

Multi-ancestry fine-mapping to single variant resolution. Previous T2D GWAS have 536 

demonstrated improved localization of causal variants through integration of fine-mapping data 537 

with genomic annotation6,17. By mapping SNVs to three categories of functional and regulatory 538 

annotation, with an emphasis on diabetes-relevant tissues18, we observed significant joint 539 

enrichment (P < 0.00023, Bonferroni correction for 220 annotations) for T2D associations 540 

mapping to protein coding exons, binding sites for NKX2.2, FOXA2, EZH2, and PDX1, and four 541 

chromatin states in pancreatic islets that mark active enhancers, active promoters, and 542 

transcribed regions (Methods, Extended Data Fig. 6 and Supplementary Table 12). We used 543 

the enriched annotations to derive a prior model for causality, and redefined 99% credible sets 544 

of variants for each distinct signal (Methods and Supplementary Table 13). Annotation-545 

informed fine-mapping reduced the size of the 99% credible set, compared to the uniform 546 

prior, at 144 (42.6%) distinct association signals (Extended Data Fig. 7), and decreased the 547 



median from 10 variants (spanning 26 kb) to 8 variants (spanning 23 kb). For 184 (54.4%) 548 

signals, a single SNV accounted for >50% of the posterior probability of the T2D association 549 

(Supplementary Table 14). At 124 (36.7%) signals, >80% of the posterior probability could be 550 

attributed to a single SNV.  551 

 552 

Missense variants implicate candidate causal genes. After annotation-informed multi-ancestry 553 

fine-mapping, 19 of the 184 SNVs accounting for >50% of the posterior probability of the T2D 554 

association were missense variants (Supplementary Table 15). Two of these implicate novel 555 

candidate causal genes for the disease: MYO5C p.Glu1075Lys (rs3825801, P = 3.8 x 10-11, π = 556 

69.2%) at the MYO5C locus, and ACVR1C p.Ile482Val (rs7594480, P = 4.0 x 10-12, π = 95.2%) at 557 

the CYTIP locus. ACVR1C encodes ALK7, a transforming growth factor-β receptor, 558 

overexpression of which induces growth inhibition and apoptosis of pancreatic β-cells19; 559 

ACVR1C p.Ile482Val has been previously associated with body fat distribution20. The multi-560 

ancestry meta-regression also highlighted examples of previously reported associations that 561 

were better resolved by fine-mapping across diverse populations, including SLC16A11, KCNJ11-562 

ABCC8, and ZFAND3-KCNK16-GLP1R (Supplementary Note). 563 

 564 

Multi-omics integration highlights candidate effector genes. We next sought to take 565 

advantage of the improved fine-mapping resolution offered by the multi-ancestry meta-566 

regression to extend insights into candidate effector genes, tissue specificity, and mechanisms 567 

through which regulatory variants at non-coding T2D association signals impact disease risk. We 568 

integrated annotation-informed fine-mapping data with molecular quantitative trait loci (QTLs), 569 

in cis, for: (i) circulating plasma proteins (pQTLs)21; and (ii) gene expression (eQTLs) in diverse 570 

tissues, including pancreatic islets, subcutaneous and visceral adipose, liver, skeletal muscle, 571 

and hypothalamus22,23 (Methods). Bayesian colocalization24 of each pair of distinct T2D 572 

associations and molecular QTLs identified 97 candidate effector genes at 72 signals with 573 

posterior probability πCOLOC > 80% (Supplementary Tables 16 and 17). The colocalizations 574 

reinforced evidence supporting several genes previously implicated in T2D through detailed 575 

experimental studies, including ADCY5, STARD10, IRS1, KLF14, SIX3, and TCF7L225-29. A single 576 

candidate effector gene was implicated at 49 T2D association signals, of which 10 colocalized 577 

with eQTLs across multiple tissues: CEP68, ITGB6, RBM6, PCGF3, JAZF1, ANK1, ABO, ARHGAP19, 578 

PLEKHA1 and AP3S2. In contrast, we observed that cis-eQTLs at 44 signals were specific to one 579 

tissue (24 to pancreatic islets, 11 to subcutaneous adipose, five to skeletal muscle, two to 580 

visceral adipose, and one each to liver and hypothalamus), emphasizing the importance of 581 

conducting colocalization analyses across multiple tissues. Genome-wide promoter-focused 582 

chromatin confirmation capture data (pcHi-C) from pancreatic islets, subcutaneous adipose, 583 

and liver (equivalent data are not available in hypothalamus and visceral adipose)30-32 provided 584 

complementary support for several candidate effector genes (Supplementary Table 18 and 585 

Supplementary Note). These results demonstrate how the increased fine-mapping resolution 586 

afforded by our multi-ancestry meta-analysis can be integrated with diverse molecular data 587 

resources to reveal putative mechanisms underlying T2D susceptibility. 588 

At the BCAR1 locus, multi-ancestry fine-mapping resolved the T2D association signal to a 589 

99% credible set of nine variants. These variants overlap a chromatin accessible snATAC-seq 590 

peak in human pancreatic acinar cells33 and an enhancer element in human pancreatic islets 591 



that interacts with an active promoter upstream of the pancreatic exocrine enzyme 592 

chymotrypsin B2 gene CTRB231. The observations in bulk pancreatic islets are likely to have 593 

arisen due to exocrine (acinar cell) contamination since single-cell data do not support the 594 

expression of CTRB2 in endocrine cells (Fig. 2). The T2D association signal also colocalized with 595 

a cis-pQTL for circulating plasma levels of chymotrypsin B1 (CTRB1, πCOLOC = 98.6%). 596 

Interestingly, by extending our colocalization analyses at this locus to trans-pQTLs, we found 597 

that variants driving the T2D association signal also regulate levels of three other pancreatic 598 

secretory enzymes produced by the acinar cells and involved in the digestion of ingested fats 599 

and proteins: carboxypeptidase B1 (CPB1, πCOLOC = 98.8%), pancreatic lipase related protein 1 600 

(PLRP1, πCOLOC = 97.6%), and serine protease 2 (PRSS2, πCOLOC = 98.3%). These observations are 601 

consistent with an effect of T2D-associated variants at this locus on gene and protein 602 

expression in the exocrine pancreas, with consequences for pancreatic endocrine function. This 603 

is in line with a recent study34 reporting rare mutations in another protein produced by the 604 

exocrine pancreas, chymotrypsin-like elastase family member 2A, which were found to 605 

influence levels of digestive enzymes and glucagon (secreted from alpha cells in pancreatic 606 

islets). Taken together, these complementary findings add to a growing body of evidence 607 

linking defects in the exocrine pancreas and T2D pathogenesis35,36. 608 

At the PROX1 locus, multi-ancestry fine-mapping localized the two distinct association 609 

signals to just three variants (Fig. 3 and Extended Data Fig. 8). The index SNV at the first signal 610 

(rs340874, P = 1.1 x 10-18, π > 99.9%) overlaps the PROX1 promoter in both human liver and 611 

pancreatic islets18,29. At the second signal, the two credible set variants map to the same 612 

enhancer active in islets and liver (rs79687284, P = 6.9 x 10-19, π = 66.7%; rs17712208, P = 1.4 x 613 

10-18, π = 33.3%). Recent studies have demonstrated that the T2D-risk allele at rs17712208 (but 614 

not rs79687284) results in significant repression of enhancer activity in mouse MIN633 and 615 

human EndoC-βH1 beta cell models37. Furthermore, this enhancer interacts with the PROX1 616 

promoter in islets31, but not in liver32. Motivated by these observations, we sought to 617 

determine whether these distinct signals impact T2D risk (via PROX1) in a tissue-specific 618 

manner by assessing transcriptional activity of the credible set variants (rs340874, rs79687284, 619 

and rs17712208) in human HepG2 hepatocytes and EndoC-βH1 beta cell models using in vitro 620 

reporter assays (Methods and Fig. 3). At the first signal, we demonstrated significant 621 

differences in luciferase activity between alleles at rs340874 in both hepatocytes (33% increase 622 

for risk allele, P = 0.0018) and beta cells (24% increase for risk allele, P = 0.027). However, at the 623 

second signal, a significant difference in luciferase activity between alleles was observed only 624 

for rs17712208 in islets (68% decrease for risk allele, P = 0.00014). Interestingly, there was 625 

evidence that the risk allele at rs79687284 could attenuate the effect as the combined effect of 626 

both risk alleles in the credible set was less severe. In HepG2 cells, both risk alleles increased 627 

transcription relative to wild type, although the difference for each variant alone or combined 628 

was not statistically significant. Taken together, these results suggest that likely causal variants 629 

at these distinct association signals exert their impact on T2D through the same effector gene, 630 

PROX1, but act in different tissue-specific manners.  631 

  632 

Transferability of T2D GRS across diverse populations. GRS derived from European ancestry 633 

GWAS have limited transferability into other population groups in part because of ancestry-634 

correlated differences in the frequency and effect of risk alleles38. We took advantage of the 635 



population diversity in DIAMANTE to compare the prediction performance of multi-ancestry 636 

and ancestry-specific T2D GRS constructed using lead SNVs at loci attaining genome-wide 637 

significance. We selected two studies per ancestry group as test GWAS into which the 638 

prediction performance of the GRS was assessed using trait variance explained (pseudo R2) and 639 

odds-ratio (OR) per risk score unit. We repeated the multi-ancestry meta-regression and 640 

ancestry-specific meta-analyses, after excluding the test GWAS, and defined lead SNVs at loci 641 

attaining genome-wide significance (P < 5 x 10-9 for multi-ancestry GRS and P < 5 x 10-8 for 642 

ancestry-specific GRS). For each ancestry-specific GRS, we used allelic effect estimates for each 643 

lead SNV as weights, irrespective of the population in which the test GWAS was undertaken. 644 

However, for the multi-ancestry GRS, we derived weights for each lead SNV that were specific 645 

to each test GWAS population by allowing for ancestry-correlated heterogeneity in allelic 646 

effects (Methods).  647 

As expected, ancestry-specific GRS performed best in test GWAS from their respective 648 

ancestry group (Fig. 4 and Supplementary Table 19). However, for the ancestry groups with the 649 

smallest effective sample size (African, Hispanic, and South Asian), the predictive power of the 650 

ancestry-specific GRS was weak (pseudo R2 < 1%) because the number of lead SNVs attaining 651 

genome-wide significance was small. For test GWAS from these under-represented ancestry 652 

groups, the European ancestry-specific GRS outperformed the ancestry-matched GRS because: 653 

(i) more lead SNVs attained genome-wide significance in the European ancestry meta-analysis; 654 

and (ii) the T2D association signals represented by these lead SNVs are mostly shared across 655 

ancestry groups despite differing allele frequencies and LD patterns. Notwithstanding these 656 

observations, the greatest predictive power for test GWAS from all ancestry groups was 657 

achieved by the multi-ancestry GRS weighted with population-specific allelic effect estimates.  658 

We then tested the power of the multi-ancestry GRS to predict T2D status in 129,230 659 

individuals of Finnish ancestry from FinnGen, a population-based biobank from Finland 660 

(Methods). Because FinnGen was not part of DIAMANTE, we used association summary 661 

statistics from the complete meta-regression to derive Finnish-specific allelic effect estimates to 662 

use as weights in the multi-ancestry GRS (Extended Data Fig. 9 and Supplementary Table 20). 663 

Individuals in the top decile of the GRS were at 5.3-fold increased risk of T2D compared to 664 

those in the bottom decile. Inclusion of the multi-ancestry GRS with Finnish-specific weights to 665 

a predictive model including age, sex, and body mass index (BMI) increased the area under the 666 

receiver operating characteristic curve (AUROC) from 81.8% to 83.5%. We note that modest 667 

increases in AUROC attributable to the GRS over lifestyle/clinical factors in cross-sectional 668 

studies can mask impactful improvements in clinical performance, particularly amongst those 669 

individuals at the extremes of the GRS distribution who may have especially high lifetime 670 

disease risk and/or be prone to earlier disease onset39. In FinnGen, age impacted the power of a 671 

predictive model including the T2D GRS, sex and BMI: the AUROC decreased from 86.9% in 672 

individuals under 50 years old to 73.1% in those over 80 years old (Supplementary Table 21). 673 

Each unit of the weighted GRS was associated with 1.24 years earlier age of T2D diagnosis (P = 674 

7.1 x 10-57), indicating that those with a higher genetic burden are more likely to be affected 675 

earlier in life.  676 

 677 

Positive selection of T2D risk alleles. Previous investigations40 have concluded that historical 678 

positive selection has not had the major impact on T2D envisaged by the thrifty genotype 679 



hypothesis41. We sought to re-evaluate the evidence for positive selection of T2D risk alleles 680 

across our expanded collection of distinct multi-ancestry association signals. We fitted 681 

demographic histories to haplotypes for each population in the 1000 Genomes Project 682 

reference panel13 using Relate42. We quantified the evidence for selection for each T2D index 683 

SNV by assessing the extent to which the mutation has more descendants than other lineages 684 

that were present when it arose (Methods). This approach is well powered to detect positive 685 

selection acting on polygenic traits over a period of a few thousand to a few tens of thousands 686 

of years. We detected evidence of selection (P < 0.05) in four of the five African ancestry 687 

populations in the 1000 Genomes Project reference panel (but not other ancestry groups) 688 

towards increased T2D risk (Fig. 5). Given that T2D, itself, is likely to have been an 689 

advantageous phenotype only via pleiotropic variants acting through beneficial traits, we tested 690 

for association of index SNVs at distinct T2D signals with phenotypes available in the UK 691 

Biobank43 (Methods and Extended Data Fig. 10). We found that T2D risk alleles that were also 692 

associated with increased weight (and other obesity-related traits) generally displayed more 693 

recent origin when compared to the genome-wide mutation age distribution at the same 694 

derived allele frequency (P < 0.05 in all African ancestry populations), consistent with positive 695 

selection (Extended Data Fig. 10). Excluding these weight-related SNVs removed the selection 696 

signature observed in African ancestry populations. These observations are consistent with 697 

positive selection of T2D risk alleles that has been driven by the promotion of energy storage 698 

and usage appropriate to the local environment44. Outside Africa, our analysis yields no 699 

evidence for selection of T2D risk alleles. This suggests the absence of a selective advantage 700 

outside Africa, or alternatively, that the selective advantage is old and now masked in the 701 

relatively more strongly bottlenecked groups outside Africa. Further work is needed to 702 

characterize the specific pathways responsible for this adaptation and its finer-scale geographic 703 

impact.  704 

 705 

 706 

DISCUSSION 707 

 708 

In consideration of the global burden of T2D, the DIAMANTE Consortium assembled the most 709 

ancestrally diverse collection of GWAS of the disease to date. We implemented a powerful 710 

meta-regression approach15 to enable aggregation of GWAS summary statistics across diverse 711 

populations that allows for heterogeneity in allelic effects on disease risk that is correlated with 712 

ancestry. By representing the ancestry of each study as multidimensional and continuous axes 713 

of genetic variation, the meta-regression model is not restricted to broad continental ancestry 714 

categories and can allow for finer-scale differences between GWAS within ancestry groups45. 715 

Our study demonstrated the advantages of applying this approach to ancestrally diverse GWAS 716 

in DIAMANTE with regard to: (i) discovery of association signals that are shared across 717 

populations, through increased sample size and by reducing the genomic control inflation due 718 

to residual stratification; (ii) defining the extent of heterogeneity in allelic effects at distinct 719 

association signals; (iii) allowing for LD-driven heterogeneity to enable fine-mapping of causal 720 

variants; and (iv) deriving population-specific weights that substantially improve the 721 

transferability of multi-ancestry GRS over ancestry-specific GRS. Our analyses considered SNVs 722 

present in the 1000 Genomes Project13 and Haplotype Reference Consortium14 reference 723 



panels used for imputation, which potentially excludes low-frequency population-specific 724 

variants, but which provides a uniform “backbone” of variants for fine-mapping association 725 

signals that are shared across multiple population groups. The contribution of population-726 

specific variants that do not overlap reference panels are more fully assessed in complementary 727 

ancestry-specific meta-analyses, such as those in European and East Asian components of 728 

DIAMANTE6,10. Further development of fine-mapping methods is required to localize such 729 

population-specific causal variants in multi-ancestry meta-analysis46. 730 

 Our study has extended knowledge of T2D genetics over previous efforts that include 731 

GWAS that have contributed to our multi-ancestry meta-analysis6,10,11, demonstrating the 732 

opportunities to deliver new biological insights and identify novel target genes and mechanisms 733 

through which genetic variation impacts on disease risk. Annotation-informed multi-ancestry 734 

fine-mapping resolved 54.4% of distinct T2D association signals to a single variant with >50% 735 

posterior probability. Through integration of these fine-mapping data with molecular QTL 736 

resources, we identified a total of 117 candidate causal genes at T2D loci, of which 40 were not 737 

reported in complementary analyses undertaken in previous efforts (Supplementary Note). 738 

Formal Bayesian colocalization analyses across diverse tissues highlighted complex cell-type 739 

specific mechanisms through which regulatory variants at non-coding T2D association signals 740 

impact disease risk, exemplified by the BCAR1 and PROX1 loci, and lay the foundations for 741 

future functional investigations. Our study is the first to demonstrate the advantages of a GRS 742 

derived from multi-ancestry meta-regression for T2D prediction across five major ancestry 743 

groups. Finally, we built on our expanded collection of distinct multi-ancestry association 744 

signals to demonstrate evidence of positive selection of T2D risk alleles in African populations 745 

that may have been driven by the promotion of energy storage and usage through adaptation 746 

to the local environment.  747 

Multi-ancestry meta-analysis maximizes power to detect association signals that are 748 

shared across ancestry groups. However, by modelling heterogeneity in allelic effects across 749 

ancestries, our meta-regression approach can also allow for association signals that are driven 750 

by ancestry-specific causal variants, although power will be limited by the sample size available 751 

in that ancestry group. Ancestry-specific variants tend to have lower frequency, with the result 752 

that discovery of T2D associations that are unique to African, Hispanic, or South Asian ancestry 753 

groups in our study will have been limited to those with relatively large effects. To address this 754 

limitation, it remains essential that the human genetics research community continues to 755 

bolster GWAS collections in underrepresented populations that often suffer the greatest 756 

burden of disease and to further expand diversity in imputation reference panels, as 757 

exemplified by the Trans-Omics for Precision Medicine (TOPMed) Program47. Increasing 758 

diversity in genetic research will ultimately provide a more comprehensive and refined view of 759 

the genetic contribution to complex human traits, powering understanding of the molecular 760 

and biological processes underlying common diseases, and offering the most promising 761 

opportunities for clinical translation of GWAS findings to improve global public health. 762 
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FIGURE LEGENDS 878 

 879 

Figure 1 | Comparison of fine-mapping resolution for distinct association signals for T2D 880 

obtained from ancestry-specific meta-analysis and multi-ancestry meta-regression. a, Each 881 

point corresponds to a distinct association signal, plotted according to the log10 credible set size 882 

in the multi-ancestry meta-regression on the x-axis and the log10 credible set size in the 883 

European ancestry meta-analysis on the y-axis. The 266 (78.7%) signals above the dashed y = x 884 

line were more precisely fine-mapped in the multi-ancestry meta-regression. b, We “down-885 

sampled” the multi-ancestry meta-regression to the effective sample size of the European 886 

ancestry-specific meta-analysis. Each point corresponds to one of the 266 signals that were 887 

more precisely fine-mapped in the multi-ancestry meta-regression. The 137 (51.5%) signals 888 

above the dashed y = x line were more precisely fine-mapped in “down-sampled” multi-889 

ancestry meta-regression than the equivalent sized European ancestry-specific meta-analysis. c, 890 

Properties of 99% credible sets of variants driving each distinct association signal in European 891 

ancestry-specific meta-analysis, combined East Asian and European ancestry meta-analysis, and 892 

multi-ancestry meta-regression. The inclusion of the most under-represented ancestry groups 893 

(African, Hispanic and South Asian) in the multi-ancestry meta-regression reduced the median 894 

size of 99% credible sets and increased the median posterior probability ascribed to index SNVs.    895 

 896 

Figure 2 | T2D association signal at the BCAR1 locus colocalizes with multiple circulating 897 

plasma pQTLs. a, Signal plot for T2D association from multi-ancestry meta-regression of 898 

180,834 cases and 1,159,055 controls of diverse ancestry. Each point represents an SNV, 899 

plotted with their P-value (on a log10 scale) as a function of genomic position (NCBI build 37). 900 

Gene annotations are taken from the University of California Santa Cruz genome browser. 901 

Recombination rates are estimated from the Phase II HapMap. b, Fine-mapping of T2D 902 

association signal from multi-ancestry meta-regression. Each point represents an SNV plotted 903 

with their posterior probability of driving T2D association as a function of genomic position 904 

(NCBI build 37). Chromatin states are presented for four diabetes-relevant tissues: active TSS 905 

(red), flanking active TSS (orange red), strong transcription (green), weak transcription (dark 906 

green), genic enhancers (green yellow), active enhancer (orange), weak enhancer (yellow), 907 

bivalent/poised TSS (Indian red), flanking bivalent TSS/enhancer (dark salmon), repressed 908 

polycomb (silver), weak repressed polycomb (Gainsboro), quiescent/low (white). c, Schematic 909 

presentation of the single cis- and multiple trans- effects mediated by the BCAR1 locus on 910 

plasma proteins and the islet chromatin loop between islet enhancer and promoter elements 911 

near CTRB2. d, Signal plots for four circulating plasma proteins that colocalize with the T2D 912 

association in 3,301 European ancestry participants from the INTERVAL study. Each point 913 

represents an SNV, plotted with their P-value (on a log10 scale) as a function of genomic 914 

position (NCBI build 37). e, Expression of genes (transcripts per million, TPM) encoding 915 

colocalized proteins in islets, pancreas and whole blood.  916 

 917 

Figure 3 | Defining causal molecular mechanisms at the PROX1 locus. a, Signal plot for two 918 

distinct T2D associations from multi-ancestry meta-regression of 180,834 cases and 1,159,055 919 

controls of diverse ancestry. Each point represents an SNV, plotted with their P-value (on 920 

a -log10 scale) as a function of genomic position (NCBI build 37). Index SNVs are represented by 921 



the blue and purples diamonds. All other SNVs are colored according to the LD with the index 922 

SNVs in European and East Asian ancestry populations. Gene annotations are taken from the 923 

University of California Santa Cruz genome browser. b, Fine-mapping of T2D association signals 924 

from multi-ancestry meta-regression. Each point represents a SNV plotted with their posterior 925 

probability of driving each distinct T2D association as a function of genomic position (NCBI build 926 

37). The 99% credible sets for the two signals are highlighted by the purple and blue diamonds. 927 

Chromatin states are presented for four diabetes-relevant tissues: active TSS (red), flanking 928 

active TSS (orange red), strong transcription (green), weak transcription (dark green), genic 929 

enhancers (green yellow), active enhancer (orange), weak enhancer (yellow), bivalent/poised 930 

TSS (Indian red), flanking bivalent TSS/enhancer (dark salmon), repressed polycomb (silver), 931 

weak repressed polycomb (Gainsboro), quiescent/low (white). c, Transcriptional activity of the 932 

99 credible set variants at the two T2D association signals in human HepG2 hepatocytes and 933 

EndoC-βH1 beta cell models obtained from in vitro reporter assays. Biological replicates: n = 3. 934 

Technical replicates: n = 3. WT, wild-type (non-risk allele/haplotype); GFP, green fluorescent 935 

protein (negative control); EV, empty vector (baseline). Height of bar represents mean. Error 936 

bars represent standard error of the mean. Differences in luciferase activity between groups 937 

were tested using two-tailed two-sample t-tests, where P < 0.05 was considered statistically 938 

significant. d, Expression of PROX1 (transcripts per million, TPM) across a range of diabetes-939 

relevant tissues. 940 

 941 

Figure 4 | Transferability of multi-ancestry and ancestry-specific GRS into GWAS across 942 

diverse population groups. Each GRS was constructed using lead SNVs attaining genome-wide 943 

significance (P < 5 x 10-9 for multi-ancestry GRS and P < 5 x 10-8 for ancestry-specific GRS). For 944 

the multi-ancestry GRS, population-specific allelic effects on T2D were estimated from the 945 

meta-regression to generate different GRS weights for each test GWAS. For each ancestry-946 

specific GRS, weights were generated from allelic effect estimates obtained from fixed-effects 947 

meta-analysis. a, The trait variance explained (pseudo R2) by each GRS was assessed in two test 948 

GWAS from each ancestry group. b, The multi-ancestry GRS out-performed ancestry-specific 949 

GRS into all test GWAS, reflecting the shared genetic contribution to T2D across diverse 950 

populations, despite differing allele frequencies and LD patterns. 951 

 952 

Figure 5 | Positive selection acting on T2D index SNVs. a, Evidence of selection from Relate 953 

towards increased T2D risk is restricted to African ancestry populations and is explained by 954 

those SNVs that are associated with increased weight. b, T2D risk alleles that are associated 955 

with increased weight are particularly young for their derived allele frequency (DAF). 956 

Population abbreviations (sample sizes): ESN (98), Esan in Nigeria; GWD (112), Gambian in 957 

Western Divisions of the Gambia; LWK (98), Luhya in Webuye, Kenya; MSL (84), Mende in Sierra 958 

Leone; YRI (107), Yoruba in Ibadan, Nigeria; BEB (85), Bengali in Bangladesh; GIH (102), Gujarati 959 

Indian from Houston, Texas; ITU (101), Indian Telegu from the UK; PJL (95), Punjabi from 960 

Lahore, Pakistan; STU (101), Sri Lankan Tamil from the UK; CDX (92), Chinese Dai in 961 

Xishuangbanna, China; CHB (102), Han Chinese in Beijing, China; CHS (104), Southern Han 962 

Chinese; JPT (103), Japanese in Tokyo, Japan; KHV (98), Kinh in Ho Chi Min City, Vietnam; CEU 963 

(98), Utah residents with Northern and Western European ancestry; FIN (98), Finnish in Finland; 964 



GBR (90), British in England and Scotland; IBS (106), Iberian population in Spain; TSI (106), 965 

Toscani in Italy.  966 
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METHODS 1076 

 1077 

Ethics statement. All human research was approved by the relevant Institutional Review Boards 1078 

and conducted according to the Declaration of Helsinki. All participants provided written 1079 

informed consent. Study-level ethics statements are provided in the Supplementary Note. 1080 

 1081 

Study-level analyses. Individuals were assayed with a range of GWAS genotyping arrays, with 1082 

sample and SNV quality control (QC) undertaken within each study (Supplementary Tables 2 1083 

and 4). Most GWAS were undertaken with individuals from one ancestry group (Supplementary 1084 

Table 1), where population outliers were excluded using self-reported and genetic ancestry. For 1085 

the remaining multi-ancestry GWAS (Supplementary Table 1), individuals were first assigned to 1086 

an ancestry group using both self-reported and genetic ancestry, and analyses were then 1087 

undertaken separately within each ancestry group. For each ancestry-specific GWAS, samples 1088 

were pre-phased and imputed up to reference panels from the 1000 Genomes Project (phase 1, 1089 

March 2012 release; phase 3, October 2014 release)12,13, Haplotype Reference Consortium14, or 1090 

population-specific whole-genome sequencing48-50 (Supplementary Table 4). SNVs with poor 1091 

imputation quality and/or minor allele count <5 were excluded from downstream association 1092 

analyses (Supplementary Table 4). Association with T2D was evaluated in a regression 1093 

framework, under an additive model in the dosage of the minor allele, with adjustment for age 1094 

and sex (where appropriate), and additional study-specific covariates (Supplementary Table 4). 1095 

Analyses accounted for structure (population stratification and/or familial relationships) by: (i) 1096 

excluding related samples and adjusting for principal components derived from a genetic 1097 

relatedness matrix (GRM) as additional covariates in the regression model; or (ii) incorporating 1098 

a random effect for the GRM in a mixed model (Supplementary Table 4). Allelic effects and 1099 

corresponding standard errors that were estimated from a linear (mixed) model were 1100 

converted to the log-odds scale51. Study-level association summary statistics (P-values and 1101 

standard error of allelic log-ORs) were corrected for residual structure, not accounted for in the 1102 

regression analysis, by means of genomic control52 if the inflation factor was >1 1103 

(Supplementary Table 4). 1104 

 1105 

Multi-ancestry meta-analyses. To account for the different reference panels used for 1106 

imputation, we considered autosomal bi-allelic SNVs that overlap the 1000 Genomes Project 1107 

reference panel (phase 3, October 2014 release)13 and the Haplotype Reference Consortium 1108 

reference panel14. We considered only those SNVs with MAF > 0.5% in haplotypes in at least 1109 

one of the five ancestry groups (Supplementary Table 22) in the 1000 Genomes Project (phase 1110 

3, October 2014 release)13. We excluded SNVs that differed in allele frequency by >20% when 1111 

comparing reference panels in the same subsets of samples.  1112 

 The most powerful methods for discovery of novel loci through multi-ancestry meta-1113 

analysis allow for potential allelic effect heterogeneity between ancestry groups that cannot be 1114 

accommodated in a fixed-effects model53. Random-effects meta-analysis allows for 1115 

“unstructured” heterogeneity, but cannot allow for the expectation that GWAS from the same 1116 

ancestry group are likely to have more similar allelic effects than those from different ancestry 1117 

groups. Some of these limitations could be addressed with a two-stage hierarchical model 1118 

(within and then between ancestry). However, we preferred a meta-regression approach, 1119 



implemented in MR-MEGA15, which models allelic effect heterogeneity that is correlated with 1120 

genetic ancestry by including axes of genetic variation as covariates to capture ancestral 1121 

diversity between GWAS. We constructed a distance matrix of mean effect allele frequency 1122 

differences between each pair of GWAS across a subset of 386,563 SNVs reported in all studies. 1123 

We implemented multi-dimensional scaling of the distance matrix to obtain three principal 1124 

components that defined axes of genetic variation to separate GWAS from the five ancestry 1125 

groups (Extended Data Fig. 2).  1126 

For each SNV, we modelled allelic log-ORs across GWAS in a linear regression 1127 

framework, weighted by the inverse of the variance of the effect estimates, incorporating the 1128 

three axes of genetic variation as covariates. We tested for: (i) association with T2D allowing for 1129 

allelic effect heterogeneity between GWAS that is correlated with ancestry; (ii) heterogeneity in 1130 

allelic effects on T2D between GWAS that is correlated with ancestry; and (iii) residual allelic 1131 

effect heterogeneity between GWAS due to unmeasured confounders. We corrected the meta-1132 

regression association P-values for inflation due to residual structure between GWAS using 1133 

genomic control adjustment (allowing for four degrees of freedom): !!" = 1.052. We included 1134 

SNVs reported in ≥50% of the total effective sample size (NTA ≥ 246,095) in downstream 1135 

analyses. 1136 

 We also aggregated association summary statistics across GWAS via fixed-effects meta-1137 

analysis using METAL54 and random-effects (RE2 model) meta-analysis using METASOFT55. Both 1138 

meta-analyses were based on inverse-variance weighting of allelic log-ORs to obtain effect size 1139 

estimates. We corrected standard errors for inflation due to residual structure between GWAS 1140 

by genomic control adjustment: !!"#$  = 1.253 and !!"%$  = 1.253. We assessed evidence for 1141 

heterogeneity in allelic effects between GWAS by Cochran’s Q statistic.  1142 

 1143 

Defining T2D loci. We initially selected lead SNVs attaining genome-wide significant evidence of 1144 

association (P < 5 x 10-8) in the multi-ancestry meta-regression that were separated by at least 1145 

500 kb. Loci were first defined by the flanking genomic interval mapping 500 kb up- and 1146 

downstream of lead SNVs. Then, where lead SNVs were separated by less than 1 Mb, the 1147 

corresponding loci were aggregated as a single locus. The lead SNV for each locus was then 1148 

selected as the SNV with minimum association P-value. 1149 

 1150 

Genome-wide significance threshold. We considered haplotypes from the 1000 Genomes 1151 

Project reference panel (phase 3, October 2014 release)13. We extracted autosomal bi-allelic 1152 

SNVs that overlapped between reference panels used in study-level analyses. We estimated the 1153 

effective number of independent SNVs across ancestry groups using LD-pruning in PLINK56 to be 1154 

9,966,662 at r2 > 0.557. We therefore chose a multi-ancestry genome-wide significance 1155 

threshold by Bonferroni correction for the effective number of SNVs as P < 5 x 10-9. Exemplar 1156 

power calculations are provided in the Supplementary Note.  1157 

 1158 

Dissection of distinct multi-ancestry association signals. We used iterative approximate 1159 

conditioning, implemented in GCTA58, making use of forward selection and backward 1160 

elimination, to identify index SNVs at multi-ancestry genome-wide significance (P < 5x 1 0-9). 1161 

We used haplotypes from the 1000 Genomes Project reference panel (phase 3, October 2014 1162 

release)13 that were specific to each ancestry group (Supplementary Table 22) as a reference 1163 



for LD between SNVs across loci in the approximate conditional analysis. Details of the iterative 1164 

approximate conditioning are provided in the Supplementary Note.  1165 

 1166 

Ancestry-specific meta-analyses. We aggregated association summary statistics across GWAS 1167 

via fixed-effects meta-analysis using METAL54 based on inverse-variance weighting of allelic log-1168 

OR to obtain effect size estimates. Details are provided in the Supplementary Note. 1169 

 1170 

Fine-mapping resolution. Within each locus, we approximated the Bayes’ factor59, "&', in favor 1171 

of T2D association of the #th SNV at the $th distinct association signal using summary statistics 1172 

from: (i) the multi-ancestry meta-regression; (ii) the European ancestry-specific meta-analysis; 1173 

and (iii) the combined East Asian and European ancestry meta-analysis. For loci with a single 1174 

association signal, association summary statistics were obtained from unconditional analysis. 1175 

For loci with multiple distinct association signals, association summary statistics were obtained 1176 

from approximate conditional analyses. Details of the derivation of approximate Bayes’ factors 1177 

are provided in the Supplementary Note. The posterior probability for the #th SNV at the $th 1178 

distinct signal was then given by %&' ∝ "&'. We derived a 99% credible set60 for the $th distinct 1179 

association signal by: (i) ranking all SNVs according to their posterior probability %&'; and (ii) 1180 

including ranked SNVs until their cumulative posterior probability attains or exceeds 0.99.  1181 

 1182 

Down-sampled multi-ancestry meta-regression. We selected GWAS contributing to the multi-1183 

ancestry meta-regression to approximate the effective sample size of the European ancestry-1184 

specific meta-analysis and maintain the distribution of effective sample size across ancestry 1185 

groups (Supplementary Table 10). The selected GWAS are summarized in the Supplementary 1186 

Note. We conducted a “down-sampled” multi-ancestry meta-regression, implemented in MR-1187 

MEGA15, for the selected studies. For each SNV, we modelled allelic log-ORs across GWAS in a 1188 

linear regression framework, weighted by the inverse of the variance of the effect estimates, 1189 

incorporating the same three axes of genetic variation as covariates (Extended Data Fig. 2). We 1190 

corrected the meta-regression association P-values for inflation due to residual structure 1191 

between the selected GWAS using genomic control adjustment (allowing for four degrees of 1192 

freedom): !!"∗ = 1.012. For each distinct association signal identified in the complete multi-1193 

ancestry meta-regression, we derived a 99% credible set60 using association summary statistics 1194 

from the down-sampled multi-ancestry meta-regression. Details of the fine-mapping procedure 1195 

are provided in the Supplementary Note. 1196 

     1197 

Enrichment of T2D association signals in genomic annotations. We mapped each SNV across 1198 

T2D loci to three categories of functional and regulatory annotations: (i) genic regions, as 1199 

defined by the GENCODE Project61, including protein-coding exons, and 3’ and 5’ UTRs as 1200 

different annotations; (ii) chromatin immuno-precipitation sequence (ChIP-seq) binding sites 1201 

for 165 transcription factors (161 proteins from the ENCODE Project62 and four additional 1202 

factors assayed in primary pancreatic islets63); and (iii) 13 unique and recurrent chromatin 1203 

states, including promoter, enhancer, transcribed, and repressed regions, in four T2D-relevant 1204 

tissues18 (pancreatic islets, liver, adipose, and skeletal muscle). This resulted in a total of 220 1205 

genomic annotations for downstream enrichment analyses. We used fGWAS64 to identify a joint 1206 



model of enriched annotations across distinct T2D association signals from the multi-ancestry 1207 

meta-regression. Details are provided in the Supplementary Note. 1208 

 1209 

Annotation informed fine-mapping. Within each locus, for each distinct signal, we recalibrated 1210 

the posterior probability of driving the T2D association for each SNV under an annotation-1211 

informed prior derived from the joint model of enriched annotations identified by fGWAS. 1212 

Specifically, for the #th SNV at the $th distinct signal, the posterior probability %&' ∝ ''"&', 1213 

where "&'  is the Bayes’ factor in favor of T2D association. In this expression, the relative 1214 

annotation-informed prior for the SNV is given by 1215 

 1216 

'' = exp,∑ ./)) 0')1, 1217 

 1218 

where the summation is over the enriched annotations, ./) is the estimated log-fold enrichment 1219 

of the 2th annotation from the final joint model, and 0') is an indicator variable taking the value 1220 

1 if the #th SNV maps to the 2th annotation, and 0 otherwise. We derived a 99% credible set60 1221 

for the $th distinct association signal by: (i) ranking all SNVs according to their posterior 1222 

probability %&'; and (ii) including ranked SNVs until their cumulative posterior probability attains 1223 

or exceeds 0.99.  1224 

 1225 

Dissection of molecular QTLs in diverse tissues. We accessed association summary statistics for 1226 

molecular QTLs in diverse tissues from three published resources: (i) 3,622 circulating plasma 1227 

proteins in 3,301 healthy blood donors of European ancestry from the INTERVAL Study21; (ii) 1228 

pancreatic islet expression in 420 individuals of European ancestry from the InsPIRE 1229 

Consortium23; and (iii) multi-tissue expression in 620 donors from the GTEx Project (release 1230 

v7)22, including subcutaneous adipose (328 samples), visceral adipose (273 samples), brain 1231 

hypothalamus (108 samples), liver (134 samples), and skeletal muscle (421 samples). We 1232 

defined cis-molecular QTL as mapping within 1 Mb of the transcription start site of the gene. 1233 

Recognising that molecular QTLs may also be driven by multiple causal variants, we dissected 1234 

signals for each significant cis- and trans-pQTL (P < 1.5 x 10-11) and for each significant cis-eQTL 1235 

(FDR q-value < 5%) via approximate conditional analyses implemented in GCTA58. We used a 1236 

genotype reference panel of 6,000 unrelated individuals of white British origin, randomly 1237 

selected from the UK Biobank43, to model LD between SNVs. We excluded SNVs from the 1238 

reference panel with poor imputation quality (info < 0.4) and/or significant deviation from 1239 

Hardy-Weinberg equilibrium (P < 10-6). We first identified index SNVs for each distinct 1240 

molecular QTL signal using the “--cojo-slct” option: P < 1.5 x 10-11 for cis- and trans-pQTLs; and P 1241 

< 5 x 10-8 for cis-eQTLs. For each molecular QTL with multiple index SNVs, we dissected each 1242 

distinct signal using GCTA, removing each index SNV, and adjusting for the remainder, using the 1243 

“--cojo-cond” option. 1244 

 1245 

Colocalization of T2D associations and molecular QTLs. For each distinct T2D association 1246 

signal, we used COLOCv3.124 to assess the evidence for colocalization with: (i) each distinct cis- 1247 

and trans-pQTL signal; and (ii) each distinct cis-eQTL signal across tissues. COLOC assumes that 1248 

at most one variant is causal for each distinct T2D association and each distinct molecular QTL, 1249 



which is reasonable after deconvolution of signals via approximate conditional analyses. Under 1250 

this assumption, there are five hypotheses: association with neither T2D nor the molecular QTL 1251 

(H0); association only with T2D (H1) or the molecular QTL (H2); or association with both T2D and 1252 

the molecular QTL, driven either by two different causal variants (H3) or by the same causal 1253 

variant (H4). We assumed the default prior probabilities of: (i) 10-4 that a variant is causal only 1254 

for T2D or only for the molecular QTL; and (ii) 10-6 that a variant is causal for both T2D and the 1255 

molecular QTL. To take account of our annotation-informed prior model of causality, we then 1256 

replaced the Bayes’ factor in favor of T2D association, "&', for the #th SNV at the $th distinct 1257 

signal by %&'3&, where 3& = ∑ "&''  is the total Bayes’ factor for the signal. For the molecular 1258 

QTLs, approximate Bayes’ factors in favor of association for each variant were derived using 1259 

Wakefield’s method65. Under this model, COLOC then estimates the posterior probability of 1260 

colocalization of the T2D association and molecular QTL (i.e. hypothesis H4, denoted πCOLOC). 1261 

 1262 

Plasmid transfection and luciferase reporter assay. We experimentally validated 99% credible 1263 

set variants for distinct T2D association signals at the PROX1 locus using a luciferase reporter 1264 

assay. Briefly, human EndoC-βH1 cells66 and human liver cells were grown at 50-60% confluence 1265 

in 24-well plates and were transfected (2 x 105 EndoC-βH1 cells/well and 5 x 104 HepG2 1266 

cells/well) with 500 ng of empty pGL3-Promoter vector (Promega, Charbonnieres, France) or 1267 

pGL3-Promoter-PROX_insert with FuGENE HD (Roche Applied Science, Meylan, France) using a 1268 

FuGENE:DNA ratio of 6:1 according to the manufacturer’s instructions. 1269 

Details are provided in the Supplementary Note and at https://www.promega.co.uk/products/l1270 

uciferase-assays/genetic-reporter-vectors-and-cell-lines/pgl3-luciferase-reporter-1271 

vectors/?catNum=E1751. Luciferase activities were measured 48 hours after transfection using 1272 

the Dual-Luciferase Reporter Assay kit (Promega) according to the manufacturer’s instructions, 1273 

in half-volume 96-well tray format on an Enspire Multimode Plate Reader (PerkinElmer). The 1274 

Firefly luciferase activity was normalized to the Renilla luciferase activity obtained by 1275 

cotransfection of 10 ng of the pGL4.74[hRluc/TK] Renilla luciferase vector (Promega). All 1276 

experiments were performed in triplicate in three different passages of each cell type. 1277 

Differences in luciferase activity between groups were tested using two-tailed two-sample t-1278 

tests, where P < 0.05 was considered statistically significant. 1279 

 1280 

Transferability of GRS across ancestry groups. We selected two studies per ancestry group as 1281 

test GWAS, prioritizing those with larger effective sample sizes and greater genetic diversity 1282 

(Supplementary Note). We repeated the multi-ancestry meta-regression, after excluding the 1283 

ten test GWAS, incorporating the same three axes of genetic variation as covariates to account 1284 

for ancestry. The association P-values from this “reduced” meta-regression were then corrected 1285 

for inflation due to residual structure between GWAS by means of genomic control adjustment 1286 

(allowing for four degrees of freedom): !!" = 1.037. SNVs reported in ≥50% of the total 1287 

effective sample size of the “reduced” meta-regression (NTE ≥ 179,074) were included in 1288 

downstream analyses. We identified loci attaining genome-wide significant evidence of 1289 

association (P < 5 x 10-9) in the “reduced” meta-regression, and the lead SNV for each locus was 1290 

selected as the variant with minimum association P-value. For each test GWAS, we next 1291 

estimated population-specific “predicted” allelic effects for each lead SNV to be used as weights 1292 

in the GRS. We also repeated each of the ancestry-specific fixed-effects meta-analyses after 1293 



excluding the ten test GWAS, and identified lead SNVs attaining genome-wide significant 1294 

evidence of association (P < 5 x 10-8). For each test GWAS, we estimated the OR per unit of the 1295 

population-specific multi-ancestry GRS and each ancestry-specific weighted GRS, and the 1296 

corresponding percentage of T2D variance explained (pseudo R2). Details are provided in the 1297 

Supplementary Note.  1298 

 1299 

Predictive power of GRS in FinnGen. Individuals from FinnGen were genotyped with Illumina 1300 

and Affymetrix arrays, and were imputed up to the Finnish population-specific reference panel 1301 

(SISu version 3). We excluded individuals due to non-Finnish ancestry, relatedness, or missing 1302 

age and/or sex. We derived Finnish-specific “predicted” allelic effect estimates for each lead 1303 

SNV from the multi-ancestry meta-regression to be used as weights in calculating the centred 1304 

GRS for each individual. We excluded lead SNVs from the GRS that were not reported in 1305 

FinnGen. We excluded individuals with missing T2D status or BMI from subsequent analyses, 1306 

resulting in a total of 18,111 affected individuals and 111,119 unaffected individuals. We 1307 

calculated the variance in T2D status explained (pseudo R2) and the AUROC (calculated with a 1308 

10-fold cross-validation) for models including BMI and/or GRS. We also conducted age-1309 

stratified analyses and tested for association of the GRS with age of T2D diagnosis. Details are 1310 

provided in the Supplementary Note. 1311 

 1312 

Selection analyses. We used Relate42 to reconstruct genealogies for haplotypes from the 1000 1313 

Genomes Project reference panel (phase 3, October 2014 release)13, separately for each 1314 

population, after excluding African American and admixed American populations in whom high 1315 

levels of admixture are likely to confound selection evidence. We then used P-values calculated 1316 

for selection evidence for any variant that segregated in the population and passed quality 1317 

control filters42, which quantify the extent to which the mutation has more descendants than 1318 

other lineages that were present when it arose. We tested for evidence of selection for index 1319 

SNVs for distinct T2D association signals, which were partitioned into two groups, risk and 1320 

protective, according to the direction of the allelic effect when aligned to the derived allele. We 1321 

also tested for selection on a range of traits available in the UK Biobank43 at the subset of index 1322 

SNVs for which the derived allele increased risk of T2D. Details are provided in the 1323 

Supplementary Note. 1324 

 1325 

Data availability statement. Association summary statistics from the multi-ancestry meta-1326 

analysis and annotation-informed fine-mapping are available through the AMP-T2D Knowledge 1327 

Portal (http://www.type2diabetesgenetics.org/) and the DIAGRAM Consortium Data Download 1328 

website (http://diagram-consortium.org/downloads.html). 1329 
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