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Discovery and systematic characterization 
of risk variants and genes for coronary artery 
disease in over a million participants

The discovery of genetic loci associated with complex diseases has outpaced 
the elucidation of mechanisms of disease pathogenesis. Here we conducted 
a genome-wide association study (GWAS) for coronary artery disease (CAD) 
comprising 181,522 cases among 1,165,690 participants of predominantly 
European ancestry. We detected 241 associations, including 30 new loci. 
Cross-ancestry meta-analysis with a Japanese GWAS yielded 38 additional 
new loci. We prioritized likely causal variants using functionally informed 
fine-mapping, yielding 42 associations with less than five variants in the 
95% credible set. Similarity-based clustering suggested roles for early 
developmental processes, cell cycle signaling and vascular cell migration 
and proliferation in the pathogenesis of CAD. We prioritized 220 candidate 
causal genes, combining eight complementary approaches, including 
123 supported by three or more approaches. Using CRISPR–Cas9, we 
experimentally validated the effect of an enhancer in MYO9B, which appears 
to mediate CAD risk by regulating vascular cell motility. Our analysis 
identifies and systematically characterizes >250 risk loci for CAD to inform 
experimental interrogation of putative causal mechanisms for CAD.

Coronary artery disease (CAD) remains the leading global cause of 
mortality, reflecting both risk behaviors and genetic susceptibility1. 
Genetic association studies have identified >200 susceptibility loci for 
CAD. Consistent with other complex diseases, genetic analyses have 
identified the polygenic architecture of CAD, enabled insights into 
disease etiology and facilitated the development of new tools for risk 
prediction2–10. However, with rapid increase in the availability of genetic 
data linked to health outcomes, the identification of disease-associated 
loci has outpaced their functional characterization.

Several in silico tools have emerged to elucidate the mechanisms 
connecting genomic regions to disease risk11,12. Nonetheless, it remains 
challenging to identify causal genes as these tools frequently lack 
consensus13. Recent analyses have suggested the value of integrating 
‘locus-based’ approaches with more global (similarity-based) assess-
ments of shared pathways and functions to enhance the prediction of 
causal genes13–15. The use of orthogonal and disease-specific resources 

to aid variant and gene classifications may expedite the transition from 
gene maps to disease mechanisms.

To extend these approaches to CAD, we analyzed imputed 
data from nine studies not previously included in genome-wide 
association study (GWAS) meta-analyses (86,847 cases and 417,789 
controls) and combined results with data from UK Biobank, the CAR-
DIoGRAMplusC4D Consortium and Biobank Japan, achieving a total 
sample of 210,842 CAD cases among 1,378,170 participants2,3,7,10,16. 
Our objectives were to (1) discover new associations with CAD; (2) 
determine the impact of expanded genetic discovery for identi-
fying biologically relevant loci and improving risk prediction; (3) 
implement a systematic, integrative approach to prioritize likely 
causal variants, genes and biological pathways, thereby providing 
a catalog of testable hypotheses for experimental follow-up and (4) 
experimentally validate a new locus as proof of principle for our 
prioritization framework.
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with conventional CAD risk factors, such as blood lipids, blood pres-
sure, hyperglycemia or adiposity.

Several new associations (Table 1) were near genes that have not 
been robustly implicated in CAD via genetic association studies but 
have strong biological plausibility, including rs6883598 near FBN2, 
encoding fibrillin-2, which mediates the early stages of elastic fiber 
assembly and is associated with aortic aneurysms and Beals Syndrome, 
a Marfan-like disorder17–19 and rs1892971 near MMP13, which encodes 
matrix metalloproteinase (MMP)-13, an interstitial collagenase that 
influences the structural integrity of atherosclerotic plaques through 
regulation and organization of intraplaque collagen20,21. While the 
sentinel variant near FBN2 was associated with blood pressure in 
the PheWAS, the lead variant near MMP13 was not associated with 
conventional CAD risk factors, suggesting it is likely to act through 
alternative pathways.

Allelic architecture
Of the 54 new associations, 46 sentinel variants were common (minor 
allele frequency (MAF) > 0.05) with relatively weak effects on CAD 
(odds ratio (OR) per CAD risk allele: 1.03–1.07; Fig. 1). The others were 

Results
Discovery of known and new CAD loci
Participants were largely (>95%) of European ancestry and 46% were 
female (Supplementary Table 1). In total, 20,073,070 variants were 
included in the discovery meta-analysis (Online Methods). We repli-
cated 150 (69.4%) of 216 previously reported CAD loci at conventional 
genome-wide significance (P ≤ 5.0 × 10−8) and 38 (17.6%) at nominal 
significance (P ≤ 1.0 × 10−5; Supplementary Table 2). Approximate con-
ditional analysis using Genome-wide Complex Trait Analysis (GCTA) 
identified 241 conditionally independent associations exceeding 
genome-wide significance at 198 loci (Supplementary Table 3, Extended 
Data Fig. 1 and Supplementary Data 1). In total, 54 sentinel variants 
were new, including 30 outside genomic regions previously reported 
for CAD (Table 1).

As in previous CAD GWAS9, we found genetic correlations with 
several CAD risk factors and other cardiovascular diseases (Supple-
mentary Table 4). To identify potential etiological mechanisms for 
specific loci, we conducted a phenome-wide association scan (PheWAS) 
in UK Biobank (Supplementary Table 5). In total, 128 (53%) of the 
CAD-associated variants had directionally consistent associations 

Table 1 | New loci for CAD from primary meta-analysis

Nearest gene Lead variant rsID Chr Position Effect allele Non-effect allele Odds ratio 95% CI P value

KDF1 rs79598313 1 27,284,913 T C 1.10 1.06–1.14 3.6 × 10−8

LOC100131060 rs71646019 1 59,433,354 T C 1.04 1.03–1.05 6.1 × 10−10

OTUD7B rs67807996 1 149,995,265 A G 1.04 1.03–1.05 1.1 × 10−12

MIR4432 rs243071 2 60,619,028 A G 1.03 1.02–1.04 2.7 × 10−8

SAP130 rs114192718 2 128,785,663 T C 1.06 1.04–1.08 2.6 × 10−8

ACVR2A rs35611688 2 148,377,860 T C 0.97 0.96–0.98 1.5 × 10−8

LNX1 rs17083333 4 54,572,066 T G 0.97 0.96–0.98 1.2 × 10−8

ITGA1 rs4074793 5 52,193,125 A G 0.95 0.93–0.97 1.6 × 10−8

FER rs112949822 5 108,085,190 A G 0.95 0.93–0.96 1.1 × 10−9

DMXL1 rs13169691 5 118,448,279 T C 1.04 1.03–1.06 2.6 × 10−8

FBN2 rs6883598 5 127,926,190 A C 0.97 0.96–0.98 9.7 × 10−10

PTK7 rs1034246 6 43,068,370 T G 0.97 0.96–0.98 6.4 × 10−10

MACC1 rs10486389 7 20,300,416 A G 0.97 0.96–0.98 6.5 × 10−10

C9orf146 rs10961206 9 13,724,051 A T 1.05 1.04–1.07 8.1 × 10−10

ACER2 rs10811183 9 19,436,055 A G 1.04 1.02–1.05 1.6 × 10−8

C5 rs41312891 9 123,726,749 G GCAAA 0.94 0.92–0.96 5.9 × 10−9

PLCE1 rs55753709 10 96,029,170 T C 0.96 0.95–0.97 2.2 × 10−13

R3HCC1L rs884811 10 99,923,763 C G 1.03 1.02–1.04 3.1 × 10−9

MMP13 rs1892971 11 102,795,606 A G 0.96 0.95–0.97 5.1 × 10−10

ST3GAL4 rs10790800 11 126,262,638 A G 1.03 1.02–1.04 9.1 × 10−9

TBX3 rs34606058 12 115,353,368 T C 0.97 0.96–0.98 7.7 × 10−9

DOCK9 rs8000794 13 99,434,810 C G 1.03 1.02–1.04 4.3 × 10−8

LIPC rs588136 15 58,730,498 T C 0.96 0.95–0.98 7.0 × 10−10

UNC13D rs2410859 17 73,841,285 T C 1.03 1.02–1.04 4.3 × 10−9

CPLX4 rs11663411 18 56,960,510 T C 0.97 0.96–0.98 2.6 × 10−8

MYO9B rs7246865 19 17,219,105 A G 1.03 1.02–1.05 1.9 × 10−8

RRBP1 rs1132274 20 17,596,155 A C 1.04 1.03–1.05 1.8 × 10−8

MAFB rs2207132 20 39,142,516 A G 1.10 1.07–1.13 6.7 × 10−10

ARVCF rs71313931 22 19,960,184 C G 0.97 0.96–0.98 2.3 × 10−9

SCUBE1 rs139012 22 43,623,972 A G 0.97 0.96–0.98 2.1 × 10−8

Positions are according to GRCh37. Odds ratios (and 95% confidence intervals (CIs)) are for per-allele effect estimates according to the effect allele. Two-sided P values are from Z scores from a 
fixed-effect inverse-variance weighted meta-analysis.
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low frequency (MAF = 0.009–0.036) of which, four had comparatively 
strong effects (OR = 1.30–1.44) and four had more modest effects 
(OR = 1.10–1.14; Extended Data Fig. 2). We then conducted gene-based 
tests of missense and predicted loss-of-function variants in UK Biobank 
(n = 33,941 CAD cases, 438,394 controls; Supplementary Table 6) and 
found a strong signal for PCSK9. We did not find evidence for further 
association with a burden of low-frequency or rare variants (Extended 
Data Fig. 3 and Supplementary Table 7).

Differential effects by sex
To identify associations that differ by sex, we conducted sex-stratified 
GWAS in a subset of studies comprising 77,080 CAD cases (Supplemen-
tary Table 8). We found ten associations that reached genome-wide 
significance (P ≤ 5.0 × 10−8) and had evidence (P ≤ 0.01) for between-sex 
heterogeneity (Supplementary Table 9). Lead variant rs7696877 was 
the only signal with a stronger effect in females (per-allele OR = 0.94) 
than in males (per-allele OR = 0.98, heterogeneity P = 0.007).

Subthreshold associations
At a significance level (P < 2.52 × 10−5) approximating a 1% false discov-
ery rate (FDR), we identified a further 656 conditionally independent 
associations with CAD (Supplementary Table 10). Most (486, 74.1%) 
were common variants, but almost all had modest effects (per-allele 
OR < 1.07). Several associations had strong biological priors, including 
rs41279633 (P = 1.24 × 10−6) in NPC1L1, encoding Niemann-Pick C1-like 1, 
an important mediator of intestinal cholesterol absorption and the tar-
get of ezetimibe, a cholesterol-lowering drug. Other examples included 
PNPLA3 (rs738408; P = 1.04 × 10−5), the strongest locus for nonalcoholic 
fatty liver disease22, and TCF7L2 (rs7903146; P = 6.39 × 10−8), the strong-
est locus for type 2 diabetes23. The percent of heritability for CAD (on 
the liability scale) explained by the 241 conditionally independent 
associations reaching genome-wide significance was 15.5%, increasing 
to 36.1% for the 897 associations with P < 2.52 × 10−5.

Polygenic score associations with incident and recurrent CAD
We evaluated 362 polygenic risk scores (PRS) using combinations 
of derivation methods (Pruning and Thresholding24 or LDpred algo-
rithm25) and summary statistics (from the current meta-analysis or 
an earlier 1000 genomes-imputed GWAS involving around 60,000 
CAD cases7). We selected the optimal PRS for each combination of the 
derivation method and GWAS summary statistics based on prediction 
of incident CAD in a training dataset from the Malmö Diet and Cancer 
study (MDC; n = 22,872; nincident_cases = 3,307; Supplementary Table 11). 
The two top-performing scores were those derived with LDpred and 
comprised 2,324,653 variants (2022 PRS) and 1,532,758 variants (2015 
PRS; Supplementary Tables 12–15). In bootstrapping analyses, the 
2022 PRS outperformed the 2015 PRS (age- and sex-adjusted mean 
hazard ratio (HR) per 1 s.d. higher PRS = 1.56 versus 1.49; P = 3.2 × 10−31; 
age- and sex-adjusted mean area under the receiver operator char-
acteristic curve (AUC) = 0.742 versus 0.736; P = 6.5 × 10−16; Supple-
mentary Table 16).

We validated both scores in a held-out subset of the MDC (n = 5,685; 
nincident_cases = 815; Supplementary Table 11). The 2022 PRS was more 
strongly associated with incident CAD (HR = 1.61; 95% CI = 1.50–1.72) 
than the 2015 PRS (HR = 1.49; 95% CI = 1.39–1.59), providing improved 
stratification of participants at higher and lower risk for incident CAD 
(Fig. 2a). After adjustment for established risk factors (Online Meth-
ods), the 2022 PRS remained strongly associated with incident events 
(HR = 1.54; 95% CI = 1.42–1.66). The 2022 PRS yielded a 5.7-fold higher 
risk of CAD between the top and bottom deciles of the PRS, compared 
to a 3.8-fold higher risk with the 2015 PRS.

We then evaluated prediction of recurrent coronary events in the 
placebo arm of the Further Cardiovascular Outcomes Research with 
PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER; n = 7,135; 
nincident_cases = 673) clinical trial, a cohort of patients with established 

atherosclerotic cardiovascular disease26. The 2022 PRS demonstrated 
better recurrent event prediction (HR = 1.20; 95% CI = 1.11–1.29) than 
the 2015 PRS (HR = 1.13; 95% CI = 1.04–1.22) and enhanced stratification 
of participants at higher and lower risk (Fig. 2b). The 2022 PRS yielded 
a 1.7-fold higher risk of recurrent coronary events between the top and 
bottom deciles of the PRS versus a 1.4-fold higher risk with the 2015 PRS.

Cross-ancestry comparison and meta-analysis
We used a large CAD GWAS from Biobank Japan to evaluate the 
genome-wide significant associations in East Asian ancestry partici-
pants3. Effect estimates for the 199 sentinel variants in both datasets 
were strongly positively correlated (r = 0.59) between the predomi-
nantly European ancestry meta-analysis and the Biobank Japan 
GWAS (Extended Data Fig. 4a), as were the effect allele frequencies 
(r = 0.76; Extended Data Fig. 4b). To assess the potential for enhanced, 
cross-ancestry discovery, we meta-analyzed the Biobank Japan sum-
mary statistics with the current analysis, yielding 38 additional new 
loci at genome-wide significance (Table 2, Fig. 1, and Supplementary 
Table 17). The sentinel variants were common (MAF > 5%) with weak 
effects (per-allele ORs: 1.026–1.059; Fig. 1), with the exception of 
rs75655731 near LINC005999, which was low-frequency (MAF = 1.4%) 
with a stronger effect (per-allele OR = 1.090); 36 of these associations 
were included in the 1% FDR set, including the aforementioned associa-
tions at TCF7L2 and PNPLA3.

Prioritizing causal variants, genes and biological pathways
Using several independent approaches, we prioritized causal variants, 
effector genes, relevant tissues and intermediate causal pathways for all 
279 significant associations. The presence of a protein-altering (that is, 
missense or predicted loss of function) variant has been shown to be a 
strong, causal gene predictor, particularly if the variant is uncommon14. 
At 52 associations, the sentinel variant, or a strong proxy (r2 ≥ 0.8), was 
a protein-altering variant (Supplementary Table 18). These included 
well-known low-frequency missense variants in PCSK9 (p.R46L) and 
ANGPTL4 (p.E40K)16. Nineteen of the 52 missense variants were new, 
including a missense variant (rs129415; p.G398R) in SCUBE1 that is 
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strongly correlated with the CAD sentinel variant (r2 = 0.99). SCUBE1 
encodes signal peptide-CUB-EGF domain-containing protein 1, a glyco-
protein secreted by activated platelets that protect against thrombosis 
in mice when inhibited27.

Functionally informed fine-mapping
Incorporating functional annotations into fine-mapping approaches 
has been shown to improve identification of causal variants28–30. Using 
ChromHMM-derived chromatin states from the NIH Roadmap Epig-
enomics Consortium to functionally annotate the genome, we found 
more than twofold enrichment for these states in the ten CAD-relevant 
cell/tissue types we tested, consistent with previous findings (Sup-
plementary Table 19)7. Of 235 distance-based regions containing 
genome-wide significant associations, we found 127 (54.0%) with 
significant enrichment (Supplementary Table 20). The majority (78; 
61.4%) of distance-based regions were relatively tissue specific, showing 
enrichment in less than three tissues, but eight regions showed wide-
spread enrichment in seven or more tissues (Fig. 3a). Adipose (n = 33), 
liver (n = 26) and aorta (n = 21) showed the greatest enrichment for the 
most regions (Supplementary Table 20).

We applied a functionally informed fine-mapping method (func-
tional genome-wide association analysis (FGWAS))29, which uses 
chromatin state enrichment information to reweight GWAS sum-
mary statistics and compute variant-specific posterior probabilities 
of association (PPA). Among the 127 enriched regions, we identified 
42 that contained less than five variants in the 95% credible set (Fig. 3b  
and Supplementary Table 21), while 53 regions contained a variant 
with PPA ≥ 0.5 (Fig. 3c and Supplementary Table 22) showing that the 
combination of functional annotation and high statistical power can 
pinpoint likely causal variants. Indeed, 14 regions were fine-mapped 
to a single variant, including missense variants in PCSK9, ANGPTL4 and 
APOE, plus other well-studied noncoding variants, such as rs9349379 
(PHACTR1/EDN1)31 and rs2107595 (HDAC9/TWIST1)32.

At 12 loci, fine-mapping prioritized (PPA ≥ 0.5) variants that were 
not the sentinel. For example, at the low-density lipoprotein (LDL) 
cholesterol and adiposity-associated MAFB locus33, the sentinel vari-
ant was rs2207132 (Supplementary Table 3 and Extended Data Fig. 
5a). However, a strongly correlated variant (rs1883711; r2 = 0.92) lies 
in a region annotated as a likely enhancer in liver and adipose tissue, 
the two enriched tissues at this locus (Extended Data Fig. 5b). There-
fore, rs1883711 was upweighted by FGWAS (PPA = 0.77) over rs2207132 
(PPA = 0.13). We queried CAD-associated variants for cis-expression 
quantitative trait loci (cis-eQTLs) in CAD-relevant tissues from the 

Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task 
(STARNET) and Genotype-Tissue Expression (GTEx) studies (Online 
Methods)34,35. The eQTL for MAFB observed in liver samples from CAD 
patients in STARNET suggests that the CAD association is mediated by 
changes in MAFB expression (encoding MAF bZIP transcription factor B; 
Supplementary Table 22). MafB expression in macrophages is upregu-
lated by oxidized LDL stimulation36, while MafB deficiency in mice 
appears to increase atherosclerosis by inhibiting foam cell apoptosis37.

Polygenic prioritization of candidate causal genes
Combining locus- and similarity-based approaches has been shown to 
enhance the prioritization of causal genes14,38. However, established 
similarity-based methods have not leveraged the full polygenic sig-
nal to inform gene prioritization. We therefore incorporated a new 
similarity-based method for gene prioritization, the Polygenic Priority 
Score (PoPS), which uses the full genome-wide association data15. We 
applied PoPS to summary-level data from the GWAS meta-analysis. 
Initial 57,543 features—including gene expression, protein–protein 
interaction networks, and biological pathways—were considered, of 
which 19,091 features (33.2%) passed a marginal feature selection step 
and were input into the final PoPS model (Online Methods and Supple-
mentary Table 23). We computed a PoPS score for all protein-coding 
genes within 500 kb of all 279 genome-wide associations and prior-
itized the gene with the highest PoPS score in each locus, resulting in 
235 prioritized genes. PoPS prioritized many well-established genes 
implicated in CAD pathogenesis, including LDLR, APOB, PCSK9, SORT1, 
NOS3, VEGFA and IL6R (Supplementary Tables 24 and 25).

Next, we identified features from the PoPS model which were most 
informative in prioritizing CAD-relevant genes. Hierarchical clustering 
yielded 2,852 clusters, which we ranked by relative contribution to the 
PoPS scores of prioritized genes (Fig. 4a). The highest-ranking cluster 
contained features indicating homeostatic regulation of blood lipids 
(Supplementary Table 26). Other top clusters were related to vascular 
cell function, migration and proliferation; the structure and function 
of the extracellular matrix and metabolic pathways including those 
in adipose tissue controlling thermoregulation, all well-established 
mechanisms in CAD pathogenesis39–41. Additional high-ranking clusters 
highlighted early developmental processes and cell cycle signaling 
pathways as less recognized, but important, mediators of CAD risk.

We then examined a locus where the PoPS method facilitated the 
prioritization of a putative causal gene. Lead variant rs1807214 lies in an 
intergenic region of chromosome 15 at which no causal gene has been 
established7,8. Data from GTEx and STARNET identified cis-eQTLs for 
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ABHD2, MFGE8 and HAPLN3 (Supplementary Tables 27 and 28). Prior 
locus-based algorithms have prioritized the nearest gene, ABHD2, 
located 65 kb downstream of the sentinel variant5,38. However, PoPS 
prioritized MFGE8, located 108 kb upstream of the sentinel (Fig. 4b). 
MFGE8 encodes lactadherin, an integrin-binding glycoprotein impli-
cated in vascular smooth muscle cell (VSMC) proliferation and invasion, 
and the secretion of proinflammatory molecules42,43. In vitro deletion of 
this intergenic region by CRISPR–Cas9 increases MFGE8 expression—
with no change to ABHD2 expression—and MFGE8 knock-down reduces 
coronary artery (CA)-VSMC and monocyte (THP-1) proliferation, 

lending functional support to MFGE8 as a likely causal mediator of 
the CAD association in this region44.

Systematic prioritization of putative causal genes
We developed and applied a consensus-based prioritization frame-
work involving eight similarity-based or locus-based predictors to 
systematically prioritize likely causal genes for all 279 genome-wide 
associations (Online Methods and Fig. 5a). Most likely causal genes 
were selected based on the highest (unweighted) number of the eight 
predictors. To test this framework, we generated an a priori set of 30 

Table 2 | New loci for CAD from meta-analysis with Biobank Japan

Nearest gene Lead variant rsID Chr Position Effect allele Non-effect allele Odds ratio 95% CI P value

CCDC30 rs6656344 1 42,948,585 A C 0.97 0.97–0.98 5.0 × 10−9

KIAA0040 rs2285219 1 175,130,983 A T 1.03 1.02–1.04 4.0 × 10−9

AAK1 rs12468870 2 69,679,537 C G 0.97 0.96–0.98 5.1 × 10−10

CXCR4 rs4954580 2 136,986,303 T C 0.96 0.95–0.98 3.0 × 10−9

PDE1A rs1430158 2 183,262,128 T C 0.97 0.97–0.98 2.4 × 10−8

ATP1B3 rs7622417 3 141,625,999 C G 1.03 1.02–1.03 1.2 × 10−8

MECOM rs11721038 3 168,849,576 T C 1.05 1.03–1.06 3.5 × 10−9

GNPDA2 rs12641981 4 45,179,883 T C 1.03 1.02–1.04 2.0 × 10−9

LOC285696 rs2652682 5 17,113,657 A T 0.97 0.96–0.98 1.0 × 10−9

SKP2 rs5867305a 5 36,157,262 CA C 0.97 0.96–0.98 3.9 × 10−8

SGCD rs157333 5 156,117,200 C G 1.04 1.03–1.05 1.3 × 10−11

TFAP2B rs62405422 6 50,796,905 T C 0.97 0.96–0.98 3.1 × 10−10

TRAF3IP2–AS1 rs9400480 6 111,850,597 C G 1.03 1.02–1.04 4.1 × 10−8

HBS1L rs9399136 6 135,402,339 T C 1.03 1.02–1.04 2.0 × 10−8

PDE1C rs215634 7 32,369,148 A G 1.03 1.02–1.04 1.2 × 10−8

SEMA3C rs1019016 7 80,570,562 T G 1.03 1.02–1.04 3.8 × 10−10

ZKSCAN1 rs6953441 7 99,617,067 A G 1.03 1.02–1.04 6.8 × 10−9

LINC00599 rs75655731a 8 9,721,394 C G 0.92 0.89–0.95 4.6 × 10−8

DOCK8 rs1536608 9 223,613 T G 1.03 1.02–1.03 3.0 × 10−8

GPSM1 rs3935875 9 139,238,824 A G 0.97 0.96–0.98 2.2 × 10−8

ARHGAP21 rs7077962 10 25,054,674 T C 1.03 1.02–1.04 1.2 × 10−8

NRP1 rs75082222 10 33,516,373 T TA 0.97 0.96–0.98 3.5 × 10−8

TCF7L2 rs7903146 10 114,758,349 T C 1.03 1.02–1.04 6.2 × 10−9

AFAP1L2 rs646668 10 116,138,034 A G 1.03 1.02–1.04 2.8 × 10−9

PPP2R1B rs11410951 11 111,621,399 CA C 0.97 0.96–0.98 2.6 × 10−8

ACVRL1 rs2277383 12 52,314,388 T G 0.97 0.95–0.98 3.0 × 10−8

CNPY2 rs62956461 12 56,706,178 A AT 1.06 1.04–1.08 2.7 × 10−9

PAWR rs8176893 12 79,999,309 A T 1.03 1.02–1.04 7.9 × 10−10

CDK8 rs12864131 13 27,045,939 A G 0.97 0.97–0.98 1.1 × 10−8

GP2 rs10852238 16 20,253,374 A T 1.04 1.03–1.05 4.1 × 10−9

XPO6 rs111806192 16 28,252,382 T G 0.97 0.96–0.98 1.8 × 10−8

DYNLRB2 rs16952537 16 80,185,366 A G 0.97 0.97–0.98 3.9 × 10−8

PIP4K2B rs16968377 17 36,942,396 T C 0.95 0.93–0.97 3.0 × 10−8

TIMP2 rs8075861 17 76,915,710 A C 0.97 0.97–0.98 5.0 × 10−9

WDR87 rs73025613 19 38,334,361 T C 1.03 1.02–1.03 4.4 × 10−8

RRP1B rs35219138 21 45,117,913 A AT 0.97 0.96–0.98 1.8 × 10−8

SYN3 rs4452 22 33,283,257 T C 0.96 0.95–0.97 1.2 × 10−8

PNPLA3 rs738408 22 44,324,730 T C 0.97 0.96–0.98 3.8 × 10−9

Positions are according to GRCh37. Odds ratios (and 95% CIs) are for per-allele effect estimates according to the effect allele. Two-sided P values are from Z scores from a fixed-effect 
inverse-variance weighted meta-analysis. aVariants that did not reach 1% FDR threshold in primary meta-analysis.

http://www.nature.com/naturegenetics
https://www.ncbi.nlm.nih.gov/snp/?term=rs6656344
https://www.ncbi.nlm.nih.gov/snp/?term=rs2285219
https://www.ncbi.nlm.nih.gov/snp/?term=rs4954580
https://www.ncbi.nlm.nih.gov/snp/?term=rs1430158
https://www.ncbi.nlm.nih.gov/snp/?term=rs7622417
https://www.ncbi.nlm.nih.gov/snp/?term=rs2652682
https://www.ncbi.nlm.nih.gov/snp/?term=rs5867305
https://www.ncbi.nlm.nih.gov/snp/?term=rs9400480
https://www.ncbi.nlm.nih.gov/snp/?term=rs9399136
https://www.ncbi.nlm.nih.gov/snp/?term=rs1019016
https://www.ncbi.nlm.nih.gov/snp/?term=rs6953441
https://www.ncbi.nlm.nih.gov/snp/?term=rs1536608
https://www.ncbi.nlm.nih.gov/snp/?term=rs3935875
https://www.ncbi.nlm.nih.gov/snp/?term=rs7077962
https://www.ncbi.nlm.nih.gov/snp/?term=rs7903146
https://www.ncbi.nlm.nih.gov/snp/?term=rs2277383
https://www.ncbi.nlm.nih.gov/snp/?term=rs8176893
https://www.ncbi.nlm.nih.gov/snp/?term=rs8075861


Nature Genetics | Volume 54 | December 2022 | 1803–1815 1808

Article https://doi.org/10.1038/s41588-022-01233-6

‘positive control’ genes with well-established causal roles in CAD and 
assessed the accuracy of each predictor (Supplementary Table 29). 
Twenty-eight of the 30 positive control genes were correctly prior-
itized as the most likely causal gene based on the highest number of 

concordant predictors with a median of four concordant predictors 
per gene (Supplementary Table 30). All predictors demonstrated high 
accuracy, including nearest gene (90%), PoPS (90%), eQTL (85%) and 
mouse knock-outs (100%; Supplementary Table 30).
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Fig. 3 | Epigenetic enrichment and functionally informed fine-mapping of 
CAD loci. a, Number of tissues/cell types in which 127 regions were enriched. Of 
235 distance-based regions containing genome-wide significant associations 
in our meta-analysis, 127 regions had significant enrichment in at least one 
tissue type and were therefore fine-mapped using FGWAS. b, Distribution of 
95% credible set sizes for the 127 enriched regions. For display purposes, the 
plot excludes ten regions for which the 95% credible set contained more than 
100 variants (Supplementary Table 20). c, Circle plot of epigenetic enrichment 
for 53 significantly enriched GWAS regions containing a variant with PPA ≥ 0.5. 
The number of regions in which each tissue showed enrichment in is displayed 

in the upper right quadrant. The number of regions that show enrichment with 
a given tissue/cell type is displayed in the box next to the tissue/cell type name. 
The 53 significantly enriched GWAS regions containing a variant with PPA ≥ 0.5 
are colored according to the tissue with the strongest evidence of enrichment 
for that region. Region names with an asterisk denote those for which all 
conditionally independent association signals were annotated as being new. The 
histogram shows the total number of tissues with enrichment for each region and 
the links indicate the tissues/cell types in which each region was enriched. The 
number of 95% credible variants per region is displayed in the outer ring.
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We were able to prioritize a likely causal gene at 239 (85.7%) of the 
genome-wide associations based on having two or more concordant 
predictors, resulting in the prioritization of 220 genes (Supplemen-
tary Table 31). We considered 123 of these genes strongly prioritized 
(three or more concordant predictors; Fig. 5b and Supplementary 
Fig. 1). For 21 genes, the prioritized gene was not the nearest gene to 
the sentinel variant, including APOC3, PLTP and LOX. Agreement (the 
proportion of times that a predictor prioritized the same gene as the 
most likely causal gene) was high across predictors, including nearest 
gene (84%), PoPS (83%) and eQTLs (86%; Fig. 5a). Concordance (the 
proportion of times a pair of predictors both provided evidence for 
the consensus-based causal gene) was more variable (Extended Data 
Fig. 6); nearest gene and the presence of a protein-altering variant were 
typically concordant (71%), whereas monogenic genes and eQTLs were 
much less concordant (35%).

Candidate loci with converging lines of evidence
Several newly identified CAD risk loci had strong variant- and gene-level 
evidence supporting their candidacy for functional interrogation. For 
example, we identified a CAD-associated region that was most strongly 
enriched in the aorta (Supplementary Table 3), with an intronic variant 
(rs4074793) in ITGA1 having a PPA of 0.95 (Extended Data Fig. 7a,b). Lead 
variant rs4074793 lies in a region annotated as a likely enhancer in sev-
eral tissues and is the lead variant for a strong cis-eQTL for ITGA1 in liver 
among CAD patients from STARNET (P = 1.8 × 10−73; Extended Data Fig. 7c). 
This eQTL was also seen in aorta, subcutaneous fat and mammary artery 
(Extended Data Fig. 7d). No other gene expression signals were seen at 
this locus, while PoPS also strongly prioritized ITGA1 as the likely causal 
gene (Supplementary Table 31). ITGA1 encodes integrin subunit alpha-1, 
a widely expressed protein that forms a heterodimer with integrin beta-1 
and acts as a cell surface receptor for extracellular matrix components, 
such as collagens and laminins. The CAD risk allele (rs4074793-G), or 
strong proxies, were associated with elevated liver enzymes45, C-reactive 
protein and LDL cholesterol46, highlighting the influence of altered ITGA1 
expression in the liver on lipid pathways as a likely causal pathway to CAD.

We also identified a new association with CAD at a gene-dense 
region enriched for epigenetic annotations in adipose, liver, 

monocytes and skeletal muscle myoblasts (Fig. 6a and Supplemen-
tary Table 20). FGWAS prioritized rs7246865 as the putative causal 
variant (PPA = 0.71). Among 30 genes within 500 kb of rs7246865, 
PoPS prioritized MYO9B (Supplementary Table 24), which encodes 
unconventional myosin-IXb, a myosin protein with Rho-GTPase signal-
ing activity involved in cell migration47. Evidence for the involvement 
of MYO9B was also provided by a cis-eQTL in tibial artery in GTEx 
(P = 5.3 × 10−8), with the CAD risk allele exhibiting lower MYO9B expres-
sion (Supplementary Table 27).

Experimental interrogation of a new CAD locus
We proceeded to investigate the functional significance of the MYO9B 
locus with respect to CAD risk. This genomic region is contained within a 
vascular tissue enhancer, as identified by a strong H3K27ac ChIP-seq sig-
nal in coronary artery, aorta and tibial artery (Fig. 6b). Using ATAC-seq 
of primary vascular cells, we identified open chromatin at rs7246865 in 
the following three cell types of relevance to CAD: immortalized human 
aortic endothelial cells (ECs), CA-VSMCs and monocytes (Fig. 6b).

We used CRISPR–Cas9 to delete the enhancer sequence in these 
cell types (Fig. 6b), achieving 53–72% effective deletion of a 131-bp seg-
ment within the enhancer (Fig. 6c). We measured the transcriptional 
effect of enhancer deletion on all genes expressed in these cell types 
within a 250-kb window surrounding rs7246865. The enhancer deletion 
resulted in reduced MYO9B and HAUS8 expression in ECs (Fig. 6d) and 
reduced MYO9B expression in CA-VSMCs (Fig. 6e), compatible with 
vascular GTEx eQTLs. There was no change in the expression of any 
other genes in the region in either cell type or of any gene in monocytes.

Finally, we sought to understand whether the enhancer is associ-
ated with a cellular phenotype of relevance to CAD. Given the cytoskel-
etal functions of MYO9B and HAUS8 in other cell types47,48, we assessed 
the effects of these genes in a monolayer wound-healing assay, a com-
posite of cell migration and proliferation49. We observed that ECs with 
the enhancer deletion exhibited impaired wound healing, as did ECs 
with knock-outs of either MYO9B or HAUS8, suggesting that the regula-
tory effect of the enhancer contributes to CAD risk through impaired 
wound healing in ECs (Fig. 6f). We did not observe any effect on migra-
tion with deletion of the noncoding enhancer or MYO9B in CA-VSMCs.
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Discussion
In a discovery analysis involving >200,000 cases of CAD and >1 mil-
lion controls, we identified 279 genome-wide significant associations, 
including 82 reported here for the first time. We objectively prior-
itized likely causal variants and effector genes across all associations 

using functionally informed fine-mapping, a recently developed 
genome-wide gene prioritization method (PoPS), and systematic inte-
gration of locus-based and similarity-based predictors, with several 
tailored specifically to cardiovascular disease. Finally, informed by our 
prioritization framework, we experimentally interrogated a new CAD 
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a causal effect of the protein on CAD (Supplementary Table 31); (3) either of the 
two top prioritized genes in the region from PoPS (Supplementary Table 24); (4) 
a gene in the region has an eQTL in a CAD-relevant tissue from GTEx or STARNET 
for which the lead eSNP is in high linkage disequilibrium (LD) (r2 ≥ 0.8) with the 
CAD sentinel variant (Supplementary Tables 27 and 28); (5) a gene for which a 
mouse knock-out has a cardiovascular-relevant phenotype (Supplementary 
Table 35); (6) a gene in the region harbors a protein-altering variant that is in 
high LD (r2 ≥ 0.8) with the CAD sentinel variant (Supplementary Table 31); (7) a 
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gene to the CAD sentinel variant. Numbers in the blue circles indicate, firstly, the 
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signal to establish a putative, mechanistic link between this genomic 
region and risk of CAD.

The large sample size enabled detection of more than 80 new 
genetic associations with CAD, predominantly common weak-effect 

variants. Our findings suggest that future, larger GWAS—at least those 
in European ancestry populations—are unlikely to discover many more 
large-effect common variants (that is, those with ORs greater than 1.05) 
associated with CAD. In fact, additional associations contributing to 

CA-VSMCsEndothelial cells

0

20

40

60

80

100

Recom
bination rate (cM

/M
b)

0

a

fd

b

ec

0.002
0.200
0.400
0.600
0.800

r2

5

10

15

−l
og

10
(P

 v
al

ue
)

←EPS15L1

←CALR3

C19orf44→

←CHERP

←SLC35E1

←SMIM7

TMEM38A→

NWD1→

SIN3B→

F2RL3→

←CPAMD8

←HAUS8

MYO9B→

SNORA118→

USE1→

OCEL1→

←NR2F6

BABAM1→

←ABHD8

←PLVAP

←BST2

BISPR→

MVB12A→

←NXNL1

PGLS→

COLGALT1→

←UNC13A

MAP1S→

FCHO1→

B3GNT3→

16.6 16.8 17 17.2 17.4 17.6 17.8

Position on chr19 (Mb)

19:17219105_A_G
rs7246865

17,216.5 kb (hg19) 5 kb

rs7246865

Coronary artery

Tibial artery

Monocyte

ECs

AT
AC

-s
eq

H
3K

27
ac

 C
hI

P-
se

q

CA-VSMC

131-bp enhancer deletion

Aorta

sg
RN

A 
2

sg
RN

A 
1

Enhancer deletion e�iciency

CA-VSMCs

ECs

Monocytes

0 0.5 1.0

0.025

0.020

0.015

0.010

0.005

0

Ex
pr

es
si

on
 re

la
tiv

e 
to

 G
AP

D
H

Ex
pr

es
si

on
 re

la
tiv

e 
to

 G
AP

D
H

Fl
uo

re
se

nc
e 

in
te

ns
ity

(4
88

/5
22

 n
m

)

MYO9B

HAUS8
USE1

OCEL1

NR2F
6

MYO9B

HAUS8
USE1

OCEL1

NR2F
6

Contro
l

Enhan
cer d

eletio
n

MYO9B KO

HAUS8 KO

**

***

0

0.01

0.02

0.03

0.04

**

****
*

***
** NS NS

8 × 106

6 × 106

4 × 106

2 × 106

0

Fig. 6 | Experimental interrogation of a new CAD locus near MYO9B. a, 
Regional association plot from the primary CAD meta-analysis for the new 
gene-dense region around MYO9B. Colored dots represent the position (x axis) 
in GRCh37 coordinates and –log10(meta-analysis P value) (y axis) of each variant 
in the region. Dots are shaded to represent the r2 with the lead CAD variant 
(rs7246865), estimated using a random sample of 5,000 European ancestry 
participants from the UK Biobank. Recombination peaks are plotted in blue 
based on estimates of recombination from 1000 Genomes European ancestry 
individuals. b, Identification of a noncoding enhancer in the region around the 
CAD association signal. The plot shows an inset of a 5-kb window surrounding 
the lead CAD variant (rs7246865). The top three tracks (blue) show H3K27Ac 
ChIP-seq of human CA, aorta and tibial artery, identifying a vascular tissue 
enhancer element overlying rs7246865. The bottom three tracks (purple) 
show ATAC-seq of human monocytes, immortalized human aortic ECs and 
CA-VSMCs, identifying a region of open chromatin in all three cell types around 
rs7246865. The plot also shows the location of the sgRNAs used for deletion 
of the noncoding enhancer. c, Efficiency of CRISPR editing in primary human 
cells. The Cas9-sgRNA ribonucleoprotein nucleofection method resulted 
in noncoding enhancer deletion efficiency (x-axis) of greater than 0.5 by 
densitometry and was comparable across monocytes, ECs and CA-VSMCs. Points 
indicate enhancer deletion efficiency for each of the 12 replicates. Horizontal 
bars indicate mean enhancer deletion efficiency, and whiskers indicate 95% 
CIs. d, Relative expression of nearby genes after enhancer deletion in ECs. The 
y axis shows mean expression of five local genes expressed in ECs compared to 
expression levels of a control gene (GAPDH). Blue bars indicate gene expression 

with Cas9–control sgRNA. Red bars indicate expression with tandem enhancer-
deleting guides as identified in b. Points indicate gene expression levels for 
each of the six replicates. Vertical bars indicate mean expression levels and 
whiskers indicate 95% CIs. Gene expression was quantified by qPCR. Expression 
levels were compared using an unpaired two-way Student’s t test. Reduced 
expression of MYO9B and HAUS8 was identified after 131-bp enhancer deletion 
as in b. **P = 0.0020; ***P < 0.0001. e, Relative expression of nearby genes after 
enhancer deletion in CA-VSMCs. The y-axis shows mean expression of five local 
genes expressed in CA-VSMCs compared to expression levels of a control gene 
(GAPDH). Blue bars indicate gene expression with Cas9–control sgRNA. Red bars 
indicate expression with tandem enhancer-deleting guides as identified in b. 
Points indicate gene expression levels for each of the six biological replicates. 
Vertical bars indicate mean expression levels and whiskers indicate 95% CIs. Gene 
expression was quantified by qPCR. Expression levels were compared using an 
unpaired two-way Student’s t test. Reduced expression of MYO9B was identified 
after 131-bp enhancer deletion as in b. **P = 0.0044. f, In vitro endothelial wound 
healing with enhancer and gene deletions. The y-axis indicates fluorescence 
intensity, a read-out for endothelial wound healing and a composite of migration 
and proliferation. ECs with CRISPR–Cas9 genome editing for enhancer deletion 
(red) or single-gene knock-outs exhibited diminished wound healing relative to 
nontargeting control with no deletions (blue). Dots indicate endothelial wound 
healing for each of the six replicates. Vertical bars indicate mean wound-healing 
levels and whiskers indicate 95% CIs. Levels of wound healing were compared by 
one-way ANOVA. *P = 0.0464; **P = 0.0013; ***P = 0.0003; ****P < 0.0001; NS, not 
significant.
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the long polygenic tail of CAD risk are likely to arise from the ~650 
predominantly weak-effect signals among associations that reached 
the 1% FDR threshold, which in aggregate explained ~36% of the herit-
ability of CAD. Notably, we identified 38 new loci when we incorporated 
recently published GWAS results based on only 29,000 CAD cases from 
Biobank Japan, demonstrating that future multi-ancestry analyses 
should enhance the yield of genetic discovery for CAD.

Consistent with previous studies, we demonstrated that a 
genome-wide PRS derived from this GWAS strongly predicts both 
incident and recurrent CAD50–53. Notably, our new PRS demonstrated 
improved ability to discern those at higher and lower risk of CAD as 
compared to a widely used PRS derived from an earlier GWAS of ~61,000 
CAD cases52. While the new PRS provides an improved tool for genetic 
risk prediction of CAD in the setting of primary and secondary preven-
tion, our findings suggest that further increases in European-ancestry 
GWAS sample size may only modestly improve the predictive ability 
of the CAD PRS. More substantive improvements in polygenic risk 
prediction may arise from methodological developments, such as 
approaches that model interactions between variants or incorpo-
rate functional information54,55. Moreover, further investigations are 
required to understand the extent to which genetic discovery analyses 
that include more non-European ancestry participants will improve 
the portability of PRS across ancestries, and whether this will result in 
improved prediction across all ancestry groups56.

The weak effects of most CAD-associated variants do not preclude 
their contribution to important etiological insights with therapeutic 
implications, as the effects of pharmacologically perturbing identified 
targets are typically much stronger than those of naturally occurring 
genetic variants that are common in the population. For example, we 
uncovered common variant associations of weak effect at HMGCR and 
NPC1L1, which encode the targets of HMG-CoA reductase inhibitors 
(statins) and ezetimibe, respectively, two of the most effective and com-
monly prescribed medications for the prevention and management of 
CAD through lowering blood lipid levels. However, the translation of 
statistical associations into actionable biology and potential therapeu-
tic targets requires elucidation of causal genes and mechanisms, which 
has lagged behind the rapid growth in genetic association discoveries.

Here we implemented strategies to enhance the identifica-
tion of putative causal variants, genes and biological pathways. By 
incorporating epigenomic enrichment in disease-relevant tissues—a 
previously shown approach to improve fine-mapping over broader, 
disease-agnostic approaches29—we prioritized likely causal variants 
that were not always those with the strongest statistical associations. 
Using a recently developed similarity-based tool (PoPS) that exploits 
the full genome-wide data to identify disease-enriched features, we 
prioritized >200 likely causal genes. Support for the validity of the 
genes prioritized by PoPS comes from the high ranking of features 
of known relevance to atherosclerosis (for example, lipid metabo-
lism, extracellular matrix processes) from more than 50,000 tested 
features; the correct assignment of the most likely causal gene at 
several well-established lipid and nonlipid CAD loci; selection of the 
likely-correct causal gene over several other candidates in a region, 
including those in closer proximity to the sentinel (for example, 
MFGE8); and corroborating evidence at many loci from orthogonal 
gene prioritization methods, such as eQTLs in disease-relevant tissues.

As support from multiple, orthogonal lines of evidence increases 
the likelihood of prioritizing the correct causal gene, we propose an 
integrative, consensus-based prioritization framework that incorpo-
rates eight complementary predictors. By applying this framework to 
all 279 genome-wide associations, we systematically enhance the level 
of evidence around both known and new risk loci for CAD to arrive at 
123 genes strongly prioritized on the basis of having three or more 
concordant predictors. Although distance from the sentinel variant 
has been shown to be a reasonable predictor of causal genes across 
many phenotypes14,38, our integrative approach prioritized a gene that 

was not the nearest gene for 15% of associations. Also, at several newly 
identified associations, such as those nearest ITGA1 and MYO9B, we pro-
vide complementary lines of in silico evidence to nominate potential 
causal variants, genes and mechanistic pathways. Finally, we leveraged 
genome-editing and cell-based assays to interrogate the new associa-
tion signal at chromosome 19, validating the involvement of MYO9B, 
but also implicating another putative causal gene, HAUS8. Importantly, 
these experimental findings substantiate our in silico prioritization of 
a region with apparent regulatory influence, and our similarity-based 
prioritization of cell migration pathways, as both MYO9B and HAUS8 
may exert their influence on CAD risk through the control of vascular 
cell cytoskeleton. Furthermore, the findings raise the possibility that 
two genes at a locus may regulate a common, cellular pathway in coordi-
nated fashion, such as seen for COL4A1 and COL4A2 at a well-established 
CAD risk locus57. While experimental evidence is ultimately required to 
confirm causal mechanisms at all unresolved CAD risk loci, we provide 
a prioritization framework yielding evidence-based candidates that 
may be amenable to analogous functional follow-up.
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Methods
Genetic discovery meta-analysis
Details of the ten de novo studies, including the source of partici-
pants, case and control definitions, basic participant characteristics, 
and ethics approval, are provided in Supplementary Note, Supple-
mentary Table 1 and Extended Data Fig. 1. Study-specific sample and 
variant filters were applied before additive logistic (or logistic mixed) 
models were run, with CAD status as the outcome and adjusting for 
study-specific covariates, including those accounting for potential 
ancestry effects.

We performed an inverse-variance weighted meta-analysis on 
the betas and standard errors using METAL58, combining the results 
from the ten de novo studies with previously published summary 
statistics. Variant-specific sample sizes were maximized by using a 
combination of summary statistics from prior CAD meta-analyses of 
the CARDIoGRAMplusC4D consortium, and additional variant filter-
ing was performed, as detailed in Supplementary Note2,7,10,16. The final 
dataset included 20,073,070 variants.

Joint association analysis
We performed joint association analysis using GCTA software59. 
This approach fits an approximate multiple regression model using 
summary-level meta-analysis statistics and LD corrections esti-
mated from a reference panel (here the UKBB sample using European 
ancestry participants only). We adopted a chromosome-wide step-
wise selection procedure to select variants and estimate their joint 
effects at (i) a genome-wide significance level (PJoint ≤ 5.0 × 10−8) in 
the meta-analyzed variants that reached genome-wide significance 
(n = 18,348) and (ii) an FDR 1% P value cut-off (PJoint ≤ 2.52 × 10−5) in the 
1% FDR variant list (n = 47,622). We identified 241 independent variants 
at the genome-wide significance threshold and 897 independent vari-
ants within the 1% FDR list.

Identifying previously reported regions and associations
To identify regions of the genome previously reported as having asso-
ciations with CAD, we first collapsed variants reaching genome-wide 
significance by clumping variants within 500 kb of each other into a 
single locus. We compared these regions with all variants previously 
found to be associated with CAD at a genome-wide level of significance 
(P ≤ 5.0 × 10−8) from previous large-scale genetic association studies of 
CAD. Regions were annotated as ‘known’ if they included a previously 
reported CAD-associated variant. To assess which of our associations 
were previously reported or new, we examined the pairwise correlation 
between each of our 279 genome-wide significant sentinel variants 
and any nearby previously reported variants, defining ‘new’ as having 
r2 < 0.2 in UK Biobank European ancestry participants.

Genetic correlation analysis
Genetic correlation between CAD and conventional risk factors (total 
cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, body 
mass index, systolic blood pressure and diastolic blood pressure) and 
cardiometabolic diseases (type 2 diabetes, ischemic stroke and heart 
failure) was assessed using LD Score Regression (LDSC)60. We used 
the 1000 Genomes European ancestry LD file comprising ~1.2 million 
variants available at https://alkesgroup.broadinstitute.org/LDSCORE/.

PheWAS in UK Biobank
To understand the spectrum of phenotypic consequences of our 279 
independent associations with CAD, we conducted a PheWAS in the 
UK Biobank (see Supplementary Note for complete analysis details). 
Briefly, we tested for associations with 53 cardiovascular and noncar-
diovascular diseases and 32 continuous traits, as listed in Supplemen-
tary Tables 32 and 33. A genetic variant was considered to be associated 
with a ‘conventional CAD risk factor’ if the CAD risk-increasing allele 
exhibited a directionally consistent/positive association with blood 

lipids (total cholesterol, LDL cholesterol, triglycerides or a diagnosis 
of hypercholesterolemia); blood pressure (systolic blood pressure, 
diastolic blood pressure or a diagnosis of hypertension); hyperglyce-
mia (serum glucose, hemoglobin A1c or a diagnosis of type 2 diabetes) 
or adiposity (body mass index).

Rare variant analyses
Variant annotation was performed using Variant Effect Predictor 
(VEP) v96.0 with LOFTEE plugin on version three imputed data and 
variants with an information score ≥0.8 (refs. 61,62). Various gene-based 
groupings were tested (Supplementary Table 6) and allele frequencies 
from the entire UK Biobank cohort were used for groupings. Variants 
(n = 64,102) were considered to be in a gene if they fell within the gene 
coordinates as defined by GENCODE v19. Gene-based association 
tests were performed in SAIGE-GENE v0.35.8.5 using a white British 
subset of UK Biobank (28,683 CAD cases and 367,783 controls)63. 
Software defaults were used except in step 0 the number of markers 
for sparse matrix was 2000, and in step 1, the tolerance for precondi-
tioned conjugate gradient to converge was 0.01 and variance ratios 
were estimated across MAC categories. Two variants were required 
in each gene for testing. Covariates in the model included the geno-
typing array, the first five principal components calculated in the 
white British subset of samples, birth year, and sex. Burden, SKAT, 
and SKAT-O tests were performed for each gene. As no strong signals 
were observed except for the PCSK9 gene, we did not extend our rare 
variant testing to other studies.

Sex-specific analysis
We performed a sex-stratified GWAS analysis in UK Biobank following 
the same phenotype definition and sample exclusions with the main 
analysis. We used the SAIGE software and adjusted our single-variant 
association analysis for the first five genetic principal components 
and the genotyping array, separately for men and women64. Based 
on promising initial results in UK Biobank, we collated sex-stratified 
GWAS summary statistics, as available, from other participating studies 
(Supplementary Table 6). Additional details of sex-specific analyses 
are provided in Supplementary Note.

FDR estimation
The FDR following the meta-analysis was assessed using the ‘q value’ R 
package. We generated q values for all 20.1 million variants. The P value 
cut-off for a q value of 1% was 2.52 × 10−5 and there were 47,622 variants 
reaching that threshold. Joint conditional analysis was performed using 
GCTA (as described earlier) to identify approximately independent 
association signals.

Estimation of heritability explained
Heritability calculations were based on a multifactorial 
liability-threshold model, implemented in the INDI-V calculator (http://
cnsgenomics.com/shiny/INDI-V/), under the assumption of a base-
line population risk (K) of 0.0719 and a twin heritability (HL

2) of 0.4 
(refs. 65,66). Single-variant regression estimates from the meta-analysis 
summary statistics were used to estimate heritability for the sentinel 
variants at the 241 conditionally independent genome-wide significant 
associations and the 897 conditionally independent associations reach-
ing the 1% FDR threshold in the primary meta-analysis. To account for 
correlation between variants, multiple regression estimates from the 
GCTA joint association analysis were also used to estimate heritability 
for both sets of variants.

Cross-ancestry comparison
For cross-ancestry comparison, we used summary statistics from a 
recent GWAS of 29,319 CAD cases and 183,134 controls from Biobank 
Japan3. In total, 199 of the 241 sentinel variants from our primary 
meta-analysis were also found in the Biobank Japan study; after aligning 
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effect alleles, we compared the beta estimates and minor allele fre-
quencies using Pearson’s correlation coefficient. To investigate the 
effect of outliers on the between-ancestry correlation of beta esti-
mates, we re-estimated the correlation coefficient after excluding 
three strong outliers (at ATXN2, FER and SLC22A1). We then performed 
an inverse-variance weighted meta-analysis on the beta estimates and 
standard errors, incorporating summary results from Biobank Japan 
and those from all other studies in our primary meta-analysis. After 
cross-ancestry meta-analysis, we again dropped variants that were only 
present in one study or had fewer than 30,000 cases in total from all 
contributing studies, leaving 23,333,163 variants after filtering. We then 
collapsed variants reaching genome-wide significance (P ≤ 5.0 × 10−8) 
by clumping variants within 500 kb into a single locus, resulting in 38 
additional loci that did not contain a previously reported CAD variant.

Derivation and training of PRSs
PRS were derived using the pruning and thresholding method or the 
LDpred computational algorithm (LDpred v.1.0), with 503 European 
ancestry individuals derived from the 1000 Genomes Project study 
serving as the linkage disequilibrium reference panel67. To evaluate the 
added utility of our GWAS for the prognostication of CAD risk, we com-
pared two sets of scores using effect estimates from either the current 
meta-analysis or from our previous 1000 Genomes-imputed GWAS of 
CAD involving ~60,000 cases7. For each derivation method and sum-
mary statistic, we constructed a range of scores of varying sizes drawing 
from common genetic variants that overlapped between the current 
meta-analysis, the earlier 1000 Genomes-imputed CAD GWAS and our 
training/validation datasets from the MDC Study68. Additional details 
on PRS derivation and training are contained in Supplementary Note.

Incident event prediction analyses
Cox proportional hazard models were used to assess the time-to-event 
relationship between each PRS and incident CAD events in the MDC 
study (see Supplementary Note for study details). Baseline models were 
adjusted for age and sex only, and then subsequently, for established 
risk factors for CAD (total cholesterol, HDL cholesterol, systolic blood 
pressure, body mass index, type 2 diabetes, current smoking status and 
family history of CAD). Harrell C-statistics were estimated using Cox 
proportional hazard analysis over a 21-year follow-up period to assess 
the discrimination of the PRS.

Recurrent event prediction analyses
The two optimal PRS (2022 PRS and 2015 PRS) were calculated in par-
ticipants of the genetic substudy of the FOURIER trial (see Supple-
mentary Note for trial details) using the genotype dosage for each 
allele, multiplied by its weight and then summed across all variants. 
Patients received a raw score standardized per 1 s.d. (continuous), as 
well as a percentile score relative to the total cohort. All scoring was 
performed using PLINK v2.0 (www.cog-genomics.org/plink/2.0/)69. 
Model goodness-of-fit was evaluated using the concordance statistic 
and Akaike’s Information Criterion. R version 3.6.1 was used for statisti-
cal analyses.

The clinical outcome of interest was recurrent major coronary 
events, defined as myocardial infarction, coronary revascularization 
or death from CAD (nincident_cases = 673). Participants in the genetic cohort 
were followed for a median of 2.3 years. All endpoints were formally 
adjudicated by a blinded clinical events committee during the trial. A 
Cox model was used to determine the HR per 1 s.d. higher level of the PRS 
and for the extreme deciles compared to the middle 80%. Analyses were 
adjusted for age, sex and ancestry (using principal components 1–5).

Identifying protein-altering variants
To identify protein-altering variants among our genome-wide signifi-
cant associations, we took the 279 sentinel variants and their LD proxies 
at r2 ≥ 0.8 as estimated in the European ancestry subset of UK Biobank 

and annotated them using the Ensembl VEP62. We selected for each sen-
tinel variant any proxies identified as having a ‘high’ (that is, stop-gain 
and stop-loss, frameshift indel, donor and acceptor splice-site and 
initiator codon variants) or ‘moderate’ (that is, missense, in-frame 
indel, splice region) consequence and recorded the gene that the 
variant disrupts.

Functional GWAS analysis
To fine-map loci and identify credible functional variants, we applied 
FGWAS software29. The software integrates GWAS summary statis-
tics with epigenetic data and we used the ChromHMM-derived states 
from the NIH Roadmap Epigenomics Consortium on a selection of ten 
CAD-relevant cell/tissue types (adipose nuclei, aorta and human skel-
etal muscle myoblasts (HSMM), liver, human umbilical vein endothe-
lial cells (HUVEC), kidney, adrenal gland, pancreatic islets, primary 
monocytes and T-cells from peripheral blood)70,71. To maximize our 
search space to find functional elements, we prepared a custom state 
by merging likely functional ChromHMM states (enhancers, transcrip-
tion start sites, repressed polycomb, transcription at 5′ and 3′ of gene) 
for each genomic position. We reweighted the GWAS by running a null 
model and then a model containing the custom annotation for each 
of the ten tissues. Regions of the genome that showed strong enrich-
ment (>3 s.d. increment in Bayes factor (BF)) and had a genome-wide 
significant CAD-associated variant (P < 5.0 × 10−8) were selected. For 
each region, we identified the tissue that showed maximum increment 
in BF and then constructed a 95% credible functional set of variants 
based on the ranked PPA for each variant within a region.

eQTL analysis in CAD-relevant tissues
To examine whether the CAD associations were driven by changes in 
gene expression in CAD-relevant tissues and cell types, we interrogated 
cis-eQTLs from CAD-relevant tissues in the STARNET eQTL study and 
the GTEx study34,35. Analysis-specific details are provided in the Sup-
plementary Note.

Polygenic prioritization of candidate causal genes
We implemented PoPS, a similarity-based gene prioritization method 
designed to leverage the full genome-wide signal to nominate causal 
genes independent of methods utilizing GWAS data proximal to the 
gene15. Broadly, PoPS leverages polygenic enrichments of gene fea-
tures including cell-type-specific gene expression, curated biological 
pathways and protein–protein interaction networks (Supplementary 
Table 23) to train a linear model to compute a PoPS for each gene (see 
Supplementary Note for further details).

Variants responsible for cardiovascular-relevant monogenic 
disorders
To identify genes harboring pathogenic variants responsible for 
cardiovascular-relevant monogenic disorders, we searched the NCBI’s 
ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/) on 26 June 
2020. Variants were pruned to those within ±500 kb of our CAD sentinel 
variants; categorized as ‘pathogenic’ or ‘likely pathogenic’; with a listed 
phenotype; and with either (i) details of the evidence for pathogenic-
ity, (ii) expert review of the gene or (iii) a gene that appears in practice 
guidelines. We then filtered variants that were annotated with a manu-
ally curated set of cardiovascular-relevant phenotype terms, including 
those related to CAD, CAD risk factors (lipids, metabolism, blood pres-
sure, obesity and platelets), bleeding disorders and relevant cardiac, 
vasculature or neurological abnormalities (Supplementary Table 34). 
Where a variant was annotated with multiple genes, both genes were 
considered as potentially pathogenic.

Phenotyping knock-out mice
Human gene symbols were mapped to gene identifiers (HGNC) and 
mouse ortholog genes were obtained using Ensembl (www.ensembl.org).  
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Phenotype data for single-gene knock-out models were obtained from 
the International Mouse Phenotyping Consortium, data release 10.1 
(www.mousephenotype.org), and from the Mouse Genome Informat-
ics database, data from July 2019 (www.informatics.jax.org). For each 
mouse model, reported phenotypes were grouped using the mammalian 
phenotype ontology hierarchy into broad categories relevant to CAD as 
follows: cardiovascular physiology (MP:0001544), cardiovascular mor-
phology (MP:0002127), growth and body weight (MP:0001259), lipid 
homeostasis (MP:0002118), cholesterol homeostasis (MP:0005278) 
and lung morphology (MP:0001175). This resulted in mapping from 
genes to phenotypes in animals (Supplementary Table 35).

Rare variant associations, MR and drug evidence
To inform prioritization of causal genes within 1-Mb regions around 
our genome-wide associations, we reviewed the literature for three 
sources of evidence as follows: (1) rare coding variants previously 
associated with CAD, either individually or in aggregate gene-based 
tests, through whole-exome sequencing (WES) or exome array stud-
ies; (2) Mendelian randomization (MR) studies of gene expression, 
protein levels or proximal phenotypes that implicate specific genes as 
causal effector genes for CAD and (3) drugs proven to be effective for 
cardiovascular-relevant indications and that target specific proteins 
encoded by genes.

Systematic integration of gene prioritization evidence
To systematically prioritize likely causal genes for all 279 genome-wide 
associations, we integrated the following eight of the aforementioned 
similarity-based or locus-based predictors of causal genes: (1) the top 
two prioritized genes from PoPS; (2) genes with eQTLs in CAD-relevant 
tissues from STARNET or GTEx; (3) genes containing protein-altering 
variants that are in strong LD (r2 ≥ 0.8) with the CAD sentinel variant; 
(4) genes harboring variants responsible for monogenic disorders of 
cardiovascular relevance according to ClinVar; (5) genes containing 
rare coding variants that have been associated with CAD risk in previ-
ous WES or array-based studies; (6) genes encoding proteins of causal 
relevance to CAD per MR studies or that are targets for established 
cardiovascular drugs; (7) genes that display cardiovascular-relevant 
phenotypes in knock-out mice from the International Mouse Phenotyp-
ing Consortium or Mouse Genome Informatics database; and (8) the 
nearest gene to the CAD sentinel variant (Fig. 5a). We prioritized the 
most likely ‘causal gene’ for each association using a consensus-based 
approach, selecting the gene with the highest, unweighted sum of 
evidence across all eight predictors.

We tested our approach by evaluating whether 30 (positive con-
trol) genes with established relevance to CAD were prioritized as the 
most likely causal genes within their respective genomic regions. Posi-
tive control genes were selected by a literature search that sought 
evidence from engineered mouse models of reduced gene expression 
(‘knock-out’ or ‘knock-down’ models), MR studies or successful drug 
targets. In addition, we defined two measures to summarize the rela-
tive contributions of individual predictors and pairs of predictors to 
the consensus-based approach. Specifically, we defined ‘agreement’ 
as the proportion of times that an individual predictor prioritized 
the same gene that was nominated as the most likely causal gene by 
the consensus-based framework. ‘Concordance’ was defined as the 
proportion of times a pair of predictors both converged on the gene 
that was nominated as the most likely causal gene by the consensus of 
the eight predictors.

CRISPR–Cas9 genome editing in vascular cells
Human coronary artery VSMCs (Lonza CC-2583; culture media 
CC-31182) were used at passage five or earlier. Endothelial cell experi-
ments were conducted with immortalized human aortic endothelial 
cells (ATCC CRL-4052; culture media Lifeline Cell Technology LL-0003). 
Monocyte experiments were conducted with THP-1 monocyte cells 

(ATCC TIB-202; culture media RPMI ATCC 30-2001, 10% FBS Sigma 
12306C-500ML). Genome editing was performed as previously 
described (Supplementary Note)72.

Gene expression by qPCR
For assessment of gene expression, mRNA was extracted (Qiagen RNAe-
asy kit; Qiagen, 74106) and DNase I digestion was performed (DNAse I, 
Thermo Fisher 18068015) before cDNA synthesis (Applied Biosystems, 
43-688-14) and qPCR (Applied Biosystems, 4444965). Gene expression 
was assessed by quantitative PCR with Taqman probes (Invitrogen) for 
genes of interest (MYO9B: Hs00994622_m1; HAUS8: Hs00928622_m1; 
OCEL1: Hs00928613_m1; USE1: Hs00218426_m1; NR2F6: Hs00172870_m1; 
GAPDH: Hs03929097_g1). Data are shown relative to expression of GAPDH. 
Statistical analyses were conducted with unpaired two-way Student’s t test.

Noncoding enhancer characterization
Assay for transposase-accessible chromatin using sequencing 
(ATAC-seq) data for THP-1 monocytes and CA-VSMCs was previously 
available. We performed ATAC-seq in human immortalized aortic 
endothelial cells as previously described73. H3K27ac CHIP-seq data 
were publicly available via ENCODE (coronary artery, ENCFF970RKM; 
aorta, ENCFF118EKX; tibial artery, ENCFF972ZHA).

Wound-healing assay
Wound-healing assays were performed as previously described (Platy-
pus Technologies, CMAUFL4)49. After genome editing, 15,000 cells per 
well were plated with well inserts in place in culture media. Inserts were 
then removed the day after plating. Prior to complete wound healing 
(48–72 h), cells were stained with Calcein AM dye (Invitrogen, C3099) 
and wound healing was quantified with a fluorescence plate reader 
(excitation 488 nm/emission 522 nm). Statistical analyses were con-
ducted with one-way ANOVA between groups. Where specific software 
tools are not named, we used Stata or R for analyses.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Summary statistics are available upon publication through the CAR-
DIoGRAMplusC4D website (http://www.cardiogramplusc4d.org/) and 
the NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/, acces-
sion codes: GCST90132314 (https://www.ebi.ac.uk/gwas/studies/
GCST90132314) and GCST90132315 (https://www.ebi.ac.uk/gwas/
studies/GCST90132315)). Interactive searchable Manhattan plots 
and a locus-specific epigenome annotation browser for functionally 
enriched loci are available at https://procardis.shinyapps.io/cadgen/. 
An interactive searchable browser detailing the locus-specific evidence 
prioritizing causal variants, genes and pathways is available at the 
Common Metabolic Diseases Knowledge Portal (https://hugeamp.
org/method.html?trait=cad&dataset=cardiogram).
Other datasets used in this study include the NCBI’s ClinVar database 
(https://www.ncbi.nlm.nih.gov/clinvar/) on 26 June 2020, a 1000 
Genomes European ancestry LD file comprising ~1.2 million variants 
(https://alkesgroup.broadinstitute.org/LDSCORE/), the GTEx Con-
sortium v7 data release (https://www.gtexportal.org/home/datasets), 
the Ensembl database (www.ensembl.org), the International Mouse 
Phenotyping Consortium, data release 10.1 (www.mousephenotype.
org) and the Mouse Genome Informatics database, data from www.
informatics.jax.org on July 2019.

Code availability
Custom code for preparing the study-specific GWAS summary sta-
tistics files for meta-analysis can be found at https://github.com/
cambridge-ceu/cardiogramplusC4D_GWAS. Custom code for PRS 
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analysis using a modified version of Ldpred 1.0 can be found at  
https://github.com/wavefancy/LDpredChrByChr.
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Extended Data Fig. 1 | Study design. Flowchart depicting contributing studies and analysis strategy.
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Extended Data Fig. 2 | Genetic architecture of 897 association signals for 
CAD. Minor allele frequency versus per-allele odds ratio for CAD for all sentinel 
variants reaching genome-wide significance or the 1% FDR threshold in our 
study. Colored circles indicate genome-wide significant associations (P < 5.0 
× 10−8) with sentinel variants that are not correlated (r2 < 0.2) with a previously 

reported variant (red), genome-wide significant sentinel variants correlated 
with a previously reported variant (blue), and associations reaching the 1% FDR 
threshold (P < 2.52 × 10−5) in our meta-analysis (gray). Two-sided P values are from 
Z-scores from fixed-effect inverse-variance weighted meta-analyses.
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Extended Data Fig. 3 | Gene-based association testing of rare variants in UK 
Biobank. QQ-plot of aggregate variant association tests from 15,923 genes versus 
CAD in UK Biobank. Results presented here are for the SKAT-O test using the Mask 
1 (‘lenient’) filter, which includes variants with minor allele frequency < 5% that 
are annotated as missense, frameshift, stop gain, stop loss or splice site. Results 

for all genes, tests and filters are in Supplementary Table 7. Details of masks and 
test are in Supplementary Table 6. The red dashed line indicates the Bonferroni 
threshold accounting for the number of genes tested. The gray dashed line 
indicates the null hypothesis (that is observed = expected under the null). The 
blue shaded area indicates the 95% confidence interval around the null.
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Extended Data Fig. 4 | Cross-ancestry comparison. a, Comparison of allele 
frequencies between the meta-analysis and Biobank Japan. Black dots denote the 
allele frequencies for 199 sentinel variants reaching genome-wide significance 
in the (predominantly European ancestry) meta-analysis (y-axis) that were also 
present in the publicly available summary statistics from Biobank Japan (x-axis). 
Variants were aligned according to the effect allele in Supplementary Table 3. 
The Pearson correlation coefficient was 0.76. b, Comparison of beta estimates 
between the meta-analysis and Biobank Japan. Black dots denote the beta 

estimates for the CAD associations for 199 sentinel variants reaching genome-
wide significance in the (predominantly European ancestry) meta-analysis 
(y-axis) that were also present in the publicly available summary statistics from 
Biobank Japan (x-axis). Variants were aligned according to the effect allele in 
Supplementary Table 3. Horizontal and vertical lines represent 95% confidence 
intervals. The Pearson correlation coefficient was 0.59, which increased to 0.85 
when three outlying variants marked in red (at ATXN2, FER and SLC22A1) were 
excluded.
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Extended Data Fig. 5 | Epigenetically-informed fine-mapping of the MAFB 
locus. a, Regional association plot from the CAD meta-analysis for the MAFB 
region. Colored dots represent the position (x-axis) in GRCh37 coordinates 
and –log10(meta-analysis P value) (y-axis) of each variant in the region. Dots are 
shaded to represent the r2 with the lead CAD variant (rs2207132), estimated using 
a random sample of 5,000 European ancestry participants from the UK Biobank. 
Recombination peaks are plotted in blue based on estimates of recombination 
from 1000 Genomes European-ancestry individuals. b, Tissue-specific imputed 
chromHMM states at the three credible set variants in the MAFB region. The top 
track shows the position on chromosome 20 (GRCh37) in the MAFB region. The 
second track shows as orange vertical bars the posterior probability (y-axis) for 
each variant in the window from the FGWAS fine-mapping, identifying rs1883711 

(PPA = 0.77) as the most likely causal variant. The third track indicates as a black 
box the position of the imputed chromHMM state in each of the ten CAD-
relevant tissues based on epigenomic data from the NIH Roadmap Epigenomics 
Consortium project. The yellow vertical line indicates the position of the most 
likely causal variant (rs1883711) with respect to the chromHMM states. rs1883711 
lies in an enhancer region for liver (the most strongly enriched tissue for this 
region) and adipose, the two functionally enriched tissues in the region. The 
other two variants in the 95% credible set (rs2207132 and rs117113213) do not 
lie in regions annotated as chromHMM states. HSMM, human skeletal muscle 
myoblasts; HUVEC, human umbilical vein endothelial cells; PPA, posterior 
probability of being the causal variant.
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Extended Data Fig. 6 | Pairwise concordance of eight gene-prioritization 
predictors to identify most likely causal genes. White squares lying on 
the diagonal contain the number of genes for which that predictor provided 
evidence (denominator) and the number of times for which that predictor 
prioritized the most likely causal gene at the locus (numerator). For example, 
eQTL data provided evidence for 105 causal genes, of which 90 (86%) were also 
the most likely causal gene at the locus. Blue squares below the diagonal show 
the concordance between pairs of predictors and contain the number of genes 
for which both predictors provided evidence (denominator) and the number 
of times for which the prioritized causal gene was the same (numerator). For 
example, the nearest gene and the presence of a protein-altering variant in high 
LD (r2 > 0.8) with the CAD sentinel both provided evidence for a causal gene at 

48 loci, of which they were concordant (that is prioritized the same causal gene) 
at 34 (71%). Darker blue squares show higher levels of concordance. Orange 
squares above the diagonal show the discordance between pairs of predictors 
and contain the number of genes for which both predictors provided evidence 
(denominator) and the number of times for which the prioritized causal gene was 
the different (numerator). For example, the nearest gene and the presence of a 
protein-altering variant in high LD (r2 > 0.8) with the CAD sentinel both provided 
evidence for a causal gene at 48 loci, of which they were discordant (that is 
prioritized a different causal gene) at 13 (27%). Darker orange squares show 
higher levels of discordance. See Fig. 5a for descriptions of the eight predictors 
used to prioritize causal genes.
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Extended Data Fig. 7 | Prioritizing the likely causal variant, gene and pathway 
at the ITGA1 locus. a, Regional association plot from the primary CAD meta-
analysis for the ITGA1 region. Colored dots represent the position (x-axis) in 
GRCh37 coordinates and –log10(meta-analysis P value) (y-axis) of each variant 
in the region. Dots are shaded to represent the r2 with the lead CAD variant 
(rs4074793), estimated using a random sample of 5,000 European-ancestry 
participants from UK Biobank. Recombination peaks are plotted in blue based on 
estimates of recombination from 1000 Genomes European-ancestry individuals. 
b, Tissue-specific imputed chromHMM states at the two credible set variants in 
the ITGA1 region. The top track shows the position on chromosome 5 (GRCh37) 
with respect to the ITGA1 gene. The second track shows as a vertical orange line 
the posterior probability (y-axis) for each variant in the region from the FGWAS 
fine-mapping, identifying rs4074793 (PPA = 0.95) as the likely causal variant. 
The third track indicates as a black box the position of an enhancer state in 
each of the ten CAD-relevant tissues, using custom imputed chromHMM states 
based on epigenomic data from the NIH Roadmap Epigenomics Consortium 
project. The yellow vertical line indicates the position of the likely causal variant 

(rs4074793) with respect to the chromHMM states. rs4074793 is annotated to a 
chromHMM state for all five tissues that show enrichment in the region. HSMM, 
human skeletal muscle cells; HUVEC, human umbilical vein endothelial cells; 
PPA, posterior probability of being the causal variant. c, Effect of rs4074973 
on ITGA1 expression in liver in the STARNET study. The plot shows the position 
(x-axis) in GRCh37 coordinates and –log10(P value) (y-axis) of each variant in 
the region. The likely causal CAD variant rs4074973 is circled in black. Only 
variants with P < 0.01 are displayed. d, Associations of rs4074973 with ITGA1 
expression and phenotypes from a phenome-wide association study. The per-
allele association of rs40747973-G (the CAD risk allele) measured in s.d. units 
is plotted for each phenotype. The box indicates the point estimate and the 
horizontal bars represent the 95% confidence intervals. The top panel shows the 
association estimates for ITGA1 expression from the STARNET study. The bottom 
panel shows associations from UK Biobank (liver enzymes and inflammatory 
markers) and the literature (lipids46). ALP, alkaline phosphatase; ALT, alanine 
aminotransferase; CRP, C-reactive protein; GGT, gamma glutamyltransferase; 
LDL-c, low-density lipoprotein cholesterol; Tchol, total cholesterol.
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