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Spatial transcriptomics landscape of lesions
from non-communicable inflammatory skin
diseases

A. Schäbitz 1,10, C. Hillig2,10, M. Mubarak3, M. Jargosch3,4, A. Farnoud2,
E. Scala1,5, N. Kurzen 3, A. C. Pilz4,5, N. Bhalla 6, J. Thomas3, M. Stahle1,
T. Biedermann 4, C. B. Schmidt-Weber 3, F. Theis 2, N. Garzorz-Stark1,4,
K. Eyerich1,5,7,10, M. P. Menden 2,8,9,10 & S. Eyerich 3,10

Abundant heterogeneous immune cells infiltrate lesions in chronic inflam-
matory diseases and characterization of these cells is needed to distinguish
disease-promoting from bystander immune cells. Here, we investigate the
landscape of non-communicable inflammatory skin diseases (ncISD) by spatial
transcriptomics resulting in a large repository of 62,000 spatially defined
human cutaneous transcriptomes from 31 patients. Despite the expected
immune cell infiltration, we observe rather low numbers of pathogenic disease
promoting cytokine transcripts (IFNG, IL13 and IL17A), i.e. >125 times less
compared to the mean expression of all other genes over lesional skin sec-
tions. Nevertheless, cytokine expression is limited to lesional skin and pre-
sented in a disease-specific pattern. Leveraging a density-based spatial
clustering method, we identify specific responder gene signatures in direct
proximity of cytokines, and confirm that detected cytokine transcripts initiate
amplification cascades of up to thousands of specific responder transcripts
forming localized epidermal clusters. Thus, within the abundant and hetero-
geneous infiltrates of ncISD, only a low number of cytokine transcripts and
their translated proteins promote disease by initiating an inflammatory
amplification cascade in their local microenvironment.

Non-communicable inflammatory diseases (ncISD) are based on
complex interactions of predisposing genetic background and envir-
onmental triggers that collectively result in altered immune responses.
Several hundred ncISD exist, including lichen planus (LP), atopic

dermatitis (AD), and psoriasis. Despite their heterogeneity,most ncISD
can be categorised according to adaptive immune pathways based on
the interaction of distinct lymphocyte subsets with the epithelium1,2.
Whereas psoriasis represents a classical type 3 immune cell mediated
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disease3,4, AD is dominated by type 25,6, and LP by type 17,8 immune
cells. Accordingly, psoriasis can be efficiently treated with antibodies
targeting cytokines of type 3 immunity, i.e., IL-17A or IL-239,10. Likewise,
AD is successfully treatedwith antibodies targeting cytokines of type 2
immune cells, such as IL-1311,12. However, without models to predict
therapeutic responses, many patients do not respond to a given
therapy. Furthermore, we lack curative approaches, since current
therapies neutralize cytokines, but do not target antigen-specificity.
More granular information regarding the profile, kinetics, and spatial
distribution of cytokine-secreting immune cells is needed to achieve a
substantial advance in addressing these challenges.

Emerging molecular techniques allow analysis of mRNA expres-
sion in single-cell and spatial contexts, thus enabling deep phenotyp-
ing of relevant cell types in ncISD13,14. Conventional single-cell
sequencing techniques require dissociation of the tissue and thereby
might bias the interpretation due to loss of tissue context. Spatial
transcriptomics (ST) overcomes this issue, allowing the study of the
inflamed skin architecture15,16, however, not on single cell resolution.
Investigating disease-driving cells together with their direct responder
signatures in a spatial context will offer further insights into the
pathogenic microenvironment of ncISD.

In thiswork,we investigate adaptive immune responses in lesional
and non-lesional skin of ncISD with spatial resolution using the Visium

technology of 10X Genomics. We observe that single transcripts of
disease-promoting cytokines, namely IFNG for LP, IL13 for AD, and,
IL17A for psoriasis initiate localized amplification cascades of specific
inflammatory responder genes that collectively represent hallmarks of
the respective disease pathogenesis. Thus, a few immune cells pro-
mote ncISD within an abundant heterogeneous infiltrate.

Results
To analyze the pathogenic microenvironment of non-lesional and
lesional ncISD skin, we characterised the spatial transcriptomic land-
scape of ncISD (Fig. 1a), covering LP, AD andpsoriasis.Gene expression
wasmeasured in frozen andH&E stained skin sections using theVisium
technology of 10X Genomics. Here, the tissue is spatially resolved in
so-called spots that are distributed equally over the whole tissue sec-
tion. Each spot has a diameter of 55 µm and is distanced from the
neighboring spot center-to-center by 100 µm. The generated dataset
included 90 samples (31 lesional, 14 matched non-lesional in dupli-
cates) and the transcriptomes of 62,968 spots. After removing
3649 spots with unique molecular identifier (UMI) counts below 1 and
mitochondrial fraction above 25% (Methods), 15,285 non-lesional and
44,034 lesional spots entered further analyses.

We proposed two complementary analysis workflows (Fig. 1b–g)
that allow insights into the spatial distribution and function of
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Fig. 1 | The study design highlighting the spatial transcriptomic dataset, the
analysis pipeline, and the validation cohorts and techniques. a ST dataset
consisting of 90 spatial samples (31 patients) 62 lesional samples, 28 non-lesional
samples, and three ncISD (lichen planus (LP), atopic dermatitis (AD), psoriasis
(Pso)) resulting in 62,968 transcriptomes. Within the analysis workflow, every spot
in all samples was manually annotated according to tissue localization (basal-,
middle-, upper epidermis, dermis depth 1-7). b Leukocyte-positive spots were
defined by the expressionof eitherCD2, CD3D, CD3E, CD3G, CD247 (CD3Z), or PTPRC
(CD45) or combinations of markers and cytokine transcript-positive leukocytes
were assigned to a tissue localization. c Differential gene expression (DEG) analysis

was performed on cytokine transcript-positive versus cytokine transcript-negative
leukocyte spots, followed by (d) pathway enrichment analysis. For spatial correla-
tion of cytokine transcript-positive leukocyte spots with cytokine responder genes:
(e) spots were labeled as cytokine or responder positive, (f) clusters of cytokines
and responders were defined, and (g) correlation analysis was performed.
h Hypothesis expecting higher cytokine mRNA counts than observed. General low
expression of cytokine transcripts in ncISD was confirmed using (i) in situ hybri-
dization, (j) single-cell sequencing, (k) bulk sequencing, (l) immunohistochemistry,
(m) flow cytometry, and (n) in vitro stimulation of human T cells.
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leukocytes producing central disease cytokines in human skin. For
simplification we depicted IL17A as a reference model in the figure
panel. The first workflow (Fig. 1b–d) identified the spatial location of
cytokine transcript-positive leukocyte spots (Fig. 1b, Methods) and
uses these spatial features for differential gene expression (DEG)
analysis of spots containing cytokine transcript-positive versus cyto-
kine transcript-negative leukocytes (Fig. 1c), followed by pathway
enrichment analysis (Fig. 1d). The second workflow (Fig. 1e–g) labelled
cytokine transcript-positive leukocyte spots (Fig. 1e), and then used
our density-based clusteringmethod (Fig. 1f) to correlate cytokine and
responder gene signatures according to spatial features (Fig. 1g). This
analysis led to the surprising observation that single cytokine tran-
scripts initiated amplification cascades of thousands of specific
responder transcripts, which are causative and disease driving in the
tissue microenvironment (Fig. 1h). We validated the results using a
variety of patient cohorts and techniques such as in situ hybridisation,
single-cell and bulk sequencing, immunohistochemistry, flow cyto-
metry and cell culture analysis (Fig. 1i–n).

Low numbers of disease-promoting cytokine transcripts are
expressed in lesional skin of ncISD
As cytokines represent important drivers of tissue inflammation in
ncISD, we examined the expression of the major effector cytokines
driving the common ncISD LP, AD, and psoriasis namely IFNG, IL13 and
IL17A, respectively, in spatial resolution (Fig. 2a). Taking the whole
section into account,wemerely identified434, 144 and224UMIcounts
for IFNG, IL13 and IL17A, respectively, distributed over 372, 103 and
154 spatial spots, respectively, in all lesional sections investigated
(Fig. 2e, Supplementary Fig. 1a, Supplementary Table 2). Generally,
respective cytokine transcripts were unequally distributed across all
samples, with AD being particularly heterogeneous (Supplementary
Table 2). As expected, the number of cytokine UMI counts was low in
non-lesional skin samples (Fig. 2b, c). Here, we observed mean UMI
counts of 1, 1 and 0 for IFNG, IL13, and IL17A, respectively (Supple-
mentary Table 2). However, even in lesional ncISD skin, we detected
only a few cytokine transcripts ranging from 1 to 37, 1 to 12, and 1 to 27
transcripts/section for IFNG, IL13 and IL17A, respectively (Fig. 2d, e,
Supplementary Table 2). To exclude that cytokine-transcript positive
spots were removed during quality control measures, we re-analyzed
removed spotswithUMI count <1 and/ormitochondrial fraction above
25% highlighting that those spots did not contain cytokine transcripts.
To not thin out cytokine positivity, we included double-positive spots
into our analysis, albeit them representing a minority (Supplementary
Figs. 1c, 2c). In relation to the mean of all other genes, IFNG, IL13 and
IL17A together were 900-times and 125-times less expressed in non-
lesional and lesional skin, respectively (Supplementary Fig. 1c) under-
lining the scarce presence of cytokines in human skin.

Despite their low frequency, the spatial distribution, however, was
distinct for the investigated cytokines. While IFNG (basal epidermis +
dermis 1 vs upper +middle epidermis + dermis 2-7 p = 1.66e−22) and IL13
(middle + basal epidermis + dermis 1 and dermis 2 vs upper epi-
dermis + dermis 3-7 p = 2.41e-17) were significantly enriched in the
lower epidermis layers and upper dermis layers, IL17A was detected in
all layers of the lesional epidermis and was scarcely expressed in the
dermis (epidermis vs dermis p = 2.96e−13) (Fig. 2a, d, Supplementary
Fig. 1a). We validated our observation of low transcript numbers and
low numbers of cytokine transcript-positive spots in inflamed tissue
throughout the ST dataset using various ex vivo and in vitro methods.
In situ hybridization identified very few cytokine transcript-positive
signals (Fig. 2f). The median number of transcript-positive cells per-
section for IFNG, IL13, and IL17AmRNAwere83, 4 and 11 for LP, AD, and
psoriasis, respectively, thus confirming our observations from the ST
analysis (Fig. 2g). In line, single-cell RNASeq analysis of psoriasis also
indicated few transcripts per IFNG or IL17A transcript-positive cells,
with a median UMI count for IFNG or IL17A of 1 per CD4+ cell and 4 per

CD8+ cell (Fig. 2h–j). We also investigated a large cohort of ncISD
patients using bulk RNA sequencing. Here, in a third of a 6mm skin
punch biopsy we detected a median of 1 and 25.5 counts/biopsy for
IFNG in non-lesional and lesional LP skin, respectively (Fig. 2k–m). In
AD, we measured a median of 2 and 4.5 counts/biopsy of IL13 and in
psoriasis amedian of 0 and 7.5 IL17A counts/biopsy in non-lesional and
lesional skin, respectively. Immunohistochemistry and flowcytometric
analysis of skin-infiltrating T cells showed comparable numbers of
cytokine-positive lymphocytes in lesional skin (histology: 13.3% IL-17A+

lymphocytes, flow cytometry: 4.2% CD4+IL-17A+, 4.9% CD8+IL-17A+

(Supplementary Fig. 2a–c)). Time course analysis showed that short T
cell receptor (TCR) stimulation in vitro resulted in transient mRNA
production with a peak at 10–30min and a total production time of
<6 h. Low numbers of mRNA transcripts per cell increased with pro-
longed TCR stimulation (Supplementary Fig. 2d).

Despite their lowUMI counts, cytokines showed a disease-specific
expression pattern in spatial resolution. IFNG transcripts were mostly
expressed in lesional LP (median/section:4), IL13 (median/section:1.5)
and IL17A (median/section:9) in AD and psoriasis, respectively,
(Fig. 2n–p, Supplementary Fig. 3b) with an emphasized expression in
upper skin layers (Fig. 3a, b, Supplementary Fig. 3a, c). The distinct
distribution pattern held true for other disease-driving cytokines such
as IL17F, IL21, IL22, TNF, IL10, and IL4 (Supplementary Fig. 1d). The
relative distribution of the signature cytokines confirmed that LP is a
type 1, AD a type 2, and psoriasis a type 3 immune-driven disease
(Fig. 2q, SupplementaryFig. 1d, e). Taken together, these findings show
that lownumbersof disease-specific cytokine transcripts are present in
inflamed skin and show a characteristic tissue distribution.

Cytokine transcript-positive spots and nearby spots are char-
acterized by specific gene expression signatures
To phenotype these cytokine transcript-positive spots, we performed
DEG analysis of cytokine transcript-positive versus cytokine-transcript-
negative spots. To specifically focus on immune cells, spots were pre-
sorted according to leukocytemarkers (CD2,CD3D, CD3E, CD3G,CD247
(CD3Z), or PTPRC (CD45)). Presence of at least one UMI count of a
single or combination of these markers was regarded as a leukocyte-
positive spot. Due to the size of every spot (Ø55µm), DEG generally
displayed genes derived from cytokine-producing cells and genes
originated from cells that respond to the given cytokine in close
proximity. Given that a spot with a diameter of 55 µM can contain
several cells, we used Tangram17 to deconvolute and predict the cel-
lular composition of cytokine transcript positive leukocyte spots
generating predictive spatial maps of cell types in a given spot. Here,
Tangram showed varying levels of T cells and innate immune cells as
main producers of cytokines in representative ST sections (Supple-
mentary Fig. 4a–i). In line with this, IFNG transcript-positive spots were
characterized by genes related to type 1 immune cells, such as GZMB,
FASLG, CD70, CXCR3, and CXCR6, and by genes that are induced by
IFNG in epithelial cells such as CXCL9, CXCL10 and CXCL11(Supple-
mentary Fig. 5a). IL13 transcript-positive spots presented themselves
with differentially expressed signatures being associated with type 2
cells, such as IL2, IL10, and SLAMF1, plus genes associated with their
tissue response, among them CCL17, CCL22, MMP12, and OSM (Sup-
plementary Fig. 5c). Genes associated with IL17A transcript-positive
spotswere IL17F, IL22, and IL26, and genes being inducedby IL17A in the
skin e.g., IL19, NOS2, S100A7A, DEFB4A, CXCL8, and IL36G (Fig. 3c, d).
This strength of ST in locating immune cell derived genes together
with their correlating tissue response was further illustrated by a gene
set enrichment analysis of lead cytokine transcript-positive spots,
showing specific signatures for both inflammation-driven cell signaling
and tissue reaction to inflammation (Fig. 3e, Supplementary Fig. 5b, d).

Using our psoriasis scRNA-seq dataset, unsupervised clustering
identified distinct cell types (Fig. 4a), and disease-driving cytokines
were almost exclusively detected in the lymphocyte cell cluster
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(Fig. 4b, Supplementary Fig. 6a). DEG analysis of cytokine transcript-
positive versus cytokine transcript-negative leukocytes further con-
firmed the spatially determined expression of immune cell derived
genes on single-cell level. However, response signatures that cytokines
induce in tissue cells were widely missing in the single-cell leukocyte
fraction as these genes were either not detected or found below sta-
tistical significance (Fig. 4c). This comparison, however, also

highlighted that 2 genes (CCL4 and CCL5) being induced by IFNG in
epithelial cells could also be detected in IFNG transcript-positive leu-
kocytes of the single-cell dataset (Supplementary Fig. 6b) and thereby
pointed out that these chemokines can be produced also by
leukocytes.

In essence, we identified gene signatures that define cytokine
transcript-positive spots in lesional skin and highlighted that spatial
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resolution allows us to understand not only immune cell derived
genes, but also the response they induce in close spatial proximity in
the inflammatory microenvironment.

Immune response is spatially correlated with cytokine tran-
script number
To further investigate the functional relevance of the observed few
cytokine transcripts in lesional ncISD skin, we studied the correlation
between cytokine transcripts and their induced response in sur-
rounding spots (Fig. 1e–g). To verify a specific response signature for
each cytokine and given the fact that cytokines weremostly expressed
in the epidermis, we stimulated primary human keratinocytes in vitro
with recombinant IFN-γ, IL-13 or IL-17A andperformedgene expression
arrays to retrieve differentially expressed genes (DEG) for each cyto-
kine (Supplementary Fig. 7a). After filtering these DEGs for log2FC and
p-value, the gene list was compared to the spatially derivedDEG lists of
each cytokine (Fig. 3c, Supplementary Fig. 5a, c) delivering a specific
response signature for IFN-γ (29 genes), IL-13 (4genes plus 10 literature
derived genes) and IL-17A (21 genes) (Supplementary Fig. 7b–d). The
determined responder genes were equally distributed overall the
dataset (Supplementary Fig. 7e–g) and 270 timesmore expressed than
IFNG, IL13 and IL17A together (Supplementary Fig. 7h). Initially, these
responder gene counts were correlated with their matching cytokine
counts in all epidermal ST sections without taking the spatial resolu-
tion into account (Fig. 5A–C). IFNG had a strong correlation with its
responders (weighted Spearman r = 0.62; p = 3.54e−10), whereas IL13
and IL17A had low positive correlations with the respective responder
genes (weighted Spearman r =0.39;p = 3.42e−4 and r = 0.22;p = 4.74e−2,
respectively). We were next interested if the spatial information would
improve the correlation between cytokine- and responder transcripts.
We therefore developed a density-based clustering method that uses
spatial information. By correlating the presence of a cytokine tran-
script with its responder genes in the same spot (radius 0) or neigh-
bouring spots (radius 1-9) we could identify distinct radiuses of action
for each cytokine (Fig. 5D, E). Whereas IL17A showed its strongest
effect in the direct surrounding (radius 0), effects of IFNG were quite
stable across all radiuses investigated with a peak at radius 4 (Fig. 5E).
IL13’s action peaked at radius 3 and declined at higher radiuses
(Fig. 5E). We then used the identified optimal radius of action for each
cytokine and leveraged our density cluster method to investigate the
correlation of cytokine- and responder transcripts. Density-based
clustering markedly improved the correlation between cytokines and
epidermal tissue response in the inflammatory microenvironment for
IFNG (weighted Spearman r =0.73; p = 1.5e−10), IL13 (weighted Spear-
man r =0.57; p = 1.3e−3), and IL17A (Pearson r =0.83; p = 9.13e−21),
(Fig. 5F–H). Strikingly, the few cytokine-positive spots having only
1–15 (IFNG: 1 to 8, IL13: 1 to 3, IL17A: 1 to 15 UMI counts/spot)
cytokine transcripts were able to induce up to 25,000 responder
transcripts in the surrounding spots indicating a tremendous amplifi-
cation of the cytokine signal and thereby an amplification of tissue
inflammation.

We furthermorewondered if the density-based clusteringmethod
could be challenged to identify new cytokine-specific response genes.
For this, we performed a DEG analysis comparing cytokine transcript-
positive spots with all remaining spots in the epidermis, which were
not part of any cytokine cluster of the respective classified radius of
action. With a log2FC cut-off of >1 and padj-value < 0.05, we thereby
identified 974 IFNG-related, 148 IL13-related, and 228 IL17A-related
upregulated DEGs (Supplementary Fig. 8a–c). By this, we data-driven
expanded our definition of cytokine-gene associations such as SRGN,
LYZ and CCL17, CLEC10A and GM2A for IFNG, IL13 and IL17A, respec-
tively (Supplementary Fig. 8).

In summary, regions with more cytokine transcripts had higher
response signatures compared to regions with no or less cytokine
transcripts. Consequently, the inclusion of the spatial information and
density-based clustering enhanced the biological signal for all cyto-
kines and their response signatures. Altogether, these results provide
comprehensive insights into the relationship between cytokine
transcript-expressing cells and their induced tissue response and
confirmour hypothesis that a lownumber of transcripts is sufficient to
induce pathogenic immune responses in the skin.

Discussion
Curative therapies of common inflammatory skin diseases have
seemed unrealistic as these diseases typically show an infiltrate of
abundant and heterogeneous immune cells into lesional skin. How-
ever, new molecular techniques and bioinformatic tools allow us to
dissect ncISD on a new level and to undertake first steps in the
development of curative therapies. Here, we investigated ncISD with
spatial resolution. Namely, we explored themolecular landscape using
DEG analysis and developed an algorithm to investigate the impact of
cytokine transcripts on their direct surrounding environment. We
demonstrated that a minority of immune cells actively drive the
pathology of ncISD by producing low numbers of signature cytokine
transcripts. Indeed, these few cytokine transcripts then translate into
thousand-fold higher induction of pro-inflammatory response genes,
thus inducing an amplification cascade forming an inflammatory
microenvironment and subsequently leading to tissue damage and
pathology. Our analysis is largely based on ST generating a unique
dataset of both lesional and non-lesional skin samples of patients
suffering from inflammatory skin diseases. Preserving spatial infor-
mation, while being independent of long digestion steps, is enor-
mously beneficial in tissue systems like skin with distinguishable
functional units. In essence, ST enables researchers to investigate
whole transcriptome sequencing data in the context of interacting
units in complex tissues. However, it is clear that ST is subjected to
methodical challenges. Further refinement needs to be implemented
in terms of the spatial resolution that with a distance from the neigh-
boring spot center-to-center of 100 µm is omitting valuable informa-
tion andwith a spot diameter of 55 µmcapturesmore than just one cell.
So far it cannot be ruled out that presence of one cell type does affect
the activity and response of another cell type. Being a technology with

Fig. 2 | Low numbers of disease-driving cytokine transcripts are expressed in
lesional skin of ncISD. a Representative ST sections for psoriasis with IL17A-, AD
with IL13, and LP with IFNG transcript-positive spots (Ø55µM). b, d UMI-counts of
IFNG (white), IL13 (dark grey) and IL17A (black) expressed in themanually annotated
tissue layers ‘upper, middle, and basal epidermis’ and ‘dermis depth 1-7’ in non-
lesional (b) and lesional skin (d) of all investigated samples (n = 82). GAPDH serves
as a housekeeping gene (HkG) (light grey). c, e Total cytokine (IFNG (white), IL13
(dark grey) and IL17A (black)) andGAPDH (light grey) UMI counts in all non-lesional
(c) and lesional (e) skin sections. f In situ hybridization for IFNG, IL13 and IL17A in
representative stainings of LP (upper left panel), AD (upper right panel) and
psoriasis (lower panel). Scale bar indicates 500 µm; red circles represent the size of
a spot (Ø 55 µm) and indicate the positivity for cytokine mRNA. g Quantification of
cytokine-positive cells per in situ section. Given are IFNG transcript-positive cells in

LP (n = 5), IL13 transcript-positive cells in AD (n = 3) and IL17A transcript-positive
cells in psoriasis (n = 5). h–j scRNA-seq analysis of psoriasis biopsies (n = 2, 2187
cells) indicating the UMI count of IFNG (178 cells), IL13 (9 cells), and IL17A (61 cells)
per cell in CD4 or CD8 co-expressing cells. k–m Bulk sequencing analysis of non-
lesional and lesional LP (n = 30) (IFNG), AD (n = 48) (IL13), and psoriasis (n = 90)
(IL17A) biopsies indicating the total UMI counts for IFNG, IL13, and IL17A, respec-
tively, in each biopsy. n–p UMI counts for IFNG, IL13, and IL17A in ST sections
separated by disease (each dot represents one section) (LP n = 22, AD n = 18, Pso
n = 18). Statistical significance was determined using One-Way Anova and Turkey’s
multiple comparisons test without FDR correction. **<0.01, ***<0.001.q Percentage
of disease relevant cytokines in LP, AD, and psoriasis normalised to 100%. LP lichen
planus, AD atopic dermatitis.
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extended resolution properties, we additionally performed in situ
hybridisation to support our ST analysis and, by delivering comparable
results, confirmed our central findings. To deconvolve spatial spots,
wemoreover applied the state-of-the-art Tangramalgorithm17, which is
a heuristic method to computationally predict the cellular composi-
tion of every spot of interest. Even though further reduction of the

spot diameter is highly desirable andmaywell be the next evolutionary
step in ST, our analysis shows that exploiting the capabilities of ST to
the fullest offers unique research opportunities and empowers to
investigate the architecture of skin inflammation.

Despite cytokine transcripts being rare in inflamed skin, theywere
detectable in disease- and spatial-specific patterns. The distribution
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matched that of antigens previously described in ncISD. In psoriasis,
cytokine transcript-positive leukocytes were almost exclusively found
throughout the epidermis, where epidermal and melanocytic auto-
antigens of psoriasis are expressed, e.g., ADAMTSL518, LL3719, or lipid
antigens presented via CD112. By contrast, antigens reported in LP are
located at the interface of the basal epidermis and the upper dermis,
e.g., DSG20, and severalHomsproteins21 as potential antigens ofADare
expressed in a similar location potentially leading to leukocyte acti-
vation.Ourfindings are supportedby recent publications investigating
cytokine mRNA positive cells in inflamed skin highlighting a pre-
dominant expression in the epidermis and a co-localization with CD3
expression22–24.

To understand the tissue response profile of cytokine transcripts
in inflamed skin, we characterized them in a tissue-dependent manner
by implementing the tissue annotations as a covariate. In the spatial
context, we identified a reliable response signature of type 3 immune
responses in the epithelium mediated by IL17A, IL17F, and IL26 to
inducemarkers of oxidative stress such asNOS2, neutrophil migration
such as CXCL8, and antimicrobial peptides like S100A7A and DEFB4A.
By contrast, markers of type 1 immunity were chemokines such as
CXCL925, CXCL10, and cytotoxic markers. The role for IFN-γ mediated
apoptosis and necroptosis in type 1 ncISD is well established7,8 and is
reflected by the expression of FASL and GZMB in IFNG+ spots. Type 2
immunity showed the least well-defined epithelial response signature,
mostly built of type 2 attracting chemokines such as CCL17, CCL19, and
CCL22. This signature was exclusively mediated by IL13 as IL4 tran-
scripts were virtually undetectable in lesional skin even of AD.

The insight that a few cytokine transcripts build the basis of a
massive amplification cascade of responder transcripts explains why
response genes rather than the signature cytokines themselves are
currently suggested as robust biomarkers for diagnostic or theranostic

purposes in ncISD. Examples are a molecular classifier for differential
diagnosis of psoriasis and eczema using NOS2 and CCL2726,27, predic-
tion of the response to anti-IL-17 therapies in psoriasis by IL-19 levels in
serum28, as well as correlation of the severity of psoriasis with
DEFB4A29 or the severity of AD with CCL17/TARC30.

A reliable identification of disease-driving immune cells and their
cognate antigen might pave the way for curative treatment strategies
of ncISD, e.g., antigen-specific immunotherapy. This has been
attempted e.g., in AD as a global strategy with modest clinical
efficacy31, most likely because there is the need to identify disease
endotypes defined by antigen-specificity of disease-driving immune
cells, within this heterogeneous disease. The proof-of-principle that
curative therapies of ncISD are possible was made in the autoimmune
blistering disease pemphigus vulgaris. Here, the causative antigen
desmoglein 3 (DSG3) is identical inmost patients and it is thus possible
to design targeted therapies for the whole patient group. In fact,
modified CAR T cell approaches neutralizing exclusively Dsg3-specific
cells resulted in impressive and sustained clinical improvements32,33.

Our density-based clustering method centers clusters around
cytokine transcript-positive spots, and consecutively optimises the
radius of considered cytokine-specific responder signatures in each
tissue slice according to in vitro stimulation of the epidermis. This
enabled us to analyse the impact of detected transcripts on their direct
surroundings forming local immunemicroenvironments and calculate
a distinct spatial correlation, independent of sample size and hetero-
geneous number of cytokines. Bulk and single cell sequencing of
lesioned skin suggested that few cytokines may drive inflammation,
and this is further strengthened by the observed correlation between
cytokine transcripts and responder genes in spatial context, thus giv-
ing further evidence of functional regulation. The clustering approach
can be generalised from epidermis to dermis when adjusting

Fig. 3 | IL17A transcript-positive leukocyte spots are characterized by Th17
markers and IL17A tissue response genes. a UMAP (Uniform Manifold Approx-
imation and Projection) plot showing the distribution of spots within the analyzed
diseases AD, LP and Pso and non-lesional (NL) skin. b ST spots expressing IL17A
transcripts and leukocyte marker genes and their location in epidermis or dermis.
IL17A-positive spots are highlighted in blue. c Volcano plot analysing the gene
expression profile of IL17A transcript-positive leukocyte (IL17A+) versus IL17

transcript-negative leukocyte (IL17A-) spots. Coordinates for IL17A (38.4/168.3) are
not shown. Benjamini–Hochberg was used to determine statistical significance.
dViolinplots of selectedgenes in IL17A transcript-positive leukocyte (IL17A+) and IL-
17A transcript-negative leukocyte (IL17A-) spots indicate the expression of gold
standard genes. e Pathway enrichment analysis of genes co-expressedwith IL17A in
spatial spots. LP lichen planus, AD atopic dermatitis, Pso psoriasis, ST spatial
transcriptomics.
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responder signatures, as well as to other diseases and tissues. Our
method can be leveraged for identifying biomarkers and disease dri-
vers in the future. Similarly, in-depth evaluation of data-driven cyto-
kine response genes will be a next step to purify distinct response
signatures. By integrating three-dimensional spatial information using
consecutive tissue sections, the algorithm could be further improved
to identify disease-driving networks across tissue sections from the
same patient, identifying antigen-specific T cell activation and may
highlight promising precise treatment strategies.

A blueprint for successful precision medicine can be found in
recent developments in oncology. Typically, tumors such as

malignant melanoma are characterized by thousands of distinct
mutations34. However, few of them are actually driver mutations
leading to tumor growth and metastasis35. Targeting these driver
mutations by specific targeted small molecules has led to dramati-
cally increased survival rates of melanoma patients in recent years36.
Here, we demonstrate parallels to inflammatory skin diseases—non-
cytokine-secreting immune cellsmay be seen as irrelevant bystander
cells, while targeting cytokine-producing immune cells is a promis-
ing strategy for effective and potentially curative treatments of
ncISD. A prerequisite is to localize these cells in the inflammatory
microenvironment and to identify the specific antigen that disease-
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driving immune cells react against, which may pave the way for
precision medicine in ncISD.

Methods
Research performed in this study complies with all relevant ethical
regulations. The study was approved by the local ethical committee
(Klinikum Rechts der Isar, 44/16 S) and all patients gave written
informed consent.

Study cohort
The study cohort consisted of patients suffering from the non-
communicable inflammatory skin diseases (ncISD) psoriasis vulgaris,
acute and chronic atopic dermatitis (AD), and lichen planus (LP).
Diagnosis was confirmed by a dermatologist on the basis of histolo-
gical assessment, patient history and clinical phenotype. Included
patients did not receive systemic treatment prior to skin sampling.
Two independent patient cohorts were used for the study: (1) a bulk-
and single cell sequencing cohort consisting of lesional and non-
lesional samples of psoriasis (male: n = 104, mean age 51,78 ± 14,24;
female: n = 84, mean age 56,04 ± 18,37) atopic dermatitis (AD) (male:
n = 63, mean age 48,83 ± 17,78; female: n = 31, mean age 48,36 ± 21,76),
and Lichen planus (LP) (male: n = 25, mean age 55,29 ± 12,31; female:
n = 33, mean age 59,05 ± 14,44) and (2) spatial transcriptomics cohort
including 31 patients. Characteristics of the spatial transcriptomics
cohort are given in Supplementary Table 1. Patients were not com-
pensated for study participation.

Spatial transcriptomics
Tissue sectioning, staining, library preparation: After obtaining non-
lesional and lesional skin biopsies (6mm), one third of each sample
was immediately snap frozen in liquid nitrogen. Samples were then
stored at −80 °C until cryosectioning. Upon cryosectioning, samples
were equilibrated to cryostat (NX70, Thermo Fisher Scientific) cham-
ber temperature for at least 30min and covered in optimal cutting
temperature compound (OCT). Sectionswere taken at 10 µmthickness
at −17 °C and directly placed onto the Visium Spatial Gene Expression
slide (10x Genomics). Slides were processed using the Visium Spatial
Gene Expression Kit (#PN-1000184, 10x Genomics) following the
CG000239 Visium Spatial Gene Expression Reagent Kits—User Guide
RevA. Optimal experiment conditions were investigated using the
Visium Spatial Tissue Optimization Kit (#PN-1000193, 10x Genomics)
on independent healthy, lesional and non-lesional skin samples, fol-
lowing the CG000238 Visium Spatial Gene Expression Reagent Kits—
Tissue Optimization Rev A. To perform HE staining, samples were
incubated in Mayer’s Hematoxylin (Dako) for 2min and Eosin (Sigma)
for 40 s, while Bluing buffer was omitted. Sections were permeabilized
for 14min and imaged using the Metafer Slide Scanning Platform
(Metasystems) or the IX73 Inverted Microscope Platform (Olympus).
Raw images were processed using VSlide 4.3 software (Metasystems).
Libraries of the individual datasets were pooled together separately
and thereafter sequenced by the National Genomics Infrastructure

(NGI, Sweden) on the Illumina NovaSeq platform using the recom-
mended 28-10-10-120 cycle read setup.

Sample annotation: HE images of corresponding samples were
evaluated and annotated manually by two trained dermato-
pathologists in a blinded manner using Loupe Browser (10x Geno-
mics). Spots being present on tissue parts that were clearly destructed
andbrokenoff the sectionweremarked and excluded fromany further
analysis. Samples were annotated for general morphology, anatomical
structures, and specific cell types. Regarding general morphology,
spots were categorized as “epidermis” or “dermis”. Spots that were
localised at the dermo-epidermal junctionwere additionallymarked as
“junction”. Epidermal spots were moreover classified as “upper epi-
dermis”, “middle epidermis” or “basal epidermis”. To make the posi-
tion of spots within the dermis comparable across the whole dataset,
all spots categorized as “dermis” were further divided into “dermis 1”
to “dermis 7” indicating the depth of the dermal layer in a standardized
fashion.

Data processing: 62,968 spots were sequenced and samples were
processed using 10x Visium Space Ranger-1.0.0. Quality control (QC)
measures were applied on 90 samples with 82 passing QC. The sec-
tionswere normalised and batch correctionwas applied to account for
variances between the slides. DEG and pathway enrichment analysis
were performed. Finally, the correlation between cytokine-secreting
leukocytes and cytokine-dependent responder genes was investigated
via a pseudo-bulk aggregation and a spatially weighted correlation
approach.

Due to acute inflammation, a high mitochondrial fraction was
anticipated, thus a conservative 25% cut-off was chosen. Spots with a
minimum of 30 detected genes, and genes which were observed in at
least 20 spots were considered. In addition, the QC enforced a mini-
mum and maximum UMI-count of 50 and 500,000, respectively. The
data were normalised using size factors calculated using the ‘scran’
R-package37, log10 transformed, and a pseudo count of one was added
to avoid log-transformation of zero38. Highly variable genes were
selected batch independently using ‘SCANPY-1.9.1’s’ high-
ly_variable_gene function with flavor cellranger39. The ST dataset was
batch corrected with ‘scanorama’40 accounting for the variances
between the projects. Further, the dataset was dimensionally reduced
by applying a principal component (PC) analysis with n_pcs = 15 and
embedded in a neighborhood graph with n_neighbors = 15. Subse-
quently, the data were represented in a 2D UMAP plot.

The mean number of spots per section was 767 ± 293. Here,
lesional skin was represented by significantly more spots per section
(823 ± 324 vs 633 ± 125, p = 0.0015) which reflects morphological
changes in the tissue due to inflammation. This was further supported
by the UMI counts per spot per section being 3189 ± 6620 in lesional
skin and 605 ± 613 in non-lesional skin (p =0.0002) (Supplementary
Table 2).

Clustering of transcriptomes: The ST analysis benefited from
expert annotations of dermato-pathologists, thus forming the clusters
based on epidermis layers, junction and dermis depths 1-7. For the

Fig. 5 | Immune response is spatially correlated with cytokine transcript
number. A–CWeighted Spearmancorrelation betweenoverall cytokine transcripts
and responder transcripts per whole tissue slice in the epidermis. Each point in the
plot represents the sum of all cytokine- and responder transcripts in a tissue
sample. The size of the points represents the number of observed cytokines on a
tissue slice. D Representative tissue slice of psoriasis showing IL17A expression in
relation to its responder signature and different radiuses around the IL17A-positive
leukocyte spot (Ø55µM). The filling of each circle represents the UMI counts
according to the scale on the right capped at 800 UMI-counts for either responder
genes (yellow circle) or cytokine transcripts (blue circle for IL17A). Red lines con-
nect neighboring IL17A transcript-positive spots that togetherwith the surrounding
responder gene positive spots create a cluster highlighted by a black line.
E Weighted Spearman correlation values for IFNG (orange), IL13 (red), and IL17A

(blue) depending on the radius from the cytokine transcript-positive leukocyte
spot. Strongest correlations for each cytokine are indicated with a circle. Triangles
and circles indicate correlations with p-values smaller and larger than 0.05,
respectively. F–H Spatial weighted Spearman correlation incorporating the spatial
relation of cytokines and their response located in the epidermis. Shown is the
radius for each cytokine with the highest correlation value. This is radius of 4 for
IFNG, radius of 3 for IL13 and radius of0 for IL17A. Each point in the plots represents
the sumof the counts of each cytokine and its responders in a cluster and the size of
each point represents the number of cytokine transcripts in a cluster. The color of
each spot is associated with the corresponding epidermis layer. Significance in
A–C and F–H was determined by two-sided p-value, the line was calculated using
the ordinary least square model, the shaded area indicates the 95% confidence
interval.
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clustering of the scRNA-seq data, we leveraged the Leiden algorithm
and determined the number of clusters by the maximum silhouette
score, and prior knowledge, i.e. enriched marker genes in stable clus-
ters. At a resolution of 0.1, the maximum silhouette score was 0.54.

Spatial enrichment of cytokines in specific skin layers: Unnorma-
lised count matrices, and a targeted analysis scrutinised for IL17A,
IFNG, and IL13was used to analyse cytokine expression compared to a
housekeeping gene, GAPDH, in ST. Cytokine expression levels were
quantified within the manually curated skin layers, and significant
spatial enrichments were tested with Wilcoxon signed-rank test.

Differential gene expression (DEG) and pathway enrichment
analysis: To characterize cytokine expressing cells and spots, leuko-
cytes were defined by expression of least one of themarker genes CD2,
CD3D, CD3E, CD3G, CD247 (CD3Z), and PTPRC (CD45) or combinations
of these markers in the ST and single-cell datasets. Presence of one
transcript was regarded as a positive association. Leukocytes were
defined as cytokine-positive if at least one UMI-count of the cytokine
gene was detected. Prior to the DEG analysis, the counts were nor-
malised using size factors calculated on the whole dataset.

Genes characterising cytokine-positive spots were comparedwith
cytokine-negative spots to obtain differentially expressed genes (DEG)
on a spot-level using ‘glmGamPoi’41 and the multiple testing method
‘Benjamini–Hochberg’ (BH). In addition to the unnormalised counts,
the calculated size factorswereprovided andbiological varianceswere
included as fixed effects in the design matrix. In the design matrix the
covariates cellular detection rate (cdr), patient, and annotation were
included. This enabled to account for variances between the fraction
of genes being transcribed in a cell42, and the difference in gene
expression between cells that are located in different tissue types and
are of different cell types, respectively. The following model was used
for the ST dataset

Y sg ∼ cdr +project +patient +annotation+ condition ð1Þ

or for the single psoriasis patient scRNA-seq dataset

Y sg ∼ cdr +annotation+ condition, ð2Þ

where Ysg is the rawcount of gene g in the cell or spot s. A gene is called
significantly differentially expressed if it meets the cut-off parameters
of p-value < = 0.05 and |log2FC | > = 1.

Pathway enrichment analysis was performed using the Bio-
conductor 3.16 packages ‘ReactomePA’43 and ‘org.Hs.eg.db’44 and illu-
strated using the Bioconductor 3.16 package ‘enrichplot’45. The p-
values of the pathways were corrected using the BH method and a p-
value and q-value cut-off of 0.05 was applied.

Experimentally derived cytokine responder gene signatures:
Responder gene signatures to type 1, type 2, and type 3 mediated
inflammation were developed by stimulating primary human kerati-
nocytes in vitro with recombinant IFN-y, IL-13 and IL-17A (20ng/ml
each), respectively (Supplementary Fig. 7A). After 16 h, total RNA was
isolated andwhole genome expression arrays (SurePrint G3HumanGE
8X60K BeadChip (#G4858A-028004, Agilent Technologies)) were
performed according to the manufacturer’s instructions. Gene
expression datawas filtered for p-value < 0.05, adjusted p-value < 0.05,
and log2FC > 1.5 for IL-17A and IFN-y or log2FC > 1 for IL-13. To further
identify themost relevant responder genes in vivo, gene expression of
cytokine transcript-positive spots residing in the epidermis was com-
pared with the respective differentially expressed genes of in vitro
stimulated keratinocytes (e.g. DEG of IL17A+ spots with IL-17A stimu-
lated keratinocytes). The overlapping gene signature was then curated
for genes being present in the response signature of all cytokines (e.g.
IL-17A-specific genes in the IFN-γ response signature and vice versa).
This, however, did only lead to exclusion of four IL-13-specific genes
that were also present in the IFN-γ response signature. Hereby, 21, 29

and 4 responder genes could be identified for IL-17A, IFN-γ and IL-13,
respectively (Supplementary Fig. 7B–D). To not rely on only 4 genes,
well-known, literature-based genes were added to the IL-13 response
signature (Supplementary Fig. 7).

Spatial correlation: To evaluate the correlation between cytokine
transcripts and responder signatures induced in surrounding tissue
cells, we annotated ST spots as either cytokine transcript-positive
(containing at least one cytokine count), or alternatively as other. As
the responder gene signature was obtained from in vitro stimulated
primary human keratinocyte experiments, the correlation analysis
focused solely on the epidermis. For leveraging the full power of ST,we
data-driven defined close proximity to cytokine transcript-positive
spots based on a density based clustering method (Fig. 5D, Methods).

Density-based clustering: We developed a density-based cluster-
ing method that leverages as seeds confirmed cytokine transcript-
positive spots. For this, we anchored on cytokine transcript-positive
spots, and expanded clusters by spots in their neighbourhood. The
neighbourhood of a cytokine transcript-positive spot is defined by a
radius, which is equal or larger than zero. In addition, clusters were
merged if they overlapped. The radius was individually optimised for
each cytokine, i.e. we explored different radiuses for IFNG, IL13 and
IL17A in a range from 0 to 9. The optimal radius is chosen by max-
imising the correlation between cytokine-positive clusters and their
corresponding responder gene signatures. By applying these condi-
tions, the clusterswere characterizedbasedon the density of cytokine-
positive spots and a fitted radius. In more detail, the adjacent cytokine
transcript-positive locations were obtained per sample using the
KDTree algorithm46 with the Euclidean metric and a maximum dis-
tance of 2.0. For this purpose, the index array provided by 10X
Genomics was used. Afterwards, the locations of adjacent cytokine-
positive mRNA capturing points were connected using a graph as
backbone. Here, the nodes were the cytokine-positive spots and the
edges equal the distance between the spots. Moreover, the nearest
neighbour spots were determined by

Cn =
Xr

j =�r

X2r�∣j∣

i =�2r + ∣j∣

sji ð3Þ

where r is the radius of the cluster and sji is the nearest neighbour spot
in row j and column i. Then the cytokine-positive graph was merged
together with the nearest neighbour responder spots resulting in an
agglomerated graph. Finally, the counts of responder genes and
cytokines in each cluster were read out and a weighted Spearman
correlation was calculated. The weights were determined by the
measured transcripts in the graph to account for the size and impactof
the density cluster. A line was fitted between cytokine counts and
responder genes using an intercept of 0.

Identification of cytokine-related genes: For identifying cytokine-
related genes within ST, we leveraged our density-based clustering
method. We used the normed and batch corrected epidermal ST data
and performed a DEG analysis between cytokine transcript-positive
spots and spots which were not included in the optimal radius density
clusters, 4, 3, and 0 for IFNG, IL13, and IL17A, respectively.
‘glmGamPoi’41 and the design matrix

Ysg ∼ cdr +project +patient +annotation+ condition, ð4Þ

where s defines a spot and g is the raw count of a gene, were used to
perform theDEG analysis. For details on variable definition, see section
on DEGs above. Accordingly, p-values were corrected using BH. DEGs
were determined requiring cut-offs of |log2FC| > 1 and FDR corrected
p-value < 0.05.

Pathway enrichment analysis was performed using the Bio-
conductor 3.16 packages ‘ReactomePA’43 and ‘org.Hs.eg.db’44.
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Illustration of the enriched pathways are created using the Bio-
conductor 3.16 package ‘enrichplot’45. The p-values of the pathways
were corrected using the BH method and a p-value and q-value cut-
off of 0.05 was applied.

Spot deconvolution: We used Tangram17 to identify cell types in a
spot leveraging as reference the preprocessed public scRNA-seq
dataset47. Tangram17 spatially aligns the single cell expression of the
cell types matching it to the expression profile in the spots.

Lesion and non-lesion samples from Pso and AD were extracted
and provided, together with a specimen from the ST data, as input to
the Tangram algorithm. The model was trained using the mode ‘clus-
ters’ (tissue_layer), cluster_label ‘subclass_label’ (full_clustering) and a
‘rna count based density prior’. The number of epochs was set to 400
and a CPU was used.

In situ hybridization
In situ hybridization was performed using the RNAScope Multiplex
Fluorescent V2 Assay for paraffin embedded tissue sections (#323135,
Advanced Cell Diagnostics, Newark, CA) on lesional skin sections of
psoriasis, AD, and LP (5 µm each). The assay was performed using
probes designed by ACD targeting human IL17A (#310931-C2), IFNG
(#310501) or IL13 (#586241-C3) mRNA. Positive control sections were
prepared using human peptidylprolyl isomerase B (PPIB) probe
whereas negative controls were assessed using bacterial gene probes.
Briefly, target probes were hybridized followed by signal amplification
according tomanufacturer’s protocol. Each probe was stained by Opal
690 (Akoya Biosciences, Marlborough, MA) using a single-plex setup.
Subsequently, skin sections were examined using microscope slide
scanner (Axio Scan.Z1 Zeiss, Germany) at 20x magnification. Then,
images were visualized using QuPath-0.3.2 software48. Images were
individually evaluated by two trained dermato-pathologists in a blin-
ded manner. Cells were counted positive if punctate-dot RNAscope
signal co-localized with nuclear staining.

Immunohistochemistry
5 µm sections of paraffin embedded skin samples were air-dried
overnight at 37 °C, dewaxed and rehydrated. Stainings were per-
formed by an automated BOND system (Leica) according to the
manufacturer’s instructions: epitope retrievalwas performed at pH6 in
epitope retrieval solution (DAKO) and incubatedwith goat anti-human
IL-17A (#AF-317-NA, R&D Systems) followed by a biotinylated anti-goat
secondary antibody (#BA-9500-1.5, Vector Laboratories). For detec-
tion of specific binding, streptavidin peroxidase and its substrate 3-
amino-9-ethyl-carbazole (DAKO) were used. All slides were counter
stained with hematoxylin. Stainings without primary antibodies were
used as negative control. Positive cells were counted in four to nine
visual fields per condition.

Isolation of primary human T cells and in vitro stimulation
Peripheral blood mononuclear cells were isolated from peripheral
blood of healthy donors (n = 1male, n = 2 female, age 38 ± 7) by density
centrifugation. Primary human Pan T cells were then isolated using
magnetic beads (Pan T cell isolation kit, #130-096-535, Miltenyi Bio-
tec), followedbyCD4 (humanCD4microbeads, #130-045-101,Miltenyi
Biotech) or CD8 (human CD8 microbeads, #130-045-201, Miltenyi
Biotec) isolation. Defined numbers of cells were stimulated with pla-
tebound anti-CD3 and anti-CD28 antibodies (0.75 µg/ml; # 555329, #
555329, BD Biosciences) for 10min, 1 h or 6 h, or were left unstimu-
lated. Stimulated T cells were collected after 10min, 30min, 1 h, 6 h,
12 h, or 24 h stimulation and RNAwas isolated for subsequent real time
PCR analysis with the following primers: IL17A (fw: CAATCCCCAGTTG
ATTGGAA; rev: CTCAGCAGCAGTAGCAGTGACA), IFNG (fw: TCAGCC
ATCACTTGGATGAG; rev: CGAGATGACTTCGAAAAGCTG), IL13 (fw:
TGACAGCTGGCATGTACTGTG; rev: GGGTCTTCTCGATGGCACTG),

18 S (fw: GTAACCCGTTGAACCCCATT; rev: CCATCCAATCGGTAG
TAGCG).

Flow cytometry of skin T cells
Primary human T cells (n = 52) were isolated by digestion of fresh
human skin biopsies (Ø 6mm) in RPMI containing FCS, Collagenase
type IV (Worthington), and Deoxyribonuclease I (Sigma) at 37 °C
overnight followed by dissociation using the gentleMACS Dissociator
(Miltenyi Biotec). Freshly isolated skin T cells were passed over a cell
strainer and directly used for flow cytometric analysis. For flow cyto-
metric analysis, T cells were stimulatedwith PMA/Ionomycin (10 ng/ml
and 1 µg/ml, respectively) (both Sigma) for 5 h in the presence of Bre-
feldin A and Monensin (both BD Biosciences). Surface staining was
performed at 4 °C and followed by fixation/ permeabilization using the
fixation/permeabilization kit (BD Biosciences). Staining of intracellular
cytokines was performed at room temperature. Antibodies used were
CD3-Bv650 (#563852, clone UCHT1, dilution 1:50), CD4-BV421
(#562842, clone L200, dilution 1:20), CD8-APCCy7 (#557834, clone
SK1, dilution 1:20) (BD Biosciences), IL-17A-PeCy7(#512315, clone
BL468, dilution 1:20), IFN-γ-PerCPCy5.5 (#506528, clone B27, dilution
1:100), TNF-α-BV510 (#502950, clone MAB11, dilution 1:100) (BioLe-
gend), IL-22-Pe (#12-7229-41, clone 22URTI, dilution 1:20, eBioscience),
IL-10-APC (#130-108-135, clone JES3-9D, dilution 1:10, Miltenyi Biotec).
Flow cytometry data was analysed and visualized using FlowJo 10.7.1.

Single-cell RNA sequencing
A lesional skin sample (6mm) was taken from a psoriasis patient and
digested immediately for 3 h at 37 °C using theMACSwhole skin tissue
dissociation kit (Miltenyi Biotec) and the gentleMACS Dissociator
(Miltenyi Biotec) according to manufacturer’s protocol. The obtained
cells were stained for CD3 (#300450, Biolegend,) and CD45 (#563880,
BD Biosciences) and sorted using a FACSAria Fusion (BD Biosciences).
Here, dead cells and doublets were gated out and cells sorted based on
size (FSC/SSC) and CD3/ CD45 expression into three populations: skin
cells (keratinocytes), T cells (CD45+, CD3+), and APCs (CD45+, CD3-).
The obtained cells were mixed in equal ratio (1:1:1) to a final cell
number of 16,000andused as input for the sc librarygeneration by the
10x Genomics kit (Chromium Next GEM SingleCell 3' GEM, Library &
Gel BeadKit v3.1, #1000121) according to themanufacturer’s protocol.
The libraries were sequenced on an Illumina HiSeq4000 via paired-
ends with a read length of 2 × 150bp at a sequencing depth of 40
million reads.

scRNA-seq data processing: The pre-processing and QC of our
scRNA-seq data was identical to ST, besides enforcing a minimum of
500 genes per cell, and a minimum and maximum UMI-count of 600
and 25,000, respectively. In addition, according to the scrublet
pipeline22, no doublets were detected. Additionally, no batch effect
was detected in the scRNA-seq data and the number of PCs was set to
n_pcs = 7. On the public dataset from Reynolds, Gary, et al. “Develop-
mental cell programs are co-opted in inflammatory skin disease”.47 we
required aminimum of 250 genes per cell to bemeasured with at least
1 UMI-count. Further, a cell should haveminimum andmaximumUMI-
count of 500 and 400,000, respectively. The ribosomal fraction
should be in the range of 5% to 60% and themaximumMT-fractionwas
set to 25%. Doublets were removed using scrublet having a score above
0.6. The data was normalized using SCANPY-1.9.1 and 4000 HVGwere
determined per sample. Further, PCA was applied with n_pcs = 10 and
the dimensionally reduced data was embedded in a neighborhood
graph with n_neighbors = 15. Subsequently, the data were represented
in a 2D UMAP plot.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
RNA sequencing data can be obtained at GEO (www.ncbi.nlm.nih.gov/
geo accession number: GSE206391). This study did not generate new
unique reagents or use publicly available datasets. Source data are
provided with this paper.

Code availability
Source code is available at github: https://github.com/Chillig/ST_
biostatistical_analysis, and zenodo [https://zenodo.org/record/
7309851#.Y3HXGy1Q1QI]49.
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