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Purpose: In high-grade soft-tissue sarcomas (STS) the standard of care encompasses multimodal therapy
regimens. While there is a growing body of evidence for prognostic pretreatment radiomic models, we
hypothesized that temporal changes in radiomic features following neoadjuvant treatment (‘‘delta-radio
mics”) may be able to predict the pathological complete response (pCR).
Methods: MRI scans (T1-weighted with fat-saturation and contrast-enhancement (T1FSGd) and T2-
weighted with fat-saturation (T2FS)) of patients with STS of the extremities and trunk treated with
neoadjuvant therapy were gathered from two independent institutions (training: 103, external testing:
53 patients). pCR was defined as <5% viable cells. After segmentation and preprocessing, 105 radiomic
features were extracted. Delta-radiomic features were calculated by subtraction of features derived from
MRI scans obtained before and after neoadjuvant therapy. After feature reduction, machine learning
modeling was performed in 100 iterations of 3-fold nested cross-validation. Delta-radiomic models were
compared with single timepoint models in the testing cohort.
Results: The combined delta-radiomic models achieved the best area under the receiver operating char-
acteristic curve (AUC) of 0.75. Pre-therapeutic tumor volume was the best conventional predictor (AUC
0.70). The T2FS-based delta-radiomic model had the most balanced classification performance with a bal-
anced accuracy of 0.69. Delta-radiomic models achieved better reproducibility than single timepoint
radiomic models, RECIST or the peri-therapeutic volume change. Delta-radiomic models were signifi-
cantly associated with survival in multivariate Cox regression.
Conclusion: This exploratory analysis demonstrated that MRI-based delta-radiomics improves prediction
of pCR over tumor volume and RECIST. Delta-radiomics may one day function as a biomarker for person-
alized treatment adaptations.

� 2021 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 164 (2021) 73–82
The standard of care for high-grade soft-tissue sarcomas (STS)
includes surgery, radiation therapy (RT) and/or chemotherapy
(CTx). These treatment strategies achieve high local control rates
but unfavorable overall survival (OS) and distant control [1-4].

RT can be delivered in the neoadjuvant or adjuvant setting.
Compared to adjuvant RT, neoadjuvant RT offers several advan-
tages including lower radiation doses, smaller target volumes,
and reduced late toxicities [3,5]. The administration of chemother-
apy remains more controversial. The phase-III EORTC62931 trial
couldn’t demonstrate a survival benefit for adjuvant chemotherapy
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Delta-radiomics in soft-tissue sarcomas
[6]. The ISG-STS1001 trial, however, showed a survival benefit after
neoadjuvant CTx compared to a ‘‘histology-tailored” treatment
approach [7].

The benefit of neoadjuvant treatment concepts lays in the pos-
sibility to assess treatment response. This information could then
be used for individual therapy escalation [8]. As a potential bio-
marker in STS patients, the pathological complete response (pCR)
is currently being used in prospective trials as a surrogate marker
for patients’ outcomes [9]. A recent meta-analysis found a signifi-
cant predictive value for OS [10].

Imaging constitutes an alternative tool to characterize tissue. As
consequence, multiple authors have proposed quantitative imag-
ing analysis (‘‘radiomics”) as a potential novel method to assess
treatment response [11,12]. Radiomics is defined as a high-
throughput quantitative analysis of imaging data [13]. Pre-
defined features assessing the texture, intensity distribution, or
shape of a volume of interest (VOI) are calculated and used as input
for machine learning (ML) models [13-15]. Radiomics has been
shown to predict various clinical and biological endpoints includ-
ing pathological characteristics, prognosis, tumor progression, spa-
tial infiltrations, and molecular aberrations in multiple cancer
types [16-22]. In STS patients, there is growing evidence that radio-
mics can be successfully applied to predict OS, distant progression,
and tumor grading using pretherapeutic imaging [23-29]. We
hypothesize that temporal changes of radiomic features (‘‘delta-r
adiomics”) obtained before and after neoadjuvant therapy may
be able to predict treatment response [30,31]. Crombé et al. first
demonstrated prediction of pCR after neoadjuvant CTx using a
delta-radiomics approach in STS patients in a monocentric study
[32].

We analyzed the potential of MRI-based delta-radiomics to pre-
dict pCR in STS patients that received neoadjuvant RT and/or CTx.
Radiomic analysis was performed using the two MRI sequences
‘‘contrast-enhanced and fat-saturated T1-weighted” (T1FSGd) and
‘‘fat-saturated T2-weighted” (T2FS) obtained before and after
neoadjuvant therapies. The results were compared to tumor vol-
ume changes, Response Evaluation Criteria in Solid Tumours
(RECIST), and single timepoint radiomic models. All models were
externally validated.
Material & methods

Patients

Two independent patient cohorts were retrospectively collected
at the University of Washington/Seattle Cancer Care Alliance,
referred to as ‘‘training cohort”, and the Technical University of
Munich, referred to as ‘‘testing cohort”. The inclusion criteria were
patients with STS of the extremities and trunk treated with neoad-
juvant RT with or without Ctx followed by tumor resection in cura-
tive intent. Exclusion criteria encompassed definitive, palliative, or
postoperative RT, brachytherapy, other tumor locations, early
abortion of RT (cut-off at 80% of planned total dose), osteosarco-
mas, Ewing sarcomas, rhabdomyosarcomas, endoprosthesis-
dependent artifacts, missing pre- or post-therapeutic MRI scans,
and incongruent image plane orientations between pre- and
post-therapeutic MRI scans (see Supplemental Fig. 1 for a patient
workflow). pCR values were obtained from all patients. If the infor-
mation was missing, the surgical specimen was reassessed by
board-certified pathologists at each institution (EC and KS) [33].
pCR was defined as less than 5% viable cells in the surgical speci-
men. The overall survival (OS) was calculated from initial patho-
logic diagnosis to the time point of death or the time point of
censoring. Approval from the ethic committees was received (ref-
erence number 466/16 s). Informed consent was given before ther-
apy. Data reporting follows the Transparent Reporting of a
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multivariable prediction model for Individual Prognosis Or Diagno-
sis (TRIPOD) recommendations (Supplemental Material, Appendix)
[34].
Image acquisition and segmentation

Each patient received pre-RT and post-RT MRI scans. Patients
that received Ctx (neoadjuvant in all cases) had an additional
MRI before Ctx administration. Table S1 describes acquisition
parameters and scan planes. Tumor segmentation was performed
manually (authors: MBS, JCP, VA; Supplemental Methods). To com-
pensate for operator-dependent bias, multiple delineations were
performed for 20 randomly selected patients on the pre-
therapeutic MRI by three operators (authors: RA, MBS, JCP) in the
training cohort (see Fig. 1). Dice similarity coefficients (DSC) were
computed using 3D Slicer (DiceComputation module) [35].
Image preprocessing and radiomic feature extraction

See Supplemental Material for a detailed description of image
preprocessing and radiomic feature extraction. In brief, preprocess-
ing included bias field correction, intensity normalization, and iso-
tropic resampling. 105 features per MR sequence were extracted
using pyradiomics following the recommendations of the Imaging
Biomarker Standardization Initiative (IBSI) [36,37]. Radiomic fea-
tures included first-order, shape, and texture features (see
Table S2 for a detailed listing). After ComBatHarmonization [38-
42], delta-radiomic features were calculated by absolute subtrac-
tion of post-therapeutic feature values from pre-therapeutic fea-
ture values (xpre – xpost). For single timepoint models, radiomic
features from pre- and post-RT MRIs were directly used as model
input. For an exploratory analysis, radiomic feature were also
extracted from post-Ctx MRIs if available.
Feature reduction

All feature reduction steps were performed using the training
cohort. First, all features susceptible to variations in segmentation
performed in the subset of patients with multiple segmentations
were excluded. As a threshold, an intraclass correlation coefficient
(ICC) (3,1) of 0.8 was used. The remaining features (T2FS: 72,
T1FSGd: 103) were then used as input for the modeling pipeline
including additional feature reduction and model training
(Fig. 1). The feature reduction procedure was performed using
1000 bootstrap samples. For each bootstrap sample, two feature
selection stages were applied. First, highly intercorrelated features
defined by a Spearman correlation coefficient of greater than 0.8
were excluded. For identified feature pairs, the feature with the
highest mean correlation to all remaining features was excluded.
Second, the Boruta algorithm was applied to filter the most rele-
vant features [43,44]. The features were ranked according to the
frequency of their selection in the 1000 bootstrap runs. The final
feature set was defined as the n top-ranking features with n
defined as the median feature number selected over all bootstrap
runs.
Modeling strategy

For ML model comparison and unbiased performance evalua-
tion on the training set, 100 iterations of three-fold nested cross-
validation were performed based on the code by Deist et al. built
upon the ‘‘caret” package [45,46]. Three common ML techniques
were compared to predict pCR: random forest (RF), elastic net
regression (ENR), and LogitBoost [47-49]. After Synthetic Minority
Oversampling Technique (SMOTE) for imbalance correction (see
Supplemental Methods), hyperparameters were optimized using



Fig. 1. The Delta-Radiomics Workflow. Abbreviations: Delta: delta-radiomics models, ENR: elastic net regression, ICC: intra-class correlation coefficient, pCR: pathological
complete response, Pre: pre-radio(chemo)therapy models, Post: post-radio(chemo)therapy models, T1FSGd: contrast-enhanced T1-weighted fat saturated, T2FS: T2-
weighted fat saturated.
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grid search as part of the inner folds. See Table S3 for hyperparam-
eter tuning spaces. The selected hyperparameters were then used
for testing on the five outer folds. The mean receiver operating
characteristic (ROC) curve (AUC) over all outer folds was calculated
for model comparison. The hyperparameter combination with the
best mean performance was used to retrain a final model on the
whole training set. The final models were externally validated on
the testing cohort. 95% confidence intervals (95% CI) were esti-
mated using 1000-fold bootstrapping.

For all developed models the complete pipeline was applied
separately. In total, three different delta-radiomic models were
developed: ‘‘Delta-T1FSGd” based on T1FSGd, ‘‘Delta-T2FS” based
on T2FS, and ‘‘Delta-combined” combining both feature sets. For
comparison, single timepoint radiomic models were developed
using the pre-therapeutic MRI scans: ‘‘Pre-T1FSGd”, ‘‘Pre-T2FS”,
and ‘‘Pre-combined”, or the post-therapeutic MRI scans: ‘‘Post-
T1FSGd”, ‘‘Post-T2FS”, and ‘‘Post-combined”. Moreover, the value of
the AJCC staging system (8th edition) ‘‘AJCC”, RECIST 1.1 (Supple-
mental Methods) [50], the tumor volume change ‘‘Delta-Volume”,
the pre-therapeutic tumor volume ‘‘Pre-Volume”, and the post-
therapeutic tumor volume ‘‘Post-Volume” were assessed. For qual-
ity assurance, the delta-radiomic models were retrained with per-
mutated radiomic features. To assess the value of all models using
a mixed cohort 100 iterations of three-fold nested cross-validation
were applied as described above.
Exploratory analysis of survival and transferability to chemotherapy

Multivariate Cox proportional hazards regression was used to
assess association with OS. The concordance index (C-index) was
used to evaluate prognostic performance. Decision curve analysis
was calculated for the multivariate models for OS at 3 years (see
Supplemental Methods and caption of Fig. 3) [51,52].
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We sought to evaluate if our developed models would function
using delta-radiomic features calculated from MRIs obtained
before and after neoadjuvant CTx, too (see Supplemental Fig. S2
for an overview of MRI timepoints). As in the testing cohort no
patient received Ctx, our models were tested on the subset of the
training cohort that received CTx. Chemotherapy-dependent
delta-radiomic features we calculated by subtraction of radiomic
feature calculated on the pre-therapeutic MRI and on the post-
Ctx ‘‘interim” MRI (xpreCtx – xpostCtx).
Statistical analysis

Modeling and statistical analysis were performed using R (ver-
sion 3.4.0, R core team, Vienna, Austria). Table S4 displays all R
packages used. See Supplemental Methods for a description of out-
come measures, feature importance, and calibration analysis.
Delta-radiomic and multivariate models can be obtained from
https://github.com/jacapan/Delta-Radiomics. Individual patient
data may be available on reasonable request dependent on local
ethics committee voting and in compliance with data protection
rights.

Results

Patient demographics (training: 103, testing: 53 patients), stag-
ing groups, and RT doses were similar between the cohorts
(Table 1). The frequency of neoadjuvant Ctx in addition to RT sig-
nificantly differed between the training cohort 55% (n = 56) and
the testing cohort 0% (p < 0.001). When CTx was administered, it
was always preceded RT and 91% (n = 51) of patients received an
AIM (anthracycline + ifosfamide + mesna)-based regimen
(Table S5). Ctx was a significant prognostic factor for OS
(p = 0.03) in the training cohort. There was a trend towards an

https://github.com/jacapan/Delta-Radiomics


Table 1
Patient demographics, outcome and treatment specifics.

Institution Training
(UW)

Testing (TUM) p-value1 Adjusted
p-value

Accrual time 2008–2017 2010–2019
Total Patients 102 p 59 p
Patients T1FSGd sequence 100 p (98%) 53 p (90%)

T2FS sequence 98 p (96%) 49 p (83%)
Both sequences 96 p (94%) 43 p (73%)

Recurrent 0 p 5 p (8%)
Age m 54 (19–86) m 57 (22–87) 0.331 1
Gender female 38 (37%) 24 p (41%) 0.737 1

male 64 (63%) 35 p (59%)
T-stage2 1 6 p (6%) 1 p (2%) 0.432 1

2 35 p (34%) 24 p (41%)
3 35 p (34%) 23 p (39%)
4 26 p (25%) 11 p (19%)

N-stage2 0 102 p (100%) 58 p (98%) 0.366 1
1 0 p (0%) 1 p (2%)

Grading3 1 22 p (22%) 5 p (8%) 0.074 1
2 39 p (38%) 23 p (39%)
3 41 p (40%) 31 p (57%)

AJCC-Stage2 IA 2 p (2%) 0 p (0%) 0.16 1
IB 20 p (20%) 5 p (8%)
II 4 p (4%) 1 p (2%)
IIIA 28 p (27%) 22 p (37%)
IIIB 45 p (44%) 31 p (53%)
IV 3 p (3%) 0 p (0%)

Region Upper Extremities 17 p (17%) 7 p (12%) 0.169 1
Lower Extremities 75 p (74%) 51 p (87%)
Trunk 10 p (10%) 1 p (2%)

Prognosis
Median OS Not reached Not reached 0.8 1
Therapy information
Margin-status positive 20 p (20%) 7 p (12%) 0.026 0.38

negative 81 p (80%) 48 p (81%)
x 0 p (0%) 4 p (7%)

Total Dose m 50 Gy
(42–60 Gy)

m 50 Gy
(50–56 Gy)

0.303 1

Chemotherapy 56 p (55%) 0 p (0%) <0.001 <0.001
Viable cells after neoadjuvant therapy m 40% (0–100%) m 30% (0–100%) 0.150 1
pCR positive 11 (11%) 5 (8%) 0.787 1

negative 91 (89%) 54 (92%)

Abbreviations: *: p-value < 0.05, pCR: pathological complete response, AJCC: American Joint Committee on Cancer staging system, m: median, p: patients, r: range, RT:
radiation therapy.

1 Wilcoxon rank-sum test for continuous and ordinal variables, Fisher’s exact test for nominal variables, log-rank test for comparison of survival times. Corrected for
multiple testing by Bonferroni correction (‘‘p-value adjusted”).

2 Following AJCC staging manual 8th edition [61].
3 According to the French Federation of Cancer Centers Sarcoma Group (FNCLCC).
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uneven histology distribution (p = 0.087, Table S6). pCR was
achieved in 11% (n = 11) and 8% (n = 5) of patients in the training
and testing cohort, respectively (predominantly pleomorphic sar-
coma and myxoid liposarcoma, see Table S7). The similarity
between multiple VOI delineations was rated with a DSC of 0.91 (s-
tandard deviation 0.035).

In nested cross-validation, the RF models achieved the best
mean performance with a mean AUC of 0.73 (AUC ENR: 0.62,
AUC LB 0.67) (Table S8a). When ranking the ML models for each
fold by their AUC value, RF, ENR, and LB achieved mean ranks of
1.4, 2.55, and 2.05, respectively (Table S8b). Thus, the RF algorithm
was chosen to train the final models.

In the training set, the predictive performances in AUC were
comparable for delta-radiomic models, RECIST, and Delta-Volume
(AUCs: 0.74–0.80) (Fig. 2: AUC-values, Fig. 3: ROC-curves, Supple-
mental Fig. S3: Calibration-curves). In the testing cohort, Delta-
T1FSGd and Delta-combined showed better performances that were
more similar to the training cohort performances than for Delta-
T2FS with AUC values of 0.70 (95% CI: 0.43–0.92, AUC difference:
�0.05), 0.75 (95% CI: 0.56–0.93, AUC difference: �0.05), and 0.65
(95% CI: 0.33–0.92, AUC difference: �0.09), respectively. RECIST
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(AUC 0.6, 95% CI: 0.33–0.86), Delta-Volume (AUC 0.43, 95% CI:
0.06–0.82), and AJCC (AUC 0.51, 95% CI: 0.25–0.75) achieved pre-
dictive performances closer to random. After permutation of radio-
mic features no predictive performance above random was
achieved in both cohorts (AUC-training: 0.38, 0.52, 0.59; AUC-
testing: 0.45, 0.48, 0.47 for Delta-T1FSGd, Delta-T2FS, and Delta-
combined, respectively)

Next, we evaluated the predictive performance of single time-
point models (Table 3: AUC-values, Supplemental Fig. S4: ROC
curves). The T1FSGd-based models achieved better predictive per-
formances than the T2FS-basedmodels in both single timepoints in
the training set. In the external validation cohort, however, the
only single timepoint models with relevant predictive performance
were Post-combined and Pre-Volume with AUC-values of 0.68 (95%
CI: 0.44–0.91, AUC difference: �0.06) and 0.70 (95% CI: 0.48–0.9,
AUC difference: +0.08).

Due to the imbalanced dataset, accuracy did not produce reli-
able metrics with high values for non-discriminative predictors.
The best performances were achieved by Delta-T2FS (Matthew’s
correlation coefficient 0.48, balanced accuracy 0.69, F1-score: 0.5)
(Table S9 displays all remaining models). Due to the imbalance



Fig. 2. Predictive performance of delta-radiomics, single timepoint radiomics, and
clinical models. Area under the receiver operating characteristic curve (AUC) values
for the prediction of pCR. 95 % confidence intervals are shown in parenthesis.
Orange: clinical model, blue: delta-radiomics models/Volume change/RECIST,
green: single timepoint models. Abbreviations: AJCC: American Joint Committee
on Cancer staging system 8th Edition, AUC: area under the receiver operating
characteristic curve, Delta: Delta-radiomics models, RECIST: Response Evaluation
Criteria in Solid Tumors, T1FSGd: contrast-enhanced T1-weighted fat saturated,
T2FS: T2-weighted fat saturated, pCR: pathological complete response, Pre: pre-
radio(chemo)therapy, Post: post-radio(chemo)therapy models.
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and small test set, calibration curves were ‘‘weak” for all models
(Supplemental Fig. S3). The Hosmer-Lemeshow test was significant
for all models reflecting the poor calibration of all models [53].

The final feature numbers used as input for modeling were 16,
15, and 31 features for Delta-T1FSGd, Delta-T2FS, and Delta-
combined. Feature importance was assessed for the Delta-
radiomics models (Table S10). For Delta-T1FSGd, the three most
important features included two texture features ‘‘Busyness” and
‘‘SizeZoneNonUniformityNormalized”, as well as the shape feature
‘‘Flatness”. Delta-T2FS was also dominated by ‘‘Flatness” and two
texture features ‘‘SizeZoneNonUniformity” and ‘‘ZoneEntropy”. In
the combined model, the important features from the single
modality models also scored highest.

In an exploratory analysis we tested the association of the
delta-radiomic models, Pre-Volume, and pCR with OS in the com-
bined patient cohort corrected for AJCC and age as known prognos-
tic variables. All delta-radiomic models, but not pCR and Pre-
Volume, were significantly associated with OS in multivariate Cox
regression (Table S11). In the training set, Delta-T2FS, Delta-
combined, and pCR were significantly associated with OS, whereas
in the test set none of the predictors, including age and AJCC, were
associated with OS. The C-index of the clinical baseline model
(AJCC+ age) of 0.68 in the training set could be improved by adding
pCR (0.73), and Delta-T2FS (0.69) (Table S12). In the test set, how-
ever, only Delta-combined (0.69) and Delta-T1FSGd (0.71) improved
the C-index of the clinical model (0.68). Likewise, both models
achieved a net clinical benefit above the clinical model and the
pCR-based multivariate model in decision curve analysis in the test
set (Fig. 4). Exemplary patient cases are displayed in Fig. 5.
77
To determine the transferability to neoadjuvant chemotherapy
delta-radiomics, we tested our delta-radiomic models using
delta-radiomic features derived from MRIs obtained before and
after neoadjuvant CTx on the subset of the training cohort that
received CTx. Delta-T1FSGd, Delta-T2FS, and Delta-combined
achieved AUC values of 0.90 (0.80–0.98), 0.88 (0.69–0.99), and
0.91 (0.74–1.00), respectively.

Because the two cohorts were found to have different patient
characteristics, especially in use of chemotherapy and tumor his-
tology, we performed a secondary analysis for all models using a
mixed patient cohort. After 100 iterations of 3-fold nested cross-
validation on the complete mixed cohort, the delta-radiomic mod-
els achieved the best performances (Delta-combined: AUC 0.79
(95% CI: 0.78–0.80), Delta-T2FS AUC 0.73 (95% CI: 0.72–0.75),
Delta-T1FSGd 0.73 (95% CI: 0.72–0.74) compared to volume-based
metrics (RECIST AUC 0.64 (95% CI: 0.63–0.66), Delta-Volume AUC
0.62 (95% CI: 0.6–0.64), Pre-Volume (0.66 (95% CI: 0.64–0.67)) or
single time point radiomic models (best model: Post-combined
AUC 0.64 (95% CI: 0.63–0.65)) (Supplemental Fig. S5). The delta-
radiomics model performance was also comparable to the primary
analysis (maximal testing AUC 0.75).
Discussion

We could demonstrate delta-radiomics-based response assess-
ment in patients receiving neoadjuvant therapy. Delta-radiomic
models achieved better reproducibility than single timepoint
radiomic models, RECIST, or the peri-therapeutic volume change.
The combined delta-radiomic model and T2FS-based model
achieved the best predictive performance in terms of AUC. The best
classification performance in terms of balanced accuracy was
achieved by the T2FS-based model. Pre-therapeutic tumor volume
was the best single timepoint predictor. While association with
pCR was the primary hypothesis, the delta-radiomic models were
significantly associated with OS in multivariate Cox regression
models in a combined cohort.

While there is a growing body of evidence suggesting associa-
tion between pre-treatment radiomics and outcomes in STS, data
on delta-radiomics remains scarce. In a small 30-patient study,
delta-radiomic analysis of diffusion-weighted MR imaging
improved prediction of the treatment effect score (response
threshold 50%) in internal cross validation [54]. Crombé et al. ana-
lyzed the value of T2-weighted sequence-based delta-radiomics for
pCR predictions in STS patients after neoadjuvant Ctx in a mono-
centric cohort of 65 patients [55]. The final model achieved an
AUC of 0.63 within a 15-patient holdout set. Lin et al. conducted
a similar study in osteosarcoma patients using CT imaging. A per-
formance with an AUC of 0.82 in an internal testing cohort was
demonstrated [56]. Our delta-radiomic models had comparable
performances with AUC-values ranging from 0.68 to 0.75. Since
there were significant differences in histologies, imaging modali-
ties, distribution of outcome variables, and treatment regimens,
the performances within the above mentioned studies cannot be
directly compared. One advantage of our study is that an indepen-
dent test cohort was used providing a TRIPOD type III validation
[34].

TRIPOD type III validation was achieved through the use of
independent training and testing cohorts for our primary analysis
[34]. However, as both cohorts were found to have significant dif-
ferences in clinical features, histologies, and treatment regimens
(e.g. chemotherapy), we performed a post-hoc secondary analysis
with a mixed cohort and 3-fold nested cross validation to evaluate
the effects of the cohort construction. Again, the delta-radiomic
models outperformed volume-based metrics such as RECIST or sin-
gle timepoint radiomic-models. Even though differences in the val-



Fig. 3. Receiver operating characteristic curves (ROC) of the delta-radiomic models in the testing patient cohort. The shaded area represents the 95% confidence interval. The
circles represent the cut-points applied for classification (median). Abbreviations: AJCC: American Joint Committee on Cancer staging system 8th edition, AUC: area under the
ROC curve, Delta: delta-radiomics models, RECIST: Response Evaluation Criteria in Solid Tumors, T1FSGd: contrast-enhanced T1-weighted fat saturated, T2FS: T2-weighted
fat saturated.
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idation method mean the results cannot be directly compared, the
performances in the mixed cohort were similar compared to that
achieved on the primary training set.

In this study we used pCR as a surrogate marker for patient out-
come instead of directly predicting OS, due to the small patient
cohorts. pCR is often used in prospective trials as a surrogate mar-
ker reducing the need for long follow up and large patient numbers
[9]. Ultimately, a response marker needs to prove its usefulness for
patients’ survival. We addressed this fact by performing explora-
tory multivariate Cox regression analyses. Interestingly, we could
demonstrate an association of the delta-radiomic models with OS
in the combined and training cohorts. pCR itself was only signifi-
cant in the training cohort. With its low patient and event number,
none of the prognostic factors, including age and AJCC, were signif-
icant in the test cohort. In the literature, multiple retrospective
studies showed contradicting results regarding the prognostic
value of pCR [57,58]. The previously mentioned meta-analysis
encompassing 1663 predominantly retrospectively assessed
patients demonstrated significant association of OS independent
of the treatment modality [10]. Regarding the small patient num-
bers, we therefore see pCR as a valid endpoint for this exploratory
work. Future larger studies should assess direct predictions of OS.

In many ways, delta-radiomics is a concept similar to assessing
treatment response via changes in tumor volume by the RECIST cri-
teria [50]. In contrast to the delta radiomic models, RECIST, Delta-
Volume, and Post-Volume did not show similar predictive perfor-
mances in the test set. Similar observations have been previously
described [11,32]. Pre-Volume, however, appeared to be a stable
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predictor for pCR. The finding that radiomic features had better
predictive performance than volume alone is of interest because
radiomic features have been criticized as overly correlated to the
VOI volume [59]. Delta-radiomic features may capture radiation-
induced biologic changes occurring within the STS such as infarc-
tion, necrosis, fibrosis, or hyalinization [60].

In other cancer types, pCR plays an increasing role in treatment
personalization. In breast cancer, certain pre-stratified patients
without pCR after neoadjuvant Ctx receive additional adjuvant
Ctx [8]. Future directions may harness imaging-based response
assessment prior to surgery to identify those patients with STS
who may benefit from additional neoadjuvant therapeutic
escalation.

We also evaluated the transferability of the developed models
to peri-CT delta-radiomic features. A high predictive performance
could be observed. These results may be overly optimistic as all
patients receiving CTx were in the training set. Still, this explora-
tory analysis suggests that the transfer of radiomic models to dif-
ferent cytotoxic therapies should be investigated.

Pathological response in clinical practice is evaluated on repre-
sentative samples of the STS. This procedure constitutes a compro-
mise between accurate response estimation and time expenditure
[33]. As consequence, the determination of viable cells may be
prone to a certain sampling error. By using a binarized endpoint,
this risk may be reduced as minor numerical deviations far from
the cut-point do not affect the result. Still, this uncertainty in the
endpoint constitutes a limitation of this approach. Moreover, other
pathological measures such as hyalinization were not available for



Fig. 4. Decision curve analysis of delta-radiomics multivariate models. Decision curve analysis was performed comparing the net benefit of the delta-radiomic multivariate
models with the clinical model (AJCC+age) and the pCR multivariate model in the testing set. The net benefit is calculated by subtracting the proportion of false-positive
patients from the proportion of true-positive patients, weighted by the relative harm of a false-positive and false-negative result [52]. The threshold probability was
calculated for death after three years. The two extreme strategies ‘‘treat all” and ‘‘treat none” are displayed as a reference. A decision model shows a clinical benefit if the
decision curve shows larger net benefit than both reference strategies. In the panel right panel in the second row ‘‘Clinical” and ‘‘pCR_Clinical” are overlapping. Abbreviations:
AJCC: American Joint Committee on Cancer staging system 8th edition, AUC: area under the ROC curve, Delta: delta-radiomics models, pCR: pathological complete response,
T1FSGd: contrast-enhanced T1-weighted fat saturated, T2FS: T2-weighted fat saturated.
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all patients among both institutions, but constitute interesting
alternative response markers [60].

This analysis bears several additional limitations. First, the ret-
rospective nature of this study may be a reason for potential bias in
data selection [61]-. Second, the heterogeneity in treatment regi-
mens impaired therapy-specific modeling potentially reducing
performance. Third, patient numbers were overall low, especially
in the test set. Large standard deviations made direct comparisons
between models difficult and impeded interpretability of multi-
variate models, especially in the context of the imbalanced out-
come measure. For instance, in the test set none of the known
prognostic factors was significantly associated with OS. Still, this
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study remains the largest reported delta-radiomic analysis in STS
patients. Fourth, technical variations in image acquisition between
cohorts and between the two timepoints used for delta-radiomic
feature calculation may have hindered better performances and
generalizability. Finally, the optimal approach to calculate deltara-
diomic features is unknown. We decided for absolute subtraction
of feature values as performed in previous studies, but the assess-
ment of the relative change may be an alternative method. A
prospective trial, with pre-defined acquisition protocols optimized
for feature reproducibility, may enable better response evaluation.

To conclude, we could demonstrate prediction of pathological
complete response using the delta-radiomics principle in STS



Fig. 5. Exemplary patient cases. Exemplary patient cases within the test cohort. Green and red frames represent correct or incorrect classification by the exemplary Delta-
combined model. First patient: G3 undifferentiated pleomorphic sarcoma, second patient: G1 myxoid sarcoma, third patient: G2 monophasic synovialsarcoma, fourth
patient: G3 myxofibrosarcoma. Abbreviations: Delta: delta-radiomics models, pCR: pathological complete response, T1FSGd: contrast-enhanced T1-weighted fat saturated,
T2FS: T2-weighted fat saturated.
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patients. Delta-radiomic models achieved better reproducibility
than single timepoint radiomic models, RECIST, or the peri-
therapeutic volume change and was associated with overall sur-
vival. The models also functioned in patients using MRIs obtained
before and after chemotherapy. We conclude, that delta-radiomic
features may capture radiation-induced biological changes and
may function as a treatment response biomarker.
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