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Abstract

Patients with isolated rapid-eye-movement sleep behaviour disorder (RBD) are commonly
regarded as being in the early stages of a progressive neurodegenerative disease involving a-
synuclein pathology, such as Parkinson’s disease, dementia with Lewy bodies, or multiple system
atrophy. Abnormal a-synuclein deposition occurs early in the neurodegenerative process across
the central and peripheral nervous systems and might precede the appearance of motor symptoms
and cognitive decline by several decades. These findings provide the rationale to develop reliable
biomarkers that can better predict conversion to clinically manifest a-synucleinopathies. In
addition, biomarkers of disease progression will be essential to monitor treatment response once
disease-modifying therapies become available, and biomarkers of disease subtype will be essential
to enable prediction of which subtype of a-synucleinopathy patients with isolated RBD might
develop.

Introduction

Rapid-eye-movement (REM) sleep behaviour disorder (RBD) has been established as one
of the earliest and most specific prodromal signs of the a-synucleinopathies, including
Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Although
not all patients with an a.-synucleinopathy have RBD, several longitudinal studies have
shown that more than 80% of patients with isolated RBD—ie, RBD not associated with

a known neurological disorder—will be diagnosed with Parkinson’s disease, dementia

with Lewy bodies, or multiple system atrophy within their lifetimes. For this reason,
patients with isolated RBD will be an ideal population in which to use disease-modifying
therapies when they become available. However, the delay from diagnosis of isolated RBD
to phenoconversion (ie, conversion from isolated RBD to a diagnosis of Parkinson’s disease,
dementia with Lewy bodies, or multiple system atrophy) is variable, with the prodromal
period lasting from years to decades, and RBD alone cannot predict a-synucleinopathy
subtype. Identification of patients with isolated RBD who are most likely to phenoconvert
within several years is crucial if participants are to reach endpoints within the time-frame of
disease-modifying therapy trials, as is the identification of biomarkers that can monitor the
neurodegenerative process and treatment outcomes.

The ideal biomarker must be highly sensitive and specific, reproducible, cost-effective,
readily available, and able to serve as a therapy-responsive progression marker. The goal

of this Review is to summarise the field of potential biomarkers of a-synucleinopathies in
patients with isolated RBD with this ideal in mind. We focus on ten biomarker categories
that have shown substantial promise, presented in the order in which we consider them to
be easily obtainable and, therefore, available for use in potential international clinical trials.
We have also categorised candidate biomarkers according to how they might be used (table
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1). On the basis of current evidence, the potential usefulness of each biomarker will be
highlighted, with specific focus on its role in future disease-modifying therapy trials.

Biomarker categories

Neurophysiology—REM sleep without atonia is the neurophysiological hallmark of RBD
(figure 1) and is required for diagnosis. REM sleep without atonia is recorded during the
mandatory diagnostic step of video-polysomnography, making it the most readily available
diagnostic biomarker. The presence of REM sleep without atonia has been identified before
dream-enacting behaviours, establishing isolated REM sleep without atonia as one of the
earliest signs of neurodegeneration.34 REM sleep without atonia might also offer the
potential to predict phenotypic subtypes of evolving a-synucleinopathy, thus enhancing

its diagnostic potential.3 Several visual and automated methods for scoring REM sleep
without atonia have shown largely convergent agreement, with acceptable sensitivity and
specificity (both ranging 85-95%). Finally, REM sleep without atonia might prove to be a
valuable prognostic biomarker of disease progression as it might increase over time in some
individuals, with greater severity associated with accelerated phenoconversion.>-6

RBD seems to result from the breakdown of a broad neural network underlying REM
sleep atonia, with an interaction between the brainstem and both rostral and caudal CNS
structures.’ This hypothesis has prompted the development of advanced EEG analysis

that has shown potential as a diagnostic and prognostic biomarker. For example, lower
cyclic alternating pattern rates on EEG have been associated with increased rates of
phenoconversion in individuals with isolated RBD,8 as has the time—frequency structure
of resting wakeful EEG.? Further gains in diagnostic and prognostic value might be
achieved by the use of artificial intelligence and machine learning-based methods, such

as a recently developed random forest classifier that combines muscle atonia data with
sleep architecture to accurately identify the presence of RBD.10 Other more experimental
approaches, including transcranial magnetic stimulation to probe early cortical dysfunction!!
and vestibular-evoked myogenic potentials assessing brainstem neurophysiology,!2 require
additional investigation before being proposed as prognostic biomarkers.

Motor function—Given the prominence of parkinsonism in patients with isolated RBD
who go on to be diagnosed with an a-synucleinopathy,! formalised motor assessments
represent appealing and readily available biomarkers, although the specific protocol is yet
to be optimised. Motor abnormalities in patients with isolated RBD emerge relatively late
in the prodromal disease process and might indicate which patients are at most risk of
phenoconversion in the near future. A longitudinal multicentre trial by the International
RBD Study Group in 1280 patients with isolated RBD showed that quantitative motor tests
are one of the most powerful predictive markers of future phenoconversion, with a hazard
ratio (HR) of 3-16 (95% CI 1-86-5-37).1 Performance on quantitative motor assessments
and, in particular, an upper extremity alternating-tap test can become significantly different
from that of healthy individuals 5-8 years before phenoconversion,!3 offering potential as
both a prognostic and monitoring biomarker.
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Several cross-sectional studies using instrumental assessments have highlighted the use

of gait, 1415 speech,6 saccadic eye movements,17 rhythm,18 and finger tapping,® with
sensitivity and specificity of up to 80%, to identify the presence of isolated RBD. For
example, changes in home-based spontaneous walking tasks and decreased gait speed,
cadence, and step variability have been reported in patients with isolated RBD, compared
with age-matched controls.24 In addition, laboratory assessments have revealed deficits

in postural control and foot step asymmetry during dual-task walking in patients with
isolated RBD compared with controls, suggesting an overlap between motor and cognitive
domains.15> Acoustic speech analysis has indicated that levels of monopitch (reduced ability
for intonation during speech), longer duration of pauses, and a decreased rate of follow-up
speech segments might best discriminate between patients with isolated RBD, patients with
Parkinson’s disease, and controls,16 probably reflecting both vocal cord hypokinesia and
deficits in orolingual movement initiation. Poor spontaneous rhythm timing and perception
has also been shown: performance in a small cohort of patients with isolated RBD was
similar to that in individuals with mild Parkinson’s disease,2? whereas, in another cohort of
patients with isolated RBD, finger tapping amplitude and velocity decrement were impaired
when compared with controls, suggesting prodromal bradykinesia.1® Finally, increased error
rates for antisaccadic but not prosaccadic eye movements have been reported in patients with
isolated RBD compared with controls.1” Despite the precision offered by these approaches,
there is also a recognised need to quickly and accurately assess motor function in the clinic
and home environments. A combination of motor markers evaluated with a smartphone

was highly effective in discriminating patients with isolated RBD, patients with Parkinson’s
disease, and controls, with a mean sensitivity of 85% and specificity of 92%,18 highlighting
the potential of future technology in prognostic and monitoring biomarkers for disease-
modifying therapy trials.

Cognition—Caognitive decline is common in patients with isolated RBD, and so cognitive
testing represents another valuable and readily available biomarker. Mild cognitive
impairment is present in more than a third of patients with isolated RBD, and patients

with isolated RBD and concomitant mild cognitive impairment are at higher risk of
phenoconversion than patients with isolated RBD and normal cognitive functioning.1:21
Indeed, both amnestic and non-amnestic mild cognitive impairment subtypes in patients
with isolated RBD are predictive of the development of dementia with Lewy bodies or
parkinsonism with cognitive impairment.1:22-24

Deficits in cognitive performance also affect patients with isolated RBD who do not fulfill
criteria for mild cognitive impairment.2! Cross-sectional studies have reported deficits in
attention, executive function, memory, and visuospatial function in this population,2! and
pareidolias (the tendency to perceive a meaningful image in an ambiguous visual pattern)
and deficits in prospective memory have also been identified.25:26 Importantly, the pattern
and severity of cognitive deficits in patients with isolated RBD might predict subtype of
a-synucleinopathy. Cognitive deterioration over time is more common in patients who will
develop dementia with Lewy bodies, whereas stable cognitive performance over a period
of 6 years is more common in those who will develop Parkinson’s disease or remain free
of an a-synucleinopathy diagnosis.?# In one longitudinal study, assessments of executive
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function, such as the Trail Making Test Part B, showed deficits in patients with isolated RBD
6 years before diagnosis of dementia with Lewy bodies,24 whereas verbal episodic memory,
assessed by the Rey Auditory-Verbal Learning Test, and semantic memory, assessed by
semantic verbal fluency, were abnormal 24 years before such a diagnosis.2* This predictive
value might be heightened when combined with multimodal imaging approaches, which
have more recently been used to elaborate the structural and functional correlates of mild
cognitive impairment in patients with isolated RBD (see Neuroimaging section).

Cogpnitive testing in patients with isolated RBD might thus prove useful as a diagnostic
biomarker, particularly to identify prodromal dementia with Lewy bodies, and as a
prognostic and monitoring biomarker. The psychometric properties of cognitive testing

are well established, and the tests are widely available at low cost and easily done, with
administration times of 15-25 min.24 The Montreal Cognitive Assessment, a screening test
that takes 10 min to administer, could be another option to identify patients with isolated
RBD at risk of dementia with Lewy bodies;13 however, further studies are needed to validate
its psychometric properties in this population.

Olfaction—Hyposmia is recognised as one of the earliest prodromal signs of Parkinson’s
disease and is present in many patients with isolated RBD.27-28 In a multicentre study

of more than 600 patients with isolated RBD, hyposmia was present in 67%,* and back-
extrapolation of disease (to estimate the time at which olfaction crossed normal control
values) has identified evidence of hyposmia more than 20 years before phenoconversion.13
The Sniffin’ Sticks test (Burghardt, Wedel, Germany),2? comprising multi-use felt-tip style
pens, and the University of Pennsylvania Smell Identification Test (UPSIT),30 which uses
single-use scratch cards, are the most frequently used instruments to assess olfaction, with
similar discrimination accuracy. A link between the severity of isolated RBD symptoms and
olfactory deficit has been suggested through comparison of sleep clinic-ascertained patients
with isolated RBD with those ascertained from a general population of older individuals;3!
olfactory function was worse in the clinic-ascertained compared to population-ascertained
cohort, with clinic-ascertained patients with isolated RBD manifesting higher rates of
dream-enactment behaviours during video-polysomngraphy than population-ascertained
patients with isolated RBD, indicating worse RBD severity.

The HR attributed to hyposmia (2:62, 95% CI 1-67—4-12), based on pooled multicentre
data from more than 600 individuals, exceeds that of all other non-motor markers. Its use
alongside an age cut-off of at least 55 years has been suggested to stratify individuals

at risk of phenoconversion within several years,32 although the absence of worsening
olfactory deficit over time has led to caution over its use as an outcome measure in disease-
modifying therapy trials.33 In one study, hyposmia was closely correlated with progressive
decline in visuospatial function and verbal memory in patients with isolated RBD followed
over 2 years, suggesting that hyposmia might also predict future conversion to dementia
with Lewy bodies.34 Although hyposmia also correlates strongly with the presence of
phosphorylated a-synuclein aggregates on skin biopsy,3° it cannot distinguish underlying
Parkinson’s disease from dementia with Lewy bodies and has incomplete penetrance in the
a-synucleinopathies.3%:36 As part of a two-tiered screening strategy aimed at identifying
individuals at risk of incident Parkinson’s disease, hyposmia combined with a dopamine
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transporter deficit on 123]- A-o-fluoropropyl-2f-carbomethoxy-3p-(4-iodophenyl)nortropane
(1231-FP-CIT) SPECT imaging predicted phenoconversion within a 4-year period with a
sensitivity of 74%, specificity of 97%, positive predictive value of 67%, and negative
predictive value of 97%.37 The combination of hyposmia and abnormal dopamine
transporter imaging in this cohort of 280 hyposmic and normosmic individuals was
associated with a phenoconversion rate of 25%, compared with a rate of 2:5% using
hyposmia alone, highlighting the potential of hyposmia as a combined biomarker.3

Finally, although olfactory discrimination is often reduced in patients with isolated RBD,
partial recovery can occur due to neurogenesis in the subventricular zone. This zone
contains neural progenitor cells that migrate via the rostral migratory stream to the olfactory
bulb and differentiate into interneurons. Studies show variable impairment of olfactory
bulb-related neurogenesis that is directly triggered by a-synuclein accumulation, in both
post-mortem brain investigations from humans with Parkinson’s disease and transgenic
Parkinson’s disease mouse models.38 Therefore, variable neurogenesis might contribute to
the substantial interindividual differences in olfaction observed in people with isolated RBD
and intraindividual differences observed throughout ageing.

Ophthalmic function—Despite its ease of use, colour discrimination has rarely been
systematically evaluated in people with isolated RBD,1:13:39 and the only test to have

been evaluated is the Farnsworth-Munsell 100-Hue test. In a study of 154 patients with
isolated RBD, olfactory dysfunction was first to develop, followed by impaired colour
discrimination.13 In another study of 62 patients with isolated RBD followed over 5 years,
13 (74%) of 21 patients with isolated RBD and impaired colour discrimination converted

to Parkinson’s disease, compared with 12 (30%) of 40 patients with isolated RBD and
unimpaired colour discrimination.3? In a multicentre study of 1280 patients with isolated
RBD, in which a fifth underwent colour testing,1 the HR for phenoconversion to Parkinson’s
disease or dementia with Lewy bodies was 1-69 (95% CI 1-01-2:78).1 In a monocentric
study of 154 patients with isolated RBD, impaired colour discrimination began an estimated
12-8 years before phenoconversion to Parkinson’s disease or dementia with Lewy bodies,13
suggesting that colour discrimination holds potential as both a diagnostic and prognostic
biomarker. The mechanism of heightened phenoconversion risk in those with impaired
colour discrimination remains unclear.

Although the data are less robust than those for discrimination, optical coherence
tomography also holds potential as a diagnostic and prognostic biomarker, as thinning

of the parafoveal ganglion cell complex in the retina has been found to correlate with
olfactory loss and striatal dopamine transporter reduction in patients with isolated RBD.40
For Parkinson’s disease, such thinning has been correlated with nigral dopaminergic

loss and visual impairment*! Furthermore, patients with isolated RBD seem to show a
reduction of the retinal nerve fibre layer.*2 However, longitudinal studies using optical
coherence tomography in patients with isolated RBD are needed to confirm these findings.*3
Although the retinal contribution to colour perception is well established, optical coherence
tomography findings have yet to be correlated with colour discrimination in patients with
isolated RBD. Interestingly, Lewy-type pathology in the retinal ganglion cell complex layers
has also been found in incidental Lewy body disease involving the brainstem.#4 Although
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the mechanism of colour discrimination impairment in the retina remains uncertain, these
findings suggest parallel initiation of the neurodegenerative process at anatomically distinct
sites. Future studies are needed to rule out methodological inconsistencies*® between
different optical coherence tomography studies and to establish whether these retinal
changes are unique to a-synucleinopathies.46

Autonomic function—Autonomic impairment is common in patients with isolated
RBD, occurs early in the disease process,3 and has been shown in studies using

both questionnaires and objective measures of autonomic function, such as heart rate
variability, cardiac metaiodobenzylguanidine scintigraphy, and autonomic reflex testing.
Autonomic symptoms in patients with isolated RBD encompass adrenergic and cardiovagal
deficits, sexual and urinary dysfunction, and constipation.1:4748 The severity of autonomic
impairment is mild to moderate in most patients with isolated RBD, at an intermediate level
between healthy individuals and people with Parkinson’s disease.*’

Several questionnaire-based studies have revealed that patients with isolated RBD report
significantly more autonomic symptoms than controls do, with the greatest impairment
reported in cardiovascular, gastrointestinal, and urinary domains.24748 In a prospective
study of 1280 patients with isolated RBD, constipation and erectile dysfunction were
associated with the greatest risk of phenoconversion.! The severity of autonomic symptoms
has also been associated with putaminal dopamine transporter abnormalities and an
accelerated rate of phenoconversion in patients with isolated RBD, highlighting potential
as both a diagnostic and prognostic biomarker.28:48:49

Although some studies on heart rate variability have shown impairment in low-frequency
spectra on video-polysomnography, suggestive of cardiac sympathetic impairment, other
studies suggest impairment in high-frequency spectra, suggestive of parasympathetic
impairment.>0 Metaiodobenzylguanidine scintigraphy studies have shown that patients with
isolated RBD have markedly reduced uptake ratios compared with controls, suggestive of
postganglionic sympathetic impairment,®! a finding more commonly seen in patients with
Parkinson’s disease than in those with multiple system atrophy, allowing for a potential
diagnostic distinction between prodromal phenotypes. Although heart rate variability and
metaiodobenzylguanidine abnormalities are seen early in the isolated RBD disease course,
there are no longitudinal data showing an association with phenoconversion rates, making
these biomarkers more appealing for diagnostic than for prognostic use.

Autonomic reflex testing has shown consistent impairment across cardiovagal, sympathetic
adrenergic, and sudomotor domains in patients with isolated RBD, with the greatest
impairment in measures of sympathetic adrenergic function,>2->4 which might worsen with
disease progression. In addition, more severe cardiovagal dysfunction is more strongly
associated with phenoconversion to dementia with Lewy bodies than Parkinson’s disease.*°
Although validated as the most quantitative and comprehensive method of assessing
autonomic function, autonomic reflex testing requires a specialised autonomic laboratory
with beat-to-beat blood pressure recording, thus limiting access, in contrast to less expensive
but less precise questionnaires.
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Although the available literature shows that autonomic impairment can serve as a diagnostic
marker in isolated RBD, data on the prognostic value of such impairment are scarce, and
longitudinal studies are necessary to establish whether autonomic impairment in patients
with isolated RBD can help predict the development of a-synucleinopathy subtypes.
Finally, the large intraindividual variability of autonomic symptoms in patients with isolated
RBD might pose challenges in accurately phenotyping those at risk of more imminent
phenoconversion.

Biofluids—Given the neuroanatomical proximity of CSF to the brain, biomarkers
obtained from CSF represent appealing candidates for molecular characterisation of a.-
synucleinopathies. Real-time quaking-induced conversion (RT-QuIC) has emerged as an
ultrasensitive technique to identify pathological a-synuclein in the CSF of patients with
Parkinson’s disease and patients with dementia with Lewy bodies, with a high degree of
sensitivity and specificity. From the few studies analysing CSF biomarkers in patients with
isolated RBD, RT-QuIC can detect pathogenic species of a-synuclein with a sensitivity of
90-100% and specificity of 90-98%,%° with a positive result suggesting an increased risk of
phenoconversion,>® highlighting the potential of RT-QuIC to detect pathogenic a-synuclein
in CSF as both a diagnostic and prognostic biomarker. Furthermore, use of RT-QuIC with
swabs from olfactory mucosa to detect pathogenic a-synuclein has been reported as a
potential diagnostic marker. The technique is less invasive than lumbar puncture and has
good specificity (90%) but moderate sensitivity (44%), although the sensitivity increases to
73% in patients with isolated RBD who have hyposmia.5’

Biomarkers obtained directly from blood represent an attractive candidate due to the
relatively low cost and ease of obtainability; however, results have been suboptimal. a-
Synuclein in plasma neuronal exosomes might aid in the early diagnosis of Parkinson’s
disease, but no significant differences in exosomal a.-synuclein concentrations were found in
individuals with isolated RBD compared with healthy controls in one longitudinal study.>8
Another cross-sectional study showed that neuronal exosome a-synuclein concentrations
were elevated in individuals with isolated RBD when compared with controls and
individuals with multiple system atrophy, but no different when compared with people with
Parkinson’s disease; this finding suggests a potential role in predicting subtype, based on
the fact that a-synuclein in patients with multiple system atrophy accumulates primarily

in oligodendrocytes.5 In addition, serum neurofilament light chain, a neuronal cytoskeletal
protein released upon neuronal damage, might mark the conversion of isolated RBD to
clinically manifest Parkinson’s disease.®? Techniques such as proteomics analysis of serum
samples, which have identified several proteins at significantly altered expression levels,
have provided further insight into the protein signature profile and molecular pathways
involved in the pathogenesis of isolated RBD,51:62 but confirmatory studies are needed.

Alterations in circulating microRNAs have been shown in several neurodegenerative
diseases including isolated RBD. One study showed that miR-19b was significantly
downregulated in patients with isolated RBD who phenoconverted, but not in those who
remained disease-free after 4.7 (£2-6) years of follow-up, indicating that dysregulation

of miR-19b might contribute to phenoconversion and offer potential as a prognostic
biomarker.%3 One study revealed decreased antioxidant superoxide dismutase and increased
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glycolysis in patients with isolated RBD using peripheral blood mononuclear cells.* The
potential of other samples, such as those from saliva, tears, and the microbiome, is yet to
be explored in patients with isolated RBD, and longitudinal studies are required to establish
whether such biosamples can be used to assess phenoconversion risk.5

Neuroimaging—Evidence of nigrostriatal dopaminergic impairment, usually measured as
availability of dopamine transporters in the basal ganglia, has consistently been found in
patients with isolated RBD on both PET and SPECT imaging (figure 2A), with 123]-Fp-
CIT SPECT currently the most studied and readily available dopamine transporter SPECT
imaging modality. Abnormal dopamine transporter imaging appears to signal an increased
risk of phenoconversion,:69:70 especially when combined with cognitive and autonomic
impairment.%6.71 Furthermore, nigrostriatal dopamine transporter abnormalities seem to
correlate with changes in brain glucose metabolism as assessed by 18F-fluorodeoxyglucose
(18F-FDG) PET.”2 The 18F-FDG PET-derived isolated RBD-related (figure 2B) and
Parkinson’s disease-related pattern®’ appears to be a prodromal progression marker, having
shown potential both to assess progression and to predict a-synucleinopathy subtype.”3

Although radionuclide studies with dopamine transporter SPECT and 18F-FDG-PET
imaging are widely available and their costs for clinical trial purposes are acceptable,
dependence on ionising radiation might restrict their utility. Therefore, MRI remains an
attractive alternative. MRI techniques have shown abnormalities in the substantia nigra
related to the degree of dopaminergic dysfunction (figure 2C)’4 and grey matter changes

in the motor cortico-subcortical loop that correlate with motor abnormalities.”® Findings

on MRI have also been correlated with cognitive impairment in patients with RBD and

mild cognitive impairment, with cortical thinning in the left anterior temporal cortex best
differentiating patients from controls (figure 2D). In addition, associations have been noted
between reduced attention and executive function and thinning of the frontal cortex, between
reduced verbal learning and thinning of the left temporal cortex, and between visuospatial
function and thinning of the fronto-temporo-occipital cortex in patients with isolated RBD.58

Other MRI approaches include deformation-based morphometry, which has been used

to identify a brain signature by combining cortical and subcortical deformation and
subarachnoid and ventricular expansion, that predicts the development of dementia with
Lewy bodies in patients with isolated RBD.’® MRI has also shown promising results in
identifying patients at risk of developing multiple system atrophy.”” Whole-brain resting-
state functional MRI has shown correlations between reduced performance in a processing
speed task and disrupted connectivity in the associative areas of the parieto-temporal
lobes, 8 as well as an association between verbal learning and left thalamo-fusiform
connectivity.24 In addition, functional MRI has shown a disrupted posterior brain network
associated with isolated RBD-related cognitive impairment.”8 Accordingly, cholinergic
denervation on 11C-donepezil PET, known to be related to cognitive impairment, was
found in patients with isolated RBD, particularly in the temporal, occipital, cingulate, and
dorsolateral prefrontal cortex.’®

Despite best efforts, imaging biomarkers that delineate neuropathological spread of a-
synuclein are lacking for patients with isolated RBD. 123|-FP-CIT SPECT remains the
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most reliable prognostic marker of phenoconversion in this context and is increasingly
being considered as an enrichment tool to select individuals with prodromal Parkinson’s
disease for partidpation in disease-modifying therapy trials. 18F-FDG PET has shown
diagnostic promise in detecting disease-specific patterns with the potential to predict a-
synucleinopathy subtype, in addition to potential as a prognostic progression marker,”3
but confirmatory studies are required. Although several MRI techniques offer potential as
diagnostic and prognostic markers, longitudinal data are needed before recommending this
technique for disease-modifying therapy trials.

Tissue biopsy—Phosphorylated a-synuclein deposits in the substantia nigra are a
neuropathological hallmark of Parkinson’s disease; however, autopsy studies have also
shown phosphorylated a-synuclein in peripheral structures, such as the autonomic nerves,
enteric mucosa, and salivary glands, in patients with Parkinson’s disease or dementia with
Lewy bodies.8%:81 One of the first tissues to be analysed in both people with Parkinson’s
disease and people with isolated RBD was colonic tissue, with only one study showing a
positivity rate of only 24% (4 of 17 patients with isolated RBD).82 Transcutaneous core
needle biopsy of the submandibular gland with ultrasound guidance showed high sensitivity
and specificity in major salivary gland tissue in one study,3 but adequate biopsy material
was obtained in only 9 (43%) of 21 patients. Biopsy of minor salivary glands in the inner
side of the lower lip obtains adequate tissue in all cases but is less sensitive, with only 31
(50%) of 62 patients with isolated RBD showing phosphorylated a.-synuclein positivity.84

More recently, skin biopsy has emerged as a promising and less invasive technique
(appendix p 3).81 This technique is well tolerated, relatively inexpensive, and easier to do
than colon or salivary gland biopsies, and can be done in any outpatient setting under aseptic
technique, although dual-immunofluorescence analysis does require operator experience.
One study using biopsies of multiple unilateral sites (C7 paraspinal area, T10 paraspinal
area, and proximal and distal leg) showed phosphorylated a-synuclein positivity in 10
(56%) of 18 patients with isolated RBD, 20 (80%) of 25 patients with early Parkinson’s
disease, and 0 of 20 controls.3°> The likelihood of phosphorylated a.-synuclein positivity was
greater in those with olfactory dysfunction, whereas the relationship with reduced dopamine
transporter SPECT ligand density was less robust, indicating that skin biopsy positivity

can be found in patients with isolated RBD with a normal dopamine transporter SPECT,

at least 2 years before nigrostriatal decline. A second study independently confirmed this
finding using bilateral biopsies at C8 and the distal leg, showing phosphorylated a.-synuclein
positivity in 9 (75%) of 12 patients with isolated RBD and 0 of 55 controls.8% A third study
of unilateral biopsies at C8 and the distal leg showed phosphorylated a-synuclein deposits in
26 (87%) of 30 patients with isolated RBD and 0 of 17 patients with RBD secondary to type
1 narcolepsy, confirming the specificity of this technique.86 A more recent study of a single
biopsy from a C8 cervical paravertebral site using an automated immunohistochemical assay
showed phosphorylated a-synuclein in 23 (82%) of 28 patients with isolated RBD.8” These
studies have shown a combined specificity of 100% and a sensitivity of 58-87%. In addition,
the analysis technique has been shown to have excellent interobserver reliability in two
independent experienced laboratories.88

Lancet Neurol. Author manuscript; available in PMC 2022 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Miglis et al.

Page 13

Peripheral tissue biopsy, especially skin biopsy, thus shows great promise as an in-vivo
diagnostic biomarker for isolated RBD. Although some evidence also suggests promise in
the ability to differentiate Parkinson’s disease and dementia with Lewy bodies from multiple
system atrophy,8? this ability remains to be validated in individuals with isolated RBD, and
it remains unclear whether the severity of phosphorylated a-synuclein deposition confers
increased risk of phenoconversion. Longitudinal studies are needed to better understand its
full potential as not only a diagnostic but also a prognostic biomarker.

Genetic markers—Recent studies suggest that the genetic background of isolated RBD
does not fully overlap with those of Parkinson’s disease, dementia with Lewy bodies, and
multiple system atrophy. Genetic variants in the LRRK29 and MART genes,®! which

are associated with Parkinson’s disease, show no association with isolated RBD. The
APOE &4 haplotype, which is strongly associated with dementia with Lewy bodies, is

also not associated with isolated RBD.%2 However, GBA variants that are associated with
Parkinson’s disease, dementia with Lewy bodies, and, arguably, multiple system atrophy, are
also associated with isolated RBD.%3 Two coding variants in TMEM1 75 affect the risk of
Parkinson’s disease, yet only one of them has been found in patients with isolated RBD.%4
These genetic studies show that isolated RBD has a distinct genetic background, and we
cannot assume that genetic variants that are relevant for the risk of, or for progression in,
Parkinson’s disease or dementia with Lewy bodies are also relevant for phenoconversion in
isolated RBD.

GBA variants are found in approximately 10% of patients with isolated RBD and are
associated with probable RBD in Parkinson’s disease.®® A cross-sectional multicentre
study of 1061 patients with isolated RBD showed that 52% of GBA variant carriers
phenoconverted, compared with 35% of non-carriers, despite similar disease duration.%>
Furthermore, this study showed that individuals with severe GBA variants, defined as
variants that cause the severe types of Gaucher disease (types 2 and 3), might be at
increased risk of more rapid phenoconversion, compared with individuals with mild or
absent GBA variants.%® Fine-mapping of the SNCA locus in isolated RBD, probable RBD,
Parkinson’s disease, and dementia with Lewy bodies has also shown differences in genetic
background between people with these different diagnoses and in the potential effects of
some SNCA variants on rate of conversion in isolated RBD.% In Parkinson’s disease, the
main effect on risk is driven by variants in the 3" region of the gene, whereas, in isolated
RBD and dementia with Lewy bodies, different and independent variants at the 5 SNCA
region are associated with risk, and specific 5° SNVCA variants might also affect the rate of
phenoconversion.9® Although these results are all preliminary and require confirmation in
larger cohorts, they provide a proof of concept for the use of genetic variants as prognostic
biomarkers to assess phenoconversion risk. Additional analyses, including polygenic risk
scores from genome-wide association studies, as well as burden analyses of rare genetic
variants, will also be needed to increase our ability to use genetic signatures as biomarkers in
isolated RBD.
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Combined biomarkers

No single biomarker for phenoconversion to a-synucleinopathies in people with isolated
RBD fulfils the ideals of precision, accuracy, availability, and cost-effectiveness (table 2).
Some biomarkers might appear early and change very slowly over time in individuals with
isolated RBD, such as hyposmia and colour discrimination, whereas others might appear
closer to phenoconversion, such as motor impairment, cognitive impairment, and reduced
presynaptic dopaminergic uptake on 18F-FDG PET imaging. Still others might hold value
for the exclusion of atypical parkinsonism syndromes: cognitive testing and neuroimaging
to help exclude dementia with Lewy bodies, for example, or autonomic testing and skin
biopsy to help exclude multiple system atrophy. Ideally, diagnostic biomarkers will be used
to identify the subtype of future a-syncucleinopathy, whereas a combination of prognostic
biomarkers will inform proximity to phenoconversion, and monitoring biomarkers will aid
in tracking therapy response, taking into consideration that different a.-synucleinopathy
subtypes will evolve differently (figure 3).109

How will a combination of biomarkers be used in future disease-modifying therapy trials?
Thus far, most studies in patients with isolated RBD have evaluated single or very small
groups of biomarkers in isolation. However, combined biomarkers that span multiple
modalities hold the greatest promise. The power of combining multiple biomarkers was
illustrated in a collaborative study of 1280 patients with isolated RBD by members of

the International RBD Study Group, in which the presence of mild motor impairment and
hyposmia increased the observed annual phenoconversion rate from 6-3% in all patients
with RBD to 15-7%, providing a basis for calculating a realistic sample size for a
disease-modifying therapy trial.> This combined biomarker approach requires substantial
investment, rigorous standardisation across multiple sites for sample collection, storage,
and assays, and data harmonisation followed by replication and confirmation, before it can
inform clinical trials and change medical practice.

Conclusions and future directions

Disease-modifying therapy trials are currently ongoing in patients with Parkinson’s disease.
The next challenge will be to test these therapies in people with isolated RBD, to slow

or even prevent the full manifestation of disease. It will be important to enrich target
populations with biomarkers of short-term conversion (eg, abnormal dopamine transporter
SPECT)09 and be able to monitor disease progression with serial measurements (eg, motor
function, cognition, dopamine transporter SPECT). The Parkinson’s Progression Markers
Initiative 2.0 prodromal cohort (NCT04477785), which started in 2020, as well as other key
initiatives such as the North American Prodromal Synucleinopathy cohort (NCT03623672)
and the International RBD Study Group, must work together towards this broader goal

of slowing or preventing phenoconversion in the a-synucleinopathies. Future research

will focus on longitudinal outcome data of multiple biomarkers across multiple centres
worldwide.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: REM sleep recorded in a patient with RBD
The sleep pattern shows excessive chin muscle tone and excessive phasic EMG

twitch activity over the chin, TA, and FDS muscles. Al=left mastoid reference.

A2=right mastoid reference. C3=left central. C4=right central. ECG=electrocardiogram.
EMG=electromyogram. EOG=electro-oculogram. FDS=flexor digitorum superficialis.
F3=left frontal. F4=right frontal. O1= left occipital. O2=right occipital. TA=tibialis anterior.
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Figure 2: Functional and structural brain imaging findingsin patientswith isolated RBD
(A) Example of an 123]-FP-CIT SPECT scan in a patient with isolated RBD, showing

reduced uptake (yellow and orange) in the left putamen and, to a lesser extent, the

right putamen. Scans are shown at different levels of the brain (denoted by the numbers
in the bottom right corners). The population average data in the graphs have been
obtained by analysis of individuals without isolated RBD from the European Normal
Control database of DaTSCAN, using the basal ganglia matching tool.%6 Red and green
lines show two different confidence limits for putamen and caudate 123|-FP-CIT SPECT
uptake. Red squares represent left putamen and caudate nuclei, and green circles represent
right putamen and caudate nuclei of the patients whose scans are shown above. (B)
Stable voxels (90% CI not straddling zero after bootstrap resampling) of 8F-FDG PET-
derived brain glucose isolated RBD-related pattern are visualised by overlaying them on
a T1 MRI template. The arrows are pointing to all brain areas with stable voxels. Red
indicates positive voxel weights (relative hypermetabolism) and blue indicates negative
voxel weights (relative hypometabolism). Coordinates in axial (Z) and sagittal (X) planes
are in Montreal Neurologic Institute standard space. Panel adapted from Meles et al.”
(C) Examples of susceptibility-weighted imaging taken at the level of the substantia nigra
in a healthy control and a patient with isolated RBD. Image HC reveals the presence
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of a bilateral dorsal nigral hyperdensity (green arrows), corresponding to nigrosome 1.
The dorsal nigral hyperdensity is lost bilaterally in the patient with isolated RBD. (D)
Avreas of cortical thinning in patients with isolated RBD and mild cognitive impairment
compared with individuals without isolated RBD or cognitive impairment, corrected for
family-wise error at p<0-05, with age, sex, and education added as covariates. The

colour bar represents the logarithmic scale of p values (-log10), with red-to-yellow

areas representing significant thinning in patients with mild cognitive impairment and
isolated RBD versus controls. The white asterisks represent the cluster of thinning (left
anterior temporal lobe, including entorhinal cortex, insula, and inferior and middle frontal
cortex) that best discriminated between patients with isolated RBD and mild cognitive
impairment versus healthy controls (AUC 0-91 [95% CI 0-825-0-996]). Panel adapted
from Rahayel et al.58 AUC=area under the curve. FDG=Ffluorodeoxyglucose. 123]-Fp-
CI1T=123]-N-c-fluoropropyl-2p-carbomethoxy-3p-(4-iodophenyl)nortropane. HC=healthy
control. RBD=rapid-eye-movement sleep behaviour disorder. L=left. R=right
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Figure 3: Hypothetical timeline of isolated RBD and associated clinical manifestationsin relation
to evolving a-synucleinopathies

The hypothetical timelines are for Parkinson’s disease (A), dementia with Lewy bodies
(B), and multiple system atrophy (C). In Parkinson’s disease and dementia with Lewy

bodies, changes in smell and autonomic functioning typically precede RBD, followed by
other features; parkinsonism precedes cognitive changes in evolving Parkinson’s disease,
whereas cognitive changes precede parkinsonism in evolving dementia with Lewy bodies.
In multiple system atrophy, autonomic dysfunction manifests around the time of isolated
RBD, followed by elements of parkinsonism or cerebellar dysfunction, or both, in many
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individuals. Changes in smell and cognition are minimal or absent in multiple system
atrophy, and genetic variants associated with multiple system atrophy are still being studied
(represented by dashed lines). For the neuroimaging timeline, brainstem alterations (a) occur
first, followed by nigrostriatal dopaminergic alterations (b), and then other subcortical and
cortical alterations (c). RBD=rapid-eye-movement sleep behaviour disorder.
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Definition

Application toisolated RBD

Diagnostic

Prognostic

Monitoring or
therapy-

.*
responsive

Combined

To detect or confirm presence of a disease or condition of
interest or to identify individuals with a subtype of the disease

To identify likelihood of a clinical event, disease recurrence,
or progression in patients who have the disease or medical
condition of interest

To monitor progression of disease or show that a biological
response has occurred in an individual who has been exposed to
a medical product or an environmental agent

Composite and multidimensional, through combination of
multiple biomarkers, and, as such, better reflects biological
systems than single biomarkers

To confirm an underlying a-synucleinopathy;

to distinguish subtype of a-synucleinopathy (ie,
Parkinson’s disease, dementia with Lewy bodies,
multiple system atrophy)

To predict rate of phenoconversion; to predict disease
severity

To monitor the progression of neurodegeneration; to
detect the eventual effect of drug treatment (extent
of neuroprotection); to establish efficacy of disease-
modifying therapies

To refine and enhance the diagnostic, prognostic, and
monitoring capabilities of single biomarkers in isolated
RBD

Definitions in the second column adapted from Califf.2 RBD=rapid-eye-movement sleep behaviour disorder.

*

For simplicity, we have included biomarkers that hold promise as therapy-responsive markers in the monitoring category, as data are currently
limited to longitudinal observational studies; when disease-modifying therapy trials are carried out, these monitoring biomarkers might also be
considered as therapy-responsive biomarkers.
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