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Abstract

The laboratory mouse ranks among the most important experimental systems for biomedical 

research and molecular reference maps of such models are essential informational tools. Here, 

we present a quantitative draft of the mouse proteome and phosphoproteome constructed from 

41 healthy tissues and several lines of analyses exemplify which insights can be gleaned from 

the data. For instance, tissue- and cell-type resolved profiles provide protein evidence for the 

expression of 17,000 genes, thousands of isoforms and 50,000 phosphorylation sites in-vivo. 

Proteogenomic comparison of mouse, human and Arabidopsis reveal common and distinct 

mechanisms of gene expression regulation and, despite many similarities, numerous differentially 

abundant orthologs that likely serve species-specific functions. We leverage the mouse proteome 

by integrating phenotypic drug (n>400) and radiation response data with the proteomes of 66 

pancreatic ductal adenocarcinoma (PDAC) cell lines to reveal molecular markers for sensitivity 

and resistance. This unique atlas complements other molecular resources for the mouse and can be 

explored online via ProteomicsDB and PACiFIC.
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The mouse is arguably among the most important mammalian model systems for basic, 

translational and biomedical research1. The initial sequencing of the mouse genome in 2002 

as well as systematic transcriptome analyses of mouse tissues in 2004 marked important 
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milestones as these provided important informational tools to better understand the human 

genome and human (patho-)physiology2,3. As most biological processes are controlled by 

proteins and their post-translational modifications (PTMs), adding a proteomic dimension is 

a logical consequence. An initial analysis of 28 mouse tissues provided evidence for ~7,300 

proteins and an earlier phosphoproteomic investigation identified ~36,000 phosphorylation 

sites (p-sites) in 9 tissues4,5. Here, we substantially extend these efforts by analyzing the 

proteomes and phosphoproteomes of 41 adult tissues of C57BL/6N mice covering 15 major 

anatomical systems and 66 KrasG12D pancreatic ductal adenocarcinoma (PDAC) cell lines 

using a quantitative mass spectrometry (MS)-based approach (Fig. 1a).

Results

A high-quality map of the mouse proteome

Following state-of-the-art protocols for protein identification and error propagation control 

(see Methods), we identified 17,883 proteins (17,771 and 12,971 from tissues and cell 

lines, respectively) representing 16,995 of the 22,437 protein-coding genes annotated 

in UniProtKB (Fig. 1b, Supplementary Table 1). The phosphoproteomes (Fig. 1c, d, 

Supplementary Table 2) covered 40,562 and 22,113 p-sites for tissues and cell lines 

respectively. Re-analysis of the aforementioned previously published studies showed that, 

albeit still incomplete, our current draft more than doubles the coverage of both proteomic 

levels and encompasses nearly all of the previous data (Supplementary Fig. 1a, b). The 

high quality of the proteomic data is underscored by several lines of evidence: about 99% 

of all proteins are backed by peptide spectra that are highly similar (spectral angle, SA > 

0.7) to the ones predicted by the deep learning method Prosit6 (Supplementary Fig. 1c). 

Nearly 95% of all proteins are supported by at least two peptides and the median sequence 

coverage of proteins is 36% (Supplementary Fig. 1d). When tightening the FDR threshold 

from 1% to 0.1%, >80% of the proteins are retained and, at an arbitrary but high score 

cutoff of the search engine Andromeda of 100, less than 25% of the confidently localized 

p-sites are lost (Supplementary Fig. 1e). Replicate analysis showed that both the proteome 

and phosphoproteome measurements were generally qualitatively and quantitatively well 

reproducible and that differences between tissues are far larger than between replicates of 

the same tissue (Supplementary Fig. 2a-c).

As observed in recent maps of the human and Arabidopsis proteomes7,8, protein and 

phosphorylation levels varied greatly between tissues and cell lines. The core ~5,400 

proteins detected in all tissues show common expression patterns, which account for ~80% 

of the total protein abundance in each tissue and are functionally enriched for proteins 

involved in key physiological processes of any cell (Fig. 1c, d and Supplementary Fig. 3a, 

b). The heterogeneity of the phosphoproteome was even more pronounced such that only 

2.5% of all p-sites were detected in all tissues (2.7% in all cell lines). Challenges in correctly 

localizing p-sites may have contributed to this low apparent consistency, but the bulk of the 

phosphorylation clearly reflects differences in the complex and dynamic phosphorylation 

signaling processes in the different tissues.

To facilitate the use of the molecular atlas by the scientific community, all data have 

been deployed to ProteomicsDB (https://www.proteomicsdb.org)7. Among many features, 
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researchers can review, compare, validate, and download tandem mass spectra, construct 

or predict spectral libraries, visualize gene expression at single- or multi-omics level, 

evaluate the extent of PTMs on a protein of interest, model and estimate drug and 

radiosensitivity based on (phospho)proteome abundance or cross-interrogate hypothesis 

between the mouse and human proteomes. In addition, all data collected for the mouse 

PDAC (mPDAC) cell lines can be explored using the interactive web application PACiFIC 

(http://pacific.proteomics.wzw.tum.de), which allows users to interrogate the results of the 

phenotypic screening data, enabling the identification of protein markers of sensitivity or 

resistance (Fig. 1e).

Proteomic annotation of the mouse genome

Estimates for the number of protein-coding genes of the mouse genome have varied over 

time but currently stand at 22,000-24,0009,10. At the time of writing, the UniProt Mus 
musculus complete proteome set lacked experimental evidence at the protein level for 7,999 

genes (~36%). Our analysis confirmed expression of 13,538 genes with prior evidence at the 

protein level (PE1 definition of UniProt) and identified protein products for an additional 

3,457 protein-coding genes that had not yet been observed as proteins (evidence levels 

PE2-5; Fig. 2a). The data quality for these proteins was identical to that of PE1 proteins 

(Supplementary Fig. 4a-c). Exemplified by the putative adenosylhomocysteinase 3 protein 

(Fig. 2b, Supplementary Fig. 4d), 1,663 splice variants of 776 genes were identified from 

the proteomic data. By applying rigorous FDR control and computational validation (see 

Methods), expression of 712 distinct translation products of small open reading frames 

(sORFs) identified by RIBO-seq (sORFs.org) were observed as proteins. Most of these 

candidate sORFs were located near or within the coding region of a gene and all have an 

AUG or a near-cognate initiation codon. Interestingly, the detected sORF-encoded peptides 

(SEPs), span the entire abundance range of all detected peptides and they are translated in 

multiple tissues or cell lines. This may suggest that sORFs are canonical components of 

the mouse proteome but these need to be validated independently (Fig. 2c-e, Supplementary 

Table 3).

We further explored the data for unexpected proteoforms such as mutations or PTMs. Using 

an open-search strategy11,12 (see Methods), we identified widespread mass deviations of 

peptides representing otherwise canonical protein sequences (Supplementary Fig. 5a). Many 

can be attributed to chemical artifacts occurring during sample preparation such as oxidation 

or deamidation but others are more likely to occur in cells as a result of enzymatic activity or 

chemical reactions of activated metabolites. We particularly investigated mass shifts possibly 

representing amino acid substitutions (missense mutations, Supplementary Fig. 5b). Using 

a series of stringent filters, as well as peptide spectra validation (see Methods), 2,418 novel 

candidate protein variants could be identified from the proteomic data. We note that these 

remain to be validated by additional means (Supplementary Fig. 5c, d, Supplementary Table 

3). Future investigations can be envisaged that make use of this data e.g. for refining gene 

models or identifying new genes not present in the sequence database used in this study.
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Protein expression and phosphorylation characteristics of tissues and cell lines

The phosphoproteomic data shows that more than half of all mouse proteins are 

phosphorylated at least once. Protein expression and phosphorylation levels show broadly 

similar abundance characteristics in that 90% of all proteins and p-sites are within a range 

of 25x around the median abundance level (Fig. 3a). A relatively small fraction of proteins 

makes up 90% of the total abundance, an observation that is more pronounced in tissues than 

in cell lines, and stronger in the proteome than the phosphoproteome (Fig. 3b). This suggests 

that the bulk of the phosphoproteome in a tissue is relatively stable and may contribute 

to the spatial and structural organization of the cell. Given that cancer cells in culture 

undergo cell division much more frequently than cells in tissues, it may not be surprising 

that p-proteomes of the cell lines appeared more dynamic.

We and others have previously observed that most proteins are expressed in most tissues 

but often in vastly different quantities13 and that the latter is an important feature of the 

functional characteristics of a (differentiated) cell. This is also the case for the mouse 

proteome. Only relatively few proteins (< 4% for tissues, and < 7% for cell lines) and 

p-sites (< 9% for tissues, and < 6% for cell lines) were detected in a tissue- or cell-specific 

manner (Fig. 1c-d). Consequently, hierarchical clustering of proteome expression showed 

that all PDAC cell lines form one large cluster which locates close to the cluster containing 

the pancreas (Fig. 3c). Neuronal tissues clearly segregated from the rest but anatomically 

adjacent or functionally related organs clustered more closely than organs of distinct 

function such as the immune or female reproductive system. The functional specialization 

of a tissue was also clearly apparent from the list of highly abundant proteins within a 

tissue (Fig. 3d). For instance, protein expression in the frontal lobe (FRL) is dominated by 

synucleins (Snca, Sncb), the major myelin protein Plp1 and the synaptic proteins Syt1 and 

Syn1. The tongue proteome is dominated by proteins involved in muscle contraction and 

five of the 10 most abundant proteins in the eye are crystallins, essential components of the 

visual system.

Evolutionary conservation of factors regulating protein abundance

The amount of protein in a cell is controlled by a multitude of factors operating at the 

transcriptional, translational and post-translational level. Several insights have been obtained 

by integrating (paired) transcriptomic and proteomic data collected for tissues of the same 

species 8,14–16. Here, we asked to what extent molecular determinants of protein abundance 

regulation are conserved between species. We collected RNA-Seq data (n=29) from the 

exact same tissues that underwent proteome analysis, leading to the quantification of 21,261 

transcripts (genes) that were expressed in at least one tissue (Supplementary Fig. 6a, 

Supplementary Table 4). As observed before, protein and transcript abundance are positively 

correlated (Pearson correlation r>0.5 for all tissues) and with a nearly quadratic relationship 

indicating that high-abundant transcripts are generally more efficiently translated and/or 

more stable than low-abundant transcripts (Supplementary Fig. 6b, Supplementary Fig. 7, 

Supplementary Table 5). We also observed limited similarity in the abundance distributions 

of the proteomes and transcriptomes of the tissues. Proteins are more evenly distributed 

across the detected abundance range than transcripts, implying the contribution of factors 

other than mRNA levels for controlling protein abundance (Supplementary Fig. 6c).
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We next investigated if molecular features previously identified for human and 

Arabidopsis8,16 have predictive power for explaining protein-level variations in the mouse 

(Supplementary Fig. 6d). Indeed, for all three species, the analysis revealed that the largest 

proportion of variation in protein abundance within tissues can be explained by mRNA 

levels, followed by codon usage, protein-protein interactions and mRNA sequence motifs 

(Fig. 4a). Interestingly, codon usage appeared to be of a higher relative importance in 

Arabidopsis than in mouse and human and, in fact, many more codons from Arabidopsis 

were selected by the model than for the two mammalian species (Supplementary Fig. 

6e). Similarly, mRNA motifs located in the 5'-UTR, coding region and 3'-UTR differed 

substantially between species indicating that regulatory mRNA sequence elements are used 

with variable preferences (Supplementary Fig. 6f, g). We also included phosphorylation 

information in building the models as this PTM has been associated with both increasing and 

decreasing levels of specific proteins. The analysis showed that the phosphorylation status of 

a protein is indeed an independent predictor of its abundance, yet, the overall contribution at 

steady state levels is rather small (Supplementary Fig. 6h).

Conserved and divergent features of the mouse and human proteomes

Because the mouse is an important model for human (patho-)physiology, it is particularly 

interesting to investigate how the proteomes of the two species are similar or different. To 

this end, we correlated the expression of the 10,869 orthologous protein pairs contained in 

this study with a human proteome recently published by the authors17 (representing 65% 

of all human:mouse orthologs, Fig 4b, Supplementary Table 6). Overall, we observed a 

high degree of correspondence (Pearson R=0.75; Fig. 4c and Supplementary Fig. 8a, b). 

However, PCA analysis of protein abundance revealed a strong separation of species rather 

than tissues (Fig. 4d). This separation is driven by a set of 954 proteins that we define as 

species-variable orthologs (SVOs; see Methods) and whose abundances vary more between 

species than tissues (Fig. 5e, Supplementary Fig. 8c).

Based on transcriptome data, the mouse ENCODE Project18 concluded that most 

orthologous genes show conserved co-expression between human and mouse. Neighborhood 

analysis of conserved co-expression (NACC) showed that this is also the case at the 

proteome level (Fig. 4f and Supplementary Fig. 9). Despite the general conservation of 

proteome expression, examples for extensive differences can be observed particularly for 

certain tissues (Fig. 4g). Gene ontology analysis showed that these differences can often 

be attributed to specific biology. For example, in the heart, many differentially abundant 

proteins are involved in the regulation of heart rate, possibly reflecting the 10x faster heart 

rate of mice compared to humans (Fig. 4h and Supplementary Fig. 10a). For the liver (Fig. 

4i and Supplementary Fig. 10b), most of the strongly differentially abundant genes are 

cytochrome P450 enzymes (CYPs), ATP-binding cassette transporters (ABCs) and solute 

carrier transporters (SLCs). A few of these genes (i.e. Abca1, Abca6, Cyp1a1, Cyp2e1, and 

Cyp7a1) have been reported to oscillate in terms of abundance19. It is, therefore, possible 

that the source of the differences between mouse and human may be in part the result of 

an unsynchronous circadian rhythm at the time of the livers sampling. The differentially 

expressed protein families are of considerable pharmacological interest, due to their roles 

in drug metabolism. The large expression differences between mouse and human may, 
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therefore, reflect the often vast differences in the pharmacokinetics, pharmacodynamics and 

ADME/TOX characteristics of therapeutic drugs in these two species. If not taken into 

account, this can limit the ability to translate results of drug studies obtained in mice to the 

human situation20.

Phospho(proteome) activity landscapes reveal markers of radiation response

We and others have previously shown that the proteomic and phosphoproteomic landscapes 

of cancer cell lines can often explain their sensitivity or resistance to drugs based on 

single or groups of proteins21–23. Despite limitations, murine cell lines are still important 

tools for research and drug discovery, particularly for diseases such as pancreatic ductal 

adenocarcinoma (PDAC) for which only few human cell lines exist. We, therefore, extended 

the project to the (phospho)proteomes of 66 PDAC cell lines and measured their sensitivity 

to 5 doses of ionizing radiation (Fig. 5a, Supplementary Table 7).

Using machine learning (i.e. combining a recursive partitioning tree for feature selection 

and a random approach forest for predicative modelling; see Methods), we integrated the 

quantitative radiation and proteomic data to select 20 proteins that are associated with 

radiation sensitivity or resistance (Fig. 5b). The strongest sensitivity marker was Lrrfip1 

(P=1.2e-9, R=-0.66, n=66, Fig. 5c), a cytosolic nucleic acid sensor that mediates the 

production of type I interferon, which is known to be involved in radiation response24,25. 

Conversely, high expression of Actl6a, a member of the BAF chromatin remodeling complex 

was strongly associated with radiation resistance (P=1.7e-7, R=0.59, n=66) confirming 

recent observations26. Training a classifier based on these 20 proteins showed reasonable 

accuracy in predicting radiation response (R=0.74, 0.75 and 0.66 for training, validation and 

hold-out data, respectively; Fig. 5b inset). Taking the same approach for the phosphorylation 

data also identified candidate markers that showed reasonable prediction accuracy (R=0.80, 

0.81 and 0.81 for training, validation and hold-out data, respectively; Fig. 5d). While many 

of these p-sites had been detected before, their functions are generally not understood but 

can now be placed in the functional context of radiation response. For example Tcof1 

pSer1227 (P=3.62e-8, R=0.62, n=66) is associated with radiation resistance. Following DNA 

damage, it has been shown that the nucleolar localization of NBS127, a major player in 

DNA repair, is triggered in a Tcof1 phosphorylation-dependent manner, with both CK2 

and ATM kinases responsible of the phosphorylation of Tcof128. Consistently, silencing of 

TCOF1 expression radiosensitized rat progenitor cells29, while phosphorylation levels of 

Tcof1 disproportionately increased in radioresistant cells. Our analysis instead suggests that 

high levels of Tcof1 pSer1227 could be an indicator of low resistance to radiation treatment.

Based on the hypothesis that the response to radiation could associate proteins or p-sites 

involved in the same molecular pathway, we submitted all statistically highly significant 

candidates (R>0.5 or <-0,5 and P<0.0001) to STRING analysis30. One of the top hits was 

mitochondrial respiration and thermogenesis in which high protein expression indicated 

radiation resistance (Supplementary Fig. 11a). At the level of phosphorylation, a strong 

STRING network was detected for proteins involved in cellular response to DNA damage 

and chromatin modification (Fig. 5e). Among these are p-sites of Brca1 (pSer1149, 

P=1.4e-5, R=0.78, n=22; pSer1152, P=1.2e-4, R=0.54, n=44; pSer1154, P=2.3e-4, R=0.52, 
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n=45), the latter two are known substrates of ATM and CDK131–33. As all three sites are 

in close vicinity, we hypothesize that pSer1149 might also play a role in DNA damage 

response.

Phospho(proteome) activity landscapes reveal markers of drug response

Integrating the (phospho)proteomic and cell viability data of 36 cell lines in response 

to 407 drugs (Fig. 5a, Supplementary Table 7) gave rise to a number of interesting 

molecular pharmacodynamics biomarkers. For instance, elastic net regression (Fig. 5f 

and Supplementary Fig. 11b) revealed that high Sirt6 protein abundance is a sensitivity 

marker for the MAP2K1/2 inhibitors Trametinib (P=6.1e-8, R=-0.77, n=35; Supplementary 

Fig. 11c) and Combimetinib (P=8.4e-5, R=-0.62, n= 35; Supplementary Fig. 11d). While 

this has been noted before34, our analysis places OTS514 (P=6.1e-4, R=-0.55, n=35; 

Supplementary Fig. 11e), an inhibitor of the MAPKK-like kinase TOPK, and its target 

into the same functional context35,36. Another example is Shroom2, whose abundance is 

correlated with KX2-391 sensitivity (P=1.3e-5, R=-0.70, n=31; Supplementary Fig. 11f), a 

non-ATP-competitive inhibitor of Src kinase and tubulin polymerization. Shroom2 is a key 

mediator of the RhoA–ROCK pathway that regulates cell motility and actin cytoskeleton 

organization37 as well as regulating the accumulation of γ-tubulin and cell morphology38. 

Interestingly, our analysis showed that Shroom2 is also a sensitivity marker of three 

further drugs targeting tubulin polymerization (Colchicine, Plinabulin, Vincristine; Fig. 

5g). Shroom2 expression also places Rigosertib (a PLK1 inhibitor) into the same group, 

lending support to prior suggestions that Rigosertib also acts as a (direct or indirect) tubulin 

polymerization inhibitor39,40. Candidate drug response markers were also identified at the 

phosphorylation level. For instance, elastic net regression revealed that the abundance of 

Mical2 pSer515 is a resistance marker of several drugs targeting proteins involved in the 

regulation of the cell cycle and the DNA damage response. Examples include the pan-CDK 

inhibitor AT7519 (P=1.2e-5, R=0.66, n=36), the CHEK1 inhibitor Rabusertib (P=4.2e-5, 

R=0.63, n=36) or the ATR inhibitor AZD6738 (P=9.6e-6, R=0.67, n=36; Fig. 5h). Mical2 

is a nuclear monooxygenase that regulates transcription via depolymerization of nuclear 

actin which makes the above associations functionally plausible even though no function for 

pSer515 has been reported yet.

Discussion

Many further uses of the transcriptomic, proteomic, phosphoproteomic, as well as 

phenotypic radiation and drug response data reported in this study can be envisaged. 

Full availability of the underlying data as well as many web-based analysis tools in 

ProteomicsDB and PACiFIC should assist scientists in future work aiming at elucidating 

molecular determinants governing biological processes in the mouse. In turn, this will also 

lead to a better understanding of the mouse as a model for human pathology and drug 

discovery.
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Methods

Tissue preparation

C57BL/6N mice were maintained in IVC cages with water and standard mouse chow 

according to the directive 2010/63/EU, German laws and GMC housing conditions 

(www.mouseclinic.de). Mice (16 weeks old, m/f) were euthanized with CO2. Afterward, 

animal were perfused with 50 mL of precooled phosphate buffered saline, supplemented 

with cOmplete™ EDTA-free protease inhibitor cocktail (Roche) and a mixture of 

phosphatase inhibitor cocktail 1, 2 and 3 (Sigma-Aldrich). A total of 41 tissues and organs 

were dissected, snap-frozen in liquid nitrogen and stored at -80 °C.

Cell lines preparation

Primary murine PDAC cell lines, consisting of 66 low-passaged lines with various genetic 

backgrounds, were obtained from genetically engineered mice41.

Cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) high glucose medium 

(Sigma) supplemented with 10% fetal calf serum (FCS), 100 U/ml penicillin and 100 μg/ml 

streptomycin (Invitrogen) at 37 °C in a humidified 5% CO2 atmosphere.

For proteomics analysis cells pellets were snap-frozen in liquid nitrogen and stored at -80 °C 

until further use.

Radioresistance assay

Radiation was delivered at 220 kV and 15 mA with a dose rate of 0.90 Gy/min using 

the RS225A irradiation device (Gulmay/Xstrahl). Cell lines were screened for radiation 

response using the AlamarBlue proliferation assay (Thermo Fisher Scientific). Cells were 

either irradiated with 0 Gy, 2 Gy, 4 Gy, 8 Gy or 16 Gy 24 h after seeding. The AlamarBlue 

reagent was added 72 h after irradiation. After an incubation time of four hours at 37 °C in 

a humidified 5% CO2 atmosphere, proliferation of cells was measured by absorbance at 570 

nm and 630 nm using the ELx808 microplate reader (BioTek). Data were recorded by the 

Gen5 Software (BioTek).

Automated drug screen

All cell lines used for automated drug screening were routinely tested for mycoplasma 

contamination by PCR. Cells were cultured in DMEM high glucose (Sigma) supplemented 

with 10% FCS (Biochrom GmbH) and 1% Penicillin/Streptomycin (Thermo Fisher 

Scientific) and were digested to a single cell suspension using 1 x TrypZean® Solution 

(Sigma Aldrich). 1000-2000 cells per well (depending on growth rate) were seeded in 96-

well plates (Corning Life Sciences) using a Multidrop™ Combi Reagent Dispenser (Thermo 

Fisher Scientific). After overnight incubation at 37 °C and in 5% CO2 in a Cytomat™ 

24C automated incubator (Thermo Fisher Scientific), cells were treated with the compound 

library using a CyBio® FeliX pipetting platform (Analytik Jena). All compounds were 

obtained from SelleckChem dissolved either in DMSO or water. Each drug was added in 

7 concentrations (3-fold dilution series, highest concentration 10 µM). Cell viability was 

measured after 72 hours using CellTiter-Glo® Luminescent Cell Viability Assay (Promega). 
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The reagent was added using a Multidrop™ Combi Reagent Dispenser. After incubation for 

10 minutes luminescence was measured in an Infinite 200 PRO microplate reader (Tecan).

Protein lysis and digest

Frozen tissues were pulverized on liquid nitrogen and resuspended in ice-cold 1% (w/v) 

sodium deoxycholate (SDC), 50 mM Tris-HCl, pH 8.5 buffer and subsequently lysed by 

5 min boiling at 95 °C. Further homogenization was achieved using ceramic beads and 

an automated homogenizer (Precellys 24, Bertin) with 2 x 10 second pulses at 5000 rpm. 

Homogenates were clarified by centrifugation for 10 minutes at 10,000 g at 4 °C and protein 

concentration was determined by the Bradford method.

One mg of protein material was reduced with 10 mM DTT for 40 min at 37 °C and 

subsequently alkylated with 55 mM chloroacetamide (CAA) for 30 min at 25 °C in the 

dark. The solution was then diluted to a final urea concentration of 0.1% (w/v) SDC with 

50 mM Tris-HCl, pH 8.0, and proteins were digested in two steps (4 h and overnight) at 

37 °C with trypsin (Roche). Samples were acidified with formic acid (FA) at 1% (v/v) final 

concentration and centrifuged at 20,000 g for 10 min at 4°C.

The supernatant was desalted using Sep-Pak C18 cartridges (Waters), dried in vacuo, and 

stored at -80 °C until further use.

The mPDAC cells were resuspended in 2% (w/v) sodium dodecyl sulfate (SDS), 40 mM 

Tris-HCl, pH 7.6 buffer and subsequently lysed by heating to 95 °C for 5 min, followed by 

the addition of trifluoroacetic acid (TFA) to a final concentration of 1% (v/v). Subsequently 

N-Methylmorpholine was added to a final concentration of 2% (v/v) to adjust the pH value 

to ~7.5, and protein concentration was determined by the BCA method.

Protein digestion was performed via an automated SP3-based method by using the 

AssayMAP Bravo Platform (Agilent Technologies). For each cell lines, 100 μg of protein 

material in 150 μL were transferred to a 96 deep well plate, then 10 μL of SP3 beads (1:1 

mix of Sera-Mag Speed Beads A and B, Fisher Scientific) were added to the lysate, and 

finally ethanol was added to a final concentration of 70% (v/v). The plate was incubated in a 

thermal shaker for 5 min at 1200 rpm, and then transferred to the magnet rack to immobilize 

the SP3 beads for 3 min. The supernatant was discarded, and the SP3 beads were washed 3 

times with 200 μL of 80% (v/v) ethanol/water and once with 200 μL of ACN. The bound 

proteins were reduced by adding 100 μL of 10 mM DTT in 100 mM Tris-HCl, pH 8.5 

and incubating the plate in a thermal shaker at 37 °C and 1000 rpm for 1 h. Subsequently, 

proteins were alkylated with 55 mM CAA for 1 h at 37 °C in the dark. Finally, 3 μg of 

trypsin were added to each well, and the plate was incubated overnight at 37 °C in the 

thermal shaker at 1000 rpm. After protein digestion, samples were acidified with FA at final 

concentration of 1% (v/v), desalted using the Sep-Pak tC18 96-well plate (Waters, 25 mg), 

dried in vacuo, and stored at -80 °C until further use.

Phosphopeptide enrichment and off-line fractionation

For the tissues samples, phosphopeptide enrichment was performed by loading peptides on 

a Fe3+-IMAC column (Propac IMAC-10 4 × 50 mm column Thermo Fisher Scientific) 
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as previously described. The enrichment was performed with buffer A (0.07% TFA, 

30% acetonitrile) as loading buffer and buffer B (0.3% NH4OH) as elution buffer. 

Using a UV-abs signal, the outlet of the column was monitored and two fractions were 

collected: one containing non-phosphorylated peptides (flow-through), the other containing 

phosphorylated peptide. Both factions were dried in a vacuum centrifuge and stored at 

-80 °C. Phosphopeptides were further fractionated into four fractions using the high pH 

RP fractionation42 using self-packed StageTips, containing 5 disks of C18 material (3M 

Empore).

For whole proteome analysis, peptides contained in the IMAC flow-thought fraction were 

re-suspended in 10 mM ammonium acetate, pH 4.7, and subjected to trimodal mixed mode 

chromatography on an Acclaim Trinity P1 2.1 × 150 mm, 3 μm column (Thermo Fisher 

Scientific) for peptide fractionation43. A total of 32 fractions were collected, dried in vacuo 
and stored at -20 °C until LC-MS/MS analysis.

For the PDAC cells, phosphopeptides were enriched by using 5 µL Fe(III)-NTA cartridge 

(Agilent technologies) in an automated fashion on the AssayMAP Bravo Platform. The 

cartridges were primed with 200 µL of washing buffer 1 (50% ACN/0.1% TFA), and 

equilibrated with 200 µL of washing buffer 2 (80% ACN/0.1% TFA). The desalted peptides 

were dissolved in 100 μL of loading buffer (80% ACN/0.1% TFA), and loaded onto the 

cartridges with a flow rate of 5 μL/min, the flow-through was collected. The cartridges 

were washed with 50 μL of washing buffer 2, which was collected and pooled with the 

first flow-through. The bound phosphopeptides were eluted with 50 μL of 1% ammonia 

(pH 11). The eluate containing phosphorylated peptide and the flow-thought containing 

non-phosphorylated peptides were dried in vacuo, and stored at -80 °C until further use.

For whole proteome analysis, peptides contained in the Fe(III)-NTA flow-through fraction 

were re-suspended in 100 μL of buffer A (25 mM ammonium formate, pH 10), and 

subjected to high pH RP fractionation with the AssayMAP Bravo platform using RP-S 

cartridges (Agilent). The cartridges were primed sequentially with 150 μL of isopropanol, 

ACN and solvent B (80% ACN in 10 mM ammonium formate, pH 10.0), at a flow rate 

of 50 μL/min. The cartridges were equilibrated with 100 μL of buffer A at a flow rate 

of 10 μL/min, peptides were then loaded at 5 μL/min and the follow-through (FT) was 

collected. The cartridges were further washed with 50 μL of solvent A, and the flow-through 

was collected and pooled with the previous one. The peptides were eluted with 25 mM 

ammonium formate, pH 10, using increasing concentrations of ACN (5%, 10%, 15%, 20%, 

25%, 30%, and 80%). Finally, the seven fractions with flow-through were combined into 

four fractions (5% + 25%, 10% + 30%, 15% + 80%, and 20% + FT), the peptides were dried 

in vacuo, and stored at -80 °C until further use.

LC-MS/MS analysis

Nano flow LC-MS/MS measurements were performed using a Dionex Ultimate 3000 

UHPLC+ system coupled to a Q Exactive Orbitrap HF (Thermo Fisher Scientific) for tissues 

label-free. Peptides were delivered to a trap column (75 μm i.d. × 2 cm, packed in-house 

with 5 μm Reprosil C18 resin; Dr. Maisch) and washed using 0.1% FA at a flow rate of 5 

μL/min for 10 min. Subsequently, peptides were transferred to an analytical column (75 μm 
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i.d. × 45 cm, packed in-house with 3 μm Reprosil C18 resin, Dr. Maisch) at a flow rate of 

300 nL/min. Peptides were chromatographically separated using a linear gradient of solvent 

B (0.1% FA, 5% DMSO in ACN) and solvent A (0.1% FA, 5% DMSO in water). Linear 

gradients were as follows: from 4% to 32% of B in 82 min for full proteome analysis, and 

from 4% to 27 % of B in 80 min and a two-step increase for phosphoproteome analysis. The 

total measurement time for each sample was 90 min.

The full proteome analysis of the PDAC cells was performed on a micro-flow LC-MS/MS 

system using a modified Vanquish pump (Thermo Fisher Scientific) coupled to a Q Exactive 

Orbitrap HF-X (Thermo Fisher Scientific) mass spectrometer. Chromatographic separation 

was performed via direct injection on a 15 cm Acclaim PepMap 100 C18 column (2 µm, 1 

mm ID, Thermo Fisher Scientific) at a flow rate of 50 µL/min, using a 60 min linear gradient 

(3% to 28%) of solvent B (0.1% FA, 3% DMSO in ACN) and solvent A (0.1% FA, 3% 

DMSO in water). The total measurement time for each sample was 65 min.

For the PDAC phosphoproteome analysis, the Dionex Ultimate 3000 UHPLC+ system 

described above, coupled to an Orbitrap Exploris 480 (with a FAIMS device, Thermo Fisher 

Scientific) mass spectrometer was used.

Phosphopeptides were chromatographically separated using a two-step increase gradient of 

solvent B (0.1% FA, 5% DMSO in ACN) and solvent A (0.1% FA, 5% DMSO in water), 

from 4% to15% of B in 60 min, followed by 15% to 27% of B in 34 min. The total 

measurement time for each sample was 120 min.

The mass spectrometers were operated in a data-dependent acquisition (DDA) to 

automatically switch between MS and MS/MS.

For label-free samples full scan MS spectra were recorded in the Orbitrap from 360 to 

1,300 m/z at a resolution of 60,000 using an automatic gain control (AGC) target value 

of 3e6 charges and maximum injection time (maxIT) of 10 ms (50 ms for HF-X and 45 

ms for Exploris 480). After the survey scan, the 20 most intense precursors were isolated 

with an isolation window of 1.7 m/z (1.3 m/z for HFX and 1.2 m/z for Exploris 480) for 

HCD fragmentation, and fragments ions were recorded in the Orbitrap at a resolution of 

15,000 (30,000 for Exploris 480), AGC of 1e5 and maxIT of 25 ms (22 for HF-X and 

54 ms for Exploris 480). For phosphoproteome analysis of tissues samples, the 15 most 

intense precursor were selected instead, while AGC and maxIT were set to 2e5 and 50ms, 

respectively. For the Exploris 480, the data dependent mode was set to cycle time, the cycle 

time was set to 0.8 s, and an internal compensate voltages (CV) stepping experiments with 

CV values of -35 V, -45 V and -60 V was applied.

Normalized collision energy (NCE) was set to 25% for the HF and 28% for the HF-X and 

Exploris 480. For all methods, charge state screening was enabled and only precursors with 

charge states between 2 and 6 were selected for fragmentation. Dynamic exclusion was set 

to 25 s and27 s for the measurements on the HF and HF-X, respectively. For the Exploris 

480, the precursors including isotopes were excluded if they appeared twice within 90 s.
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Identification and quantitation of peptides and proteins

Raw mass spectrometry data (1,970 runs) were processed using MaxQuant44 (version 

1.5.3.8), using default settings with the following minor changes: oxidized methionine (M) 

and acetylation (protein N-term) were selected as variable modifications, carbamidomethyl 

(C) as fixed modification, trypsin was selected as the proteolytic enzyme, and up to two 

missed cleavages were allowed, minimum peptide length of seven amino acids. Searches 

were performed against the Mus musculus UniProt FASTA database (UP000000589, March 

2018, 61,307 entries), containing canonical and isoform sequences, as well as against a 

common contaminants database.

The false-discovery rate (FDR) was set to 1, meaning 100%, to allow for a subsequent PSMs 

rescoring via Prosit and Percolator6, implemented in ProteomicsDB. After rescoring, PSMs 

and peptides were filtered at an FDR of 1% (calculated on sample level) and protein-level 

and gene-level FDR estimates were calculated using the picked target-decoy approach45 

(on sample and whole dataset levels). For the protein identification and quantification 

ProteomicsDB used only protein or gene specific peptides with a q-value lower or equal 

to 0.01. Consequently, unambiguously identified proteins with a q-value lower or equal to 

0.01 formed their own protein group, while for the rest of the proteins, which cannot be 

unambiguously identified by unique peptides were grouped in one gene group and quantified 

together, only if the corresponding gene q-value was lower or equal to 0.01. Within a gene 

group, the protein with the most identified peptides was selected as representative of the 

group.

Intensity-based absolute quantification (iBAQ)46 was used as protein abundance estimator, 

and calculated as previously described. Unless otherwise stated, iBAQ values were 

normalized based on the total sum of all protein intensities, log10 transformed and right-

shifted by 10 log10 units into positive numerical space. Further bioinformatics analysis was 

performed with Perseus47 (version 1.6.5.0), Microsoft Excel (version 2013) and R (version 

3.6.3)48. Protein and gene annotations were extracted from the UniProt, Ensembl, and MGI 

databases.

Visualization and comparison of peptide spectra was performed with the web-tool Universal 

Spectrum Explorer49, using default settings. For the generation of mirror plots, fragment 

ions in the predicted spectrum were annotated only if they were not found in the 

experimental spectrum, and their intensity was higher than 10%.

Identification and quantitation of phosphorylation sites

Raw mass spectrometry data were processed with MaxQuant (version 1.6.0.13), as described 

above, with the following changes: phosphorylation on serine, threonine and tyrosine 

(Phospho STY) was selected as variable modification, and results were adjusted to 1 % 

FDR at protein, peptide, and site levels within the MaxQuant pipeline. A site localization 

probability of at least 0.75 (class I) was used as thresholds for the localization of 

phosphorylated residues.

Phosphorylation site intensities were normalized by the total sum approach, log10 

transformed and right-shifted by 10 log10 units into positive numerical space.
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Analysis of protein expression

Protein expression analysis including normalization, hierarchical cluster analysis and 

principal component analysis (PCA) were performed using R (version 3.6.3) on log 

transformed and normalized iBAQ intensities. For the hierarchical clustering euclidean 

distance and complete linkage were used.

Gene Ontology Analysis

Gene Ontology (GO) analysis of was performed either in Perseus (version 1.6.15.0) or with 

the R package topGO, using annotations from UniProt and MGI, respectively. Fisher exact 

test was performed with a FDR < 0.05. Only long lists of significantly enriched GO terms 

were further uploaded to REViGO50 for summarization, using default parameters, restricting 

the database to Mus musculus.

Consolidation and extension of the mouse proteome

A great challenge in MS-based proteomics is the choice of an appropriate sequence 

database, which serves as reference for the peptides as proteins identification step. The 

UniProt is the most used protein sequence and functional annotation catalogue for human 

and mouse analysis51, as it consists of manually annotated and reviewed entries. However, 

it is still not clear which of the mouse genes annotated in the database (22,437, at the 

time of writing) are translated into proteins, therefore each entry is assigned with a level 

that indicates the type of evidence that supports its existence (www.uniprot.org/help/protein-

existence).

Because in shotgun proteomics experiments it is common to obtain inferred protein groups 

rather than unambiguously identified proteins, to re-annotate the UniProt existence level 

on the basis of the here reported identifications we defined the leading protein as the first 

protein within each gene group, as this would best represent the identification, being the one 

with the higher number of peptide identifications. All other proteins that were not selected as 

“leading”, were excluded from the analysis and retained the original UniProt level.

For sORF-encoded peptides (SEPs) identification, full proteome MS/MS spectra were 

searched and rescored as described above, against a custom database containing 

murine short open reading frame-encoded polypeptide sequences (downloaded from 

www.sorfs.org, September 2018, 503,779 entries) together with protein sequences from 

UniProt (UP000000589). After percolator, data were filtered for 1% FDR (PSMs and 

peptides level), peptides mapped to any annotated UniProt, Ensembl, or NCBI gene 

model were eliminated from the list, along with any candidate SEPs with an SA < 0.7. 

Furthermore, peptides that could be mapped to an annotated gene model by a single amino 

acid substitution, deletion or insertion were discarded.

The final list of peptides was then queried in the sORFs.org database to retrieve sequence 

annotations: location relative the transcript, biotype, and whether the sORF translation is 

already supported by mass spectrometry data.

Candidate SEPs were also synthetized at JPT Peptide Technologies using Fmoc-based SPOT 

synthesis on membranes and measured on the same LC-MS system that was used for the 
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data acquisition of the tissue full proteome samples (see ‘LC–MS/MS analysis’ section). 

Experimental and synthetic peptide spectra were extracted from the raw files and used 

for similarity calculation without any prior spectrum processing. SA comparison between 

spectra of the tissue samples and synthetic peptides was performed using in-house R scripts, 

and a SA score of at least 0.7 was used as thresholds for candidate validation. For variant 

peptides identification, the full proteome dataset was additionally processed applying the 

so-called “open-search” strategy11, overcoming the limitations of obtaining a comprehensive 

protein database for each sample from exome or RNA sequencing52. To this end, raw mass 

spectrometry data were converted to mzML format using msconvert in the ProteoWizard 

Toolkit53. Peak lists were searched with MSFragger12 (version 2.4) using the same UniProt 

database as mentioned above, but in a concatenated forward-decoy version. Precursor mass 

tolerance was set to 500 Da and remaining settings were used at their default value. The 

search results were processed with PeptideProphet54 and ProteinProphet55 as part of the 

MSFragger suite, and identification were flittered to retain only hits with a probability > 0.9.

About 50% of all the peptide-spectrum matches (PSMs) were identified outside the -0.01 to 

0.01 Δmass bin, representing the modified peptides. For ~4 million PSMs (~25% of the total 

identification hits) we could assign at least one mass shift reported in the Unimod database 

(www.unimod.org). We then specifically looked for mass shifts resembling an amino acid 

substitution (AAsub), with the exception for those involving lysine or arginine at the peptide 

c-terminus, in order to maintain trypsin specificity. Similarly, modification involving amino 

acids not present in the identified peptide sequence were discarded.

Because not all mass shifts can be unambiguously assigned to a single modification, either 

being translational, chemical or post-translational (e.g. Ala -> Ser, Oxidation, and Phe -> 

Tyr result all in the same shift of + 15.9949 Da), we excluded from the analysis amino 

acid substitution that could be explained by any of the Unimod annotated modifications 

(representing potential artefact or known modifications). We then defined as illogical, all 

those substitutions involving a non-alkylated cysteine residue, as well as those requiring 

more than 1 nucleotide substitutions.

To further validate the existence of a peptide variant, for any given PSMs, each potential 

modification was computed individually, and obtained sequences were subjected to spectra 

prediction by Prosit, using the same charge state detected for the endogenous peptide. To 

this end, spectra of endogenous peptides (i.e. those identified in the full proteome and 

phosphoproteome datasets) were compared against those obtained by Prosit. SA score was 

calculated using an in-house R script, and a SA score of at least 0.7 was used as thresholds 

for effective peptide identification.

AAsubs retaining a SA of at least 0.7 were further filtered to remove any peptide found to 

be identical and to overlap with part of annotated proteins in the UniProt, Ensembl, or NCBI 

mouse databases.

Because deamination of glutamine and asparagine is known to be a prevalent artefact during 

sample preparation, Prosit-validated substitutions to aspartic acid and glutamic acid whose 
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non-deamidated peptide sequence was found to be identical and to overlap with part of an 

annotated protein were considered ambiguous and therefore discarded.

For all spectra comparisons, only those peaks which are either shared between spectra 

or exclusive to the predicted or synthetic peptide spectra were taken into account for 

the calculation of the normalized spectral contrast angle. Peaks exclusive to experimental 

spectra (tissues or PDACs samples) were ignored.

PACiFIC

PDACs raw mass spectrometry data were processed using MaxQuant (version 1.6.0.13), 

and results filtered for an FDR < 0.01 at the level of proteins, peptides and modifications, 

using the settings described above, but enabling the match between runs feature and phospho 

(STY) as variable modification. Full and phosphoproteome data were processed together as 

two separate groups. The two datasets were concatenated and used as predictors together. 

First, reverse and contaminates sequences in both datasets were excluded, then, unless 

otherwise stated, missing values in full proteome and phosphoproteome data were imputed 

using the protein-wise half-lowest method (analogous to the LOD2 method56) based on 

the rationale that the missing values in mass spectrometry experiments tend to accumulate 

at the lower end of the overall intensity distribution. Subsequently, the data were log10 

transformed.

For each dose-response dataset (radiation or drugs), data were normalized into a range 

between 1 (no response or full viability) and 0 (full response or no viability). Afterwards, 

the classical symmetric four-parameter log-logistic model was fitted to each combination 

of drugs or radiation and cell lines in each dataset. We also calculated the standardized 

area under the dose-response curve (AUC) for each fitted model across the tested drug 

concentration or absorbed radiation range. Here, the AUC was defined as the area under the 

dose-response curve between zero and the Upper Bound or maximum predicted viability 

(ymax), divided by the area under y=ymax from the lowest to the highest concentration or 

absorbed radiation tested.

Radiation sensitivity prediction

To test whether we can use proteins or p-sites (predictors) to predict the radiation sensitivity, 

the protein and p-site intensities were used to fit statistical models using both linear 

(correlation analysis and elastic regression) and nonlinear methods (recursive partitioning 

tree and random forest). In the nonlinear model analysis, we aim to select a small number 

of the most relevant proteins and p-sites to the radiation sensitivity (feature selection) so the 

predictors in the models can be evaluated from a biological point of view. This is achieved 

by a two-step procedure. The first step is feature selection using recursive partitioning tree, 

which selects a small number of proteins or p-site to build predictive models. To identify 

robust predictors, the 66 PDAC cell lines were randomly split into a training/validation set 

of size 49 and a hold-out set of size 17. In the model fitting, the training/validation set were 

further randomly split into training (32 cell lines) and validation (17 cell lines) set. Recursive 

partitioning tree were trained using the training set, then the fitted models were applied to 

predict the radiation sensitivity of validating set. The Pearson correlation between predicted 
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and measured radiation sensitivity were computed to evaluate the performance of the model. 

This procedure was repeated 100 times using proteins and p-site as predictors, separately. 

Next, to select the most robust predictors, the proteins and sites were ranked by the score 

calculated as the weighted sum of the predictor importance in both validation and training 

set:

s = ∑
i = 1

100
Ri

train ⋅ Vi
train+Ri

test ⋅ Vi
test

where R is the correlation coefficient between predicted and measure response, V means 

importance of a predictor measured by Gini importance index. In a partitioning tree, if a 

node contains samples belonging to J classes, the Gini purity g of a node is

g = ∑
1

J
Pj 1 − Pj

where Pj is the proportion of samples from class j (j = 1, …, J) in the total number of 

samples. A parent node is divided into two child nodes (gL and gR) in the partitioning tree. 

Assuming a node is split based on the expression of protein x, the node consists of n samples 

and m samples fall into the node gR in the branch, the Gini importance index for the node Ix 

is calculated as

Ix = gx − m
n gxR − n − m

n gxL

When a protein is selected multiple times over a tree, the sum of all Gini importance indices 

of nodes using that protein is the Gini importance index for the protein. Therefore, the 

Gini importance index depicts how prediction accuracy is lowered when the corresponding 

predictor is removed from the model. The superscript train and test indicate the training 

and validation set, respectively. The subscript i indicates the ith sampling. The performance 

of models from training set is included to lower the weight of deficient models who give 

inaccurate prediction even in the presence of overfitting.

In the second step, we test whether a small number of proteins or p-sites is enough to 

predict radiation sensitivity. To do so, we selected the 20 top-ranked predictors and used 

them as predictors to train predictive models using the random forest methods (using R 

package randomForest57) with the same procedure as above. Finally, the performance of the 

random forest models was evaluated using the hold-out set. In each random forest model, 

500 trees were trained. The chosen number of 20 predictors (i.e. proteins of p-sites) is 

somewhat arbitrary but yielded reasonable predictions in both training and validation sets. 

In addition, the number is small enough to enable checking their functions via thorough 

literature mining. At the same time, considering 20 predictors provides for a higher chance 

to contain true positive results compared to selecting 1 or 2 predictors only. The functional 

interaction among selected predictors was derived from the STRING database30.
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Identifying drug response markers using correlation and elastic net analyses

Due to the large number of drugs (407 drugs) but smaller number of cell lines (on average 

36 cell lines have drug sensitivity data), a rigorous examination of nonlinear models is 

challenging. Therefore, we decided to use correlation analysis and elastic net regression to 

discover potential protein and p-site markers predicting drug sensitivity.

In the correlation analysis, we calculated correlation coefficients between the drug responses 

(measured as the area under the dose-response curve; AUC) and protein or p-site intensities. 

To reduce the spurious correlations, we refrained from imputing missing values in both 

drug response and proteomic data and excluded pair-wise incomplete observations. Only 

drug-protein/p-site pairs with at least 10 pair-wise complete observations were included in 

the analysis. In our analysis, the P-value was used as the ranking statistic rather than hard 

cutoffs denoting statistical significance, therefore, we did not correct the P-values of these 

correlations for multiple testing.

To identify linear combinations of multiple proteins/p-sites predicting drug response, we 

applied elastic net regression22. Elastic net regression takes advantage of both LASSO 

(L1) and RIDGE (L2) penalties, therefore, forces most of the coefficients to zero (property 

of LASSO penalty) and, at the same time, selects only a subset of predictors showing 

high correlation to the dependent variable (drug response; owing to the RIDGE penalty). 

Double shrinkage of coefficients is prevented by a scaling factor while the hyperparameter 

α? [0,1] is used to control the balance between the L2-penalty (α=0) and the L1-penalty 

(α=1). In addition, a second hyperparameter λ controls the degree of regularization58. In 

our analysis, α (three options are 0.01, 0.05, 0.1) and λ were optimized using 10-fold 

cross-validation with mean-squared-error (MSE) as the loss function. We used 100 bootstrap 

samples of cell lines to select robust protein and site markers predicting drug response. 

Elastic net models were fitted as described above in every bootstrap sample. The results 

were summarized using two statistics: the regression coefficient and the selection frequency, 

which is essentially the number of times a protein or p-site was selected out of 100 bootstrap 

samples. Since these models were trained independently on each drug, we z-transformed the 

coefficients in order to facilitate the comparison of effect sizes between different models 

(referred as normalized effect size). Elastic net regression models were fit using the R 

package glmnet58. Cell lines that do not have drug response data were excluded in the 

analysis, resulting in 36 cell lines.

RNA sequencing

Total RNA was isolated using the RNeasy Mini Plus Kit (Qiagen), according to the 

manufacturer instructions. RNA was quantified (Nanodrop, Thermo Fisher Scientific) 

and quality checked with a Tape Station D1000 (Agilent Technologies). RIN values 

between 7 and 10 were accepted for further analysis. cDNA libraries were prepared 

using the TruSeq Stranded mRNA Sample Preparation kit (Illumina) according to the 

manufacturer instructions. Clusters were generated and sequenced with the HiSeq 4000 

platform (Illumina) to a depth of 50 million reads per sample.
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Raw read files were quality-checked with FastQC software (version 0.11.8; 

www.bioinformatics.babraham.ac.uk/projects/fastqc), and RNA-seq data were trimmed to 

remove adaptor contaminations and poor-quality base calls using Trim galore (version 0.5.0; 

www.bioinformatics.babraham.ac.uk/projects/trim_galore). After that, resulting read files 

were checked again with FastQC and mapped with Kallisto59 (version 0.44.0) to the mouse 

GENCODE M19 transcriptome, using default settings.

Gene-level summarization of transcripts per million (TPM) values were computed in R by 

the tximport package60, and a cutoff of -3 zTPM61 was used as lower limit for detection 

across samples. Unless otherwise stated, genes TPMs were normalized based using the total 

sum approach, as for the proteome dataset.

Protein-to-mRNA ratio

The Pearson correlation coefficient was used for correlating proteome and transcriptome 

gene abundances in single tissues. For the proteome dataset, the protein with the largest 

iBAQ value was selected as representative of a given gene. The slopes were estimated by 

ranged major-axis (RMA) regression using the lmodel2 R package62, as independent and 

dependent variables are not expressed in the same units and the error variances of the two 

variable differ along their value.

Features for protein level prediction models

Predictors selected for this analysis were: mRNA levels, codon usage, non-synonymous-to-

synonymous substitution (dN/dS) ratios, which are a measure of evolutionary conservation, 

gene/coding sequence (CDS) length, exon number, the number of putative protein 

interactions and mRNA sequence motifs (k-mers of size 3 to 7 nucleotides).

De novo motif identification

Raw mass spectrometry data were processed using MaxQuant (version 1.6.0.13), with a 

false-discovery rater (FDR) < 0.01 at the level of proteins, peptides and modifications, 

using the settings described above, and enabling the match between runs feature. Full 

and phosphoproteome data were processed together as two separate groups, and only full 

proteome raw data were used for protein quantification. Before any subsequent analysis, 

MaxQuant output tables were filtered for contaminants, reverse and proteins only identified 

by a modified peptides. Intensity-based absolute quantification (iBAQ) was used as protein 

abundance estimator. The iBAQ protein intensities were log10-transformed and median-

centered. Furthermore, normalized iBAQs were shifted into positive numerical space by the 

overall median of the raw iBAQ values. For each protein group, we then selected the first 

UniProt entry in the “Proteins” column to represent this protein group and subsequently 

assigned it the corresponding Ensembl transcript ID.

Trimmed RNA-seq reads were mapped with the STAR alignment software63 (version 2.6.1c) 

to mouse genome annotation GRCm38, with the parameter of maximum number of multiple 

alignments allowed for a read to be equal to 1 (outFilterMultimapNmax). To estimate the 

mature mRNA levels, for each sample the number of reads that map to exonic and intronic 

regions of the transcript was counted separately and then normalized by the total exonic 
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and intronic region lengths, respectively. Normalized intronic counts were subtracted from 

normalized exonic counts to obtain the mature mRNA counts. The resulting counts per 

sample were corrected by the library size factor obtained with the Bioconductor package 

DESeq264, log10-transformed and median centered as described for the proteome data. 

Transcripts with 10 reads per 1 kb were treated as transcribed.

Tissue-specific PTRs were computed using the normalized protein and transcript levels. For 

Human and A. thaliana, PTRs were obtained from to Eraslan et al.16 and to Mergner et al.8, 

respectively.

GEMMA software (version 0.94.1)65 was used to identify de novo motifs in 5' UTR, CDS 

and 3' UTR regions similar to Eraslan et al.16, using the tissue-specific PTRs as response 

variables. GEMMA uses a linear mixed model, in which the effect of each individual k-mer 

on the median PTR across tissues is assessed while controlling for the effect of other k-mers 

(random effects), region length and GC percentage (fixed effects). The motif search was 

performed for k-mers ranging from 3 to 7 nucleotides. Obtained P values were adjusted for 

multiple testing with Benjamini–Hochberg’s FDR and jointly computed across the P values 

of all tissues. Gemma was run using the median PTR with FDR < 0.1 and covariates set to 

‘false’.

In total, 34/50/80 (Mouse/Human/A. thaliana) significant putative motifs were obtained 

based on their sequence (5' UTR n = 26/20/28; 3' UTR n = 6/25/41; CDS n = 2/5/11) and 

sub-sequence (initial, all, end) region. The presence or absence of each enriched motif with 

respect to each gene was extracted in form of a binary matrix and used for downstream 

multivariate feature selection analysis.

Codon usage

Codon usage statistics for the Mouse, Human, and A. thaliana genome were obtained 

from Kazusa (www.kazusa.or.jp/codon) and parsed to extract GI sequence identifiers. These 

identifiers were mapped to corresponding UniProt entries and Ensembl/TAIR10 annotation 

using the UniProt Retrieve/ID mapping tool. The extracted TAIR10 annotation was merged 

with the Kazusa codon usage dataset. Codon frequencies were calculated for each gene by 

dividing the count (x 3) of a given codon by the full length of the coding sequence.

Synonymous and non-synonymous substitution rates

The dN/dS substitution rates were calculated from CDS pairs of closest species between 

Mus musculus and Mus spretus, Homo sapiens and Pan troglodytes, and A. thaliana and 

A. lyrata. Reciprocal best BLAST hits with an e-value cutoff of =1e-08 were used to 

identify orthologs between each pair. Individual CDS pairs were aligned using PRANK66 

and Gblocks67 was applied to eliminate poorly aligned positions in an alignment with a 

cutoff of 8 contiguous nonconserved positions and none gap position allowed. The codeml 

package from the program PAML68 for pairwise sequence comparison was used to estimate 

synonymous substitution and non-synonymous substitution rates (dS and dN, respectively).
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Exon number and gene length

The total number of exons and the total gene lengths for Mouse and Human was retrieved 

from Ensembl and for A. thaliana was obtained from the Araport11.

Protein-Protein interactions and phosphorylation status

Protein–protein interactions were downloaded from STRING30 (https://string-db.org/). The 

number of protein interaction partners was extracted for each gene. No scoring filter was 

applied.

The phosphorylation status was extracted from the MaxQuant output tables obtained for the 

de novo motif identification, in form of a binary matrix (i.e. if any of the protein-product of a 

given gene has been detected as phosphorylated or not).

Model-based feature selection

We used the above features as predictors for gene-level protein abundance. To do this, 

we merged all predictors into a single feature matrix for each tissue. Preliminary pairwise 

correlation analysis showed only weak to moderate correlations among individual features, 

suggesting that multicollinearity was not an issue. The exception were high correlations 

among several of the sequence motifs. Such high correlations were typically seen in 

situations where one of the motifs was a substring of the other. To filter these out, we 

identified motifs that correlated > 0.6, and retained only the longer of the two for subsequent 

model selection. To select the most predictive features for protein abundance in each tissue, 

we used a forward–backward model selection approach in a multiple regression framework. 

The method was implemented using stepwiseAIC() function in R, which compares the fit of 

nested models. To ensure that the comparison of model AICs was not affected by unequal 

sample size, missing data were removed before the analysis. For each tissue, features from 

the best fitting models were summarized in an incidence matrix along with the effect 

direction (positive or negative effect on protein levels). Our previous work8 showed that the 

forward-backward model selection approach in this setting does not lead to overfitting when 

compared to a Lasso approach followed by cross-validation. To determine the importance 

of each feature to the overall model fits, R2 variance decomposition was performed using 

the ‘genici’ metric which is implemented in the relaimpo R package69. Relative feature 

contributions were calculated for each tissues as well as averaged across all tissues.

Orthologous genes quantification

The recently published proteome atlas by Wang et al.17, containing 21 matching tissues, was 

selected as reference human dataset for orthologous gene analysis at the proteome level. 

Because of the high redundancy (protein isoforms) and high similarity (protein families) 

within any given proteome, combined with the impossibility to maintain the same peptide-

to-protein parsimony scheme across two independent datasets, homologous proteins calling 

is rather challenging.

To overcome these limitations, we decided to carry out homology comparison at the gene 

level (DNA homology) and used the largest iBAQ value of each gene to estimate its absolute 

quantities. This heuristic approach was repeated across the 21 matching tissues between the 
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two datasets. Because of the exact origin of the human brain tissue was unknown, mouse 

‘brain’ gene iBAQ values were obtained by calculating the median across the 6 mouse 

nervous system tissues. Likewise, the mouse ‘adipose tissue’ iBAQ values were obtained by 

calculating the mean between the brown and white adipose tissues.

The analysis was restricted to only orthologous genes with a 1:1 correspondence between 

the two species, and the list of mouse-to-human orthologues was obtained from the Ensembl 

BioMart (https://www.ensembl.org/biomart/martview).

Before variance decomposition and neighborhood analysis of conserved co-expression (see 

below) the proteome dataset was filtered for those orthologous genes quantified in at least 

6 mouse and human tissues pairs. Missing values were then replaced by imputation with 

values representing a normal distribution around the detection limit47, for each tissues and 

species, separately.

Variance decomposition

The abundance of a gene in any given sample is dependent on biological sample origin, 

meaning by the tissue and the species the sample comes from. To assess the contribution of 

these two factors to gene abundance variation, we used a linear mixed model18, implemented 

in the R package lme470. The iBAQ ortholog values were modeled as a function of 

tissue and species, both considered as random factors. The restricted maximum likelihood 

estimators for the random effects of tissue, species and residual variance were normalized 

by their sum to obtain the variance contributions. We then classified orthologs mouse-human 

gene pair whose fraction of variance explained by tissues or species was at least 50% of the 

total variance and two-fold greater than the other fraction, in tissue-variable genes (TVOs) 

and species-variable genes (SVOs), respectively. SVOs are genes whose abundance varies 

much between species but little across tissues (e.g. high abundant in all mouse tissues 

and low abundant in all human tissues, or vice versa). In contrast, TVOs represent genes 

that have a much more similar abundance pattern between human and mouse, therefore 

potentially better suited to model human biology. Remaining genes were classified as mixed-

variable orthologs.

Neighborhood analysis of conserved co-expression (NACC)

To evaluate the degree of conservation of orthologous genes abundance between mouse and 

human, at the proteome level, NACC analysis was performed as described previously18 with 

some adjustments. The NACC value for any given orthologous gene pair, was calculated 

as follows: first, we retrieved the 20 orthologs (neighbors) with the smallest Euclidean 

abundance distance to the test gene, within the mouse dataset, and calculated the mean 

distance test gene-neighbor genes (M). Next, we retrieved the human orthologous of these 

neighbors, and calculate the mean Euclidean distance to the mouse test gene (Mh). The same 

procedure was repeated within the human dataset, obtaining H and Hm.

The NACC value for each orthologs mouse-human gene pair was calculated as follow:

NACC = Mh−M + Hm−H
2
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A random set of NACC values was also calculated using the same procedure, but 

randomizing the orthology between the two species (i.e. selecting 20 random non- 

orthologous genes to calculate Mh and Hm). The analysis was performed using either 

the iBAQ (proteome level) or TPM (transcriptome level) ortholog values. To this end, as 

for the mouse dataset, human RNA-seq data of 15 matching tissues from Wang et al. 
were mapped with Kallisto (version 0.44.0) to the human GENCODE 29 transcriptome, 

gene-level summarized, and filtered for a zTPM value > -3, before being merged to the 

mouse data.

The lower the NACC value, the stronger is the tendency of a gene to be co-expressed with 

orthologs of similarly expressed genes between the two species.

Benchmarks against previously published datasets

Protein identification as well as phosphorylation sites and phosphoprotein identifications 

were compared against previously published mouse (phospho)proteomes4,5. The 

proteinGroups.txt output of the MaxQuant 1% FDR search was used to compare protein 

identifications. For each protein group entry, the first protein in the “Proteins” column 

and the first genes in the “Gene names” column were selected to represent the protein 

identification and compared to the corresponding entries reported by Geiger et al. 
in the analogous file. For the phosphoproteome comparison, raw mass spectrometric 

data from Huttlin et al. were downloaded (https://phosphomouse.hms.harvard.edu/data/

Phosphorylation) and re-processed together with our data as described above. Only class 

I sites were considered for the comparison.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

The data supporting the findings of this study are available within the paper, the 

supplementary information and the public repositories. The Mus musculus UniProt 

FASTA database (UP000000589) was downloaded from the UniProt website (https://

www.uniprot.org/). The sORF database was downloaded from www.sorfs.org. The Mus 

musculus Ensembl, MGI, or NCBI databases, along with their annotation were downloaded 

from www.ensembl.org, www.informatics.jax.org, or www.ncbi.nlm.nih.gov, respectively. 

The the Unimod database was downloaded from www.unimod.org. The GENCODE M19 

transcriptome was downloaded from www.gencodegenes.org.

Transcriptome sequencing and quantification data are available at ArrayExpress 

(www.ebi.ac.uk/arrayexpress) under the identifier E-MTAB-10276.

The mass spectrometry proteomics data have been deposited in the ProteomeXchange 

Consortium via the PRIDE partner repository71 with the dataset identifier PXD030983.
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Figure 1. Proteomic map of mouse tissues.
a, Illustration of the 41 tissues (covering 15 systems) and 66 PDAC cell lines subjected 

to proteome analysis. Each organ system is represented by a unique color code, and each 

tissue has a unique abbreviation, both are kept consistent throughout the figures. b, Number 

and overlap of identified protein-coding genes in the proteome and phosphoproteome 

datasets compared to the UniProt database. c, d, The number of protein and class I p-site 

(localization probability > 0.75) identifications for each tissue and cell line is displayed 

by heatmap bars. The color gradient within each bar reflects the number of samples each 

protein or p-site was identified in, where the darkest color regions represent the ubiquitous 

proteomes and phosphoproteomes. Dashed lines indicate proteins and p-sites identified and 

quantified in all tissues or cell lines. e, Schematic representation of the data and analysis 

workflows available in ProteomicsDB and PACiFIC.

Giansanti et al. Page 28

Nat Methods. Author manuscript; available in PMC 2022 December 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Consolidation of the mouse proteome.
a, Pie charts showing the percentage of proteins identified by one or multiple peptides 

and grouped by UniProt protein evidence annotations (PE 1-5)). Numbers in brackets 

refer to the number of identified proteins, along with the number of unique genes they 

represent. b, Spectrum validation of four protein products for the gene Ahcyl2. In the 

left panel, the amino acid sequence of the canonical protein (Q68FL4) is shown, along 

with the three alternative products. Portions of the sequences identified in our dataset 

and which discriminate between the 4 isoforms are highlighted. In the right panel, a 

mirror plot of the experimental (E, top) and predicted (P, bottom) tandem mass spectra 

are shown for a representative peptide. Red and blue signals indicate y- and b-type 

fragment ions, respectively. Calculated spectral angle (SA) of 0.9 indicates near identical 

spectra. c, Number of observed sORF-encoded peptides (SEPs) as a function of the SA 

comparing measured and predicted reference spectra. SA values of >0.7 (dotted line) 

indicate near perfect agreement. At this cutoff, our dataset retains 719 SEPs, mapping 
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to 712 unique sORFs (blue area). The inserted pie chart shows the proportion of sORFs 

with or without MS-based supporting evidence in the sORFs.org database. d, Classification 

and characterization of the validated (SA > 0.7) sORFs, in terms of genetic coordinates 

(top), initiation codon usage (bottom-left), and intensity distribution (bottom-right). The box 

indicate the IQR, the black vertical line indicate median value, and whiskers extend to the 

maximum and minimum values e, Identification frequency of the validated SEPs across 

all tissues and all cell lines. Bottom panel, mirror plot of the experimental (E, top) and 

predicted peptide (P, bottom) tandem mass spectra of an identified SEP (EDNPFAGSR) 

without previous MS-based supporting evidence, representing the Rbakdn gene.
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Figure 3. Proteomic expression landscapes in the mouse.
a, Dynamic range of protein abundance (blue) and p-sites (red). Protein abundance spans ~7 

orders of magnitude (OM), whereas p-sites abundance only spans ~5. In both cases, ~90% 

of the proteome or phosphoproteome is confined to within ~3 OM around the median value. 

b, Cumulative protein (top) and p-site (bottom) intensities (ranked by abundance; x axis) 

and their contribution to total proteome and phosphoproteome mass (y axis), respectively 

across all tissues or PDAC cell lines. The black solid line indicates the median, the filled 

area corresponds to the minimum and maximum across tissues or cell lines. c, Unsupervised 

clustering of mouse tissues and mPDAC proteomes, showing that strong qualitative and 

quantitative expression differences exist between the different proteomes. The clustering 

separates tissues from mPDACs, but also distinguishes the nervous system tissues, the 

female reproductive system tissues, the immune system tissues, and, to a lesser extent, 

the digestive system tissues. d, Dynamic range of the intensity-ranked proteomes of three 

representative tissues. Five of the most abundant genes which relate to the functional 

specialization of the respective tissue are listed in descending order.
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Figure 4. Proteome comparative analysis across tissues and species.
a, Violin plots (n = 29 tissues) depicting the spread in relative contribution of the selected 

molecular features that can predict gene-level protein abundance using our model across 

tissues and species. The white dot denotes the median, while box borders indicate the first 

and third quartiles. Whiskers extend to the maximum and minimum values. b, Venn diagram 

of the relationship between orthologs and identified genes in the two species. c, Scatter plot 

of Pearson correlation coefficients as a measure for co-expression conservation. Each dot 

represents a gene annotation category (molecular functions, biological processes, or cellular 
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components). Across each tissues pairs, when restricted to only the members of a given 

category, the proteome expression is highly correlated between mouse and human for the 

majority of the tested ontologies. However, for a small fraction of functional categories, 

their members are far less well conserved (higher variability of the person correlation 

across tissues, x-axis), suggesting different functional remodeling of the mouse and human 

proteomes during evolution. The dashed line marks the diagonal. d, PCA analysis of the 21 

mouse and human matching tissues showing a predominant clustering of the proteomes by 

species. Each tissue is represented by a color matching the ones used in Figure 1 to represent 

the different anatomical systems. e, Proportion of gene expression variance explained by 

tissues (x-axis) and by species (y-axis) for each orthologous mouse-human gene pair (n 
= 7,459). The proteome abundance variations between mouse and human can be modeled 

considering two contributing factors: the species of origin and the type of tissues. Variance 

decomposition identified a large set of species-variable orthologs (SVOs) and tissue-variable 

orthologs (TVOs). The density estimation is calculated independently for each of the 3 

sections of the plot, denoted by the dashed lines. f, Neighbourhood analysis of conserved 

co-expression (NACC) between mouse and human matching tissues at the proteome and 

transcriptome level. The distribution of NACC distances for each gene is shown, which 

represents the tendency of a gene to be co-expressed with the same set of orthologs in both 

species. The boxes indicate the interquartile range (IQR), the black horizontal lines indicate 

median values, and whiskers extend to +/- 1.5×IQR; no outliers are shown. g, Percentage 

of orthologs having a certain fold change when comparing each tissues pair. Between 

the two species, orthologs can differ as much as 100-fold. The colored lines indicate the 

different tissues. h, i, Scatter plot depicting proteome-based expression levels of mouse and 

human genes with 1:1 orthologs, highlighting differentially expressed genes in heart (h), and 

liver (i). The solid black line indicates the linear model estimated by reduced major-axis 

regression, other lines indicate absolute fold changes from the regression line of log2(10) 

and log2(100).
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Figure 5. Linking large proteomic data collection with phenotypic drug and radiation response 
data.
a, Schematic representation of the multilevel integrative analysis workflow performed in 

this study to identify protein or p-site signatures associated with sensitivity or resistance. b, 
General selection at protein level by the partitioning tree method of the mPDACs panel in 

the radiation response dataset. The inset shows the prediction accuracy (Pearson correlation, 

n = 100 predictive models) between the predicted and measured radiation activity of random 

forest models combining the selected 20 proteins (see Methods). The median value and 

the IQR are indicated in purple. T, V, and H indicate the training, the validation and the 

hold-out data, respectively. Markers for resistance and sensitivity are colored in orange 
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and blue, respectively. This color scheme is consistently used throughout the other panels 

of the figure. c, Lrrfip1 is a sensitive marker for radiation response (n = 66 cell lines, 

Pearson correlation, two-sided Pearson correlation test P < 0.05). The filled area indicates 

the 95% confidence interval, in blue the regression line. d, Same as Fig. 5b, but for p-sites. 

e, STRING-based interaction networks as in (e).DNA damage and chromatin modifying 

enzyme networks are highly enriched in p-sites positively correlated with radiation activity. 

f, Scatter plot from elastic net regression analysis showing that Sirt6 is a sensitivity 

marker for multiple inhibitors targeting Mek1/2. g, Scatter plot showing that Shroom2 is 

a sensitivity marker for five drugs targeting tubulin. ΔAUC indicates the difference between 

the maximum and minimum value of the standardized area under the dose-response curve 

(AUC) across the tested cell lines, plotted against the p-values of the Pearson correlation 

between Shroom2 abundance and drug sensitivity. h, Scatter plot showing that Mical2 

Ser515 is a resistant marker for multiple inhibitors targeting CDK, CHK1, or ATR.
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