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Abstract

The objective of this work was to investigate whether impaired insulin secretion can 

be restored by lifestyle intervention in specific subphenotypes of prediabetes.

One thousand forty-five participants from the Prediabetes Lifestyle Intervention 

Study (PLIS) were assigned to 6 recently established prediabetes clusters. Insulin 

secretion was assessed by a C-peptide-based index derived from oral glucose 

tolerance tests and modeled from three time-points during a 1-yr intervention. We 

also analyzed the change of glycemia, insulin sensitivity and liver fat.

All pre-diabetes high-risk clusters (cluster 3, 5 and 6) had improved glycemic traits 

during lifestyle intervention, whereas insulin secretion only increased in clusters 3 

and 5 (p<0.001); however, high liver fat in cluster 5 was associated with a failure to 

improve insulin secretion (pinteraction<0.001). Thus, interventions to reduce liver fat 

have the potential to improve insulin secretion in a defined subgroup of prediabetes. 
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Prediabetes is a heterogenous condition comprising subphenotypes with different 

risks of diabetes and its complications (1). From its two key features, insulin 

resistance and impaired insulin secretion, insulin resistance can be clearly improved 

by lifestyle intervention (LI); however, it is not known, if LI can improve insulin 

secretion in specific subphenotypes of reduced insulin secretion (2).  Recently, we 

described 6 clusters of prediabetic metabolism (1). Two of these clusters (cluster 3 

and 5) have high risk of progression to diabetes. Another group (cluster 6) has an 

intermediate risk of diabetes as these persons are capable of compensating insulin 

resistance via hyperinsulinemia over years. In this study, we retrospectively stratified 

participants of a large multi-center study into these novel clusters of prediabetic 

metabolism (1) and investigated whether LI improved their insulin secretion and 

other glycemic traits. 
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Research design and methods

Study population

The Prediabetes Lifestyle Intervention Study (PLIS) is a randomized controlled multi-

center trial testing the efficacy of different intervention intensities in individuals with 

prediabetes (ClinicalTrials.gov identifier NCT01947595) (2). Participants with 

prediabetes were divided into a group with low-risk or a group with high-risk for 

diabetes progression. The low-risk group was then randomized to control or 

conventional LI, whereas the high-risk group was randomized to conventional or 

intensive LI for one year. While the control arm had only one 30-min consultation 

session with a dietitian, participants in the conventional and intensified arms received 

8 or 16 recurring counselling sessions, respectively. The intention of counseling was 

to decrease body mass by 5% through reducing fat and increasing fiber intake. 

Participants with conventional and intensified intervention were also motivated to 

perform 3 or 6 hours of exercise per week, respectively. Postprandial glucose 

(glucose at 120 minutes after glucose challenge) was the primary endpoint of the 

study. Secondary endpoints were insulin sensitivity, liver fat and insulin secretion.

Assignment to metabolic clusters

Participants in the intention to treat analysis were assigned to metabolic clusters 

based upon several variables -  comprising AUC0-120glucose, insulin sensitivity, 

insulin secretion (AUC0-30C-peptide/AUC0-30glucose), HDL-cholesterol, visceral fat 

volume, subcutaneous fat volume, liver fat content and type 2 diabetes polygenic risk 

score, as described previously (1). Insulin and C-peptide were measured using the 

ADVIA Centaur XP Immunoassay System. Liver fat content was assessed with 1H 
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magnetic resonance spectroscopy as described (2). Missing variables were imputed 

using multivariable imputation with chained equations (3) and complete cases set for 

the required variables was achieved for N=1045, see Suppl.Table1.

Outcome measures

Standardized 75g oral glucose tolerance tests (OGTTs) were performed at baseline, 

after 6 months and 12 months of LI. Insulin sensitivity was assessed by the Matsuda-

index from 5-point insulin and glucose measurements (4). Results of the per-protocol 

analysis of the low-risk and high-risk groups of PLIS did not show an effect of LI on 

insulin secretion measured by an insulin-based index. We measured C-peptide as a 

post-hoc analysis of the study to assess insulin secretion by AUC0-120C-

peptide/AUC0-120glucose, as this index had a lower coefficient of variation while still 

achieving high discrimination (5). 

Statistics

Computations were performed with R (ver3.6.1). The change of outcome measures 

during lifestyle intervention was modelled with generalized linear mixed models 

applying the participant as random effect using the lme4 library. Fixed effects 

covariates comprised the intervention group, its interaction term with time, sex, age, 

BMI and time (since randomization). Insulin sensitivity was log-transformed when 

analyzed as outcome. For insulin secretion, further adjustment was performed for 

insulin sensitivity. To test how liver fat affects the change in insulin secretion, we 

fitted the interaction of time and liver fat, measured at the beginning and at the end 

of the trial, on insulin secretion in different prediabetes clusters. All tests were two-

sided with an alpha level of 0.05. According to simulations performed with the simr 
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package(6), the statistical power to detect the change of insulin secretion in cluster 5 

(ß=10, Ngroups=213, Nmeasurements=594) was 76% (CI:66-84)%. 

Data and Resource

Data of the PLIS study is currently not publicly available. Making the data publicly 

available without additional consent or ethical approval might compromise participant 

privacy and the original ethical approval. The R-code that supports this analysis is 

specific for the dataset of the PLIS study, and available upon request. 
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Results

All participants of the PLIS cohort met the criteria for prediabetes and ~82% 

(856 out of 1045) were assigned to the previously described high-risk clusters 3, 5 or 

6. The baseline characteristics of participants stratified for metabolic clusters is 

shown in Suppl.Table 2. Due to the low number of participants assigned to the 

metabolically healthy obese cluster (cluster 4, N=8), this group was excluded from 

further analyses. There were no differences in renal function across the clusters that 

could impact assessment of insulin secretion through reduced C-peptide clearance 

(Suppl.Table 2). Before intervention, cluster 3 had the lowest insulin secretion 

independent from insulin sensitivity (p<3.69*10-6, see Suppl. Table 2) and cluster 5 

had the lowest insulin sensitivity compared to all other clusters (see Suppl.Table 3).

We analyzed the change in key glycemic traits during LI incorporating all evaluation 

points (baseline, 6 months except for liver fat, and 12 months). Glycemia, insulin 

sensitivity, and liver fat content were improved by LI in all three high risk clusters (3, 

5 and 6), independent from sex, age, BMI and the type of LI (p<0.001, see Figure 

1.A-C). Insulin secretion improved independent from insulin sensitivity and the above 

mentioned covariates in cluster 3 and 5. However, participants in cluster 6, that is 

characterized by hyperinsulinemia, did not change their insulin secretion during LI 

(see Figure 1.D). Unadjusted insulin secretion also did not increase or decrease 

during LI (p=0.4).

We tested the hypothesis that the change of liver fat content—modeled as an 

interaction of time and MRS-derived hepatic fat content at study start and end—

modulates insulin secretion using generalized linear mixed models with the fixed 

effect terms sex, age, BMI, insulin sensitivity, intervention, time ⨉ intervention and 
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time. There was a significant interaction between time and liver fat within cluster 5, 

but not the other tested clusters. The result suggests that lower liver fat during 

lifestyle intervention was associated with an increase of insulin secretion, whereas 

higher liver fat levels inhibited this improvement of insulin secretion (Figure 1.E). In 

contrast, with similarly constructed models there was no interaction with BMI in any 

tested cluster, suggesting that BMI does not impact the change of insulin secretion in 

either metabolic cluster (Suppl.Figure 1).

We also computed insulin secretion using the alternative index AUC0-30C-

peptide/AUC0-30glucose that was used at the original cluster assignment. This index 

potentially involves hepatic insulin resistance (7) and yielded similar results 

(Suppl.Figure 2).

Conclusions

The data show that all previously defined high-risk clusters of prediabetes are 

amenable for improvement of glycemia, insulin sensitivity and liver fat content 

through Ll; however, insulin secretion only improves in clusters 3 and 5. These two 

clusters are characterized by low insulin secretion for their respective insulin 

sensitivity. Of note, cluster 3 with only moderate insulin resistance and insulinopenia 

also improves insulin secretion. Cluster 6 did not increase insulin secretion during LI, 

which aligns with the observation that individuals in this cluster already have a 

prominent hyperinsulinemia. The lack of a decrease of insulin secretion (neither 

without nor with adjustment for insulin sensitivity) in cluster 6 suggests that 

hyperinsulinemia was not mitigated by the LI. Further studies are needed to 
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investigate the causes and therapeutic possibilities of hyperinsulinemia in this 

cluster. 

Cluster 5 is characterized by insulin resistance, excessive liver fat content and 

inadequate insulin secretion (1). Our data suggest that liver fat content, but not body 

weight loss, is an important modulator of beta-cell function. Cell culture models show 

that a metabolic milieu characterized by fatty liver and insulin resistance promotes 

inflammatory cytokine production in adipose tissue adjacent to the pancreatic islets, 

which are in turn detrimental to insulin secretion(8). Therefore, lowering liver fat has 

the potential to relieve compromised beta-cell function in this prediabetes 

subphenotype. 

Deterioration in β-cell function precedes the onset of type 2 diabetes(9), and 

increasing insulin secretion has been associated with lower diabetes risk in 

participants of the Diabetes Prevention Program(10). An improvement of beta-cell 

function paralleling liver fat reduction has been already shown in patients with 

diabetes(11), but has not yet been reported in prediabetes(12). Therapeutic 

strategies addressing hepatic fat reduction could be pivotal in improving insulin 

secretion and thereby preventing hyperglycemia in a subset of patients on a 

trajectory towards type 2 diabetes.

The assessment of a C-peptide-based insulin secretion index in this study 

allowed us to determine insulin secretion without interference from hepatic insulin 

clearance. However, even this OGTT-based index could inherently capture insulin 

resistance due to the physiologically intertwined nature of insulin secretion and 

insulin resistance. Also, we retrospectively analyzed data from an interventional 

study with different treatment arms, such that despite careful adjustment for 

treatment, a residual confounding might remain. 

Page 11 of 22

For Peer Review Only

Diabetes
D

ow
nloaded from

 http://diabetesjournals.org/diabetes/article-pdf/doi/10.2337/db22-0441/694347/db220441.pdf by H
ELM

H
O

LTZ ZEN
TR

U
M

 M
U

EN
C

H
EN

 user on 20 D
ecem

ber 2022



Our work identifies clusters of prediabetes patients who respond to LI with 

better beta cell function and delineates a group with particular benefits from liver fat 

reduction. Therapeutic modalities reducing liver fat content should be prospectively 

tested in future studies for high-risk individuals to prevent diabetes and its 

complications.
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Figures

Figure 1.A-E

Cluster-specific change of glycemia (A), insulin sensitivity (B), liver fat (C) and insulin 

secretion (D) during lifestyle intervention with influence of liver fat on change of 

insulin secretion during lifestyle-intervention (E). Traits are shown as residuals from 

generalized linear mixed models adjusted for sex, age, BMI, time x intervention 

(control, conventional or intensive), and in the case of insulin secretion additionally 

for insulin sensitivity as fixed effects. Effect sizes (ß) and p-values are provided for 

the term time. Cluster-wise interactions between hepatic fat content and time in 

generalized linear mixed models are shown as marginal effects by plotting the 

modelled change of insulin secretion for low (mean-SD), mid (mean) and high 

(mean+SD) hepatic fat content. Effect sizes (ß) and p-values are provided for the 

interaction between liver fat and time.

Page 17 of 22

For Peer Review Only

Diabetes
D

ow
nloaded from

 http://diabetesjournals.org/diabetes/article-pdf/doi/10.2337/db22-0441/694347/db220441.pdf by H
ELM

H
O

LTZ ZEN
TR

U
M

 M
U

EN
C

H
EN

 user on 20 D
ecem

ber 2022



 

Figure 1. A-E Cluster-specific change of glycemia (A), insulin sensitivity (B), liver fat (C) and insulin 
secretion (D) during lifestyle intervention with influence of liver fat on change of insulin secretion during 

lifestyle-intervention (E). Traits are shown as residuals from generalized linear mixed models adjusted for 
sex, age, BMI, time x intervention (control, conventional or intensive), and in the case of insulin secretion 
additionally for insulin sensitivity as fixed effects. Effect sizes (ß) and p-values are provided for the term 

time. Cluster-wise interactions between hepatic fat content and time in generalized linear mixed models are 
shown as marginal effects by plotting the modelled change of insulin secretion for low (mean-SD), mid 

(mean) and high (mean+SD) hepatic fat content. Effect sizes (ß) and p-values are provided for the 
interaction between liver fat and time. 
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Supplementary Data 
Supplementary Tables 
 
Supplementary Table 1 
Cross-imputation of missing variables (N=1045) 

Variable Missing rate 
MRI subcutaneous fat volume 0.39 
MRI total fat volume 0.39 
MRI visceral fat volume 0.39 
MR spectroscopy liver fat 0.17 
Fat percentage (bioimpedance) 0.05 
Fasting insulin 0.02 
Post-challenge insulin 120 min 0.02 
Insulin sensitivity (Matsuda-index) 0.02 
Insulin secretion (C-peptide based) 0.02 
Glycemia (AUC glucose) 0.01 
Hip circumference 0.01 
Waist circumference 0.01 
BMI 0 
Fasting glucose 0 
Post-challenge glucose 120 min 0 
Alanin-aminotransferase 0 
Sex 0 
Triglycerides 0 
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Supplementary Table 2 
Participants of the Prediabetes Lifestyle Intervention Study (PLIS) at baseline stratified to 
previously established metabolic clusters. Differences were tested with ANOVA. 

Cluster 1 2 3 4 5 6 p-value 
Metabolic risk* Low Very 

Low 
High Low High High  

Key features*   Low insulin 
secretion 
without 

pronounced 
insulin 

resistance 

Metabolically 
healthy 
obesity 

Prominent 
insulin 

resistance 
with insulin 
secretion 

failure 

Insulin 
resistance with 
compensatory 

hyperinsulinemia 

 

n 88 93 399 8 229 228 
 

Intervention group 
(%) 

      
<0.001 

conventional 43 
(48.9) 

40 
(43.0) 

194 (48.6) 6 (75.0) 111 (48.5) 128 (56.1) 
 

control 36 
(40.9) 

29 
(31.2) 

30 ( 7.5) 1 (12.5) 0 ( 0.0) 20 ( 8.8) 
 

intensive 9 
(10.2) 

24 
(25.8) 

175 (43.9) 1 (12.5) 118 (51.5) 80 (35.1) 
 

Sex = male (%) 49 
(55.7) 

45 
(48.4) 

183 (45.9) 2 (25.0) 77 (33.6) 81 (35.5) <0.001 

Age (mean (SD)) 57.37 
(11.78) 

59.52 
(11.38) 

60.17 (9.80) 51.30 (11.23) 56.42 (9.55) 56.62 (11.09) <0.001 

BMI (kg/m2) (mean 
(SD)) 

27.59 
(4.84) 

24.62 
(2.68) 

29.07 (4.43) 32.69 (3.60) 34.45 (5.57) 35.28 (5.48) <0.001 

eGFR 
(ml/min/1.73m2) 
(mean (SD)) 

90.88 
(15.53) 

90.72 
(13.36) 

89.33 
(12.99) 

102.33 
(12.24) 91.22 (13.86) 91.20 (15.37) 0.082 

AUC glucose (mean 
(SD)) 

894.20 
(93.36) 

936.37 
(138.93) 

1158.91 
(143.98) 

824.27 
(71.25) 

1198.05 
(154.10) 

1006.56 (134.60) <0.001 

Insulin secretion  
(AUC0-120 C-peptide/AUC0-120 
glucose)  
(AU) (mean (SD)) 

309.09 
(79.65) 

209.59 
(58.59) 

229.21 
(60.43) 

241.60 
(46.43) 

293.29 
(76.21) 

343.06 (80.92) <0.001 

insulin sensitivity 
(AU) (mean (SD)) 

7.97 
(3.34) 

13.78 
(5.16) 

7.09 (3.01) 10.15 (2.49) 3.83 (1.85) 4.59 (1.93) <0.001 

HDL_[mmol/l] 
(mean (SD)) 

1.34 
(0.32) 

1.98 
(0.76) 

1.45 (0.36) 1.35 (0.24) 1.25 (0.28) 1.31 (0.33) <0.001 

subcutaneous fat 
volume (l) (mean 
(SD)) 

9.58 
(3.19) 

8.23 
(3.94) 

12.41 (4.73) 18.36 (7.31) 17.69 (6.79) 20.49 (13.27) <0.001 

visceral fat volume 
(l) (mean (SD)) 

3.89 
(1.58) 

2.84 
(1.53) 

4.92 (1.97) 4.94 (1.51) 6.14 (2.17) 6.96 (3.75) <0.001 

liver fat content 
(%) (mean (SD)) 

3.23 
(2.91) 

2.28 
(2.59) 

5.47 (4.10) 3.67 (2.63) 20.62 (6.94) 8.81 (4.58) <0.001 

polygenic risk score 
(mean (SD)) 

-0.31 
(0.95) 

0.00 
(0.93) 

0.24 (1.01) -0.56 (1.03) 0.02 (0.92) -0.10 (1.00) <0.001 

 
*see Ref. 1 (Wagner et al, Nature Medicine 2021)  
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Supplementary Table 3 
Between-cluster comparison of key anthropometric and metabolic measures (two-sided 
ANOVA with post-hoc test using Tukey’s method) 
	 2-1	 3-1	 3-2	 5-1	 5-2	 5-3	 6-1	 6-2	 6-3	 6-5	
Age	 0.63	 0.15	 0.98	 0.95	 0.11	 1.33*10-04	 0.98	 0.16	 3.82*10-04	 1	
BMI	(kg/m2)	 4.06*10-04	 0.074	 4.97*10-14	 <1*10-14	 <1*10-14	 <1*10-14	 <1*10-14	 <1*10-14	 <1*10-14	 0.36	
AUC	glucose	 0.26	 <1*10-14	 <1*10-14	 <1*10-14	 <1*10-14	 0.0071	 2.64*10-09	 4.92*10-04	 <1*10-14	 <1*10-14	
Insulin	
secretion	(AU)	1.49*10

-13	 1.48*10-13	 0.12	 0.39	 1.47*10-13	 1.38*10-13	 0.0014	 1.01*10-13	 1.01*10-13	 1.77*10-12	

Insulin	
secretion	
adjusted	
(AU)*	

0.0092	 3.28*10-13	 4.09*10-13	 4.32*10-13	 3.83*10-04	 3.69*10-06	 0.99	 0.0045	 3.28*10-13	 3.76*10-13	

insulin	
sensitivity	
(AU)	

6.22*10-14	 0.08	 6.22*10-14	 7.46*10-14	 6.22*10-14	 6.22*10-14	 1.12*10-13	 6.22*10-14	 1.10*10-13	 0.044	

HDL	(mmol/l)	 <1*10-14	 0.092	 <1*10-14	 0.4	 <1*10-14	 8.36*10-09	 0.98	 <1*10-14	 1.04*10-04	 0.52	
subcutaneous	
fat	volume	(l)	 0.84	 0.059	 4.10*10-04	 <1*10-14	 <1*10-14	 2.78*10-10	 <1*10-14	 <1*10-14	 <1*10-14	 0.019	

visceral	fat	
volume	(l)	 0.093	 0.022	 3.54*10-09	 1.43*10-08	 <1*10-14	 1.61*10-05	 <1*10-14	 <1*10-14	 <1*10-14	 0.045	

liver	fat	
content	(%)	 0.71	 0.0021	 4.17*10-07	 <1*10-14	 <1*10-14	 <1*10-14	 <1*10-14	 <1*10-14	 7.06*10-13	 <1*10-14	

polygenic	risk	
score	 0.19	 2.23*10-05	 0.24	 0.051	 1	 0.065	 0.4	 0.92	 4.33*10-04	 0.69	

 
*adjusted for insulin sensitivity 
  

Page 21 of 22

For Peer Review Only

Diabetes
D

ow
nloaded from

 http://diabetesjournals.org/diabetes/article-pdf/doi/10.2337/db22-0441/694347/db220441.pdf by H
ELM

H
O

LTZ ZEN
TR

U
M

 M
U

EN
C

H
EN

 user on 20 D
ecem

ber 2022



Supplementary Figures 
Supplementary Figure 1 
Cluster-wise interactions between BMI and time in generalized linear mixed models are 
shown as marginal effects by plotting the modelled change of insulin secretion for low 
(mean-SD), mid (mean) and high (mean+SD) BMI. Effect sizes (ß) and p-values are provided 
for the interaction between BMI and time. 
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Supplementary Figure 2. A-B 
Sensitivity analysis investigating cluster-specific change of insulin secretion (A) and time x 
liver fat interaction (B) using AUC0-30 C-peptide/AUC0-30 glucose as insulin secretion index 
(outcome). Otherwise, these models feature the same exposure variables as the models 
shown in Figure 1. A, D
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