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Highlights
Genome-wide association studies
(GWAS) have revealed the genetic
basis of complex diseases. Integra-
tive studies investigating multi-
omics data of disease-relevant pri-
mary tissues are needed to refine
these insights.

By highlighting recent integrative multi-
omics studies in relevant tissues of four
distinct complex diseases (type 2 diabe-
Genome-wide association studies (GWAS) have provided insights into the
genetic basis of complex diseases. In the next step, integrative multi-omics
approaches can characterize molecular profiles in relevant primary tissues to
reveal the mechanisms that underlie disease development. Here, we highlight
recent progress in four examples of complex diseases generated by integrative
studies: type 2 diabetes (T2D), osteoarthritis, Alzheimer’s disease (AD), and
systemic lupus erythematosus (SLE). High-resolution methodologies such as
single-cell and spatial omics techniques will become even more important in the
future. Furthermore,we emphasize the urgent need to include as yet understudied
cell types and increase the diversity of studied populations.
tes, osteoarthritis, Alzheimer’s disease,
and systemic lupus erythematosus), we
outline the usefulness of this approach
across complex disease types.

Multi-omics approaches have extended
our biological understanding (e.g., func-
tional interpretation of GWAS signals,
construction of new molecular maps)
and revealed potential clinically relevant
insights (e.g., patient stratification, bio-
marker identification).
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Integrating multi-omics data in complex disease primary tissues
Complex diseases are driven by a combination of multiple environmental and genetic factors. Due
to their high prevalence (e.g., osteoarthritis: 40% over the age of 70 years [1]; diabetes: 6.28% of
the world population [2]), complex diseases represent a substantial burden for public health
systems [3]. In the context of an aging population, this burden is predicted to increase in the
future, underlining the importance of developing effective and personalized treatment methods,
including discovery of novel drug targets (especially for drugs that have been approved in another
context, referred to as drug repurposing), the identification of biomarkers, and improved patient
stratification [4].

GWAS have identified genetic risk loci implicated in complex diseases and have provided much-
needed insights into their complex genetic architecture [5]. However, translating genetic findings
into clinical applications remains challenging across complex diseases. Issues include the strong
linkage disequilibrium between variants on risk haplotypes (the actual causal variant of a risk locus
often remains elusive) or the identification of effector genes of risk variants, particularly for variants
in noncoding regions (see Glossary).

Multi-omics data of human primary tissues provide molecular profiles of disease-relevant cell
types, thus revealing insights beyond those derived from genetic studies. This molecular
information will contribute to overcoming current challenges in translational efforts of complex
diseases (Figure 1, Key figure). Briefly, omics data can be integrated with GWAS results to
identify target genes of risk variants using causal inference (e.g., Mendelian randomization [6] or
colocalization approaches [7,8]). Furthermore, omics data can improve risk variant characteriza-
tion, especially for those residing in noncoding sequence. Indeed, computational intersections
of GWAS with datasets generated using functional genomics techniques [e.g., chromatin
immunoprecipitation followed by sequencing (ChIP-seq), assay for transposase-
accessible chromatin using sequencing (ATAC-seq), etc.] have found that for some complex
traits, risk variants tend to reside and are enriched within regulatory sequence [9–11].
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Key figure

Applying integrative approaches on multi-omics data of four disease-
relevant primary tissues
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Figure 1. We describe recent findings from primary human tissues, namely joint tissues (osteoarthritis), pancreas (type 2
diabetes), brain (Alzheimer’s disease), and peripheral blood (systemic lupus erythematosus). At least two omics levels
were combined in integrative approaches, generating biologically relevant insights into these complex diseases. This figure
was created with BioRender.com.
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Glossary
450k: array technology that measures
more than 450 000 methylation sites.
Assay for transposase-accessible
chromatin using sequencing
(ATAC-seq): a method that sequences
open chromatin and used to determine
genome-wide chromatin accessibility
profiles and discover epigenetic
regulation.
Chromatin immunoprecipitation
followed by sequencing (ChIP-seq):
combines ChIP with sequencing
technology to identify DNA binding sites
for proteins (e.g., transcription factors)
genome wide. Used to explore gene
regulation events.
EPIC: array technology that measures
more than 850 000 methylation sites.
Genomic structural variation:
includes deletions, duplications,
insertions, invertions, and translocations
of at least 50-base pair length.
High-throughput chromosome
conformation capture (Hi-C):
generates a genome-wide profile of
chromatin interactions. Used to offer
insights into transcriptional regulation.
HiChIP: Hi-C method that generates
chromatin interaction maps, with
interactions being associated with a
specific (architectural) protein.
Long-read sequencing: technologies
that enable live sequencing of native
DNA or RNA, thus generating long reads
(more than 10 kb).
Multiplexed single-cell RNA
sequencing (mux-seq): droplet-based
scRNA-seq approach that uses
multiplexing, constituting a cost-efficient
alternative to other scRNA-seq
technologies.
Nuclear magnetic resonance (NMR)
spectroscopy: used tomeasure shape
and size of biological macromolecules
(e.g., proteins, metabolites, nucleic
acids), whereby the samples are
exposed to magnetic field and a radio
frequency pulse. The resonant
frequencies which are specific to the
molecule measured are used to detect
its properties. Has several applications
including molecular identification,
structural and kinetics analyses.
Promoter capture Hi-C (pcHi-C):
generates a genome-wide map of
regions that interact with distal
promoters. Used to offer insights into
gene regulation and link noncoding
variants to their target genes.
Quantitative trait locus (QTL):
genetic variants that are significantly
Functional studies have largely been enabled by recent developments in high-throughput
methods that enable tissue-specific molecular profiling across several layers, such as on
DNA methylation, chromatin accessibility, and transcript or protein level. Furthermore,
large projects like GTEx [12], ENCODE [13], ROADMAP [14], and the Human Cell Atlas
[15] have made genome-wide, tissue-specific molecular maps publicly available, thus pro-
viding well-established resources of molecular landscapes (Box 1). These large, publicly
available datasets enable investigation of disease-relevant tissues across several biological,
multi-omics layers [16] and provide refined insights into the link between risk factors and
disease.

In addition, (multi-)omics approaches have been applied to primary samples of several disease-
relevant tissue types (Box 2), that is, tissue samples collected from patients or nondisease
donors. Using primary disease-relevant tissue can provide novel insights into disease mechanisms
that may not have been identified when using peripheral tissues or cellular models.

This includes increased resolution into disease progression when affected primary tissues are
investigated across disease stages. Here, disease-affected tissues may reflect unrelated disease
processes which can be less relevant to prevention (but still relevant to treatment), whereas pre-
Trends in Genetics, January 2023, Vol. 39, No. 1 47
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Box 1. Public data resources for omics data

International collaborations have generated publicly available omics data resources which serve as reference data, for
example, for functional follow-up studies of GWAS signals.

Launched in 2010, the GTEx databasei provides a catalog of effects of genetic variants on gene expression and splicing of
across 49 tissues, collected from postmortem samples of 838 individuals (version 8) [12].

ENCODEii was established in 2003 with a pilot project to describe functional elements in human and mouse genomes,
initially focused on 1% of the genome [72], but has expanded to the whole genome. The current version includes RNA
transcription, DNA binding, chromatin modification and accessibility, DNA methylation, and replication timing data [73].
It describes 926 535 humans and 339 815 mouse candidate cis-regulatory elements.

Roadmapiii presents human epigenomic data of 111 human tissues or cell types (further provides 16 cell types from
ENCODE, thus 127 in total). It comprises histone modification patterns, DNA accessibility, DNA methylation, and
RNA expression [14].

The Human Cell Atlas (HCA) is an international collaboration that aims to generate reference maps of human tissues at
single-cell resolution [15]. For example, one recent HCA-associated study investigated 500 000 cells and provides a
single-cell reference for 400 human cell types of 24 tissues or organs [74]. The HPC data coordination platformiv currently
provides data from more than 26 million cells of 38 000 donors (7 July 2022).

Furthermore, there are databases that provide disease-specific information. The Musculoskeletal Knowledge Portalv is a
platform for genetic and genomic data relevant for musculoskeletal traits [75]. It currently hosts 301 datasets for 281 traits.

Similarly, there is a Type 2 Diabetes Knowledge Portalvi providing T2D-relevant data (349 datasets, 347 traits). Other T2D
portals are Translational Human Pancreatic Islet Genotype Tissue-Expression Resource (TIGER), including omics and
eQTL data from than 500 human islet samples [26] and the Diabetes Epigenome Atlasvii [24].

For AD, the AD Knowledge Portal is an initiative that makes AD-relevant data accessible [76].
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correlated with a quantitative trait. It
often refers to genetic variants
associated with a molecular phenotype,
such as methylation levels of a
methylation site (mQTL), expression
levels of a gene (eQTL) or protein (pQTL).
Sc-transposome hypersensitive
sites sequencing (scTHS-seq):
combines TSH-seq, a method that
estimates chromatin accessibility with
single-cell technology. Produces
genome-wide maps of open chromatin
in single-cell resolution.
Single-nucleus Droplet-based
sequencing (SnDrop-seq):
droplet-based method that measures
transcriptomic data of single nuclei.
Measuring single nuclei rather than
single cells is relevant when cells cannot
be separated in a single-cell resolution,
such as samples that are frozen or of a
specific cell type (brain, skeletal).
Variants in noncoding regions:
identifying the effector genes of risk
variants can be complicated since many
disease-associated variants are not
located in protein-, but noncoding
regions of the genome. Rather than
directly changing the gene product (as
variants in protein-coding regionsmight),
these variants can have a regulatory
effect on the expression of a target gene,
as they can reside in functional elements,
such as enhancers, promoters,
transcription binding sites, or noncoding
RNAs.
Whole-genome bisulfite
sequencing (WGBS): combines
bisulfite treatment of the DNA
(converting unmethylated cytosine to
uracil, keeping methylated cytosine
unaffected) and high-throughput DNA
sequencing to measure the DNA
methylation profile in a genome-wide,
untargeted manner. Used to assess
diseased tissues may help elucidate the pathomechanism, which can be more relevant to
prevention.

In this review, we cover recent insights into four complex (Box 3) diseases provided by multi-
omics studies on disease-relevant primary tissue (Figure 1 and Table 1). These affect different
disease-relevant tissues and pose distinct challenges: (i) T2D is a clinically heterogeneous
metabolic disease for which relevant tissue samples are difficult to access. (ii) Osteoarthritis
is a joint disorder for which joint tissues are challenging to access and are not included in
reference databases. (iii) AD is a neurodegenerative disease that affects the brain, a complex
organ that can only be studied post-mortem. (iv) SLE is an autoimmune disease with large
patient heterogeneity.
Box 2. Analyses to associate multi-omics data with diseases

A standard approach to link molecular data with a disease is to conduct differential analyses, for example, between cases
and controls. This is similar to the case–control approach in GWAS. In contrast to genetic studies, in which signals are
estimated to play causal role in disease (and not vice versa, as genotypes are not affected by diseases because they form
at conception), the changes in molecular features (RNA or protein abundances, epigenomic marks, or chromatin states)
could be consequences rather than driving risk factors of the disease. Thus, differential analyses identify markers that
are not necessarily causally involved in the disease of interest.

In addition, several approaches that integrate data across multiple omics layers have been developed [16]. A well-
established example is the integration of genomic and gene expression data of matching samples to identify genetic variants
that influence expression levels of a gene, termed expression quantitative trait loci (eQTLs), on a genome-wide scale [16]. The
eQTL maps can be combined with GWAS results to identify molecular drivers (e.g., likely effector genes) through which risk
variants exert their effects in disease-relevant tissue. In the context of complex diseases, these high-confidence effector
genes may represent promising drug targets [77]. Other established multi-omics strategies infer information from networks
[78] or estimate low-dimensional representations from multi-omics datasets, for example, to stratify samples [79].
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Box 3. The largest GWAS for type 2 diabetes, osteoarthritis, Alzheimer’s disease, and systemic lupus
erythematosus

GWAS have revealed insights into the polygenic architecture of T2D, osteoarthritis, AD, and SLE.

In T2D, the largest study to date comprised 1 339 889 individuals with 180 834 cases and 1 159 055 controls [80]. Of
these, the major part was of European descent (51.1%).

For osteoarthritis, the largest GWAS investigated 826 690 individuals (177 517 cases and 649 173 controls), with more
than 99.3% of European ancestry [9].

The largest AD study investigated 1 126 563 individuals (90 338 cases, 1 036 225 controls) [10]. Another recent GWAS for
Alzheimer’s disease included fewer individuals in total (n = 788 989), but a higher number of cases (n = 111 326) [48]. Both
studies included individuals of European descent only.

The largest SLE GWAS has been performed in 208 370 individuals (13 377 SLE cases, 194 993 controls), all of which are
of East Asian descent [59].
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Type 2 diabetes
T2D is a complex metabolic disease affecting more than 450 million people worldwide [2]
and is characterized by impairment of insulin secretion and signaling, and of carbohydrate,
lipid, and protein metabolism [17,18]. The two key mechanisms in developing T2D include
defective insulin secretion from the endocrine pancreatic beta cells and the lack/reduced
response to insulin from insulin-sensitive tissues [19]. Over 700 genetic risk loci have
been implicated in T2D to date with >90% mapped to noncoding sequences [17,18]. The
majority of these variants (which explain 19% of T2D risk [20]) increase the risk of develop-
ing T2D mainly through effects on insulin secretion. To this end, studies of pancreas across
multiple levels of expression are vital to gain insight into T2D molecular regulation. Despite
pancreas being difficult to access, large efforts like GTEx have linked genomic variation to
pancreatic gene expression. These resources constitute a valuable reference, but are not
T2D specific. Therefore, multi-omics studies extending to pancreatic tissues of T2D patients
have been carried out. Furthermore, islet-specific signals are not discernible when studying
pancreas as a whole due to its high consistency in exocrine cells. The endocrine pancreatic
islets whose dysfunction leads to T2D constitute only 1–2% of the pancreas. Therefore, multi-
omics studies on pancreatic islets can shed light on the specific mechanisms of insulin secretion
dysregulation in T2D.

Viñuela et al. studied the impact of noncoding T2D-associated variants on the expression level of
proximal genes in pancreatic islet tissue from 420 nondiabetic donors [11]. This study identified
7741 cis-expression quantitative trait loci (eQTLs) in pancreatic islets that were replicated up
to 40–73% in 44 GTEx tissues. The integration of the eQTL with epigenomic (ChIP-seq and
ATAC-seq) data revealed enrichment of eQTL in active chromatin states (transcriptional start sites)
and islet-specific transcription factor (TF) footprint motifs (GLIS3, RFX, and ETS families).
Colocalization of the eQTL signals with variants from T2D or glycemic trait GWAS identified
47 variants with a potential causal role, highlighting DGKB and TCF7L2 among the effector
genes [11].

Islet-specific gene expression was further correlated with enhancer looping in pancreatic islet cells
in a study by Greenwald et al. [21]. The authors generated a high-depth map of islet chromatin
architecture of three nondiabetic donors using high-throughput chromosome conformation
capture (Hi-C) and ATAC-seq and fine-mapped 30 known T2D signals influencing islet enhancer
activity. They further identified target genes of T2D risk variants in enhancers by performing eQTL
mapping, highlighting the rs10428126 variant at the IGF2BP2 locus as a potential causal variant for
Trends in Genetics, January 2023, Vol. 39, No. 1 49
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Table 1. Overview of approach types and measured molecular omics levels in disease-relevant tissues in
multi-omics studiesa

Disease Primary tissue Types of approaches Omics

Type 2 diabetes Pancreatic islets Bulk:
450k, WGBS
ATAC-seq
Hi-C
ChIP-seq
pcHi-C

RNA-seq
Mass spectrometry

Single-cell/nucleus:
snATAC-seq
scRNA-seq

DNA methylation
Chromatin accessibility
Chromatin conformation
Protein–DNA interactome
Promoter capture chromatin conformation

Transcriptomics
Proteomics

Single-nucleus (sn) chromatin accessibility
Single-cell (sc) transcriptomics

Osteoarthritis Cartilage Bulk:
450k, EPIC
ATAC-seq
RNA-seq
Mass spectrometry

Methylation
Chromatin accessibility
Transcriptomics
Proteomics

Synovium Bulk:
RNA-seq
Mass spectrometry

Transcriptomics
Proteomics

Alzheimer’s
disease

Brain Bulk:
ATAC-seq
HiChIP
RNA-seq
ChIP-seq
Mass spectrometry

Single-cell/nucleus:
scATAC-seq
scRNA-seq
snDrop-seq
scTHS-seq

Chromatin accessibility
Enhancer connectome
Transcriptomics
Protein–DNA interactome
Proteomics, phosphoproteomic,
lipidomics

sc chromatin accessibility
sc transcriptomics
sn transcriptomic
sn chromatin accessibility

Systemic lupus
erythematosus

Blood Single cell
mux-seq sc transcriptomics

Bulk:
RNA-seq, microarray
Mass spectrometry
NMR spectroscopy

Transcriptomics
Proteomics, metabolomics
Metabolomics

aAbbreviations: HiChIP, Hi-C chromatin immunoprecipitation; mux-seq, multiplexed single-cell RNA sequencing; scTHS-
seq, sc-transposome hypersensitive sites sequencing; snDrop-seq, single-nucleus Droplet-based sequencing; WGBS,
whole-genome bisulfite sequencing.
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T2D through reducing enhancer accessibility and IGF2BP2 expression, along with compromising
glucose-stimulated insulin secretion in mice [21].

Pancreatic islet enhancers have been further linked to specific gene promoters in a study from
Miguel-Escalada et al. [22]. Using promoter capture Hi-C (pcHi-C) (four donors) along with
ATAC-seq (13 donors), ChIP-seq (16 donors), and RNA-seq (seven donors) from nondiabetic
donors, the authors identified >1300 enhancer hubs in pancreatic islets containing variants
affecting insulin secretion. The authors also detected likely effector genes for 53 T2D or fasting
glycemia risk loci overlapping with pancreatic islet enhancers. Among highlights were the risk
50 Trends in Genetics, January 2023, Vol. 39, No. 1
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variant rs7903146modulating TCF7L2 expression in beta cells and CAMK1D and OPTN regula-
tion by an rs11257655-containing enhancer. Inclusion of these enhancer risk variants in poly-
genic risk scores (PRS) could quantify genetic risk especially for individuals with lower body
mass index (BMI) (<30) mediated by islet gene regulation and insulin secretion [22]. On a related
theme, Thurner et al. explored the pancreatic islet epigenome and described genome-wide
methylation (n = 10 nondiabetic donors) and chromatin accessibility (n = 17 nondiabetic donors)
alterations identifying likely causal variants for the CDC123, ADCY5, and KLHDC5 loci [23].

Chiou et al. investigated cell-specific regulatory changes in the pancreatic islet using single-
nucleus ATAC-seq (snATAC-seq) in islets of three nondiabetic donors combined with
published scRNA-seq and T2D GWAS data [24]. The authors identified 12 different cell popu-
lations profiling 15 298 islet cells and proposed that T2D genetic risk is mediated through
variant effects mainly on beta cells of different states (based on accessibility of the INS promoter)
along with endocrine cell populations (mainly delta cells). The rs231361 T2D risk variant at the
KCNQ1 locus was proposed to have state-specific effects on beta cell chromatin accessibility
influencing insulin levels [24].

All the aforementioned studies have studied T2Dmulti-omics in pancreatic islets from postmortem
donors. A first of its kind study from Wigger et al. profiled islet cells from living pancreatomized
donors, classified along the glycemic continuum from normoglycemic to diabetic [25]. Specifically,
the authors measured transcriptomics (95 donors) and proteomics (five donors) in pancreatic islets
along with lipidomics (55 donors) in blood from pancreatomized donors. Data integration revealed
greater heterogeneity in diabetic islet gene expression compared with nondiabetic islets, with dif-
ferentially expressed genes in diabetic islets mainly involved in mitochondrial function and immune
response. Furthermore, the authors identified association of expression of the glycolytic enzyme
ALDOB, the glucose transporter SLC2A2, plasma ceramide levels, and ether-linked phosphatidyl-
cholines with HbA1c levels (a marker of glycemia) proposing them as potential T2D biomarkers
[25]. Lastly, this study proposed that T2D seems more likely to be the result of relaxed gene
expression constraints in mature islet cells rather than a result of beta cell dedifferentiation or
transdifferentiation developmental processes.

Together, these studies highlight the importance of multi-omics approaches in uncovering the
regulatory mechanisms underlying genetic risk variants in T2D. Large efforts that combine
publicly available different data types like the Translational Human Pancreatic Islet Genotype
Tissue-Expression Resource (TIGER) [26] and Diabetes Epigenome Atlas [24] along with
multiethnic association studies of T2D risk [27] pave the way for a better understanding of
T2D heterogeneity.

Osteoarthritis
Osteoarthritis is a prevalent, complex musculoskeletal disorder that affects all tissues of
diarthrodial joints [28]. Its most prominent feature is the degradation of cartilage. To date,
GWAS have revealed approximately 150 genetic risk loci [9]. It remains unclear which genetic
variants and genes drive osteoarthritis development and progression in the affected organs. As
a joint disorder, relevant tissue types are difficult to access but can be collected through total
joint replacement surgeries. Furthermore, osteoarthritis, initially described as disease of the joint
cartilage, affects all tissues of diarthrodial joints [29]; thus, multi-omics studies can reveal
tissue-specific mechanisms underlying osteoarthritis across several molecular layers. Further,
public data resources have not yet included osteoarthritis-relevant joint tissue types to date.
Therefore, recent multi-omics studies that focus on primary joint tissues can provide valuable
resources for osteoarthritis research.
Trends in Genetics, January 2023, Vol. 39, No. 1 51
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Several studies have focused on single molecular levels of osteoarthritis-affected tissues (as
reviewed in [30,31]). A modest number of multi-omics studies have integrated different data
types in specific genomic regions of interest [32–35] or genome wide [36–41].

Steinberg et al. integrated genotype with molecular data (transcriptomic and proteomics) of
three osteoarthritis-relevant tissue types in matched samples, namely macroscopically intact
(low-grade) and degraded (high-grade) osteoarthritis cartilage as well as from synovial tissue
(a connective tissue that lines the joint capsule) in osteoarthritis-affected joints of 115 patients
[37]. In each tissue, the authors characterized genetic variants that are associated with gene
expression (eQTLs) or protein levels [protein quantitative trait loci (pQTLs)], providing the first
genome-widemolecular QTLmaps of these joint tissues. Integrating theseQTLmapswith results
of GWAS for osteoarthritis revealed five putative effector genes in osteoarthritis primary tissues
(ALDH1A2, NPC1, SMAD3, FAM53A, and SLC44A). GWAS signals around some of these
genes colocalized with eQTLs of GTEx (which does not include cartilage data) only for small num-
bers of 53 tested tissues (ALDH1A2: ovary and tibial artery; SMAD3: skeletal muscle; SLC44A2:
adrenal gland) [42], thus providing further evidence for the identified colocalization signal to be
cartilage specific. In addition, the comparison of low-grade with high-grade osteoarthritis
cartilage identified 409 genes linked to cartilage degeneration at both the transcriptome and
proteome levels. These cross-omics signals revealed an activation of the signaling pathway ‘ex-
tracellular matrix–receptor interaction’ in high-grade cartilage, and an enrichment of terms related
to ‘extracellular space’. Genes that were differentially expressed at the transcriptome level were
enriched in developmental processes (e.g., ‘multicellular organism development’, ‘anatomical
structure development’). Together with previous enrichment findings in othermolecular osteoarthritis
studies [36,38,39] or detected changes in chondrocyte stemness (hypertrophic differentiation)
during osteoarthritis progression [43], these results provide further evidence for developmental
processes being involved in osteoarthritis etiology. Furthermore, these cross-omics results were
integrated in an analysis which suggested 19 compounds that could reverse disease progression
in osteoarthritis cartilage at the molecular level.

Coutinho de Almeida et al. studied mRNA and miRNA data in low-grade and high-grade osteo-
arthritis cartilage from 63 patients [38]. They identified 142 miRNAs and 2387 mRNAs linked to
osteoarthritis cartilage degeneration. They integrated these results using 19 samples of 15 indi-
viduals with both miRNA and mRNA data and applied a step-wise approach and selected 331
miRNA–mRNA pairs [step-wise filtering: (i) focus on negatively correlating miRNA–mRNA pairs,
(ii) opposing effect direction at mRNA and miRNA level when comparing low-grade and high-
grade osteoarthritis cartilage, (iii) predicted interaction, and (iv) experimental validation between
miRNA–mRNA pair]. They generated a miRNA–mRNA network based on correlations and effect
sizes of differential analyses. The network revealed several clusters, for example, two in which
miRNA is down- or upregulated in high-grade osteoarthritis cartilage, respectively. This study
provides the first miRNA–mRNA interaction map in osteoarthritis cartilage.

Together, these recent multi-omics data integration studies of primary joint tissue have revealed
associations between different omics levels and have enabled a better understanding of
the mechanisms underpinning biological signals across molecular levels and disease stages in
osteoarthritis.

Alzheimer’s disease
AD is a complex neurodegenerative disease and the most common form of dementia [44].
Pathophysiological changes of AD-affected brains include an accumulation of β-amyloid
plaques and tau-containing neurofibrillary tangles in the cerebral cortex [45,46]. AD is
52 Trends in Genetics, January 2023, Vol. 39, No. 1

CellPress logo


Trends in Genetics
OPEN ACCESS
estimated to be driven by several causal genetic variants [47], and genetic association studies
have provided insights into its complex genetic architecture [10,48]. However, some specific
challenges are complicating the identification of molecular mechanisms underlying AD. Ac-
cess to primary relevant tissue in the brain is challenging and limited to postmortem samples.
In addition, the brain is an exceptionally heterogeneous and complex organ that consists of
several regions, each including different cell types working together in an orchestrated man-
ner. Multi-omics studies can help to better understand region- as well as cell type-specific
molecular mechanisms underlying AD. Brain region-specific molecular profiles are available
in public data resources (e.g., GTEx). These efforts are extended by further multi-omics stud-
ies that provide insights into AD pathology using single-cell techniques, for example, by inte-
grating single-cell chromatin accessibility landscapes and chromatin conformation maps [49]
or single nuclear transcriptomic and single-cell chromatin accessibility maps [50] in brain
tissues.

Morabito et al. extended to AD brain samples [51]. The authors profiled matching chromatin
accessibility (12 late-stage AD, eight control) and gene expression landscapes (11 late-stage
AD, seven control) of 191 890 nuclei of prefrontal cortex tissue of human brains at single-cell
resolution. This study identified cell type-specific, AD-relevant regulatory elements influencing
genes in cis (e.g., the AD-relevant genes APOE and CLU in AD-linked cell type oligodendrocyte),
AD-relevant TFs in glia cell populations (e.g., SREBF1), and a novel, integrative correlation network
approach to identify clusters of coexpressed genes. The latter revealed over-representations of
SREBF1 targets in oligodendrocytes, underlining the role of this TF in AD.

In addition, recent multi-omics studies in bulk data identified relevant, disease-associated molec-
ular alterations in AD brain regions, such as gain of histone modifications H3K27ac and H3K9ac
[52], VGF downregulation [53], and downregulation of ATP6V1A, which was shown to be a
promising drug target [54]. Bai et al. provided molecular insights into AD brains (n = 90) using
protein networks [55]. They integrated proteomics and phosphoproteome profiles and revealed
173 proteins linked to AD progression. Integration of further omics data prioritized AD-relevant
proteins (top three: AD-linked genes APP, APOE, and MAPT) and pathways (e.g., amyloid and
Tau pathways). A further study examined APOE allele-dependent differences in the molecular
profile of inferior parietal lobule samples, pointing to different underlying etiological mechanisms
in AD [56].

Altogether, the application of integrative multi-omics approaches has extended our insights into
AD at the brain region and cell type levels.

Systemic lupus erythematosus
SLE is an autoimmune disease which affects multiple organs. It shows relapse-remitting courses
and is characterized by the production of autoantibodies, leading to inflammation [57]. Autoimmune
signatures can be captured in peripheral blood, where common effects of SLE include decreased
white blood cell (leucopenia, lymphopenia), platelet (thrombocytopenia), or red blood cell counts
[58]. To date, more than 100 SLE risk loci have been identified in GWAS [59]. SLE poses specific
challenges due to its patient diversity, including heterogeneity at clinical (e.g., affected organs,
disease severity, clinical manifestations) and immunological levels (heterogeneity in cytokine profiles
or type I interferon responses) [60]. This patient heterogeneity complicates disease treatment aswell
as drug development. For example, the SLE drug belimumab showed improved treatment
response in a subgroup of patients with more active SLE [61]. Multi-omics studies can help to
identify patient clusters with similar molecular subtypes underlying SLE development or progression,
thus contributing to a better understanding of SLE heterogeneity.
Trends in Genetics, January 2023, Vol. 39, No. 1 53
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Outstanding questions
Can yet understudied, disease-relevant
cell types be profiled in future? Can
these cell types be included in future
public data sources?

How can we ensure and promote the
study of more diverse population
groups in genetic and multi-omics
studies?

How can we apply promising, novel
techniques such as single-cell and
spatial omics technologies at larger
scales and across multiple molecular
levels to improve our understanding
of dynamic and disease-relevant pro-
cesses? Can we solve the technical
challenges posed by these novel
technologies?
Due to the relevance for autoimmune diseases and relatively easy access, recent multi-
omics SLE studies have investigated peripheral blood samples from SLE patients, focusing
on mapping single-cell transcriptomes in peripheral blood mononuclear cells (PBMCs) [62],
biomarker identification [63], and understanding disease-relevant molecular mechanisms
[64,65].

A multi-ethnicity study measured single-cell transcriptomic data of more than 1.2 million PBMCs
from 162 SLE patients and 99 healthy controls [62]. This study reports cell type-specific expres-
sion patterns, expression-based classification into SLE cases and controls, and identified shared
and cell type-specific cis-eQTL. It further reports SLE patient stratification into molecular clusters,
thus providing insights into SLE heterogeneity.

A recent study integrated gene expression profiles from peripheral blood (65 cases and 67 con-
trols) as well as from purified T (32 cases and 28 controls) and B cells (38 cases and 27 controls),
respectively isolated from peripheral blood [64]. Comparing the SLE patients and controls
identified 750 differential expressed genes (DEGs), in total. Integrating upregulated SLE genes
with TF binding data from ENCODE determined networks of coregulated genes and revealed
SLE-relevant pathways (e.g., SLE interferon signature). A further integration step including
(i) disease-associated genes (DAGs, identified in SLE GWAS) and (ii) publicly available
protein–protein interaction networks [66] identified hierarchical regulatory processes from
DAGs via TFs to differentially expressed genes in blood.

Robinson et al. investigated SLE heterogeneity in young patients (discovery: n = 31, replica-
tion n = 31, respective median age: 19) based on metabolomics data to investigate their
cardiovascular (CV) disease risk, a major mortality cause among juvenile-onset SLE patients
[63]. They determined two robust SLE patient clusters, one of which showed signs of
dyslipidemia, a CV risk factor. These risk patients showed higher apolipoprotein B and A1
ratios (Apo2:ApoA1), thus suggesting it as a CV biomarker (sensitivity: 96.7%, specificity:
96.2%). Comparing high and low Apo2:ApoA1 patients identified DEGs in blood-isolated T
cells (CD8+: 82 DEGs, CD4+: 417 DEGs) that were enriched in atherogenic pathways
(e.g., interferon signaling). These genes also overlapped (CD8+: 23 DEGs, CD4+: 2 DEGs)
with upregulated genes in T cells of atherosclerotic plaques, thus providing further insights
into the link between Apo2:ApoA1 and CV risk. Higher Apo2:ApoA1 ratios were also corre-
lated with higher SLE activities in follow-up checks (3–7 years later), highlighting its use as a
clinically relevant marker.

Together, these multi-omics studies revealed SLE-relevant molecular mechanisms and helped
achieve better patient stratification.

Concluding remarks
The integration of multi-omics data has refined our knowledge about molecular mechanisms that
underlie disease etiology in relevant tissues. In this review, we describe recent insights into four
relevant, complex disorders, obtained through integrative multi-omics approaches. These dis-
eases affect different subsets of tissues, suggesting the importance of integrative approaches
across the spectrum of complex diseases. Nevertheless, some shortcomings have to be tackled
in the future (see Outstanding questions) (Figure 2).

International collaborations have created databases (Box 1) of tissue-specific information which
are invaluable resources, especially in multi-omics integration studies. However, limitations in
sample size, population diversity, and disease-relevant cell types remain.
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Most cell populations contributing to disease development remain undiscovered. Emerging
single-cell and spatial multi-omics techniques that monitor more than one modality will provide
higher resolutions of the characteristics of disease-relevant cell types, thus producing information
beyond the inherent limitations of bulk data. To this end, emerging technologies that allow genetic
screening with single-cell transcriptomics readouts, like targeted Perturb-seq, are promising to
shed light on the functional genomics of complex diseases [67]. These technologies will play an
important role in the future but will present new technical and analytical challenges.

Currently used sequencing technologies are primarily short read-based (e.g., up to 300 bp),
limiting our ability to study disease associations on genotype (cannot measure large parts
of the genome, e.g., genomic structural variation or highly repetitive regions like telomere,
centromere) or gene expression level (limited to measuring long transcripts) [68]. Thus, long-read
sequencing can overcome current limitations.

A number of tissue types relevant for diseases are difficult to access (e.g., joint tissues for osteo-
arthritis, brain tissues for AD). A promising alternative to overcome this limitation is the use of
organoids. Organoids are stem cell-derived 3D in vitro models of human organs that share
many characteristics of their corresponding human organ. [69]. They offer several advantages
to other model systems such as animal models (e.g., expensive, time intensive, limited in model-
ing human-specific biological processes, do not reflect genetic diversity as inbred) [69,70].
Organoid models have already been generated for some complex diseases, for example, AD [71].
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Further challenges going forward include the prediction of disease course and the choice on the
best treatment option, particularly in early disease stages. The identification of such clinically
relevant biomarkers would require well-powered studies that monitor clinical characteristics
and multi-omics data across time points during disease development in appropriate sample
sizes. Thus, we highlight the importance of longitudinal and time-course studies.

Genetic and molecular studies, to date, have primarily investigated cohorts that have been limited to
individuals of European ancestry. This limits the general applicability of findings and produces a bias
in our understanding of disease [4]. By contrast, studies across diverse and under-represented
populations can generate a more complete landscape of genetic and molecular variation and help
make the promise of precision medicine equally accessible to all individuals globally.

Integrative multi-omics approaches in primary disease-relevant tissues have significantly contrib-
uted to a better understanding of complex diseases. The current challenge is to further expand
these previous efforts, in terms of scale, resolution, diversity, and molecular levels.
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