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Abstract

Patients with isolated rapid-eye-movement sleep behaviour disorder (RBD) are commonly 

regarded as being in the early stages of a progressive neurodegenerative disease involving α

synuclein pathology, such as Parkinson’s disease, dementia with Lewy bodies, or multiple system 

atrophy. Abnormal α-synuclein deposition occurs early in the neurodegenerative process across 

the central and peripheral nervous systems and might precede the appearance of motor symptoms 

and cognitive decline by several decades. These findings provide the rationale to develop reliable 

biomarkers that can better predict conversion to clinically manifest α-synucleinopathies. In 

addition, biomarkers of disease progression will be essential to monitor treatment response once 

disease-modifying therapies become available, and biomarkers of disease subtype will be essential 

to enable prediction of which subtype of α-synucleinopathy patients with isolated RBD might 

develop.

Introduction

Rapid-eye-movement (REM) sleep behaviour disorder (RBD) has been established as one 

of the earliest and most specific prodromal signs of the α-synucleinopathies, including 

Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Although 

not all patients with an α-synucleinopathy have RBD, several longitudinal studies have 

shown that more than 80% of patients with isolated RBD—ie, RBD not associated with 

a known neurological disorder—will be diagnosed with Parkinson’s disease, dementia 

with Lewy bodies, or multiple system atrophy within their lifetimes.1 For this reason, 

patients with isolated RBD will be an ideal population in which to use disease-modifying 

therapies when they become available. However, the delay from diagnosis of isolated RBD 

to phenoconversion (ie, conversion from isolated RBD to a diagnosis of Parkinson’s disease, 

dementia with Lewy bodies, or multiple system atrophy) is variable, with the prodromal 

period lasting from years to decades, and RBD alone cannot predict α-synucleinopathy 

subtype. Identification of patients with isolated RBD who are most likely to phenoconvert 

within several years is crucial if participants are to reach endpoints within the time-frame of 

disease-modifying therapy trials, as is the identification of biomarkers that can monitor the 

neurodegenerative process and treatment outcomes.

The ideal biomarker must be highly sensitive and specific, reproducible, cost-effective, 

readily available, and able to serve as a therapy-responsive progression marker. The goal 

of this Review is to summarise the field of potential biomarkers of α-synucleinopathies in 

patients with isolated RBD with this ideal in mind. We focus on ten biomarker categories 

that have shown substantial promise, presented in the order in which we consider them to 

be easily obtainable and, therefore, available for use in potential international clinical trials. 

We have also categorised candidate biomarkers according to how they might be used (table 
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1). On the basis of current evidence, the potential usefulness of each biomarker will be 

highlighted, with specific focus on its role in future disease-modifying therapy trials.

Biomarker categories

Neurophysiology—REM sleep without atonia is the neurophysiological hallmark of RBD 

(figure 1) and is required for diagnosis. REM sleep without atonia is recorded during the 

mandatory diagnostic step of video-polysomnography, making it the most readily available 

diagnostic biomarker. The presence of REM sleep without atonia has been identified before 

dream-enacting behaviours, establishing isolated REM sleep without atonia as one of the 

earliest signs of neurodegeneration.3,4 REM sleep without atonia might also offer the 

potential to predict phenotypic subtypes of evolving α-synucleinopathy, thus enhancing 

its diagnostic potential.3 Several visual and automated methods for scoring REM sleep 

without atonia have shown largely convergent agreement, with acceptable sensitivity and 

specificity (both ranging 85–95%). Finally, REM sleep without atonia might prove to be a 

valuable prognostic biomarker of disease progression as it might increase over time in some 

individuals, with greater severity associated with accelerated phenoconversion.5,6

RBD seems to result from the breakdown of a broad neural network underlying REM 

sleep atonia, with an interaction between the brainstem and both rostral and caudal CNS 

structures.7 This hypothesis has prompted the development of advanced EEG analysis 

that has shown potential as a diagnostic and prognostic biomarker. For example, lower 

cyclic alternating pattern rates on EEG have been associated with increased rates of 

phenoconversion in individuals with isolated RBD,8 as has the time–frequency structure 

of resting wakeful EEG.9 Further gains in diagnostic and prognostic value might be 

achieved by the use of artificial intelligence and machine learning-based methods, such 

as a recently developed random forest classifier that combines muscle atonia data with 

sleep architecture to accurately identify the presence of RBD.10 Other more experimental 

approaches, including transcranial magnetic stimulation to probe early cortical dysfunction11 

and vestibular-evoked myogenic potentials assessing brainstem neurophysiology,12 require 

additional investigation before being proposed as prognostic biomarkers.

Motor function—Given the prominence of parkinsonism in patients with isolated RBD 

who go on to be diagnosed with an α-synucleinopathy,1 formalised motor assessments 

represent appealing and readily available biomarkers, although the specific protocol is yet 

to be optimised. Motor abnormalities in patients with isolated RBD emerge relatively late 

in the prodromal disease process and might indicate which patients are at most risk of 

phenoconversion in the near future. A longitudinal multicentre trial by the International 

RBD Study Group in 1280 patients with isolated RBD showed that quantitative motor tests 

are one of the most powerful predictive markers of future phenoconversion, with a hazard 

ratio (HR) of 3·16 (95% CI 1·86–5·37).1 Performance on quantitative motor assessments 

and, in particular, an upper extremity alternating-tap test can become significantly different 

from that of healthy individuals 5–8 years before phenoconversion,13 offering potential as 

both a prognostic and monitoring biomarker.
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Several cross-sectional studies using instrumental assessments have highlighted the use 

of gait,14,15 speech,16 saccadic eye movements,17 rhythm,18 and finger tapping,19 with 

sensitivity and specificity of up to 80%, to identify the presence of isolated RBD. For 

example, changes in home-based spontaneous walking tasks and decreased gait speed, 

cadence, and step variability have been reported in patients with isolated RBD, compared 

with age-matched controls.14 In addition, laboratory assessments have revealed deficits 

in postural control and foot step asymmetry during dual-task walking in patients with 

isolated RBD compared with controls, suggesting an overlap between motor and cognitive 

domains.15 Acoustic speech analysis has indicated that levels of monopitch (reduced ability 

for intonation during speech), longer duration of pauses, and a decreased rate of follow-up 

speech segments might best discriminate between patients with isolated RBD, patients with 

Parkinson’s disease, and controls,16 probably reflecting both vocal cord hypokinesia and 

deficits in orolingual movement initiation. Poor spontaneous rhythm timing and perception 

has also been shown: performance in a small cohort of patients with isolated RBD was 

similar to that in individuals with mild Parkinson’s disease,20 whereas, in another cohort of 

patients with isolated RBD, finger tapping amplitude and velocity decrement were impaired 

when compared with controls, suggesting prodromal bradykinesia.19 Finally, increased error 

rates for antisaccadic but not prosaccadic eye movements have been reported in patients with 

isolated RBD compared with controls.17 Despite the precision offered by these approaches, 

there is also a recognised need to quickly and accurately assess motor function in the clinic 

and home environments. A combination of motor markers evaluated with a smartphone 

was highly effective in discriminating patients with isolated RBD, patients with Parkinson’s 

disease, and controls, with a mean sensitivity of 85% and specificity of 92%,18 highlighting 

the potential of future technology in prognostic and monitoring biomarkers for disease

modifying therapy trials.

Cognition—Cognitive decline is common in patients with isolated RBD, and so cognitive 

testing represents another valuable and readily available biomarker. Mild cognitive 

impairment is present in more than a third of patients with isolated RBD, and patients 

with isolated RBD and concomitant mild cognitive impairment are at higher risk of 

phenoconversion than patients with isolated RBD and normal cognitive functioning.1,21 

Indeed, both amnestic and non-amnestic mild cognitive impairment subtypes in patients 

with isolated RBD are predictive of the development of dementia with Lewy bodies or 

parkinsonism with cognitive impairment.1,22–24

Deficits in cognitive performance also affect patients with isolated RBD who do not fulfill 

criteria for mild cognitive impairment.21 Cross-sectional studies have reported deficits in 

attention, executive function, memory, and visuospatial function in this population,21 and 

pareidolias (the tendency to perceive a meaningful image in an ambiguous visual pattern) 

and deficits in prospective memory have also been identified.25,26 Importantly, the pattern 

and severity of cognitive deficits in patients with isolated RBD might predict subtype of 

α-synucleinopathy. Cognitive deterioration over time is more common in patients who will 

develop dementia with Lewy bodies, whereas stable cognitive performance over a period 

of 6 years is more common in those who will develop Parkinson’s disease or remain free 

of an α-synucleinopathy diagnosis.24 In one longitudinal study, assessments of executive 

Miglis et al. Page 6

Lancet Neurol. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



function, such as the Trail Making Test Part B, showed deficits in patients with isolated RBD 

6 years before diagnosis of dementia with Lewy bodies,24 whereas verbal episodic memory, 

assessed by the Rey Auditory-Verbal Learning Test, and semantic memory, assessed by 

semantic verbal fluency, were abnormal 2–4 years before such a diagnosis.24 This predictive 

value might be heightened when combined with multimodal imaging approaches, which 

have more recently been used to elaborate the structural and functional correlates of mild 

cognitive impairment in patients with isolated RBD (see Neuroimaging section).

Cognitive testing in patients with isolated RBD might thus prove useful as a diagnostic 

biomarker, particularly to identify prodromal dementia with Lewy bodies, and as a 

prognostic and monitoring biomarker. The psychometric properties of cognitive testing 

are well established, and the tests are widely available at low cost and easily done, with 

administration times of 15–25 min.24 The Montreal Cognitive Assessment, a screening test 

that takes 10 min to administer, could be another option to identify patients with isolated 

RBD at risk of dementia with Lewy bodies;13 however, further studies are needed to validate 

its psychometric properties in this population.

Olfaction—Hyposmia is recognised as one of the earliest prodromal signs of Parkinson’s 

disease and is present in many patients with isolated RBD.27,28 In a multicentre study 

of more than 600 patients with isolated RBD, hyposmia was present in 67%,1 and back

extrapolation of disease (to estimate the time at which olfaction crossed normal control 

values) has identified evidence of hyposmia more than 20 years before phenoconversion.13 

The Sniffin’ Sticks test (Burghardt, Wedel, Germany),29 comprising multi-use felt-tip style 

pens, and the University of Pennsylvania Smell Identification Test (UPSIT),30 which uses 

single-use scratch cards, are the most frequently used instruments to assess olfaction, with 

similar discrimination accuracy. A link between the severity of isolated RBD symptoms and 

olfactory deficit has been suggested through comparison of sleep clinic-ascertained patients 

with isolated RBD with those ascertained from a general population of older individuals;31 

olfactory function was worse in the clinic-ascertained compared to population-ascertained 

cohort, with clinic-ascertained patients with isolated RBD manifesting higher rates of 

dream-enactment behaviours during video-polysomngraphy than population-ascertained 

patients with isolated RBD, indicating worse RBD severity.

The HR attributed to hyposmia (2·62, 95% CI 1·67–4·12), based on pooled multicentre 

data from more than 600 individuals, exceeds that of all other non-motor markers.1 Its use 

alongside an age cut-off of at least 55 years has been suggested to stratify individuals 

at risk of phenoconversion within several years,32 although the absence of worsening 

olfactory deficit over time has led to caution over its use as an outcome measure in disease

modifying therapy trials.33 In one study, hyposmia was closely correlated with progressive 

decline in visuospatial function and verbal memory in patients with isolated RBD followed 

over 2 years, suggesting that hyposmia might also predict future conversion to dementia 

with Lewy bodies.34 Although hyposmia also correlates strongly with the presence of 

phosphorylated α-synuclein aggregates on skin biopsy,35 it cannot distinguish underlying 

Parkinson’s disease from dementia with Lewy bodies and has incomplete penetrance in the 

α-synucleinopathies.35,36 As part of a two-tiered screening strategy aimed at identifying 

individuals at risk of incident Parkinson’s disease, hyposmia combined with a dopamine 
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transporter deficit on 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane 

(123I-FP-CIT) SPECT imaging predicted phenoconversion within a 4-year period with a 

sensitivity of 74%, specificity of 97%, positive predictive value of 67%, and negative 

predictive value of 97%.37 The combination of hyposmia and abnormal dopamine 

transporter imaging in this cohort of 280 hyposmic and normosmic individuals was 

associated with a phenoconversion rate of 25%, compared with a rate of 2·5% using 

hyposmia alone, highlighting the potential of hyposmia as a combined biomarker.37

Finally, although olfactory discrimination is often reduced in patients with isolated RBD, 

partial recovery can occur due to neurogenesis in the subventricular zone. This zone 

contains neural progenitor cells that migrate via the rostral migratory stream to the olfactory 

bulb and differentiate into interneurons. Studies show variable impairment of olfactory 

bulb-related neurogenesis that is directly triggered by α-synuclein accumulation, in both 

post-mortem brain investigations from humans with Parkinson’s disease and transgenic 

Parkinson’s disease mouse models.38 Therefore, variable neurogenesis might contribute to 

the substantial interindividual differences in olfaction observed in people with isolated RBD 

and intraindividual differences observed throughout ageing.

Ophthalmic function—Despite its ease of use, colour discrimination has rarely been 

systematically evaluated in people with isolated RBD,1,13,39 and the only test to have 

been evaluated is the Farnsworth-Munsell 100-Hue test. In a study of 154 patients with 

isolated RBD, olfactory dysfunction was first to develop, followed by impaired colour 

discrimination.13 In another study of 62 patients with isolated RBD followed over 5 years, 

13 (74%) of 21 patients with isolated RBD and impaired colour discrimination converted 

to Parkinson’s disease, compared with 12 (30%) of 40 patients with isolated RBD and 

unimpaired colour discrimination.39 In a multicentre study of 1280 patients with isolated 

RBD, in which a fifth underwent colour testing,1 the HR for phenoconversion to Parkinson’s 

disease or dementia with Lewy bodies was 1·69 (95% CI 1·01–2·78).1 In a monocentric 

study of 154 patients with isolated RBD, impaired colour discrimination began an estimated 

12·8 years before phenoconversion to Parkinson’s disease or dementia with Lewy bodies,13 

suggesting that colour discrimination holds potential as both a diagnostic and prognostic 

biomarker. The mechanism of heightened phenoconversion risk in those with impaired 

colour discrimination remains unclear.

Although the data are less robust than those for discrimination, optical coherence 

tomography also holds potential as a diagnostic and prognostic biomarker, as thinning 

of the parafoveal ganglion cell complex in the retina has been found to correlate with 

olfactory loss and striatal dopamine transporter reduction in patients with isolated RBD.40 

For Parkinson’s disease, such thinning has been correlated with nigral dopaminergic 

loss and visual impairment41 Furthermore, patients with isolated RBD seem to show a 

reduction of the retinal nerve fibre layer.42 However, longitudinal studies using optical 

coherence tomography in patients with isolated RBD are needed to confirm these findings.43 

Although the retinal contribution to colour perception is well established, optical coherence 

tomography findings have yet to be correlated with colour discrimination in patients with 

isolated RBD. Interestingly, Lewy-type pathology in the retinal ganglion cell complex layers 

has also been found in incidental Lewy body disease involving the brainstem.44 Although 
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the mechanism of colour discrimination impairment in the retina remains uncertain, these 

findings suggest parallel initiation of the neurodegenerative process at anatomically distinct 

sites. Future studies are needed to rule out methodological inconsistencies45 between 

different optical coherence tomography studies and to establish whether these retinal 

changes are unique to α-synucleinopathies.46

Autonomic function—Autonomic impairment is common in patients with isolated 

RBD, occurs early in the disease process,13 and has been shown in studies using 

both questionnaires and objective measures of autonomic function, such as heart rate 

variability, cardiac metaiodobenzylguanidine scintigraphy, and autonomic reflex testing. 

Autonomic symptoms in patients with isolated RBD encompass adrenergic and cardiovagal 

deficits, sexual and urinary dysfunction, and constipation.1,47,48 The severity of autonomic 

impairment is mild to moderate in most patients with isolated RBD, at an intermediate level 

between healthy individuals and people with Parkinson’s disease.47

Several questionnaire-based studies have revealed that patients with isolated RBD report 

significantly more autonomic symptoms than controls do, with the greatest impairment 

reported in cardiovascular, gastrointestinal, and urinary domains.1,47,48 In a prospective 

study of 1280 patients with isolated RBD, constipation and erectile dysfunction were 

associated with the greatest risk of phenoconversion.1 The severity of autonomic symptoms 

has also been associated with putaminal dopamine transporter abnormalities and an 

accelerated rate of phenoconversion in patients with isolated RBD, highlighting potential 

as both a diagnostic and prognostic biomarker.28,48,49

Although some studies on heart rate variability have shown impairment in low-frequency 

spectra on video-polysomnography, suggestive of cardiac sympathetic impairment, other 

studies suggest impairment in high-frequency spectra, suggestive of parasympathetic 

impairment.50 Metaiodobenzylguanidine scintigraphy studies have shown that patients with 

isolated RBD have markedly reduced uptake ratios compared with controls, suggestive of 

postganglionic sympathetic impairment,51 a finding more commonly seen in patients with 

Parkinson’s disease than in those with multiple system atrophy, allowing for a potential 

diagnostic distinction between prodromal phenotypes. Although heart rate variability and 

metaiodobenzylguanidine abnormalities are seen early in the isolated RBD disease course, 

there are no longitudinal data showing an association with phenoconversion rates, making 

these biomarkers more appealing for diagnostic than for prognostic use.

Autonomic reflex testing has shown consistent impairment across cardiovagal, sympathetic 

adrenergic, and sudomotor domains in patients with isolated RBD, with the greatest 

impairment in measures of sympathetic adrenergic function,52–54 which might worsen with 

disease progression. In addition, more severe cardiovagal dysfunction is more strongly 

associated with phenoconversion to dementia with Lewy bodies than Parkinson’s disease.49 

Although validated as the most quantitative and comprehensive method of assessing 

autonomic function, autonomic reflex testing requires a specialised autonomic laboratory 

with beat-to-beat blood pressure recording, thus limiting access, in contrast to less expensive 

but less precise questionnaires.
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Although the available literature shows that autonomic impairment can serve as a diagnostic 

marker in isolated RBD, data on the prognostic value of such impairment are scarce, and 

longitudinal studies are necessary to establish whether autonomic impairment in patients 

with isolated RBD can help predict the development of α-synucleinopathy subtypes. 

Finally, the large intraindividual variability of autonomic symptoms in patients with isolated 

RBD might pose challenges in accurately phenotyping those at risk of more imminent 

phenoconversion.

Biofluids—Given the neuroanatomical proximity of CSF to the brain, biomarkers 

obtained from CSF represent appealing candidates for molecular characterisation of α

synucleinopathies. Real-time quaking-induced conversion (RT-QuIC) has emerged as an 

ultrasensitive technique to identify pathological α-synuclein in the CSF of patients with 

Parkinson’s disease and patients with dementia with Lewy bodies, with a high degree of 

sensitivity and specificity. From the few studies analysing CSF biomarkers in patients with 

isolated RBD, RT-QuIC can detect pathogenic species of α-synuclein with a sensitivity of 

90–100% and specificity of 90–98%,55 with a positive result suggesting an increased risk of 

phenoconversion,56 highlighting the potential of RT-QuIC to detect pathogenic α-synuclein 

in CSF as both a diagnostic and prognostic biomarker. Furthermore, use of RT-QuIC with 

swabs from olfactory mucosa to detect pathogenic α-synuclein has been reported as a 

potential diagnostic marker. The technique is less invasive than lumbar puncture and has 

good specificity (90%) but moderate sensitivity (44%), although the sensitivity increases to 

73% in patients with isolated RBD who have hyposmia.57

Biomarkers obtained directly from blood represent an attractive candidate due to the 

relatively low cost and ease of obtainability; however, results have been suboptimal. α

Synuclein in plasma neuronal exosomes might aid in the early diagnosis of Parkinson’s 

disease, but no significant differences in exosomal α-synuclein concentrations were found in 

individuals with isolated RBD compared with healthy controls in one longitudinal study.58 

Another cross-sectional study showed that neuronal exosome α-synuclein concentrations 

were elevated in individuals with isolated RBD when compared with controls and 

individuals with multiple system atrophy, but no different when compared with people with 

Parkinson’s disease; this finding suggests a potential role in predicting subtype, based on 

the fact that α-synuclein in patients with multiple system atrophy accumulates primarily 

in oligodendrocytes.59 In addition, serum neurofilament light chain, a neuronal cytoskeletal 

protein released upon neuronal damage, might mark the conversion of isolated RBD to 

clinically manifest Parkinson’s disease.60 Techniques such as proteomics analysis of serum 

samples, which have identified several proteins at significantly altered expression levels, 

have provided further insight into the protein signature profile and molecular pathways 

involved in the pathogenesis of isolated RBD,61,62 but confirmatory studies are needed.

Alterations in circulating microRNAs have been shown in several neurodegenerative 

diseases including isolated RBD. One study showed that miR-19b was significantly 

downregulated in patients with isolated RBD who phenoconverted, but not in those who 

remained disease-free after 4·7 (±2·6) years of follow-up, indicating that dysregulation 

of miR-19b might contribute to phenoconversion and offer potential as a prognostic 

biomarker.63 One study revealed decreased antioxidant superoxide dismutase and increased 
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glycolysis in patients with isolated RBD using peripheral blood mononuclear cells.64 The 

potential of other samples, such as those from saliva, tears, and the microbiome, is yet to 

be explored in patients with isolated RBD, and longitudinal studies are required to establish 

whether such biosamples can be used to assess phenoconversion risk.65

Neuroimaging—Evidence of nigrostriatal dopaminergic impairment, usually measured as 

availability of dopamine transporters in the basal ganglia, has consistently been found in 

patients with isolated RBD on both PET and SPECT imaging (figure 2A), with 123I-FP

CIT SPECT currently the most studied and readily available dopamine transporter SPECT 

imaging modality. Abnormal dopamine transporter imaging appears to signal an increased 

risk of phenoconversion,1,69,70 especially when combined with cognitive and autonomic 

impairment.66,71 Furthermore, nigrostriatal dopamine transporter abnormalities seem to 

correlate with changes in brain glucose metabolism as assessed by 18F-fluorodeoxyglucose 

(18F-FDG) PET.72 The 18F-FDG PET-derived isolated RBD-related (figure 2B) and 

Parkinson’s disease-related pattern67 appears to be a prodromal progression marker, having 

shown potential both to assess progression and to predict α-synucleinopathy subtype.73

Although radionuclide studies with dopamine transporter SPECT and 18F-FDG-PET 

imaging are widely available and their costs for clinical trial purposes are acceptable, 

dependence on ionising radiation might restrict their utility. Therefore, MRI remains an 

attractive alternative. MRI techniques have shown abnormalities in the substantia nigra 

related to the degree of dopaminergic dysfunction (figure 2C)74 and grey matter changes 

in the motor cortico-subcortical loop that correlate with motor abnormalities.75 Findings 

on MRI have also been correlated with cognitive impairment in patients with RBD and 

mild cognitive impairment, with cortical thinning in the left anterior temporal cortex best 

differentiating patients from controls (figure 2D). In addition, associations have been noted 

between reduced attention and executive function and thinning of the frontal cortex, between 

reduced verbal learning and thinning of the left temporal cortex, and between visuospatial 

function and thinning of the fronto-temporo-occipital cortex in patients with isolated RBD.68

Other MRI approaches include deformation-based morphometry, which has been used 

to identify a brain signature by combining cortical and subcortical deformation and 

subarachnoid and ventricular expansion, that predicts the development of dementia with 

Lewy bodies in patients with isolated RBD.76 MRI has also shown promising results in 

identifying patients at risk of developing multiple system atrophy.77 Whole-brain resting

state functional MRI has shown correlations between reduced performance in a processing 

speed task and disrupted connectivity in the associative areas of the parieto-temporal 

lobes,78 as well as an association between verbal learning and left thalamo-fusiform 

connectivity.24 In addition, functional MRI has shown a disrupted posterior brain network 

associated with isolated RBD-related cognitive impairment.78 Accordingly, cholinergic 

denervation on 11C-donepezil PET, known to be related to cognitive impairment, was 

found in patients with isolated RBD, particularly in the temporal, occipital, cingulate, and 

dorsolateral prefrontal cortex.79

Despite best efforts, imaging biomarkers that delineate neuropathological spread of α

synuclein are lacking for patients with isolated RBD. 123I-FP-CIT SPECT remains the 
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most reliable prognostic marker of phenoconversion in this context and is increasingly 

being considered as an enrichment tool to select individuals with prodromal Parkinson’s 

disease for partidpation in disease-modifying therapy trials. 18F-FDG PET has shown 

diagnostic promise in detecting disease-specific patterns with the potential to predict α

synucleinopathy subtype, in addition to potential as a prognostic progression marker,73 

but confirmatory studies are required. Although several MRI techniques offer potential as 

diagnostic and prognostic markers, longitudinal data are needed before recommending this 

technique for disease-modifying therapy trials.

Tissue biopsy—Phosphorylated α-synuclein deposits in the substantia nigra are a 

neuropathological hallmark of Parkinson’s disease; however, autopsy studies have also 

shown phosphorylated α-synuclein in peripheral structures, such as the autonomic nerves, 

enteric mucosa, and salivary glands, in patients with Parkinson’s disease or dementia with 

Lewy bodies.80,81 One of the first tissues to be analysed in both people with Parkinson’s 

disease and people with isolated RBD was colonic tissue, with only one study showing a 

positivity rate of only 24% (4 of 17 patients with isolated RBD).82 Transcutaneous core 

needle biopsy of the submandibular gland with ultrasound guidance showed high sensitivity 

and specificity in major salivary gland tissue in one study,83 but adequate biopsy material 

was obtained in only 9 (43%) of 21 patients. Biopsy of minor salivary glands in the inner 

side of the lower lip obtains adequate tissue in all cases but is less sensitive, with only 31 

(50%) of 62 patients with isolated RBD showing phosphorylated α-synuclein positivity.84

More recently, skin biopsy has emerged as a promising and less invasive technique 

(appendix p 3).81 This technique is well tolerated, relatively inexpensive, and easier to do 

than colon or salivary gland biopsies, and can be done in any outpatient setting under aseptic 

technique, although dual-immunofluorescence analysis does require operator experience. 

One study using biopsies of multiple unilateral sites (C7 paraspinal area, T10 paraspinal 

area, and proximal and distal leg) showed phosphorylated α-synuclein positivity in 10 

(56%) of 18 patients with isolated RBD, 20 (80%) of 25 patients with early Parkinson’s 

disease, and 0 of 20 controls.35 The likelihood of phosphorylated α-synuclein positivity was 

greater in those with olfactory dysfunction, whereas the relationship with reduced dopamine 

transporter SPECT ligand density was less robust, indicating that skin biopsy positivity 

can be found in patients with isolated RBD with a normal dopamine transporter SPECT, 

at least 2 years before nigrostriatal decline. A second study independently confirmed this 

finding using bilateral biopsies at C8 and the distal leg, showing phosphorylated α-synuclein 

positivity in 9 (75%) of 12 patients with isolated RBD and 0 of 55 controls.85 A third study 

of unilateral biopsies at C8 and the distal leg showed phosphorylated α-synuclein deposits in 

26 (87%) of 30 patients with isolated RBD and 0 of 17 patients with RBD secondary to type 

1 narcolepsy, confirming the specificity of this technique.86 A more recent study of a single 

biopsy from a C8 cervical paravertebral site using an automated immunohistochemical assay 

showed phosphorylated α-synuclein in 23 (82%) of 28 patients with isolated RBD.87 These 

studies have shown a combined specificity of 100% and a sensitivity of 58–87%. In addition, 

the analysis technique has been shown to have excellent interobserver reliability in two 

independent experienced laboratories.88
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Peripheral tissue biopsy, especially skin biopsy, thus shows great promise as an in-vivo 

diagnostic biomarker for isolated RBD. Although some evidence also suggests promise in 

the ability to differentiate Parkinson’s disease and dementia with Lewy bodies from multiple 

system atrophy,89 this ability remains to be validated in individuals with isolated RBD, and 

it remains unclear whether the severity of phosphorylated α-synuclein deposition confers 

increased risk of phenoconversion. Longitudinal studies are needed to better understand its 

full potential as not only a diagnostic but also a prognostic biomarker.

Genetic markers—Recent studies suggest that the genetic background of isolated RBD 

does not fully overlap with those of Parkinson’s disease, dementia with Lewy bodies, and 

multiple system atrophy. Genetic variants in the LRRK290 and MART genes,91 which 

are associated with Parkinson’s disease, show no association with isolated RBD. The 

APOE ε4 haplotype, which is strongly associated with dementia with Lewy bodies, is 

also not associated with isolated RBD.92 However, GBA variants that are associated with 

Parkinson’s disease, dementia with Lewy bodies, and, arguably, multiple system atrophy, are 

also associated with isolated RBD.93 Two coding variants in TMEM175 affect the risk of 

Parkinson’s disease, yet only one of them has been found in patients with isolated RBD.94 

These genetic studies show that isolated RBD has a distinct genetic background, and we 

cannot assume that genetic variants that are relevant for the risk of, or for progression in, 

Parkinson’s disease or dementia with Lewy bodies are also relevant for phenoconversion in 

isolated RBD.

GBA variants are found in approximately 10% of patients with isolated RBD and are 

associated with probable RBD in Parkinson’s disease.93 A cross-sectional multicentre 

study of 1061 patients with isolated RBD showed that 52% of GBA variant carriers 

phenoconverted, compared with 35% of non-carriers, despite similar disease duration.95 

Furthermore, this study showed that individuals with severe GBA variants, defined as 

variants that cause the severe types of Gaucher disease (types 2 and 3), might be at 

increased risk of more rapid phenoconversion, compared with individuals with mild or 

absent GBA variants.95 Fine-mapping of the SNCA locus in isolated RBD, probable RBD, 

Parkinson’s disease, and dementia with Lewy bodies has also shown differences in genetic 

background between people with these different diagnoses and in the potential effects of 

some SNCA variants on rate of conversion in isolated RBD.96 In Parkinson’s disease, the 

main effect on risk is driven by variants in the 3′ region of the gene, whereas, in isolated 

RBD and dementia with Lewy bodies, different and independent variants at the 5′ SNCA 
region are associated with risk, and specific 5′ SNCA variants might also affect the rate of 

phenoconversion.96 Although these results are all preliminary and require confirmation in 

larger cohorts, they provide a proof of concept for the use of genetic variants as prognostic 

biomarkers to assess phenoconversion risk. Additional analyses, including polygenic risk 

scores from genome-wide association studies, as well as burden analyses of rare genetic 

variants, will also be needed to increase our ability to use genetic signatures as biomarkers in 

isolated RBD.
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Combined biomarkers

No single biomarker for phenoconversion to α-synucleinopathies in people with isolated 

RBD fulfils the ideals of precision, accuracy, availability, and cost-effectiveness (table 2). 

Some biomarkers might appear early and change very slowly over time in individuals with 

isolated RBD, such as hyposmia and colour discrimination, whereas others might appear 

closer to phenoconversion, such as motor impairment, cognitive impairment, and reduced 

presynaptic dopaminergic uptake on 18F-FDG PET imaging. Still others might hold value 

for the exclusion of atypical parkinsonism syndromes: cognitive testing and neuroimaging 

to help exclude dementia with Lewy bodies, for example, or autonomic testing and skin 

biopsy to help exclude multiple system atrophy. Ideally, diagnostic biomarkers will be used 

to identify the subtype of future α-syncucleinopathy, whereas a combination of prognostic 

biomarkers will inform proximity to phenoconversion, and monitoring biomarkers will aid 

in tracking therapy response, taking into consideration that different α-synucleinopathy 

subtypes will evolve differently (figure 3).109

How will a combination of biomarkers be used in future disease-modifying therapy trials? 

Thus far, most studies in patients with isolated RBD have evaluated single or very small 

groups of biomarkers in isolation. However, combined biomarkers that span multiple 

modalities hold the greatest promise. The power of combining multiple biomarkers was 

illustrated in a collaborative study of 1280 patients with isolated RBD by members of 

the International RBD Study Group, in which the presence of mild motor impairment and 

hyposmia increased the observed annual phenoconversion rate from 6·3% in all patients 

with RBD to 15·7%, providing a basis for calculating a realistic sample size for a 

disease-modifying therapy trial.1 This combined biomarker approach requires substantial 

investment, rigorous standardisation across multiple sites for sample collection, storage, 

and assays, and data harmonisation followed by replication and confirmation, before it can 

inform clinical trials and change medical practice.

Conclusions and future directions

Disease-modifying therapy trials are currently ongoing in patients with Parkinson’s disease. 

The next challenge will be to test these therapies in people with isolated RBD, to slow 

or even prevent the full manifestation of disease. It will be important to enrich target 

populations with biomarkers of short-term conversion (eg, abnormal dopamine transporter 

SPECT)109 and be able to monitor disease progression with serial measurements (eg, motor 

function, cognition, dopamine transporter SPECT). The Parkinson’s Progression Markers 

Initiative 2.0 prodromal cohort (NCT04477785), which started in 2020, as well as other key 

initiatives such as the North American Prodromal Synucleinopathy cohort (NCT03623672) 

and the International RBD Study Group, must work together towards this broader goal 

of slowing or preventing phenoconversion in the α-synucleinopathies. Future research 

will focus on longitudinal outcome data of multiple biomarkers across multiple centres 

worldwide.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: REM sleep recorded in a patient with RBD
The sleep pattern shows excessive chin muscle tone and excessive phasic EMG 

twitch activity over the chin, TA, and FDS muscles. A1=left mastoid reference. 

A2=right mastoid reference. C3=left central. C4=right central. ECG=electrocardiogram. 

EMG=electromyogram. EOG=electro-oculogram. FDS=flexor digitorum superficialis. 

F3=left frontal. F4=right frontal. O1= left occipital. O2=right occipital. TA=tibialis anterior.
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Figure 2: Functional and structural brain imaging findings in patients with isolated RBD
(A) Example of an 123I-FP-CIT SPECT scan in a patient with isolated RBD, showing 

reduced uptake (yellow and orange) in the left putamen and, to a lesser extent, the 

right putamen. Scans are shown at different levels of the brain (denoted by the numbers 

in the bottom right corners). The population average data in the graphs have been 

obtained by analysis of individuals without isolated RBD from the European Normal 

Control database of DaTSCAN, using the basal ganglia matching tool.66 Red and green 

lines show two different confidence limits for putamen and caudate 123I-FP-CIT SPECT 

uptake. Red squares represent left putamen and caudate nuclei, and green circles represent 

right putamen and caudate nuclei of the patients whose scans are shown above. (B) 

Stable voxels (90% CI not straddling zero after bootstrap resampling) of 18F-FDG PET

derived brain glucose isolated RBD-related pattern are visualised by overlaying them on 

a T1 MRI template. The arrows are pointing to all brain areas with stable voxels. Red 

indicates positive voxel weights (relative hypermetabolism) and blue indicates negative 

voxel weights (relative hypometabolism). Coordinates in axial (Z) and sagittal (X) planes 

are in Montreal Neurologic Institute standard space. Panel adapted from Meles et al.67 

(C) Examples of susceptibility-weighted imaging taken at the level of the substantia nigra 

in a healthy control and a patient with isolated RBD. Image HC reveals the presence 
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of a bilateral dorsal nigral hyperdensity (green arrows), corresponding to nigrosome 1. 

The dorsal nigral hyperdensity is lost bilaterally in the patient with isolated RBD. (D) 

Areas of cortical thinning in patients with isolated RBD and mild cognitive impairment 

compared with individuals without isolated RBD or cognitive impairment, corrected for 

family-wise error at p<0·05, with age, sex, and education added as covariates. The 

colour bar represents the logarithmic scale of p values (−log10), with red-to-yellow 

areas representing significant thinning in patients with mild cognitive impairment and 

isolated RBD versus controls. The white asterisks represent the cluster of thinning (left 

anterior temporal lobe, including entorhinal cortex, insula, and inferior and middle frontal 

cortex) that best discriminated between patients with isolated RBD and mild cognitive 

impairment versus healthy controls (AUC 0·91 [95% CI 0·825–0·996]). Panel adapted 

from Rahayel et al.68 AUC=area under the curve. FDG=fluorodeoxyglucose. 123I-FP

CIT=123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane. HC=healthy 

control. RBD=rapid-eye-movement sleep behaviour disorder. L=left. R=right
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Figure 3: Hypothetical timeline of isolated RBD and associated clinical manifestations in relation 
to evolving α-synucleinopathies
The hypothetical timelines are for Parkinson’s disease (A), dementia with Lewy bodies 

(B), and multiple system atrophy (C). In Parkinson’s disease and dementia with Lewy 

bodies, changes in smell and autonomic functioning typically precede RBD, followed by 

other features; parkinsonism precedes cognitive changes in evolving Parkinson’s disease, 

whereas cognitive changes precede parkinsonism in evolving dementia with Lewy bodies. 

In multiple system atrophy, autonomic dysfunction manifests around the time of isolated 

RBD, followed by elements of parkinsonism or cerebellar dysfunction, or both, in many 
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individuals. Changes in smell and cognition are minimal or absent in multiple system 

atrophy, and genetic variants associated with multiple system atrophy are still being studied 

(represented by dashed lines). For the neuroimaging timeline, brainstem alterations (a) occur 

first, followed by nigrostriatal dopaminergic alterations (b), and then other subcortical and 

cortical alterations (c). RBD=rapid-eye-movement sleep behaviour disorder.
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Table 1:

Biomarker categories and definitions

Definition Application to isolated RBD

Diagnostic To detect or confirm presence of a disease or condition of 
interest or to identify individuals with a subtype of the disease

To confirm an underlying α-synucleinopathy; 
to distinguish subtype of α-synucleinopathy (ie, 
Parkinson’s disease, dementia with Lewy bodies, 
multiple system atrophy)

Prognostic To identify likelihood of a clinical event, disease recurrence, 
or progression in patients who have the disease or medical 
condition of interest

To predict rate of phenoconversion; to predict disease 
severity

Monitoring or 
therapy-

responsive*

To monitor progression of disease or show that a biological 
response has occurred in an individual who has been exposed to 
a medical product or an environmental agent

To monitor the progression of neurodegeneration; to 
detect the eventual effect of drug treatment (extent 
of neuroprotection); to establish efficacy of disease
modifying therapies

Combined Composite and multidimensional, through combination of 
multiple biomarkers, and, as such, better reflects biological 
systems than single biomarkers

To refine and enhance the diagnostic, prognostic, and 
monitoring capabilities of single biomarkers in isolated 
RBD

Definitions in the second column adapted from Califf.2 RBD=rapid-eye-movement sleep behaviour disorder.

*
For simplicity, we have included biomarkers that hold promise as therapy-responsive markers in the monitoring category, as data are currently 

limited to longitudinal observational studies; when disease-modifying therapy trials are carried out, these monitoring biomarkers might also be 
considered as therapy-responsive biomarkers.
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