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W Check for updates

The discovery of genetic loci associated with complex diseases has outpaced
the elucidation of mechanisms of disease pathogenesis. Here we conducted
agenome-wide association study (GWAS) for coronary artery disease (CAD)

comprising 181,522 cases among 1,165,690 participants of predominantly

European ancestry. We detected 241 associations, including 30 new loci.
Cross-ancestry meta-analysis with aJapanese GWAS yielded 38 additional
new loci. We prioritized likely causal variants using functionally informed
fine-mapping, yielding 42 associations with less than five variants in the
95% credible set. Similarity-based clustering suggested roles for early
developmental processes, cell cycle signaling and vascular cell migration
and proliferationin the pathogenesis of CAD. We prioritized 220 candidate
causal genes, combining eight complementary approaches, including

123 supported by three or more approaches. Using CRISPR-Cas9, we
experimentally validated the effect of an enhancer in MYO9B, which appears
to mediate CAD risk by regulating vascular cell motility. Our analysis
identifies and systematically characterizes >250 risk loci for CAD to inform
experimental interrogation of putative causal mechanisms for CAD.

Coronary artery disease (CAD) remains the leading global cause of
mortality, reflecting both risk behaviors and genetic susceptibility’.
Geneticassociation studies haveidentified >200 susceptibility loci for
CAD. Consistent with other complex diseases, genetic analyses have
identified the polygenic architecture of CAD, enabled insights into
disease etiology and facilitated the development of new tools for risk
prediction®'°. However, with rapid increase in the availability of genetic
datalinked to health outcomes, the identification of disease-associated
loci has outpaced their functional characterization.

Severalinsilico tools have emerged to elucidate the mechanisms
connecting genomic regions to disease risk""'. Nonetheless, it remains
challenging to identify causal genes as these tools frequently lack
consensus'. Recent analyses have suggested the value of integrating
‘locus-based’ approaches with more global (similarity-based) assess-
ments of shared pathways and functions to enhance the prediction of
causal genes” ™. The use of orthogonal and disease-specific resources

toaid variant and gene classifications may expedite the transition from
gene maps to disease mechanisms.

To extend these approaches to CAD, we analyzed imputed
data from nine studies not previously included in genome-wide
association study (GWAS) meta-analyses (86,847 cases and 417,789
controls) and combined results with data from UK Biobank, the CAR-
DIoGRAMplusC4D Consortium and Biobank Japan, achieving a total
sample of 210,842 CAD cases among 1,378,170 participants®>”'%¢,
Our objectives were to (1) discover new associations with CAD; (2)
determine the impact of expanded genetic discovery for identi-
fying biologically relevant loci and improving risk prediction; (3)
implement a systematic, integrative approach to prioritize likely
causal variants, genes and biological pathways, thereby providing
acatalogof testable hypotheses for experimental follow-up and (4)
experimentally validate a new locus as proof of principle for our
prioritization framework.
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Table 1| New loci for CAD from primary meta-analysis

Nearest gene Lead variant rsID Chr Position Effectallele Non-effectallele Oddsratio 95% CI Pvalue
KDF1 rs79598313 1 27,284,913 T C 110 1.06-1.14 3.6x10°®
LOC100131060 rs71646019 1 59,433,354 T (o] 1.04 1.03-1.05 6.1x10™
OTUD7B rs67807996 1 149,995,265 A G 1.04 1.03-1.05 1.1x107™
MIR4432 rs243071 2 60,619,028 A G 1.03 1.02-1.04 27x108
SAP130 rs114192718 2 128,785,663 T C 1.06 1.04-1.08 2.6x10°®
ACVR2A rs35611688 2 148,377,860 T Cc 0.97 0.96-0.98 15x107®
LNX1 rs17083333 4 54,572,066 T G 0.97 0.96-0.98 1.2x10°®
ITGA1 rs4074793 5 52,193,125 A G 0.95 0.93-0.97 1.6x1078
FER rs112949822 5 108,085,190 A G 0.95 0.93-0.96 11x107°
DMXL1 rs13169691 5 118,448,279 T C 1.04 1.03-1.06 2.6x10®
FBN2 rs6883598 5 127,926,190 A C 0.97 0.96-0.98 97x10™°
PTK7 rs1034246 6 43,068,370 T G 0.97 0.96-0.98 6.4x10™
MACC1 rs10486389 7 20,300,416 A G 0.97 0.96-0.98 6.5x107°
C9orf146 rs10961206 9 13,724,051 A T 1.05 1.04-1.07 81x10™°
ACER2 rs10811183 9 19,436,055 A G 1.04 1.02-1.05 1.6%x1078
C5 rs41312891 9 123,726,749 G GCAAA 0.94 0.92-0.96 5.9x107°
PLCE1 rs55753709 10 96,029,170 T C 0.96 0.95-0.97 2.2x10™
R3HCCIL rs884811 10 99,923,763 (0 G 1.03 1.02-1.04 3.1x10°
MMP13 rs1892971 n 102,795,606 A G 0.96 0.95-0.97 51x107
ST3GAL4 rs10790800 n 126,262,638 A G 1.03 1.02-1.04 91x107°
TBX3 rs34606058 12 115,353,368 T C 0.97 0.96-0.98 77x107°
DOCK9 rs8000794 13 99,434,810 C G 1.03 1.02-1.04 4.3x10°®
LIPC rs588136 15 58,730,498 T C 0.96 0.95-0.98 7.0x107°
UNC13D rs2410859 17 73,841,285 T C 1.03 1.02-1.04 4.3x107°
CPLX4 rs11663411 18 56,960,510 T C 0.97 0.96-0.98 2.6x10°®
MYO9B rs7246865 19 17,219,105 A G 1.03 1.02-1.05 1.9x107®
RRBP1 rs1132274 20 17,596,155 A C 1.04 1.03-1.05 1.8x107®
MAFB rs2207132 20 39,142,516 A G 110 1.07-113 6.7x107°
ARVCF rs71313931 22 19,960,184 C G 0.97 0.96-0.98 2.3x107°
SCUBET1 rs139012 22 43,623,972 A G 0.97 0.96-0.98 21x107®

Positions are according to GRCh37. Odds ratios (and 95% confidence intervals (Cls)) are for per-allele effect estimates according to the effect allele. Two-sided P values are from Z scores from a

fixed-effect inverse-variance weighted meta-analysis.

Results

Discovery of known and new CAD loci

Participants were largely (>95%) of European ancestry and 46% were
female (Supplementary Table 1). In total, 20,073,070 variants were
included in the discovery meta-analysis (Online Methods). We repli-
cated 150 (69.4%) of 216 previously reported CAD lociat conventional
genome-wide significance (P<5.0 x107®) and 38 (17.6%) at nominal
significance (P< 1.0 x 107%; Supplementary Table 2). Approximate con-
ditional analysis using Genome-wide Complex Trait Analysis (GCTA)
identified 241 conditionally independent associations exceeding
genome-wide significance at 198 loci (Supplementary Table 3, Extended
Data Fig.1and Supplementary Data1). In total, 54 sentinel variants
were new, including 30 outside genomic regions previously reported
for CAD (Table1).

As in previous CAD GWAS’, we found genetic correlations with
several CAD risk factors and other cardiovascular diseases (Supple-
mentary Table 4). To identify potential etiological mechanisms for
specificloci, we conducted aphenome-wide association scan (PheWAS)
in UK Biobank (Supplementary Table 5). In total, 128 (53%) of the
CAD-associated variants had directionally consistent associations

with conventional CAD risk factors, such as blood lipids, blood pres-
sure, hyperglycemia or adiposity.

Several new associations (Table 1) were near genes that have not
been robustly implicated in CAD via genetic association studies but
have strong biological plausibility, including rs6883598 near FBN2,
encoding fibrillin-2, which mediates the early stages of elastic fiber
assembly andisassociated with aortic aneurysms and Beals Syndrome,
aMarfan-like disorder” " and rs1892971 near MMPI13, which encodes
matrix metalloproteinase (MMP)-13, an interstitial collagenase that
influences the structural integrity of atherosclerotic plaques through
regulation and organization of intraplaque collagen®**. While the
sentinel variant near FBN2 was associated with blood pressure in
the PheWAS, the lead variant near MMP13 was not associated with
conventional CAD risk factors, suggesting it is likely to act through
alternative pathways.

Allelic architecture

Of'the 54 new associations, 46 sentinel variants were common (minor
allele frequency (MAF) > 0.05) with relatively weak effects on CAD
(oddsratio (OR) per CADrisk allele:1.03-1.07; Fig. 1). The others were
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low frequency (MAF = 0.009-0.036) of which, four had comparatively
strong effects (OR =1.30-1.44) and four had more modest effects
(OR=1.10-1.14; Extended Data Fig. 2). We then conducted gene-based
tests of missense and predicted loss-of-function variants in UK Biobank
(n=33,941 CAD cases, 438,394 controls; Supplementary Table 6) and
found a strong signal for PCSK9. We did not find evidence for further
association with aburden of low-frequency or rare variants (Extended
DataFig. 3 and Supplementary Table 7).

Differential effects by sex

Toidentify associations that differ by sex, we conducted sex-stratified
GWAS inasubset of studies comprising 77,080 CAD cases (Supplemen-
tary Table 8). We found ten associations that reached genome-wide
significance (P< 5.0 x 107®) and had evidence (P< 0.01) for between-sex
heterogeneity (Supplementary Table 9). Lead variant rs7696877 was
the only signal with a stronger effect in females (per-allele OR = 0.94)
thanin males (per-allele OR = 0.98, heterogeneity P= 0.007).

Subthreshold associations

Atasignificance level (P < 2.52 x 107) approximating a1% false discov-
eryrate (FDR), we identified a further 656 conditionally independent
associations with CAD (Supplementary Table 10). Most (486, 74.1%)
were common variants, but almost all had modest effects (per-allele
OR <1.07).Several associations had strong biological priors, including
141279633 (P=1.24 x107°) in NPCIL1, encoding Niemann-Pick C1-like1,
animportant mediator of intestinal cholesterol absorptionand the tar-
getof ezetimibe, a cholesterol-lowering drug. Other examplesincluded
PNPLA3(rs738408; P=1.04 x 107), the strongest locus for nonalcoholic
fatty liver disease?, and TCF7L2(rs7903146; P= 6.39 x10°®), the strong-
estlocus for type 2 diabetes?. The percent of heritability for CAD (on
the liability scale) explained by the 241 conditionally independent
associations reaching genome-wide significance was15.5%, increasing
t036.1% for the 897 associations with P<2.52 x 107>,

Polygenic score associations with incident and recurrent CAD
We evaluated 362 polygenic risk scores (PRS) using combinations
of derivation methods (Pruning and Thresholding® or LDpred algo-
rithm®) and summary statistics (from the current meta-analysis or
an earlier 1000 genomes-imputed GWAS involving around 60,000
CAD cases’). We selected the optimal PRS for each combination of the
derivation method and GWAS summary statistics based on prediction
ofincident CAD in atraining dataset fromthe Malmo Diet and Cancer
study (MDC; n=22,872; Nipcigent cases = 3,307; Supplementary Table 11).
The two top-performing scores were those derived with LDpred and
comprised 2,324,653 variants (2022 PRS) and 1,532,758 variants (2015
PRS; Supplementary Tables 12-15). In bootstrapping analyses, the
2022 PRS outperformed the 2015 PRS (age- and sex-adjusted mean
hazard ratio (HR) per1s.d. higher PRS =1.56 versus1.49; P=3.2 x 107,
age- and sex-adjusted mean area under the receiver operator char-
acteristic curve (AUC) = 0.742 versus 0.736; P= 6.5 x 107; Supple-
mentary Table 16).

We validated both scoresinaheld-out subset of the MDC (n = 5,685;
Nincident cases = 315; Supplementary Table 11). The 2022 PRS was more
strongly associated with incident CAD (HR =1.61; 95% Cl=1.50-1.72)
thanthe 2015 PRS (HR =1.49; 95% Cl =1.39-1.59), providing improved
stratification of participants at higher and lower risk for incident CAD
(Fig. 2a). After adjustment for established risk factors (Online Meth-
ods), the 2022 PRS remained strongly associated withincident events
(HR=1.54;95% Cl =1.42-1.66). The 2022 PRS yielded a 5.7-fold higher
risk of CAD between the top and bottom deciles of the PRS, compared
to a3.8-fold higher risk with the 2015 PRS.

Wethen evaluated prediction of recurrent coronary eventsinthe
placebo arm of the Further Cardiovascular Outcomes Research with
PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER; n=7,135;
Mincident cases = 673) clinical trial, a cohort of patients with established
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Fig.1| Common variant association signals for CAD. MAF versus per-allele OR
for CAD for common sentinel variant (MAF > 5%) associations reaching genome-
wide significance or the1% FDR threshold in our study. Colored circles indicate
genome-wide significant associations (P < 5.0 x 108) with sentinel variants that
are not correlated (r* < 0.2) with a previously reported variant (red), genome-
wide significant sentinel variants correlated with a previously reported variant
(blue), new genome-wide significant sentinels after meta-analysis with Biobank
Japan (gold) and associations reaching the 1% FDR threshold (P < 2.52 x107) in
our meta-analysis (gray). Two-sided Pvalues are from Zscores from fixed-effect
inverse-variance weighted meta-analyses.

atherosclerotic cardiovascular disease’®. The 2022 PRS demonstrated
better recurrent event prediction (HR =1.20; 95% Cl =1.11-1.29) than
the2015PRS (HR =1.13;95% Cl =1.04-1.22) and enhanced stratification
of participants at higher and lower risk (Fig. 2b). The 2022 PRS yielded
al.7-fold higher risk of recurrent coronary events between the top and
bottom deciles of the PRS versus a1.4-fold higher risk with the 2015 PRS.

Cross-ancestry comparison and meta-analysis

We used a large CAD GWAS from Biobank Japan to evaluate the
genome-wide significant associations in East Asian ancestry partici-
pants’. Effect estimates for the 199 sentinel variants in both datasets
were strongly positively correlated (r= 0.59) between the predomi-
nantly European ancestry meta-analysis and the Biobank Japan
GWAS (Extended Data Fig. 4a), as were the effect allele frequencies
(r=0.76; Extended DataFig. 4b). To assess the potential for enhanced,
cross-ancestry discovery, we meta-analyzed the Biobank Japan sum-
mary statistics with the current analysis, yielding 38 additional new
loci at genome-wide significance (Table 2, Fig. 1, and Supplementary
Table 17). The sentinel variants were common (MAF > 5%) with weak
effects (per-allele ORs: 1.026-1.059; Fig. 1), with the exception of
rs75655731 near LINCO05999, which was low-frequency (MAF =1.4%)
with astronger effect (per-allele OR =1.090); 36 of these associations
wereincludedinthe1%FDRset, including the aforementioned associa-
tionsat TCF7L2and PNPLA3.

Prioritizing causal variants, genes and biological pathways

Using severalindependent approaches, we prioritized causal variants,
effector genes, relevant tissues and intermediate causal pathways for all
279 ssignificantassociations. The presence of a protein-altering (that s,
missense or predicted loss of function) variant has been showntobe a
strong, causal gene predictor, particularly if the variant isuncommon™,
At52associations, the sentinel variant, or astrong proxy (r* > 0.8), was
aprotein-altering variant (Supplementary Table 18). These included
well-known low-frequency missense variants in PCSK9 (p.R46L) and
ANGPTL4 (p.E40K)™. Nineteen of the 52 missense variants were new,
including a missense variant (rs129415; p.G398R) in SCUBEI that is
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Fig.2|Polygenic prediction of incident and recurrent CAD. a,b,
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of CAD from 2015 involving ~-60 K CAD cases (2015 PRS; includes ~1.5 million
variants). We analyzed 815 incident events in the validation subset of the MDC
Study and 1,074 recurrent coronary events in the FOURIER trial. Cox proportional
hazards models were adjusted for age, sex and genetic principal components.

strongly correlated with the CAD sentinel variant (* = 0.99). SCUBEI
encodes signal peptide-CUB-EGF domain-containing protein1,aglyco-
proteinsecreted by activated platelets that protect against thrombosis
in mice when inhibited”.

Functionally informed fine-mapping

Incorporating functional annotations into fine-mapping approaches
has been shown to improve identification of causal variants®®°. Using
ChromHMM-derived chromatin states from the NIH Roadmap Epig-
enomics Consortium to functionally annotate the genome, we found
more than twofold enrichment for these statesin the ten CAD-relevant
cell/tissue types we tested, consistent with previous findings (Sup-
plementary Table 19)’. Of 235 distance-based regions containing
genome-wide significant associations, we found 127 (54.0%) with
significant enrichment (Supplementary Table 20). The majority (78;
61.4%) of distance-based regions were relatively tissue specific, showing
enrichmentin less than three tissues, but eight regions showed wide-
spread enrichmentin seven or more tissues (Fig. 3a). Adipose (n =33),
liver (n =26) and aorta (n = 21) showed the greatest enrichment for the
most regions (Supplementary Table 20).

We applied a functionally informed fine-mapping method (func-
tional genome-wide association analysis (FGWAS))*, which uses
chromatin state enrichment information to reweight GWAS sum-
mary statistics and compute variant-specific posterior probabilities
of association (PPA). Among the 127 enriched regions, we identified
42that contained less than five variants in the 95% credible set (Fig. 3b
and Supplementary Table 21), while 53 regions contained a variant
with PPA > 0.5 (Fig. 3c and Supplementary Table 22) showing that the
combination of functional annotation and high statistical power can
pinpoint likely causal variants. Indeed, 14 regions were fine-mapped
toasingle variant, including missense variants in PCSK9, ANGPTL4 and
APOE, plus other well-studied noncoding variants, such as rs9349379
(PHACTRI1/EDNI)* and rs2107595 (HDAC9/TWISTI)*.

At12loci, fine-mapping prioritized (PPA > 0.5) variants that were
not the sentinel. For example, at the low-density lipoprotein (LDL)
cholesterol and adiposity-associated MAFB locus™®, the sentinel vari-
ant was rs2207132 (Supplementary Table 3 and Extended Data Fig.
5a). However, a strongly correlated variant (rs1883711; r* = 0.92) lies
in aregion annotated as a likely enhancer in liver and adipose tissue,
the two enriched tissues at this locus (Extended Data Fig. 5b). There-
fore, rs1883711 was upweighted by FGWAS (PPA = 0.77) over rs2207132
(PPA = 0.13). We queried CAD-associated variants for cis-expression
quantitative trait loci (cis-eQTLs) in CAD-relevant tissues from the

Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task
(STARNET) and Genotype-Tissue Expression (GTEx) studies (Online
Methods)***. The eQTL for MAFB observed in liver samples from CAD
patients in STARNET suggests that the CAD association is mediated by
changesin MAFBexpression (encoding MAF bZIP transcriptionfactor B;
Supplementary Table 22). MafB expression in macrophages is upregu-
lated by oxidized LDL stimulation®, while MafB deficiency in mice
appearstoincrease atherosclerosis by inhibiting foam cell apoptosis™.

Polygenic prioritization of candidate causal genes
Combininglocus-and similarity-based approaches hasbeenshown to
enhance the prioritization of causal genes'**. However, established
similarity-based methods have not leveraged the full polygenic sig-
nal to inform gene prioritization. We therefore incorporated a new
similarity-based method for gene prioritization, the Polygenic Priority
Score (PoPS), which uses the full genome-wide association data®. We
applied PoPS to summary-level data from the GWAS meta-analysis.
Initial 57,543 features—including gene expression, protein-protein
interaction networks, and biological pathways—were considered, of
which 19,091 features (33.2%) passed amarginal feature selection step
andwereinputinto the final PoPS model (Online Methods and Supple-
mentary Table 23). We computed a PoPS score for all protein-coding
genes within 500 kb of all 279 genome-wide associations and prior-
itized the gene with the highest PoPS score in each locus, resulting in
235 prioritized genes. PoPS prioritized many well-established genes
implicated in CAD pathogenesis, including LDLR, APOB, PCSK9, SORTI,
NOS3, VEGFA and IL6R (Supplementary Tables 24 and 25).

Next, weidentified features from the PoPS model which were most
informative in prioritizing CAD-relevant genes. Hierarchical clustering
yielded 2,852 clusters, which we ranked by relative contribution to the
PoPS scores of prioritized genes (Fig. 4a). The highest-ranking cluster
contained features indicating homeostatic regulation of blood lipids
(Supplementary Table 26). Other top clusters were related to vascular
cell function, migration and proliferation; the structure and function
of the extracellular matrix and metabolic pathways including those
in adipose tissue controlling thermoregulation, all well-established
mechanismsin CAD pathogenesis®*. Additional high-ranking clusters
highlighted early developmental processes and cell cycle signaling
pathways as less recognized, butimportant, mediators of CAD risk.

We then examined alocus where the PoPS method facilitated the
prioritization of a putative causal gene. Lead variant rs1807214 liesinan
intergenic region of chromosome 15 at which no causal gene hasbeen
established”®. Data from GTEx and STARNET identified cis-eQTLs for
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Table 2 | New loci for CAD from meta-analysis with Biobank Japan

Nearest gene Lead variant rsID Chr Position Effectallele Non-effectallele Oddsratio 95% Cl Pvalue
CCDC30 rs6656344 1 42,948,585 A 0.97 0.97-0.98 5.0x10°
KIAAO040 rs2285219 1 175,130,983 A T 1.03 1.02-1.04 4.0x107°
AAK1 rs12468870 2 69,679,537 C G 0.97 0.96-0.98 51x10™
CXCR4 rs4954580 2 136,986,303 T c 0.96 0.95-0.98 3.0x107°
PDE1A rs1430158 2 183,262,128 T C 0.97 0.97-0.98 2.4x10°®
ATP1B3 rs7622417 3 141,625,999 (0] G 1.03 1.02-1.03 1.2x107®
MECOM rs11721038 3 168,849,576 T C 1.05 1.03-1.06 3.5x107°
GNPDA2 12641981 4 45,179,883 T C 1.03 1.02-1.04 2.0x107°
LOC285696 rs2652682 5 17113,657 A T 0.97 0.96-0.98 1.0x107°
SKP2 rs5867305° 5 36,157,262 CA (@ 0.97 0.96-0.98 3.9x10°®
SGCD rs157333 5 156,117,200 C G 1.04 1.03-1.05 1.3x10™
TFAP2B rs62405422 6 50,796,905 T @ 0.97 0.96-0.98 31x107°
TRAF3IP2-AS1 rs9400480 6 111,850,597 C G 1.03 1.02-1.04 41x107®
HBSIL rs9399136 6 135,402,339 T (6] 1.03 1.02-1.04 2.0x107®
PDE1C rs215634 7 32,369,148 A G 1.03 1.02-1.04 1.2x107®
SEMA3C rs1019016 7 80,570,562 T G 1.03 1.02-1.04 3.8x10™"
ZKSCAN1 rs6953441 7 99,617,067 A G 1.03 1.02-1.04 6.8x107°
LINCO0599 rs75655731° 8 9,721,394 C G 0.92 0.89-0.95 4.6x107®
DOCK8 rs1536608 9 223,613 T G 1.03 1.02-1.03 3.0x10°®
GPSM1 rs3935875 9 139,238,824 A G 0.97 0.96-0.98 2.2x107®
ARHGAP21 rs7077962 10 25,054,674 T C 1.03 1.02-1.04 1.2x107®
NRP1 rs75082222 10 33,516,373 T TA 0.97 0.96-0.98 3.5x10°®
TCF7L2 rs7903146 10 114,758,349 T 1.03 1.02-1.04 6.2x107°
AFAPIL2 rs646668 10 116,138,034 A G 1.03 1.02-1.04 2.8x10°°
PPP2R1B rs11410951 n 111,621,399 CA C 0.97 0.96-0.98 2.6x107®
ACVRL1 rs2277383 12 52,314,388 T 0.97 0.95-0.98 3.0x10°®
CNPY2 rs62956461 12 56,706,178 A AT 1.06 1.04-1.08 27x107°
PAWR rs8176893 12 79,999,309 A T 1.03 1.02-1.04 7.9x107°
CDK8 rs12864131 13 27,045,939 A G 0.97 0.97-0.98 11x1078
GP2 rs10852238 16 20,253,374 A T 1.04 1.03-1.05 41x107°
XPO6 rs111806192 16 28,252,382 T G 0.97 0.96-0.98 1.8x108
DYNLRB2 1s16952537 16 80,185,366 A G 0.97 0.97-0.98 3.9x10®
PIP4K2B rs16968377 17 36,942,396 T C 0.95 0.93-0.97 3.0x10®
TIMP2 rs8075861 17 76,915,710 A C 0.97 0.97-0.98 5.0x107°
WDR87 rs73025613 19 38,334,361 T C 1.03 1.02-1.03 4.4x10°®
RRP1B rs35219138 21 45117913 A AT 0.97 0.96-0.98 1.8x1078
SYN3 rs4452 22 33,283,257 T C 0.96 0.95-0.97 1.2x107®
PNPLA3 rs738408 22 44,324,730 T (6] 0.97 0.96-0.98 3.8x10°

Positions are according to GRCh37. Odds ratios (and 95% Cls) are for per-allele effect estimates according to the effect allele. Two-sided P values are from Z scores from a fixed-effect
inverse-variance weighted meta-analysis. *Variants that did not reach 1% FDR threshold in primary meta-analysis.

ABHD2, MFGES and HAPLN3 (Supplementary Tables 27 and 28). Prior
locus-based algorithms have prioritized the nearest gene, ABHD2,
located 65 kb downstream of the sentinel variant>**, However, PoPS
prioritized MFGES, located 108 kb upstream of the sentinel (Fig. 4b).
MFGES8 encodes lactadherin, an integrin-binding glycoprotein impli-
catedinvascular smooth muscle cell (VSMC) proliferation and invasion,
andthe secretion of proinflammatory molecules***. Invitro deletion of
thisintergenic region by CRISPR-Cas9 increases MFGE8 expression—
with no change to ABHD2 expression—and MFGE8knock-down reduces
coronary artery (CA)-VSMC and monocyte (THP-1) proliferation,

lending functional support to MFGES as a likely causal mediator of
the CAD association in this region**.

Systematic prioritization of putative causal genes

We developed and applied a consensus-based prioritization frame-
work involving eight similarity-based or locus-based predictors to
systematically prioritize likely causal genes for all 279 genome-wide
associations (Online Methods and Fig. 5a). Most likely causal genes
were selected based on the highest (unweighted) number of the eight
predictors. To test this framework, we generated an a priori set of 30
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Fig. 3| Epigenetic enrichment and functionally informed fine-mapping of
CAD loci.a, Number of tissues/cell types in which 127 regions were enriched. Of
235 distance-based regions containing genome-wide significant associations

in our meta-analysis, 127 regions had significant enrichmentin atleast one
tissue type and were therefore fine-mapped using FGWAS. b, Distribution of
95% credible set sizes for the 127 enriched regions. For display purposes, the
plot excludes ten regions for which the 95% credible set contained more than
100 variants (Supplementary Table 20). ¢, Circle plot of epigenetic enrichment
for 53 significantly enriched GWAS regions containing a variant with PPA > 0.5.
The number of regions in which each tissue showed enrichmentin is displayed

‘l”llllln th 1lim o L 1
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inthe upper right quadrant. The number of regions that show enrichment with
agiventissue/cell type is displayed in the box next to the tissue/cell type name.
The 53 significantly enriched GWAS regions containing a variant with PPA > 0.5
are colored according to the tissue with the strongest evidence of enrichment

for that region. Region names with an asterisk denote those for which all
conditionally independent association signals were annotated as being new. The
histogram shows the total number of tissues with enrichment for each region and
thelinks indicate the tissues/cell types in which each region was enriched. The
number of 95% credible variants per region is displayed in the outer ring.

‘positive control’ genes with well-established causal roles in CAD and
assessed the accuracy of each predictor (Supplementary Table 29).
Twenty-eight of the 30 positive control genes were correctly prior-
itized as the most likely causal gene based on the highest number of

concordant predictors with a median of four concordant predictors
per gene (Supplementary Table 30). All predictors demonstrated high
accuracy, including nearest gene (90%), PoPS (90%), eQTL (85%) and
mouse knock-outs (100%; Supplementary Table 30).
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Fig. 4| PoPS informs the identification of causal genes for CAD. a, Feature
clusters contributing to causal gene prioritization. Rank-order plot of 2,852
feature clusters (arising from 19,091 distinct features) contributing to the
prioritization of likely causal genes for CAD by PoPS. Similarity-based cluster
labels are provided for several top clusters. b, Prioritization of MFGE8 for
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intergenic region of chromosome 15. Genes in the region are plotted by their
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We were able to prioritize alikely causal gene at 239 (85.7%) of the
genome-wide associations based on having two or more concordant
predictors, resulting in the prioritization of 220 genes (Supplemen-
tary Table 31). We considered 123 of these genes strongly prioritized
(three or more concordant predictors; Fig. 5b and Supplementary
Fig.1). For 21 genes, the prioritized gene was not the nearest gene to
the sentinel variant, including APOC3, PLTP and LOX. Agreement (the
proportion of times that a predictor prioritized the same gene as the
most likely causal gene) was high across predictors, including nearest
gene (84%), PoPS (83%) and eQTLs (86%; Fig. 5a). Concordance (the
proportion of times a pair of predictors both provided evidence for
the consensus-based causal gene) was more variable (Extended Data
Fig. 6); nearest gene and the presence of a protein-altering variant were
typically concordant (71%), whereas monogenic genes and eQTLs were
much less concordant (35%).

Candidate loci with converging lines of evidence
Several newly identified CAD risk loci had strong variant-and gene-level
evidence supporting their candidacy for functional interrogation. For
example, we identified a CAD-associated region that was most strongly
enriched in the aorta (Supplementary Table 3), with an intronic variant
(rs4074793)inITGA1 having aPPA of 0.95 (Extended DataFig. 7a,b). Lead
variant rs4074793 lies in aregion annotated as a likely enhancer in sev-
eraltissues and is the lead variant for a strong cis-eQTL for ITGAI in liver
among CAD patients from STARNET (P=1.8 x10%; Extended DataFig. 7c).
ThiseQTLwasalsoseeninaorta, subcutaneous fatand mammaryartery
(Extended Data Fig. 7d). No other gene expression signals were seen at
this locus, while PoPS also strongly prioritized /TGAI as the likely causal
gene (Supplementary Table 31). /TGAI encodesintegrin subunit alpha-1,
awidely expressed protein that forms aheterodimer with integrinbeta-1
and acts as a cell surface receptor for extracellular matrix components,
such as collagens and laminins. The CAD risk allele (rs4074793-G), or
strong proxies, were associated with elevated liver enzymes®, C-reactive
proteinand LDL cholesterol*®, highlighting the influence of altered /TGAI
expressionintheliver onlipid pathways asalikely causal pathway to CAD.
We also identified a new association with CAD at a gene-dense
region enriched for epigenetic annotations in adipose, liver,

monocytes and skeletal muscle myoblasts (Fig. 6a and Supplemen-
tary Table 20). FGWAS prioritized rs7246865 as the putative causal
variant (PPA = 0.71). Among 30 genes within 500 kb of rs7246865,
PoPS prioritized MYO9B (Supplementary Table 24), which encodes
unconventional myosin-IXb, amyosin protein with Rho-GTPase signal-
ingactivity involved in cell migration®. Evidence for the involvement
of MYO9B was also provided by a cis-eQTL in tibial artery in GTEx
(P=5.3x107%), withthe CADrisk allele exhibiting lower MYO9B expres-
sion (Supplementary Table 27).

Experimental interrogation of anew CAD locus
We proceeded to investigate the functional significance of the MYO9B
locus withrespectto CADrisk. This genomic regionis contained withina
vasculartissue enhancer, asidentified by astrong H3K27ac ChIP-seq sig-
nalincoronary artery, aortaand tibial artery (Fig. 6b). Using ATAC-seq
of primary vascular cells, weidentified open chromatinat rs7246865in
the following three cell types of relevance to CAD: immortalized human
aortic endothelial cells (ECs), CA-VSMCs and monocytes (Fig. 6b).
We used CRISPR-Cas9 to delete the enhancer sequence in these
celltypes (Fig. 6b), achieving 53-72% effective deletion of a131-bp seg-
ment within the enhancer (Fig. 6¢). We measured the transcriptional
effect of enhancer deletion on all genes expressed in these cell types
withina 250-kbwindow surrounding rs7246865. The enhancer deletion
resultedinreduced MYO9B and HAUSS8 expressionin ECs (Fig. 6d) and
reduced MYO9B expression in CA-VSMCs (Fig. 6e), compatible with
vascular GTEx eQTLs. There was no change in the expression of any
othergenesintheregionin either cell type or of any genein monocytes.
Finally, we sought to understand whether the enhancer is associ-
ated witha cellular phenotype of relevance to CAD. Given the cytoskel-
etal functions of MYO9B and HAUSS in other cell types*’**, we assessed
the effects of these genes inamonolayer wound-healing assay, acom-
posite of cell migration and proliferation*’. We observed that ECs with
the enhancer deletion exhibited impaired wound healing, as did ECs
with knock-outs of either MYO9B or HAUSS, suggesting that the regula-
tory effect of the enhancer contributes to CAD risk through impaired
wound healing in ECs (Fig. 6f). We did not observe any effect on migra-
tionwith deletion of the noncoding enhancer or MYO9Bin CA-VSMCs.
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Fig. 5| Integrating eight gene prioritization predictors to identify most likely
causal genes. a, Prioritization of 220 likely causal genes using eight predictors.
Blue circles represent the eight predictors used to prioritize causal genes, which
areas follows: (1) agene in the region harbors a variant that ClinVar classifies as
having evidence for being pathogenic for a cardiovascular-relevant monogenic
disorder (Supplementary Table 34); (2) agenein the region has been implicated
by an effective drug targeting the protein and/or a positive MR study suggesting
acausal effect of the protein on CAD (Supplementary Table 31); (3) either of the
two top prioritized genes in the region from PoPS (Supplementary Table 24); (4)
ageneintheregionhasaneQTLinaCAD-relevant tissue from GTEx or STARNET
for which the lead eSNP is in high linkage disequilibrium (LD) (> 0.8) with the
CAD sentinel variant (Supplementary Tables 27 and 28); (5) agene for whicha
mouse knock-out has a cardiovascular-relevant phenotype (Supplementary
Table 35); (6) agenein the region harbors a protein-altering variant thatis in
high LD (> 0.8) with the CAD sentinel variant (Supplementary Table 31); (7) a
gene inthe region has been shown to have arare variant association with CAD in
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aprevious WES or genotyping study (Supplementary Table 31); (8) the nearest
gene tothe CAD sentinel variant. Numbers in the blue circles indicate, firstly, the
number of genes for which this predictor agreed with the most likely causal gene,
secondly, the number of genes for which this predictor provided evidence for at
least one gene, and in parentheses, the percentage agreement (that is, the first
number as a percentage of the second). The central histogram shows the number
of agreeing predictors that supported the 220 prioritized genes by the number of
genes. b, Predictors for 44 most likely causal genes strongly prioritized by at least
four agreeing predictors. The matrix denotes predictors that supported the most
likely causal gene (colored red) for each of the 44 most likely causal genes with at
least four predictors that supported the gene. Genes are ordered by number of
agreeing predictors. The sentinel variant for the association with the smallest P
value for CAD is shown for each gene. Full details of the causal gene prioritization
evidence for all 279 genome-wide associations are presented in Supplementary
Table 31and the 79 most likely causal genes with three agreeing predictors are
displayed in the same format in Supplementary Fig. 1.

Discussion

In a discovery analysis involving >200,000 cases of CAD and >1 mil-
lion controls, we identified 279 genome-wide significant associations,
including 82 reported here for the first time. We objectively prior-
itized likely causal variants and effector genes across all associations

using functionally informed fine-mapping, a recently developed
genome-wide gene prioritization method (PoPS), and systematic inte-
gration of locus-based and similarity-based predictors, with several
tailored specifically to cardiovascular disease. Finally, informed by our
prioritization framework, we experimentally interrogated anew CAD
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Fig. 6 | Experimental interrogation of anew CAD locus near MYO9B. a,
Regional association plot from the primary CAD meta-analysis for the new
gene-dense region around MYO9B. Colored dots represent the position (x axis)
in GRCh37 coordinates and -log,,(meta-analysis Pvalue) (y axis) of each variant
in the region. Dots are shaded to represent the r? with the lead CAD variant
(rs7246865), estimated using arandom sample of 5,000 European ancestry
participants from the UK Biobank. Recombination peaks are plotted in blue
based on estimates of recombination from 1000 Genomes European ancestry
individuals. b, Identification of anoncoding enhancer in the region around the
CAD association signal. The plot shows aninset of a 5-kb window surrounding
thelead CAD variant (rs7246865). The top three tracks (blue) show H3K27Ac
ChlIP-seqof human CA, aorta and tibial artery, identifying a vascular tissue
enhancer element overlying rs7246865. The bottom three tracks (purple)

show ATAC-seq of human monocytes, immortalized human aortic ECs and
CA-VSMCs, identifying a region of open chromatinin all three cell types around
rs7246865. The plot also shows the location of the sgRNAs used for deletion
ofthe noncoding enhancer. ¢, Efficiency of CRISPR editing in primary human
cells. The Cas9-sgRNA ribonucleoprotein nucleofection method resulted

in noncoding enhancer deletion efficiency (x-axis) of greater than 0.5 by
densitometry and was comparable across monocytes, ECs and CA-VSMCs. Points
indicate enhancer deletion efficiency for each of the 12 replicates. Horizontal
barsindicate mean enhancer deletion efficiency, and whiskers indicate 95%

Cls. d, Relative expression of nearby genes after enhancer deletionin ECs. The
yaxis shows mean expression of five local genes expressed in ECs compared to
expression levels of a control gene (GAPDH). Blue bars indicate gene expression
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with Cas9-control sgRNA. Red bars indicate expression with tandem enhancer-
deleting guides asidentified inb. Pointsindicate gene expression levels for

each of the six replicates. Vertical bars indicate mean expression levels and
whiskersindicate 95% Cls. Gene expression was quantified by qPCR. Expression
levels were compared using an unpaired two-way Student’s ¢ test. Reduced
expression of MYO9B and HAUS8 was identified after 131-bp enhancer deletion
asinb.**P=0.0020;**P < 0.0001. e, Relative expression of nearby genes after
enhancer deletion in CA-VSMCs. The y-axis shows mean expression of five local
genes expressed in CA-VSMCs compared to expression levels of a control gene
(GAPDH).Blue bars indicate gene expression with Cas9-control sgRNA. Red bars
indicate expression with tandem enhancer-deleting guides as identifiedinb.
Points indicate gene expression levels for each of the six biological replicates.
Vertical bars indicate mean expression levels and whiskers indicate 95% Cls. Gene
expression was quantified by qPCR. Expression levels were compared using an
unpaired two-way Student’s ¢ test. Reduced expression of MYO9B was identified
after 131-bp enhancer deletionasinb. **P = 0.0044. f, In vitro endothelial wound
healing with enhancer and gene deletions. The y-axis indicates fluorescence
intensity, a read-out for endothelial wound healing and a composite of migration
and proliferation. ECs with CRISPR-Cas9 genome editing for enhancer deletion
(red) or single-gene knock-outs exhibited diminished wound healing relative to
nontargeting control with no deletions (blue). Dots indicate endothelial wound
healing for each of the six replicates. Vertical bars indicate mean wound-healing
levels and whiskers indicate 95% Cls. Levels of wound healing were compared by
one-way ANOVA.*P=0.0464; **P = 0.0013; ***P = 0.0003; ****P < 0.0001; NS, not
significant.

signal to establish a putative, mechanistic link between this genomic
region and risk of CAD.

The large sample size enabled detection of more than 80 new
genetic associations with CAD, predominantly common weak-effect

variants. Our findings suggest that future, larger GWAS—at least those
in Europeanancestry populations—are unlikely to discover many more
large-effect common variants (that s, those with ORs greater than1.05)
associated with CAD. In fact, additional associations contributing to
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the long polygenic tail of CAD risk are likely to arise from the ~650
predominantly weak-effect signals among associations that reached
the1% FDR threshold, which in aggregate explained ~36% of the herit-
ability of CAD. Notably, weidentified 38 new loci when we incorporated
recently published GWAS results based on only 29,000 CAD cases from
Biobank Japan, demonstrating that future multi-ancestry analyses
should enhance the yield of genetic discovery for CAD.

Consistent with previous studies, we demonstrated that a
genome-wide PRS derived from this GWAS strongly predicts both
incident and recurrent CAD*°%, Notably, our new PRS demonstrated
improved ability to discern those at higher and lower risk of CAD as
comparedtoawidely used PRS derived from an earlier GWAS of ~61,000
CAD cases™. While the new PRS provides animproved tool for genetic
risk prediction of CAD in the setting of primary and secondary preven-
tion, our findings suggest that further increases in European-ancestry
GWAS sample size may only modestly improve the predictive ability
of the CAD PRS. More substantive improvements in polygenic risk
prediction may arise from methodological developments, such as
approaches that model interactions between variants or incorpo-
rate functional information®**. Moreover, further investigations are
required to understand the extent to which genetic discovery analyses
that include more non-European ancestry participants will improve
the portability of PRS across ancestries, and whether this will resultin
improved prediction across all ancestry groups®®.

The weak effects of most CAD-associated variants do not preclude
their contribution to important etiological insights with therapeutic
implications, as the effects of pharmacologically perturbing identified
targets are typically much stronger than those of naturally occurring
genetic variants that are common in the population. For example, we
uncovered common variant associations of weak effect at HMGCR and
NPCIL1, which encode the targets of HMG-CoA reductase inhibitors
(statins) and ezetimibe, respectively, two of the most effective and com-
monly prescribed medications for the prevention and management of
CAD through lowering blood lipid levels. However, the translation of
statistical associationsinto actionable biology and potential therapeu-
tic targetsrequires elucidation of causal genes and mechanisms, which
haslagged behind the rapid growth ingenetic association discoveries.

Here we implemented strategies to enhance the identifica-
tion of putative causal variants, genes and biological pathways. By
incorporating epigenomic enrichment in disease-relevant tissues—a
previously shown approach to improve fine-mapping over broader,
disease-agnostic approaches”—we prioritized likely causal variants
that were not always those with the strongest statistical associations.
Using arecently developed similarity-based tool (PoPS) that exploits
the full genome-wide data to identify disease-enriched features, we
prioritized >200 likely causal genes. Support for the validity of the
genes prioritized by PoPS comes from the high ranking of features
of known relevance to atherosclerosis (for example, lipid metabo-
lism, extracellular matrix processes) from more than 50,000 tested
features; the correct assignment of the most likely causal gene at
several well-established lipid and nonlipid CAD loci; selection of the
likely-correct causal gene over several other candidates in a region,
including those in closer proximity to the sentinel (for example,
MFGES); and corroborating evidence at many loci from orthogonal
gene prioritization methods, suchas eQTLs in disease-relevant tissues.

Assupport frommultiple, orthogonal lines of evidence increases
the likelihood of prioritizing the correct causal gene, we propose an
integrative, consensus-based prioritization framework thatincorpo-
rates eight complementary predictors. By applying this framework to
all279 genome-wide associations, we systematically enhance the level
of evidence around both known and new risk loci for CAD to arrive at
123 genes strongly prioritized on the basis of having three or more
concordant predictors. Although distance from the sentinel variant
has been shown to be a reasonable predictor of causal genes across
many phenotypes'*, our integrative approach prioritized agene that

was not the nearest gene for 15% of associations. Also, at several newly
identified associations, such asthose nearest /TGA1 and MYO9B, we pro-
vide complementary lines of in silico evidence to nominate potential
causal variants, genes and mechanistic pathways. Finally, we leveraged
genome-editing and cell-based assays to interrogate the new associa-
tion signal at chromosome 19, validating the involvement of MYO9B,
butalsoimplicating another putative causal gene, HAUSS. Importantly,
these experimental findings substantiate our insilico prioritization of
aregion withapparentregulatory influence, and our similarity-based
prioritization of cell migration pathways, as both MYO9B and HAUS8
may exert their influence on CAD risk through the control of vascular
cell cytoskeleton. Furthermore, the findings raise the possibility that
two genes at alocus may regulate acommon, cellular pathway in coordi-
nated fashion, such asseen for COL4A1and COL4A2atawell-established
CADrisk locus”. While experimental evidence is ultimately required to
confirm causal mechanismsatall unresolved CAD risk loci, we provide
a prioritization framework yielding evidence-based candidates that
may be amenable to analogous functional follow-up.
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Methods

Genetic discovery meta-analysis

Details of the ten de novo studies, including the source of partici-
pants, case and control definitions, basic participant characteristics,
and ethics approval, are provided in Supplementary Note, Supple-
mentary Table 1and Extended Data Fig. 1. Study-specific sample and
variant filters were applied before additive logistic (or logistic mixed)
models were run, with CAD status as the outcome and adjusting for
study-specific covariates, including those accounting for potential
ancestry effects.

We performed an inverse-variance weighted meta-analysis on
the betas and standard errors using METAL®®, combining the results
from the ten de novo studies with previously published summary
statistics. Variant-specific sample sizes were maximized by using a
combination of summary statistics from prior CAD meta-analyses of
the CARDIoGRAMplusC4D consortium, and additional variant filter-
ing was performed, as detailed in Supplementary Note?”'*'°, The final
datasetincluded 20,073,070 variants.

Joint association analysis

We performed joint association analysis using GCTA software’’.
This approach fits an approximate multiple regression model using
summary-level meta-analysis statistics and LD corrections esti-
mated from areference panel (here the UKBB sample using European
ancestry participants only). We adopted a chromosome-wide step-
wise selection procedure to select variants and estimate their joint
effects at (i) a genome-wide significance level (P, < 5.0 x10®) in
the meta-analyzed variants that reached genome-wide significance
(n=18,348) and (ii) an FDR 1% Pvalue cut-off (P, < 2.52 x107) in the
1% FDRvariantlist (n =47,622). We identified 241independent variants
atthe genome-wide significance threshold and 897 independent vari-
ants within the 1% FDR list.

Identifying previously reported regions and associations
Toidentify regions of the genome previously reported as having asso-
ciations with CAD, we first collapsed variants reaching genome-wide
significance by clumping variants within 500 kb of each other into a
single locus. We compared these regions with all variants previously
found tobe associated with CAD at agenome-wide level of significance
(P<5.0 x107%) from previous large-scale genetic association studies of
CAD. Regions were annotated as ‘known’ if they included a previously
reported CAD-associated variant. To assess which of our associations
were previously reported or new, we examined the pairwise correlation
between each of our 279 genome-wide significant sentinel variants
and any nearby previously reported variants, defining ‘new’ as having
r’<0.2in UK Biobank Furopean ancestry participants.

Genetic correlation analysis

Genetic correlation between CAD and conventional risk factors (total
cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, body
massindex, systolic blood pressure and diastolic blood pressure) and
cardiometabolic diseases (type 2 diabetes, ischemic stroke and heart
failure) was assessed using LD Score Regression (LDSC)*°. We used
the 1000 Genomes European ancestry LD file comprising ~1.2 million
variants available at https://alkesgroup.broadinstitute.org/LDSCORE/.

PheWAS in UK Biobank

To understand the spectrum of phenotypic consequences of our 279
independent associations with CAD, we conducted a PheWAS in the
UK Biobank (see Supplementary Note for complete analysis details).
Briefly, we tested for associations with 53 cardiovascular and noncar-
diovascular diseases and 32 continuous traits, as listed in Supplemen-
tary Tables 32 and 33. A genetic variant was considered to be associated
with a ‘conventional CAD risk factor’ if the CAD risk-increasing allele
exhibited a directionally consistent/positive association with blood

lipids (total cholesterol, LDL cholesterol, triglycerides or a diagnosis
of hypercholesterolemia); blood pressure (systolic blood pressure,
diastolic blood pressure or a diagnosis of hypertension); hyperglyce-
mia (serum glucose, hemoglobin Alc or adiagnosis of type 2 diabetes)
or adiposity (body massindex).

Rare variant analyses

Variant annotation was performed using Variant Effect Predictor
(VEP) v96.0 with LOFTEE plugin on version three imputed data and
variants withan information score >0.8 (refs. ¢**?). Various gene-based
groupings were tested (Supplementary Table 6) and allele frequencies
fromthe entire UK Biobank cohort were used for groupings. Variants
(n=64,102) were considered to beina geneif they fell within the gene
coordinates as defined by GENCODE v19. Gene-based association
tests were performed in SAIGE-GENE v0.35.8.5 using a white British
subset of UK Biobank (28,683 CAD cases and 367,783 controls)®.
Software defaults were used except in step O the number of markers
for sparse matrix was 2000, and instep 1, the tolerance for precondi-
tioned conjugate gradient to converge was 0.01 and variance ratios
were estimated across MAC categories. Two variants were required
in each gene for testing. Covariates in the model included the geno-
typing array, the first five principal components calculated in the
white British subset of samples, birth year, and sex. Burden, SKAT,
and SKAT-O tests were performed for each gene. As no strong signals
were observed except for the PCSK9 gene, we did not extend our rare
variant testing to other studies.

Sex-specific analysis

We performed asex-stratified GWAS analysis in UK Biobank following
the same phenotype definition and sample exclusions with the main
analysis. We used the SAIGE software and adjusted our single-variant
association analysis for the first five genetic principal components
and the genotyping array, separately for men and women®*. Based
on promising initial results in UK Biobank, we collated sex-stratified
GWAS summary statistics, as available, from other participating studies
(Supplementary Table 6). Additional details of sex-specific analyses
are provided in Supplementary Note.

FDR estimation

The FDR following the meta-analysis was assessed using the ‘g value’R
package. We generated g values for all20.1 million variants. The Pvalue
cut-offforagvalue of 1% was 2.52 x 10 and there were 47,622 variants
reachingthat threshold. Joint conditional analysis was performed using
GCTA (as described earlier) to identify approximately independent
association signals.

Estimation of heritability explained

Heritability calculations were based on a multifactorial
liability-threshold model,implemented in the INDI-V calculator (http://
cnsgenomics.com/shiny/INDI-V/), under the assumption of a base-
line population risk (K) of 0.0719 and a twin heritability (H,%) of 0.4
(refs.®>%°), Single-variant regression estimates from the meta-analysis
summary statistics were used to estimate heritability for the sentinel
variants at the 241 conditionally independent genome-wide significant
associations and the 897 conditionally independent associations reach-
ingthe 1% FDR threshold in the primary meta-analysis. To account for
correlationbetween variants, multiple regression estimates fromthe
GCTAjoint association analysis were also used to estimate heritability
for both sets of variants.

Cross-ancestry comparison

For cross-ancestry comparison, we used summary statistics from a
recent GWAS of 29,319 CAD cases and 183,134 controls from Biobank
Japan’. In total, 199 of the 241 sentinel variants from our primary
meta-analysis were also foundin the Biobank Japan study; after aligning
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effect alleles, we compared the beta estimates and minor allele fre-
quencies using Pearson’s correlation coefficient. To investigate the
effect of outliers on the between-ancestry correlation of beta esti-
mates, we re-estimated the correlation coefficient after excluding
threestrongoutliers (at ATXN2, FER and SLC22A1). We then performed
aninverse-variance weighted meta-analysis on the beta estimates and
standard errors, incorporating summary results from Biobank Japan
and those from all other studies in our primary meta-analysis. After
cross-ancestry meta-analysis, we again dropped variants that were only
present in one study or had fewer than 30,000 cases in total from all
contributing studies, leaving 23,333,163 variants after filtering. We then
collapsed variants reaching genome-wide significance (P< 5.0 x 10°8)
by clumping variants within 500 kb into asingle locus, resulting in 38
additionallocithat did not containa previously reported CAD variant.

Derivation and training of PRSs

PRS were derived using the pruning and thresholding method or the
LDpred computational algorithm (LDpred v.1.0), with 503 European
ancestry individuals derived from the 1000 Genomes Project study
serving as the linkage disequilibrium reference panel®. To evaluate the
added utility of our GWAS for the prognostication of CAD risk, we com-
pared two sets of scores using effect estimates from either the current
meta-analysis or fromour previous 1000 Genomes-imputed GWAS of
CAD involving -60,000 cases’. For each derivation method and sum-
mary statistic, we constructed a range of scores of varying sizes drawing
from common genetic variants that overlapped between the current
meta-analysis, the earlier 1000 Genomes-imputed CAD GWAS and our
training/validation datasets from the MDC Study®®. Additional details
on PRS derivation and training are contained in Supplementary Note.

Incident event prediction analyses

Cox proportional hazard models were used to assess the time-to-event
relationship between each PRS and incident CAD events in the MDC
study (see Supplementary Note for study details). Baseline models were
adjusted for age and sex only, and then subsequently, for established
risk factors for CAD (total cholesterol, HDL cholesterol, systolic blood
pressure, body massindex, type 2 diabetes, current smoking status and
family history of CAD). Harrell C-statistics were estimated using Cox
proportional hazard analysis over a 21-year follow-up period to assess
the discrimination of the PRS.

Recurrent event prediction analyses

The two optimal PRS (2022 PRS and 2015 PRS) were calculated in par-
ticipants of the genetic substudy of the FOURIER trial (see Supple-
mentary Note for trial details) using the genotype dosage for each
allele, multiplied by its weight and then summed across all variants.
Patients received a raw score standardized per 1s.d. (continuous), as
well as a percentile score relative to the total cohort. All scoring was
performed using PLINK v2.0 (www.cog-genomics.org/plink/2.0/)%.
Model goodness-of-fit was evaluated using the concordance statistic
and Akaike’s Information Criterion. R version 3.6.1 was used for statisti-
cal analyses.

The clinical outcome of interest was recurrent major coronary
events, defined as myocardial infarction, coronary revascularization
or death from CAD (Rncigent cases = 673). Participants in the genetic cohort
were followed for a median of 2.3 years. All endpoints were formally
adjudicated by a blinded clinical events committee during the trial. A
Coxmodel was used to determine the HR per1s.d. higher level of the PRS
and for the extreme deciles compared to the middle 80%. Analyses were
adjusted for age, sex and ancestry (using principal components 1-5).

Identifying protein-altering variants

Toidentify protein-altering variants among our genome-wide signifi-
cantassociations, wetook the 279 sentinel variants and their LD proxies
atr? > 0.8 asestimated in the European ancestry subset of UK Biobank

and annotated them using the Ensembl VEP®2, We selected for each sen-
tinel variantany proxiesidentified as having a ‘high’ (that s, stop-gain
and stop-loss, frameshift indel, donor and acceptor splice-site and
initiator codon variants) or ‘moderate’ (that is, missense, in-frame
indel, splice region) consequence and recorded the gene that the
variant disrupts.

Functional GWAS analysis

To fine-map loci and identify credible functional variants, we applied
FGWAS software”. The software integrates GWAS summary statis-
tics with epigenetic data and we used the ChromHMM-derived states
fromthe NIH Roadmap Epigenomics Consortium on aselection often
CAD-relevant cell/tissue types (adipose nuclei, aortaand human skel-
etal muscle myoblasts (HSMM), liver, human umbilical vein endothe-
lial cells (HUVEC), kidney, adrenal gland, pancreatic islets, primary
monocytes and T-cells from peripheral blood)’*”". To maximize our
search space to find functional elements, we prepared a custom state
by merginglikely functional ChromHMM states (enhancers, transcrip-
tionstartsites, repressed polycomb, transcriptionat 5’ and 3’ of gene)
for each genomic position. We reweighted the GWAS by running a null
model and then a model containing the custom annotation for each
of the ten tissues. Regions of the genome that showed strong enrich-
ment (>3 s.d. increment in Bayes factor (BF)) and had a genome-wide
significant CAD-associated variant (P< 5.0 x 10~%) were selected. For
eachregion, weidentified the tissue that showed maximum increment
in BF and then constructed a 95% credible functional set of variants
based on the ranked PPA for each variant within a region.

eQTL analysisin CAD-relevant tissues

To examine whether the CAD associations were driven by changes in
gene expressionin CAD-relevant tissues and cell types, we interrogated
cis-eQTLs from CAD-relevant tissues in the STARNET eQTL study and
the GTEx study***. Analysis-specific details are provided in the Sup-
plementary Note.

Polygenic prioritization of candidate causal genes
Weimplemented PoPS, asimilarity-based gene prioritization method
designed to leverage the full genome-wide signal to nominate causal
genes independent of methods utilizing GWAS data proximal to the
gene". Broadly, PoPS leverages polygenic enrichments of gene fea-
turesincluding cell-type-specific gene expression, curated biological
pathways and protein-proteininteraction networks (Supplementary
Table 23) to train alinear model to compute a PoPS for each gene (see
Supplementary Note for further details).

Variants responsible for cardiovascular-relevant monogenic
disorders

To identify genes harboring pathogenic variants responsible for
cardiovascular-relevant monogenic disorders, we searched the NCBI's
ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/) on 26 June
2020. Variants were pruned to those within 500 kb of our CAD sentinel
variants; categorized as ‘pathogenic’ or ‘likely pathogenic’; with alisted
phenotype; and with either (i) details of the evidence for pathogenic-
ity, (ii) expert review of the gene or (iii) agene that appearsin practice
guidelines. We then filtered variants that were annotated with amanu-
ally curated set of cardiovascular-relevant phenotype terms, including
thoserelated to CAD, CAD risk factors (lipids, metabolism, blood pres-
sure, obesity and platelets), bleeding disorders and relevant cardiac,
vasculature or neurological abnormalities (Supplementary Table 34).
Where a variant was annotated with multiple genes, both genes were
considered as potentially pathogenic.

Phenotyping knock-out mice
Human gene symbols were mapped to gene identifiers (HGNC) and
mouseorthologgeneswereobtained using Ensembl(www.ensembl.org).
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Phenotype datafor single-gene knock-out models were obtained from
the International Mouse Phenotyping Consortium, data release 10.1
(www.mousephenotype.org), and from the Mouse Genome Informat-
ics database, data from July 2019 (www.informatics.jax.org). For each
mouse model, reported phenotypeswere grouped using the mammalian
phenotype ontology hierarchy into broad categories relevant to CAD as
follows: cardiovascular physiology (MP:0001544), cardiovascular mor-
phology (MP:0002127), growth and body weight (MP:0001259), lipid
homeostasis (MP:0002118), cholesterol homeostasis (MP:0005278)
and lung morphology (MP:0001175). This resulted in mapping from
genes to phenotypes in animals (Supplementary Table 35).

Rare variant associations, MR and drug evidence

To inform prioritization of causal genes within 1-Mb regions around
our genome-wide associations, we reviewed the literature for three
sources of evidence as follows: (1) rare coding variants previously
associated with CAD, either individually or in aggregate gene-based
tests, through whole-exome sequencing (WES) or exome array stud-
ies; (2) Mendelian randomization (MR) studies of gene expression,
proteinlevels or proximal phenotypes thatimplicate specific genes as
causal effector genes for CAD and (3) drugs proven to be effective for
cardiovascular-relevant indications and that target specific proteins
encoded by genes.

Systematicintegration of gene prioritization evidence

To systematically prioritize likely causal genes for all 279 genome-wide
associations, we integrated the following eight of the aforementioned
similarity-based or locus-based predictors of causal genes: (1) the top
two prioritized genes from PoPS; (2) genes witheQTLs in CAD-relevant
tissues from STARNET or GTEXx; (3) genes containing protein-altering
variants that are in strong LD (2 > 0.8) with the CAD sentinel variant;
(4) genes harboring variants responsible for monogenic disorders of
cardiovascular relevance according to ClinVar; (5) genes containing
rare coding variants that have been associated with CAD risk in previ-
ous WES or array-based studies; (6) genes encoding proteins of causal
relevance to CAD per MR studies or that are targets for established
cardiovascular drugs; (7) genes that display cardiovascular-relevant
phenotypesin knock-out mice from the International Mouse Phenotyp-
ing Consortium or Mouse Genome Informatics database; and (8) the
nearest gene to the CAD sentinel variant (Fig. 5a). We prioritized the
most likely ‘causal gene’ for each association using a consensus-based
approach, selecting the gene with the highest, unweighted sum of
evidence across all eight predictors.

We tested our approach by evaluating whether 30 (positive con-
trol) genes with established relevance to CAD were prioritized as the
most likely causal genes within their respective genomic regions. Posi-
tive control genes were selected by a literature search that sought
evidence from engineered mouse models of reduced gene expression
(‘knock-out’ or ‘knock-down’ models), MR studies or successful drug
targets. In addition, we defined two measures to summarize the rela-
tive contributions of individual predictors and pairs of predictors to
the consensus-based approach. Specifically, we defined ‘agreement’
as the proportion of times that an individual predictor prioritized
the same gene that was nominated as the most likely causal gene by
the consensus-based framework. ‘Concordance’ was defined as the
proportion of times a pair of predictors both converged on the gene
that was nominated as the most likely causal gene by the consensus of
the eight predictors.

CRISPR-Cas9 genome editing in vascular cells

Human coronary artery VSMCs (Lonza CC-2583; culture media
CC-31182) were used at passage five or earlier. Endothelial cell experi-
ments were conducted with immortalized human aortic endothelial
cells (ATCC CRL-4052; culture media Lifeline Cell Technology LL-0003).
Monocyte experiments were conducted with THP-1 monocyte cells

(ATCC TIB-202; culture media RPMI ATCC 30-2001, 10% FBS Sigma
12306C-500ML). Genome editing was performed as previously
described (Supplementary Note)”.

Gene expressionby qPCR

For assessment of gene expression, mRNA was extracted (Qiagen RNAe-
asy kit; Qiagen, 74106) and DNase I digestion was performed (DNAse,
Thermo Fisher 18068015) before cDNA synthesis (Applied Biosystems,
43-688-14) and qPCR (Applied Biosystems, 4444965). Gene expression
was assessed by quantitative PCR with Tagman probes (Invitrogen) for
genes of interest (MYO9B: Hs00994622_m1; HAUSS: Hs00928622_m1;
OCEL1:Hs00928613_m1; USE1:Hs00218426_m1; NR2F6:Hs00172870_m1;
GAPDH:Hs03929097 g1). Dataare shownrelative to expression of GAPDH.
Statistical analyses were conducted with unpaired two-way Student’s t test.

Noncoding enhancer characterization

Assay for transposase-accessible chromatin using sequencing
(ATAC-seq) data for THP-1 monocytes and CA-VSMCs was previously
available. We performed ATAC-seq in human immortalized aortic
endothelial cells as previously described”. H3K27ac CHIP-seq data
were publicly available via ENCODE (coronary artery, ENCFF970RKM;
aorta, ENCFF118EKX; tibial artery, ENCFF972ZHA).

Wound-healing assay

Wound-healing assays were performed as previously described (Platy-
pus Technologies, CMAUFL4)*. After genome editing, 15,000 cells per
well were plated with well insertsin place in culture media. Inserts were
then removed the day after plating. Prior to complete wound healing
(48-72 h), cells were stained with Calcein AM dye (Invitrogen, C3099)
and wound healing was quantified with a fluorescence plate reader
(excitation 488 nm/emission 522 nm). Statistical analyses were con-
ducted with one-way ANOVA between groups. Where specific software
tools are not named, we used Stata or R for analyses.

Reporting summary
Furtherinformation onresearch designisavailable inthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Summary statistics are available upon publication through the CAR-
DIoGRAMplusC4D website (http://www.cardiogramplusc4d.org/) and
the NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/, acces-
sion codes: GCST90132314 (https://www.ebi.ac.uk/gwas/studies/
GCST90132314) and GCST90132315 (https://www.ebi.ac.uk/gwas/
studies/GCST90132315)). Interactive searchable Manhattan plots
and a locus-specific epigenome annotation browser for functionally
enrichedlociareavailable at https://procardis.shinyapps.io/cadgen/.
Aninteractive searchable browser detailing the locus-specificevidence
prioritizing causal variants, genes and pathways is available at the
Common Metabolic Diseases Knowledge Portal (https://hugeamp.
org/method.html?trait=cad&dataset=cardiogram).

Other datasets used in this study include the NCBI's ClinVar database
(https://www.ncbi.nlm.nih.gov/clinvar/) on 26 June 2020, a 1000
Genomes European ancestry LD file comprising -1.2 million variants
(https://alkesgroup.broadinstitute.org/LDSCORE/), the GTEx Con-
sortiumv7 datarelease (https://www.gtexportal.org/home/datasets),
the Ensembl database (www.ensembl.org), the International Mouse
Phenotyping Consortium, data release 10.1 (www.mousephenotype.
org) and the Mouse Genome Informatics database, data from www.
informatics.jax.orgon July 2019.

Code availability

Custom code for preparing the study-specific GWAS summary sta-
tistics files for meta-analysis can be found at https://github.com/
cambridge-ceu/cardiogramplusC4D_GWAS. Custom code for PRS
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analysis using a modified version of Ldpred 1.0 can be found at
https://github.com/wavefancy/LDpredChrByChr.
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Extended Data Fig. 1| Study design. Flowchart depicting contributing studies and analysis strategy.
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Extended Data Fig. 2| Genetic architecture of 897 association signals for
CAD. Minor allele frequency versus per-allele odds ratio for CAD for all sentinel
variants reaching genome-wide significance or the 1% FDR threshold in our
study. Colored circles indicate genome-wide significant associations (P < 5.0
x107%) with sentinel variants that are not correlated (r* < 0.2) with a previously
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reported variant (red), genome-wide significant sentinel variants correlated
witha previously reported variant (blue), and associations reaching the 1% FDR
threshold (P < 2.52 x107%) in our meta-analysis (gray). Two-sided P values are from
Z-scores from fixed-effect inverse-variance weighted meta-analyses.
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Extended Data Fig. 4 | Cross-ancestry comparison. a, Comparison of allele
frequencies between the meta-analysis and Biobank Japan. Black dots denote the
allele frequencies for 199 sentinel variants reaching genome-wide significance
inthe (predominantly European ancestry) meta-analysis (y-axis) that were also
presentin the publicly available summary statistics from Biobank Japan (x-axis).
Variants were aligned according to the effect allele in Supplementary Table 3.
The Pearson correlation coefficient was 0.76. b, Comparison of beta estimates
between the meta-analysis and Biobank Japan. Black dots denote the beta
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Extended DataFig. 5| Epigenetically-informed fine-mapping of the MAFB
locus. a, Regional association plot from the CAD meta-analysis for the MAFB
region. Colored dots represent the position (x-axis) in GRCh37 coordinates

and -log,,(meta-analysis Pvalue) (y-axis) of each variant in the region. Dots are
shaded torepresent the r* with the lead CAD variant (rs2207132), estimated using
arandom sample of 5,000 European ancestry participants from the UK Biobank.
Recombination peaks are plotted in blue based on estimates of recombination
from 1000 Genomes European-ancestry individuals. b, Tissue-specificimputed
chromHMM states at the three credible set variants in the MAFB region. The top
track shows the position on chromosome 20 (GRCh37) in the MAFBregion. The
second track shows as orange vertical bars the posterior probability (y-axis) for
eachvariant in the window from the FGWAS fine-mapping, identifying rs1883711

(PPA =0.77) as the most likely causal variant. The third track indicates as a black
box the position of the imputed chromHMM state in each of the ten CAD-
relevant tissues based on epigenomic data from the NIH Roadmap Epigenomics
Consortium project. The yellow vertical line indicates the position of the most
likely causal variant (rs1883711) with respect to the chromHMM states. rs1883711
liesinan enhancer region for liver (the most strongly enriched tissue for this
region) and adipose, the two functionally enriched tissues in the region. The
other two variantsin the 95% credible set (rs2207132 and rs117113213) do not
lieinregions annotated as chromHMM states. HSMM, human skeletal muscle
myoblasts; HUVEC, human umbilical vein endothelial cells; PPA, posterior
probability of being the causal variant.
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Extended Data Fig. 6 | Pairwise concordance of eight gene-prioritization
predictors to identify most likely causal genes. White squares lying on

the diagonal contain the number of genes for which that predictor provided
evidence (denominator) and the number of times for which that predictor
prioritized the most likely causal gene at the locus (numerator). For example,
eQTL data provided evidence for 105 causal genes, of which 90 (86%) were also
the most likely causal gene at the locus. Blue squares below the diagonal show
the concordance between pairs of predictors and contain the number of genes
for whichboth predictors provided evidence (denominator) and the number
of times for which the prioritized causal gene was the same (numerator). For
example, the nearest gene and the presence of a protein-altering variant in high
LD (> 0.8) with the CAD sentinel both provided evidence for a causal gene at

48loci, of which they were concordant (that is prioritized the same causal gene)
at 34 (71%). Darker blue squares show higher levels of concordance. Orange
squares above the diagonal show the discordance between pairs of predictors
and contain the number of genes for which both predictors provided evidence
(denominator) and the number of times for which the prioritized causal gene was
the different (numerator). For example, the nearest gene and the presence of a
protein-altering variantin high LD (> 0.8) with the CAD sentinel both provided
evidence for a causal gene at 48 loci, of which they were discordant (that is
prioritized a different causal gene) at 13 (27%). Darker orange squares show
higher levels of discordance. See Fig. 5a for descriptions of the eight predictors
used to prioritize causal genes.
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Extended Data Fig. 7 | Prioritizing the likely causal variant, gene and pathway
attheITGAllocus. a, Regional association plot from the primary CAD meta-
analysis for the ITGAI region. Colored dots represent the position (x-axis) in
GRCh37 coordinates and -log,,(meta-analysis P value) (y-axis) of each variant

in the region. Dots are shaded to represent the r? with the lead CAD variant
(rs4074793), estimated using arandom sample of 5,000 European-ancestry
participants from UK Biobank. Recombination peaks are plotted in blue based on
estimates of recombination from 1000 Genomes European-ancestry individuals.
b, Tissue-specificimputed chromHMM states at the two credible set variants in
the ITGAIregion. The top track shows the position on chromosome 5 (GRCh37)
with respect to the /TGAI gene. The second track shows as a vertical orange line
the posterior probability (y-axis) for each variantin the region from the FGWAS
fine-mapping, identifying rs4074793 (PPA = 0.95) as the likely causal variant.

The third track indicates as a black box the position of an enhancer state in

each of the ten CAD-relevant tissues, using custom imputed chromHMM states
based on epigenomic data from the NIH Roadmap Epigenomics Consortium
project. The yellow vertical line indicates the position of the likely causal variant

(rs4074793) with respect to the chromHMM states. rs4074793 is annotated to a
chromHMM state for all five tissues that show enrichment in the region. HSMM,
human skeletal muscle cells; HUVEC, human umbilical vein endothelial cells;
PPA, posterior probability of being the causal variant. ¢, Effect of rs4074973
on/TGAI expressionin liver in the STARNET study. The plot shows the position
(x-axis) in GRCh37 coordinates and -log,,(P value) (y-axis) of each variant in
theregion. Thelikely causal CAD variant rs4074973 is circled in black. Only
variants with P< 0.01are displayed. d, Associations of rs4074973 with ITGA1
expression and phenotypes from a phenome-wide association study. The per-
allele association of rs40747973-G (the CAD risk allele) measured in s.d. units

is plotted for each phenotype. The box indicates the point estimate and the
horizontal bars represent the 95% confidence intervals. The top panel shows the
association estimates for /TGAI expression from the STARNET study. The bottom
panel shows associations from UK Biobank (liver enzymes and inflammatory
markers) and the literature (lipids*®). ALP, alkaline phosphatase; ALT, alanine
aminotransferase; CRP, C-reactive protein; GGT, gamma glutamyltransferase;
LDL-c, low-density lipoprotein cholesterol; Tchol, total cholesterol.
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El A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|Z| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OO0 O000F%

|Z| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Data were all collected by the individual studies prior to this project.

Data analysis Software used for data analysis, as described in the Online Methods, includes:

PLINK v2.0: www.cog-genomics.org/plink/2.0/

SNPTEST v2.5.2: https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html
METAL v1: https://genome.sph.umich.edu/wiki/METAL

GCTA v1.93: https://cnsgenomics.com/software/gcta/

Ensembl Variant Effect Predictor v102: https://www.ensembl.org/info/docs/tools/vep/index.html
SAIGE and SAIGE-GENE v0.44: https://github.com/weizhouUMICH/SAIGE

GWAMA v2.2: https://genomics.ut.ee/en/tools/gwama

qvalue R package: https://www.bioconductor.org/packages/release/bioc/html/qvalue.html
INDI-V: http://cnsgenomics.com/shiny/INDI-V

LDpred v.1.0.11: https://bitbucket.org/bjarni_vilhjalmsson/Idpred/

EIGENSOFT v7.2.1: https://www.hsph.harvard.edu/alkes-price/software/

FGWAS v0.3.6: https://github.com/joepickrell/fgwas

PoPS v0.2: https://github.com/Finucanelab/pops

Manhattan++: https://rdrr.io/cran/manhplot/

Other analyses were conducted using standard statistical software:
R: https://www.r-project.org/
STATA: https://www.stata.com/
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Custom scripts are available on reasonable request to the corresponding authors.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Summary statistics are available upon publication through the CARDIoGRAMplusC4D website (http://www.cardiogramplusc4d.org/) and the NHGRI-EBI GWAS
Catalog (https://www.ebi.ac.uk/gwas/) and polygenic risk score weights are available in the Polygenic Score (PGS) Catalog (https://www.pgscatalog.org/). Interactive
searchable Manhattan plots and a locus-specific epigenome annotation browser for functionally enriched loci are available at: https://procardis.shinyapps.io/
cadgen/. An interactive searchable browser detailing the locus-specific evidence prioritizing causal variants, genes and pathways is available at the Common
Metabolic Diseases Knowledge Portal (beta version available at: https://hugeamp.org/method.html?trait=cad&dataset=cardiogram).

Other datasets used in this study include the NCBI’s ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/) on 26th June 2020, a 1000 Genomes European
ancestry LD file comprising ~1.2 million variants available at https://alkesgroup.broadinstitute.org/LDSCORE/, the GTEx Consortium v7 data release (https://
www.gtexportal.org/home/datasets), the Ensembl database (www.ensembl.org). the International Mouse Phenotyping Consortium, data release 10.1
(www.mousephenotype.org), and the Mouse Genome Informatics database, data from July 2019 (www.informatics.jax.org).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Details of the ten de novo studies used for the discovery GWAS, including the source of participants, case and control definitions and basic
participant characteristics are presented in Supplementary Table 1. We used summary statistics from either (a) a previous 1000 Genomes-
imputed GWAS meta-analysis of up to 60,801 CAD cases and 123,504 CAD-free controls;[7] (b) a meta-analysis of ~79,000 variants in up to
88,192 CAD cases and 162,544 controls, predominantly based on the Illumina CardioMetabochip array;[2] or (c) a meta-analysis ~184,000
variants in up to 42,335 CAD cases and 78,240 controls based on the lllumina Exome array.[10, 16] We then combined these results with
summary statistics from the CARDIoGRAMplusC4D Consortium, achieving a total sample of 181,522 CAD cases among 1,165,690 study
participants.

For trans-ethnic comparison, we used summary statistics from a recent GWAS of 29,319 CAD cases and 183,134 controls from the Biobank
Japan.

For the polygenic risk score analyses, we used independent datasets from the Malmo Diet and Cancer Study for primary prevention
(n=28,556, including 4,122 incident cases) and the FOURIER trial for secondary prevention (n=7,135, including 673 recurrent events).

No a priori power calculations were conducted to determine the necessary sample size for this study, but as this is the largest sample size for

a GWAS of coronary artery disease to date, it has the greatest power to detect associations.

Data exclusions  Details of study-specific variant and sample exclusions can be found in Supplementary Table 1.

Replication To maximise the power for discovery of genetic associations, we did not split the CAD GWAS dataset into discovery and replication datasets.
However, we did assess the associations in an independent dataset of East Asian ancestry (Biobank Japan), which showed strong correlation
of effect sizes. We did not conduct a formal replication in this population.

We did, however, try to replicate 216 previously reported CAD loci in our study. We successfully replicated 188 of these signals, with non-
replicating signals being primarily due to different ancestries.
For the polygenic score analyses, we split the Malmo Diet and Cancer study into testing and training datasets of non-overlapping participants.

Randomization  As thisis an observational genetic association study with no intervention, randomization is not relevant here.

Blinding As this is an observational genetic association study with no intervention, randomization is not relevant here.

Reporting for specific materials, systems and methods
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChlIP-seq

Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) Human coronary artery vascular smooth muscle cells (Lonza CC-2583; culture media CC-31182); immortalized human aortic
endothelial cells (ATCC CRL-4052; culture media Lifeline Cell Technology LL-0003); THP-1 monocyte cells (ATCC TIB-202;
culture media RPMI ATCC 30-2001, 10% FBS Sigma 12306C-500ML).

Authentication None of the cell lines were authenticated.

Mycoplasma contamination None of the cell lines were tested for mycoplasma contamination.

Commonly misidentified lines  we did not use any commonly misidentified cell lines.
(See ICLAC register)

Human research participants

Policy information about studies involving human research participants

Population characteristics Participants in our de novo CAD GWAS meta-analysis were largely (>95%) of European ancestry (predominantly from Europe
or the US) and 46% were female. Study-specific details can be found in Supplementary Table 1.

Recruitment Our analysis includes many studies, including case-control studies, general population biobanks, hospital-based biobanks and
clinical trials.
Ethics oversight All studies had appropriate ethical approval from relevant ethics committees and all participants gave informed consent for

their participation.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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